
MULTI-TEXTURING 3D MODELS: HOW TO

CHOOSE THE BEST TEXTURE?

Youssef Alj, Guillaume Boisson, Philippe Bordes, Muriel Pressigout, Luce

Morin

To cite this version:

Youssef Alj, Guillaume Boisson, Philippe Bordes, Muriel Pressigout, Luce Morin. MULTI-
TEXTURING 3D MODELS: HOW TO CHOOSE THE BEST TEXTURE?. IC3D, Dec 2012,
Belgium. 2012. <hal-00785836>

HAL Id: hal-00785836

https://hal.archives-ouvertes.fr/hal-00785836

Submitted on 7 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00785836


MULTI-TEXTURING 3D MODELS:
HOW TO CHOOSE THE BEST TEXTURE?

Youssef Alj, Guillaume Boisson, Philippe Bordes

Technicolor
1 avenue Belle Fontaine CS 17616

35576 Cesson-Sévigné Cedex
France

Muriel Pressigout, Luce Morin

INSA Rennes
20 avenue des Buttes de Coësmes

35043 Rennes Cedex
France

ABSTRACT

In this article, the impact of 2D based approaches for multi-
texturing 3D models using real images is studied. While conven-
tional 3D based approaches assign the best texture for each
mesh triangle according to geometric criteria such as triangle
orientation or triangle area, 2D based approaches tend to mi-
nimize the distortion between the rendered views and the ori-
ginal ones. Evaluation of the two strategies is performed on
real scenes for two image sequences and results are provi-
ded using the PSNR metric. Moreover, an improvement of
the image-based approach is proposed for texturing partially
visible triangles.

Index Terms— Multi-texturing, best texture, OpenGL,
mesh, PSNR.

1. INTRODUCTION

Since the introduction of texture mapping in computer
graphics in the mid seventies, acquiring photo realistic 3D
models has become necessary for various applications such as
cultural heritage, architecture and entertainment industry. Ty-
pically in such applications, one seeks to texture a 3D model
given a set of photographs captured from various viewpoints.
The straightforward approach for texturing the 3D model is
to determine the best texture for each mesh facet. The point
is then to find a criterion to define the best texture. 3D geo-
metric criteria such as angle between the line of sight and the
triangle orientation [3], distance to the viewing camera [2]
or facet’s area [8] may be considered to solve this problem.
The aim of multi-texturing is to determine the texture provi-
ding the best rendering. To this end, photoconsistency based
multi-texturing was introduced in [1]. It aims to assign for
each mesh triangle the best texture by minimizing the 2D dis-
tortion, i.e. the quadratic error between the rendered and ori-
ginal views. Given these approaches, we attempt to address
the following questions : what is the impact of an approach
based on 2D distortion on the quality of the rendered views ?
And do 2D approaches really add a significant improvement

in terms of PSNR ? In this paper we present a comparison
between texture selection using 3D geometric criteria and a
2D approach based on distortion minimization of the rende-
red images. This distortion is measured using the PSNR me-
tric classically used within the video coding community. Ac-
tually, the PSNR metric is employed in order to evaluate fide-
lity between a reference and recovered image. In this study,
this metric is used for both assigning the best texture to mesh
triangles as well as for comparing geometric versus image ba-
sed criteria for multi-texturing 3D models. The contributions
of this paper are twofold :

– First, we study the impact, on the rendered views, of
using geometric versus image based criteria for multi-
texturing 3D models.

– Second, we extend the photoconsistency based multi-
texturing method to handle partially visible triangles.

