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A Hybrid Positioning Method Based on Hypothesis Testing

Nicolas Amiot, Troels Pedersen, Mohamed Laaraiedh, and Bernard Uguen

Abstract—We consider positioning in the scenario where only
two reliable range estimates, and few less reliable power obser-
vations are available. Such situations are difficult to handle with
numerical maximum likelihood methods which require a very
accurate initialization to avoid being stuck into local maxima.
We propose to first estimate the support region of the two peaks
of the likelihood function using a set membership method, and
then decide between the two regions using a rule based on the
less reliable observations. Monte Carlo simulations show that the
performance of the proposed method in terms of outlier rate and
root mean squared error approaches that of maximum likelihood
when only few additional power observations are available.

Index Terms—Location estimation, decision theory, estimation
theory, time of arrival, received signal strength, set membership
methods, interval analysis.

I. INTRODUCTION

WE consider the scenario where only two reliable range

estimates and few less reliable observations are avail-

able. This situation occurs when only few links can provide

time-of-arrival range estimates, but where a number of power

observations can be achieved from elsewhere. In such scenar-

ios, range-based positioning generally offers high accuracy,

especially if considering ultra wideband observations. Power

measurements in comparison, generally lead to inaccurate

estimated ranges due to the log-normal relation between

power and distance. The hybrid position estimator should thus

fuse heterogeneous observations of very different accuracies.

However, as reported in [1], this fusion is non-trivial for some

hybrid positioning algorithm. Indeed, the introduction of ad-

ditional, but less informative, power observations when a few

accurate range observations are already available, may in fact

lower the positioning accuracy. Thus, to take full advantage of

the power information, suitable hybrid positioning algorithms

are needed.

For the particular problem at hand, when considering only

two reliable range estimates, the likelihood function can be

dominated by two narrow peaks at the exact same height,

leading to an ambiguous maximum likelihood (ML) estimator.

This ambiguity is addressed in analysis of flip ambiguity

problems, see e.g. in [2]. Introducing extra power observations

largely changes the heights, but not the widths, of these

peaks. Albeit the ML estimation is in this case unambiguous,

the required global numerical optimization of a likelihood
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function with multiple narrow peaks renders the ML too

computationally demanding for many practical applications.

The use of a local optimizer can be considered, but this

optimization requires a good initialization to avoid to be

trapped in a local maximum.

An alternative approach is to solve the problem in two steps:

First estimate the support regions of the peaks of the likeli-

hood function, then calculate the final position estimate. The

problem of estimating the regions can be solved among others

by set-membership methods [3], [4]. In a set-membership

method, each observation defines a subset in space of possible

position estimates. The support region is then be computed

by intersecting these subsets by using, e.g. RSIVIA algorithm

[5]. In a heterogeneous positioning problem, as considered

here, the high accuracy observations lead to small subsets,

whereas the less informative observations lead to larger sub-

sets, which include the smaller subsets. Thus, the support

regions estimated by intersection of the small subsets alone

do not shrink further by intersecting with the larger subsets.

Consequently, in the problem at hand, the introduction of low

accuracy information, such as the power observations, neither

improves nor degrades the performance of the algorithm. In

the case where only two range estimates are available, the

set membership methods return one or two disjoint subsets

corresponding to the supports of the peaks of the likelihood

function. If the algorithm returns two subsets, a positioning

ambiguity arises.

In the present contribution, we propose a method to obtain

the final position estimate with the use of the two support

regions returned by a set membership approach. We formulate

the selection of the two disjoint subsets as a standard hypothe-

sis test based on the less informative power observations. The

final position estimate is afterward obtained as the centroid of

the chosen subset. Simulations show that the performance of

the proposed method are close to that of the ML estimator.

II. POSITION ESTIMATION BASED ON A DECISION

CRITERION

A. Description of Scenario

The considered scenario is illustrated in Fig. 1. The position

B of a blind node is estimated from the two noisy range

observations r1, r2 provided by the range nodes at known

positions R1 and R2,

ri = ‖Ri −B‖+ δi, i = 1, 2, (1)

where δi is the error in the range estimate. Given a probability

model for δi, it is possible to determine a confidence interval

for the range estimate ri, which as shown in Fig. 1, yields

a confidence region shaped as an annulus with center Ri.

The ambiguity problem occurs when the intersection of two

2162-2337/12$31.00 © 2012 IEEE
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Fig. 1: The blind node at position B receives two range estimates
r1 and r2 from ranging nodes at position R1 and R2 respectively.
Errors in range estimates are modeled by two confidence annuli
centered at R1 and R2, respectively. The intersection of annuli are
the two shaded regions C1 and C2, with their centroids C1 and
C2 respectively. In addition, the blind node achieves a log power
observation from each helping node at position Hk. The distance
from Hk to Ci is denoted by dk,i.

confidence annuli splits into two disconnected subsets C1 and

C2 with centroids C1 and C2, respectively. The two subsets

and their centroids can be obtained using, e.g the algorithm

proposed in [5].