2. RELATED WORK

View Dependent Texture Mapping was first introduced by
Debevec et al. in [3] with real time application in [4]. In this
scheme, the user specifies a virtual view to render the mesh,
and the best texture for each mesh triangle is chosen as the
one the minimizes the angle between the triangle normal and
the viewing directions of input cameras. For instance, when
generating a novel view from the left, it would be better to
use the image corresponding to the left view as the texture
map. View Dependent Texture Mapping approaches consider
the transmission of the set of all textures which requires a tre-
mendous amount of data. The Floating Textures scheme [5]
alleviates inaccuracies inherent to the geometric model and
the camera calibration, and proposes a pairwise warping bet-
ween input images using optical flow. Instead of using the
optical flow, Harmonised Texture Mapping [9] used an opti-
mized version of the input mesh in order to control the range
of texture deformation. Lempitsky and Ivanov [8] formulate
multi texturing the 3D model as a labelling problem : each
texture should be assigned as a label to the mesh triangle.
They expressed their labelling strategy as on energy minimi-



zation problem with two terms, the first one describing how
better an input texture suits the triangle and the second one
penalizing seams’ visibility. Computation of the best texture
per triangle is based on the angle between the viewing direc-
tion and the triangle normal. Based on energy minimization
scheme, Gal et al. [6] extend the best texture search space to
include a set of transformed images that compensate geome-
tric errors and make use of Poisson blending to address ligh-
ting variation. The Unstructured Lumigraph Rendering me-
thod [2] uses a penalty function for each view in order to
determine the best view for each triangle, this penalty is a
linear combination of three terms : visibility constraints, the
angle between the desired view to render and the set of input
cameras and the resolution of the projected triangle. Other ap-
proaches form a single texture map by blending the available
images. In [10], the unique texture map generation is presen-
ted as a super resolution problem [7]. The authors used image
processing tools to compute the correct weights for blending.
Finally, a 2D criterion for best texture selection is based on
photoconsistency with the set of input images was first pro-
posed in [1]. Their idea is based on distortion minimization
between the rendered and original views. This distortion is
measured in terms of quadratic error.
In this paper, we compare the impact of multi-texturing 3D
models using geometric criteria, namely triangle orientation
and triangle area, versus using 2D criterion based on photo-
consistency on the other hand.

3. GEOMETRIC CRITERIA FOR MESH
TEXTURING

Given a triangular mesh M and a set of texture images
I = {I1, . . . , In}. Each texture Ii is respectively captured
from the views V = {V1, . . . , Vn}. The aim is to find for
each mesh triangle t ∈ M the best texture image Ît ∈ I
using a geometric criterion Ck, where Ck could be one of the
following criteria :

– C1 := 〈~dj , ~nt〉 i.e. dot product between triangle normal
~nt and viewing direction (i.e. optical axis, that is image
plane normal) ~dj of the view Vj . Small angles between
triangle normal and viewing directions of input came-
ras are then preferred. Note that in the case of parallel
camera setup this criterion is not applicable.

– C2 := 〈~ej , ~nt〉, where ~ej denotes the direction of the
ray joining the triangle barycenter and the camera’s po-
sition. Views where the triangle’s viewing cone is larger
are then preferred.

– C3 := areaj(t) the area of the projected triangle onto
the view Vj . Views where the resolution of the projec-
ted triangle is larger are then preferred.

Let Pj(t) denote the projection of triangle t onto the view
Vj . Pj(t) consists in a set of pixels (q, l) corresponding to the
rasterization of triangle t, e.g. using OpenGL rendering en-
gine. The best texture Ît is computed the following way : first

Fig. 1. Best texture selection as the minimizer of the angle
between the triangle normal and cameras viewding direcions.

for each triangle t, total and partial visibility are determined
with respect to each view. The best texture is then determined
as the maximizer of Ck with respect to visibility constraints.
Figure 1 illustrates the principle of best texture selection using
C1. This figure shows that the best view to texture the triangle
t is the camera 2. Indeed, the angle between the viewing di-
rection of the camera 2 and the triangle normal is minimum,
which corresponds to a maximum dot product.

3.1. Visibility determination

Given the input mesh M, total and partial visibility are
first determined for each triangle with respect to each view.
At the end of this step, each triangle will have one of the three
labels per view : "totally visible", "partially visible" or "hid-
den". The algorithm is detailed in the next section.

3.1.1. Total visibility

In this step only the labels "totally visible" and "hidden"
are assigned to mesh triangles. The status of each mesh tri-
angle is initialized to "totally visible". The visibility of each
triangle is determined by computing the visibility of the tri-
angle vertices. A triangle is marked as hidden if at least one of
its vertices is hidden. Vertex visibility with respect to each ca-
mera is determined using OpenGL z-buffer denoted as Zj

buffer

(i.e. z-buffer of the mesh projected onto the view Vj). Du-
ring the first pass, the input mesh is projected onto the current
view, and the z-buffer is extracted. The second pass is dedi-
cated to vertex visibility determination using the computed
z-buffer. Each mesh vertex is projected onto the current view
and the depth component, denoted as zprojected, is checked



against the pixel depth Zj
buffer[q, l]. If the projected vertex is

behind the pixel in the z-buffer, then this vertex is hidden, and
thus the set of mesh triangles sharing this vertex are marked
hidden. The pseudo-code for total visibility determination is
provided in algorithm 1.

Algorithm 1: Global visibility determination.

// Views traversal
for each view Vj do

Initialize all triangles to visible.
Project theM onto Vj .
Store the depth buffer Zj

buffer.
// Mesh vertices traversal
for each vertex v do

Determine (q, l, zprojected) the projection of the
vertex v onto Vj .
if Zj

buffer[q, l] > zprojected then
v is a hidden vertex.
Mark all the triangles lying on v as hidden.

3.1.2. Partial visibility

Until now, each triangle has one of the two labels : "totally
visible" or "hidden". At the end of this step, "hidden" triangles
will be sorted out as "partially visible" or totally "hidden". To
this end the depth of each pixel is checked against the stored
depth buffer in the projected triangle. Note that it is necessary
to check the depth of the projected triangle. Partial visibility
determination by counting the number of hidden vertices is
not sufficient as some triangles could be partially visible and
have a number of hidden vertices of three. The algorithm de-
termining partial visibility is presented in algorithm 2.

Algorithm 2: Partial visibility determination.

// Views traversal
for each view Vj do

// Mesh triangles traversal
for each triangle t do

if triangle t is hidden in Vj then
Determine Pj(t) the projection of triangle t
onto Vj .
for each pixel (q, l) in Pj(t) do

Get the pixel depth z.
if z == Zj

buffer[q, l] then
Mark t as partially visible in Vj .

3.2. Best texture computation using geometric criterion

In this section the best texture is assigned to the set of tri-
angles which are totally or partially visible using one of the
three criteria discussed above. Algorithm 3 describes how the
best texture is assigned for such triangles. The user specifies
a geometric criterion Ck. The view that maximizes Ck is as-
signed as the best texture for the current triangle.

Algorithm 3: Best texture determination using Ck.

// Triangles traversal
for each triangle t do

Get the normal of the triangle t.
// Views traversal
for each view Vj do

if t is visible or partially visible in Vj then
Compute Ck.

Compute Ît which maximizes Ck

4. PHOTO-CONSISTENCY BASED MESH
TEXTURING

Photoconsistency based mesh texturing was first introdu-
ced in [1]. Figure 2 illustrates the photoconsistency principle.
The triangle t is visible in cameras 1, 2, 3. For each texture
Ii ∈ I, the triangle t is textured with texture Ii (red arrow
for texture mapping operation) and projected (green arrow
for projection operation) onto the cameras 1, 2, and 3 - i.e.
the set of cameras where t is visible. The error of texturing
the triangle t with each available texture is computed. This
error is referred to as the photoconsistency metric. The best
texture is chosen as the minimizer of the photoconsistency
metric. In [1] only totally visible triangles are addressed, and
partially visible ones are textured using the view of the frontal
camera. The novelty of the approach described in this paper
is to extend the photoconsistency-based best texture computa-
tion for partially visible triangles too. The overall framework
is sketched in Figure 3. First, visibility is determined for each
triangle with respect to each view. Second, each available tex-
ture is mapped on visible triangles of the input mesh. Photo-
metric projection error is computed for each triangle and for
each input view and stored in distortion images. Synthesized
views are produced by rendering the textured mesh, each tri-
angle being textured with the best texture according to the
photoconsistency metric. In the next section each step of this
algorithm is described in more details.



Fig. 2. Best texture determination using photoconsistency.
Red arrow for texture mapping operation and green arrow for
projection operation.

Fig. 3. Overall framework.