To provide an unambiguous position estimate, additional in-

formation is required. We assume that additional observations

{Pk} of the log power are available from the helping nodes

at positions {Hk}. We model the log power observation Pk

as a distance dependent mean µ(dk) distorted by an additive

error term Xk, i.e.,

Pk = µ(dk) +Xk, (2)

with dk = ‖B − Hk‖. We assume the joint probability

density function (pdf) of X1, . . . , XK to be known. We gather

the log power observations into a vector P = [P1, . . . , PK ].
Practically, the log power information can be obtained from

the received signal strength indicators.

B. Proposed Decision Rule

We approximate the conditional pdf for the power observa-

tion conditioned by the position of the blind node as:

fP|B,r1,r2(p) ≈

⎧

⎪

⎨

⎪

⎩

fP|C1,r1,r2(p), B ∈ C1

fP|C2,r1,r2(p), B ∈ C2

0, otherwise,

(3)

with p ∈ R
K . In (3) we neglect the probability of the event

B /∈ C1 ∪ C2. This approximation is valid by appropri-

ately choosing the regions C1 or C2. Since B is unknown,

fP|B,r1,r2(p) cannot be computed. However, if accurate range

estimates are available,

TABLE I: Parameter Settings

Parameter Value

S [−20, 20]× [−20, 20] m2

L [−80, 80]× [−80, 80] m2

σδ 0.9 m
σX 4 dB
np 3
P0 −40 dB

then B can be approximated by C1 if B ∈ C1 or by C2 if

B ∈ C2, and thus:

dk ≈

{

dk,1 =‖C1 −Hk‖, B ∈ C1

dk,2 =‖C2 −Hk‖, B ∈ C2.
(4)

With the above approximations, the solution of the ambiguity

problem can be phrased as a classical decision problem where

λ is the likelihood ratio. The decision threshold γ can be

defined to account with a priori information or costs [6]:

λ =
fP|C1,r1,r2(p)

fP|C2,r1,r2(p)

C2

≶
C1

γ. (5)

The ML decision rule is obtained for γ = 1.

C. Special Case: Uncorrelated Gaussian Log Power Errors

In the special case where X1, . . . , XK are independent

Gaussian random variables with zero mean and variances

σ2

1
, . . . , σ2

K , yields for B in Ci:

fP|Ci,r1,r2
(p) =

K
∏

k=1

1√
2πσk

exp

(

− (pk − µk,i)
2

2σ2

k

)

, i = 1, 2,

(6)

with µk,i = µ(dk,i). Hence, the log likelihood ratio Λ = lnλ
reads:

Λ =

K
∑

k=1

[

(pk − µk,2)
2

2σ2

k

−
(pk − µk,1)

2

2σ2

k

]

(7)

We obtain the ML decision rule upon insertion of (7) into (5)

with γ = 1:

K
∑

k=1

1

2σ2

k

[

µ2

k,2 − µ2

k,1

]
C1

≶
C2

K
∑

k=1

1

σk

Pk(µk,1 − µk,2). (8)

It can be observed that for fixed centroids C1 and C2, the

left hand terms are constants, while the right hand terms are

a Gaussian random variable. Thus, the computation of error

probability is well-known [6].

III. NUMERICAL ANALYSIS OF THE PROPOSED METHOD

In this section the performance of the proposed method

is compared to ML approaches via Monte Carlo simulations

of the scenario described in Subsection III-A. We consider

a true ML estimator relying on global optimization and an

ML approximation (ML-WLS) in which a local optimizer is

initialized with a weighted least squares solution [7], both

introduced in Subsection III-B.
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(a) Three helping nodes (b) Ten helping nodes

Fig. 2: CDF comparison of the absolute positioning error between the Cramer Rao Lower Bound (CRLB) [10], the ML estimator (ML),
the iterative ML estimator initialized with a weighted least squares solution (ML-WLS) and the proposed method with: 2(a) three helping
nodes nodes, and 2(b) ten helping nodes.

A. Simulations Scenario

The performance of the proposed solution is assessed via

Monte Carlo simulations. We consider the special case de-

scribed in Subsection II-C for the setup given in Fig. 1 with

the parameters settings as in Table I. We draw the positions

B,R1, R2 independently and uniformly on the area S. The

positions {Hk} of the helping nodes are independently drawn

according to an uniform distribution on the larger area L. The

range errors δ1 and δ2 assumed to be independent zero mean

Gaussian random variables with variance σ2

δi
= σ2

δ . The mean

of the received log power is modeled according to the standard

path loss model µ(dk):

µ(dk) = P0 − 10np log10(dk), (9)

where P0 is the power received at 1 meter and np is the path

loss exponent. The variance σ2

k is chosen equal to σ2

X for all

k. Values for P0, np, σ2

δ and σ2

X are chosen according to the

measurements reported in [8].

B. Maximum Likelihood Estimation

The ML estimator for the hybrid positioning problem reads

B ∈ argmaxz ΛHybrid(z), where ΛHybrid(z) denotes the log

likelihood function for B based on {ri} and P. One approach

is to find the maxima of the local extrema of the log likelihood

function, obtained by equating the gradient to zero. For

independent range estimates and power measurements, the

gradient of the log likelihood function reads:

∇ΛHybrid(z) = ∇ΛPower(z) +∇ΛRange(z), (10)

where ΛPower and ΛRange are the log likelihood functions of the

power measurements and of the range estimates, respectively.

The two gradients read [7], [9],

∇ΛPower(z) =

K
∑

k=1

1

s2
Mk − s2 − ln ‖z −Hk‖

dk
2

(z −Hk),

∇ΛRange(z) =

2
∑

i=1

1

σ2
τ

ri − ‖z −Ri‖

ri
(z −Ri), (11)

with the definitions

s = −
σX ln 10

10np

, Mk =
(P0 − Pk) ln 10

10np

+ ln d0. (12)

Due to the non-linear relation (11), finding the roots of (10)

requires global numerical optimization, which is not feasible

for most applications. However, an approximate solution can

be obtained by initializing a numerical local optimizer with

an initial guess, e.g. a weighted least squares (ML-WLS)

approach [7].

C. Comparison of Performance

We compare the performances of the three algorithms in

term of cumulative density functions (CDF), outlier rates and

root mean square errors (RMSE). From the empirical CDFs

shown in Fig. 2 it appears that for a low number of helping

nodes, the performance of the proposed method outperforms

ML-WLS and is close to that of ML. For high number of

helping nodes, the proposed method and ML-WLS has similar

performances, except in a large errors regime, where the

proposed method prevails. These large errors are observed to

be less frequent when the number of helping nodes is high. To

inspect this difference, we consider the occurrence of outliers.

We define an outlier as follows: if B ∈ Ci, the estimate of B
is called an outlier if it lies in the complement of Ci. Note

that for the proposed method, an outlier is equivalent to a

decision error in (8). On Fig. 3 we observe that the outlier

rate decreases with the number of helping nodes increases. Not

surprisingly, the ML estimator yields the lowest outlier rate of

the three methods. It also appears that the proposed method

consistently outperforms the ML-WLS in terms of outlier rate.

This is most significant when the number of helping nodes

is less than four. These differences of performance are also

reflected in the RMSEs reported in Fig. 4. In particular, for

four or less helping nodes we observe that proposed method

is close to the ML curve, compared to ML-WLS curve.

The above observations suggest that the RMSE for the

proposed method approach can be attributed to two types of

errors: large errors outliers due to decision error in (8), and

small errors resulting from the approximation in (4). The small
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Fig. 3: Outlier rate vs. number of helping nodes.

Fig. 4: RMSE vs. number of helping nodes.

errors occur since the centroids C1 or C2 are used to estimate

the position of the blind node. Thus, we conjecture that the

effect of these small errors can be reduced by improving

this approximation, considering additional knowledge of the

probability model for the range error δi. This information

could be included directly as a weighting function in the

computation of centroids. Alternatively, the proposed method

could be used to provide an initial guess for a numerical

optimization of the likelihood function. We further conjecture

that the outlier rate, which is equivalent to the rate of false

decision in (8), could be also reduced by improving the

approximation (4).

IV. CONCLUSIONS

The proposed method yields a position estimate for situa-

tions where only two reliable range estimates are available

along with a number of less informative observables, e.g.

information on the received log power from other nodes.

In such a situation, the ML estimator necessitates numeri-

cal global optimization of an objective function with local

maxima located at narrow peaks. The proposed method relies

on an approximate ML decision rule with the hypothesis

corresponding to the blind node residing in the support regions

of each of the peaks of the likelihood function. The decision

rule is formed using the less informative power observations.

Finally, the position estimate is computed as the centroid of

the selected peak’s support regions. Monte Carlo simulations

show that the performance of the proposed method in terms

of outlier rate and root mean squared error, in a realistic

scenario, approaches that of ML. This is in particular the case

when only few additional power observations are available,

i.e. when the errors due to outliers dominate. Furthermore, the

proposed method outperforms an alternative procedure where

a least squares approach provides initialization for numerical

optimization of the likelihood function. Further improvement

of the accuracy of the proposed method could be achieved

by refining the estimate of the local maxima of the likelihood

function.
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