4.1. Distortion images determination

In order to determine the error of texturing a triangle with
an input texture Ii, each available texture is then mapped on
the merged mesh and projected onto each camera. Let P i

j (M)
be the projection of the mesh M onto the view Vj textured
with the image Ii. For each available texture the following
distortion image is computed in RGB color space :

Di,j = ‖P i
j (M)− Ij‖2

4.2. Best texture determination

In this section, the best texture is chosen for each mesh
triangle using the distortion images. The best texture for each
triangle relies on the computed set of pixels that belong to the
projected triangle and visible in the current view Vj , i.e. the

Algorithm 4: Compute distortion images.

// Textures traversal
for each texture Ii do

// Views traversal
for each view Vj do

Compute P i
j (M) : projection of the mesh

textured with texture Ii onto view Vj .
Di,j = ‖P i

j (M)− Ij‖2

set of pixels :

Visj(t) = {(q, l) ∈ Pj(t), (q, l) visible in Vj}

Figure 4 shows how Visj(t) is determined for partially and
totally visible triangles. The grid represents image pixels. In
4(a) the blue triangle is totally visible, the set of pixels de-
fining Visj(t) are shown in red. On the contrary, the blue
triangle in 4(b) is partially visible as it is occluded by the
green triangle. Visj(t) in this case is restricted to the non-
occluded pixels. The photoconsistency metric is then com-
puted for each triangle with respect to Visj(t). This metric
measures the error of texturing the triangle t with the texture
image Ii. From here on, for sake of simplicity, visible triangle
will refer to totally or partially visible triangle as they will be
treated the same way.
∀i ∈ {1, . . . , n} we compute :

E t,Ii =

n∑
j=1

t visible in Vj

 ∑
(q,l)∈Visj(t)

Di,j [q, l]

 ,

The best texture for a visible triangle t is then given by :

Ît = argmin
Ii∈I

E t,Ii .

The steps of best texture computation are summarized in al-
gorithm 5.

Algorithm 5: Compute the best texture for each tri-
angle.

// Triangles traversal
for each triangle t do

// Views traversal
for each view Vj do

Determine Visj(t).

// Textures traversal
for each texture Ii do

Compute E t,Ii .

Determine Ît.



4.3. Texture mapping

Finally, the views are rendered. The 3D model is projected
according to the camera’s parameters supplied by the user.
Then each triangle is textured using the texture coordinates
determined during visibility determination step.

(a) total visibility (b) partial visibility

Fig. 4. Best texture computation. Handling partial/global vi-
sibility.

5. IMPLEMENTATION AND RESULTS

Results are presented for two sequences breakdancers and
balloons. Breakdancers, provided by Microsoft, is captured
by eight convergent cameras. Balloons sequence, provided
by Nagoya University, is captured by three parallel cameras.
Both sequences have XGA resolution (1024x768). The geo-
metric model used in this study is based on the 3D reconstruc-
tion scheme presented in [1].

Results of the rendered views are provided in figure 6 and
in figure 5. It can be seen that photoconsistency based mesh
texturing provides better visual quality than geometric based
methods. More precisely, in figure 5, the frontier between the
two brown walls is well-aligned using the photoconsistency
criterion, while this frontier is misaligned using the geometric
criterion. Besides, the floor appears to be noisy using geome-
tric criterion, while it is much smoother using the photocon-
sistency criterion. Figure 7 shows that the difference in terms
of PSNR between photoconsistency criterion and any other
geometric criterion is noticeable ( the average difference is at
least 1dB between the two methods).

Regarding the photoconsistency criterion, results also show
that PSNR is higher for cameras near the frontal camera (see
Figure 7), which is due to the large number of triangles assi-
gned to the texture of the frontal camera. However, photocon-
sistency based multi-texturing algorithm is time-consuming
(about 10x more) comparing to geometric methods. There-
fore it turns out that photoconsistency based multi-texturing
is best suited for offline rendering. These results suggest the
use of the photoconsistency based multi-texturing for trans-
mission purposes where distortion minimization is often a key
element to take into account.

Fig. 7. PSNR evolution through different views using dif-
ferent criteria for Breakdancers and Balloons sequences.

6. CONCLUSION

In this paper, multi-texturing 3D models was addressed
by considering several criteria for best texture assignment to
mesh triangle. Conventional geometric criteria assign the view
that minimizes the angle between the viewing direction and
the triangle normal, or the view that maximizes the triangle
resolution. On the contrary, 2D based approaches minimize
the distortion between the rendered views and the original
ones. We show that photoconsistency based methods are si-
gnificantly more relevant for transmission purposes. Indeed
they outperform geometric based methods both in terms of
objective and subjective visual quality of synthesized views.
The PNSR gap exceeds 2dB for the common test-sequences.
As a perspective, we plan to investigate how to reduce com-
plexity without altering too much the quality of the synthe-
sized views. We also aim to improve spatial consistency of
the assigned textures in order to reduce the coding cost of the



texture signal.

7. REFERENCES

[1] Y. Alj, G. Boisson, P. Bordes, M. Pressigout, and L. Mo-
rin. Space carving mvd sequences for modeling natural
3d scenes. volume 8290, page 829005. SPIE, January
2012.

[2] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and
M. Cohen. Unstructured lumigraph rendering. In Pro-
ceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 425–432.
ACM, 2001.

[3] P.E. Debevec, C.J. Taylor, and J. Malik. Modeling
and rendering architecture from photographs : A hybrid
geometry-and image-based approach. In Proceedings of
the 23rd annual conference on Computer graphics and
interactive techniques, pages 11–20. ACM, 1996.

[4] P.E. Debevec, Y. Yu, and G. Borshukov. Efficient
view-dependent image-based rendering with projective
texture-mapping. In Eurographics Rendering Workshop,
volume 98, pages 105–116, 1998.

[5] Martin et al. Eisemann. Floating textures. Computer
Graphics Forum (Proc. of Eurographics), 27(2) :409–
418, April 2008.

[6] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-
Or. Seamless montage for texturing models. In Compu-
ter Graphics Forum, volume 29, pages 479–486. Wiley
Online Library, 2010.

[7] M. Iiyama, K. Kakusho, and M. Minoh. Super-
resolution texture mapping from multiple view images.
In Pattern Recognition (ICPR), 2010 20th International
Conference on, pages 1820–1823. Ieee, 2010.

[8] V. Lempitsky and D. Ivanov. Seamless mosaicing of
image-based texture maps. In Computer Vision and Pat-
tern Recognition, 2007. CVPR’07. IEEE Conference on,
pages 1–6. IEEE, 2007.

[9] T. Takai, A. Hilton, and T. Matsuyama. Harmonised tex-
ture mapping. In Proc. of 3DPVT, 2010.

[10] L. Wang, S.B. Kang, R. Szeliski, and H.Y. Shum. Opti-
mal texture map reconstruction from multiple views. In
Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society
Conference on, volume 1, pages I–347. IEEE, 2001.



(a) Original image camera 7 (b) Zoom on original image camera 7

(c) Synthesized image camera 7 using viewing cone criterion C2 (d) Zoom on synthesized image camera 7 using viewing cone criterion
C2

(e) Synthesized image camera 7 using photoconsistency (f) Zoom on synthesized image camera 7 using using photoconsistency

Fig. 5. Rendered images for breakdancers sequence using viewing cone criterion vs. photoconsistency.



(a) Original image camera 5 (b) Zoom on original image camera 5

(c) Synthesized image camera 5 using triangle resolution criterion C3 (d) Zoom on synthesized image camera 5 using triangle resolution cri-
terion C3

(e) Synthesized image camera 5 using photoconsistency (f) Zoom on synthesized image camera 5 using photoconsistency

Fig. 6. Rendered images for balloons sequence using resolution criteria versus photoconsistency.


	 Introduction
	 Related work
	 Geometric criteria for mesh texturing
	 Visibility determination
	 Total visibility
	 Partial visibility

	 Best texture computation using geometric criterion

	 Photo-consistency based mesh texturing
	 Distortion images determination
	 Best texture determination
	 Texture mapping

	 Implementation and results
	 Conclusion
	 References

