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Currently, detection of DNA hybridization using fluorescence-based detection technique 

requires expensive optical systems and complex bioinformatics tools. Hence, the development 

of new low cost devices that enable direct and highly sensitive detection stimulates a lot of 

research efforts. Particularly, devices based on silicon nanowires are emerging as 

ultrasensitive electrical sensors for the direct detection of biological species thanks to their 

high surface to volume ratio. In this study, we propose innovative devices using step-gate 

polycrystalline silicon nanowire FET (poly-Si NW FETs), fabricated with simple and low cost 

fabrication process, and used as ultrasensitive electronic sensor for DNA hybridization. The 

poly-SiNWs are synthesized using the sidewall spacer formation technique. The detailed 

fabrication procedure for a step-gate NWFET sensor is described in this paper. No-

complementary and complementary DNA sequences were clearly discriminated and detection 

limit to 1fM range is observed. This first result using this nano-device is promising for the 

development of low cost and ultrasensitive polysilicon nanowires based DNA sensors 

compatible with the CMOS technology. 
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 1. Introduction 

DNA detection technology has been developed rapidly due to its extensive application in 

clinical diagnosis, bioengineering, environmental monitoring, and food science areas. In 

particular, successful healthcare in the near future will largely rely on a precise diagnosis of a 

pathological state and knowledge of particular features of the patient relevant for the disease. 

This "personalized medicine" is expected to yield both better therapeutic results and cost 

reduction, and is the subject of intense research efforts. In particular, biomarkers have 

received great interest as tools for early disease detection, diagnosis and treatments in cancer, 

cardiovascular diseases or even non-invasive prenatal diagnosis. Among these biomarkers, 

circulating nucleic acids (DNA, mRNA and miRNA) are gaining great attention in several 

pathologies, because their detection is minimally invasive (blood sample), acceptable to 

patients, and highly accurate. Much attention has been paid on the development of 

miniaturized and sensitive detection methods for detection of these nucleic acids. There are 

several obvious advantages related to the miniaturization of biological sensors: i) reduction of 

sample and reagent consumption, ii) increase of the sensitivity and specificity, iii) low cost 

systems requirements, iv) cost-effective disposable chips because of mass production, v) 

better process control, because of a faster response of the system [Furuberg et al., 2008]. 

Development of new technologies for biomarkers detection involves both biological and 

economic challenges. The cost reduction is a major key for the future widespread applications 

of the devices in biomedical diagnoses that require mass production devices. Low cost and 

portable devices for rapid analysis of biomarkers may then revolutionize disease diagnosis 



and healthcare. In this study, we propose simple and low-cost silicon nanowires based sensor 

for specific nucleic acids detection.  

Silicon nanowires have recently been developed as transducers for ultrasensitive biosensors 

and chemical sensors [Lin et al., 2009; Gao et al., 2007; Stern et al., 2007; Patolsky et al., 

2006, Wu et al., 2009]. As their surface can be sensitive to charged species combined with 

their small size and high surface to volume ratio, silicon nanowires (SiNWs) are the subject of 

intense research activities for high sensitivity sensor fabrication. The highly sensitive 

detection based on silicon nanowires enable a change in current due to a field-effect, when the 

analytical molecules bind to specific recognition molecules at the surface of the nanowire 

[Elfström et al., 2007]. Because SiNWs synthesis can be compatible with the established 

silicon technology, enormous research efforts to design and develop new generation of high 

performance biological and chemical sensors by incorporating the SiNWs as the functional 

sensitive units are performed. SiNWs based sensor integration will allow reliability and lower 

manufacturing cost, in addition to the advantageous electronic features of embedded detection 

and signal processing in silicon technology. Many articles have recently reviewed different 

approaches for silicon nanowire synthesis. The growth of SiNWs can be achieved in a top-

down approach, by using sophisticated expensive lithography techniques, or in a bottom-up 

approach [Patolsky et al., 2005] by self-assembly growth. The latter approach, however, 

suffers seriously from the difficulty in precisely positioning the device location. It is a major 

difficulty to the potential device integration and the reliability of the SiNWs-based sensors. In 

a top-down approach, SiNWs can be prepared using various advanced methods such as e-

beam, AFM or deep UV lithography techniques. Excellent electrical properties of 

monocrystalline silicon nanowires for biosensing have been demonstrated in the literature on 

Silicon-On-Insulator wafers [Stern et al., 2007; Li et al., 2004; Cui et al., 2001]. The main 

disadvantage of these methods using advanced lithographic tools with nanometer size 



resolution rests on the high cost generated. Recently, an interesting approach has been 

demonstrated to synthesize polycrystalline silicon nanowires (poly-SiNWs) using a classical 

fabrication method commonly used in microelectronic industry: the sidewall spacer formation 

technique [Hsiao et al., 2009; Lin et al., 2009; Demami et al., 2009, 2011]. Assets of this 

technological process rest on low cost lithographic tools use, classical silicon technology 

compatibility and the possibility to get numerous parallel nanowires with precise location on 

the substrate. Throughout the fabrication, no expensive lithography tools are needed for 

definition of nano-scale patterns. The detailed fabrication procedures for a step-gate NWFET 

sensor is described in this paper and we will show that the proposed method, low-cost and 

simple, is potentially suitable for future practical manufacturing. Here, we demonstrate that 

the step-gate SiNW FETs can be used as highly sensitive biological sensor for DNA 

hybridization detection. 25-mer no-complementary and complementary DNA strands will be 

used as a proof of concept. This first result suggests that this nano-device is promising for the 

development of low cost and label-free polysilicon nanowires biosensor compatible with the 

CMOS technology.  

 

2. Materials and methods 

2.1 Materials 

3-Aminopropyltriethoxysilane (APTES) and glutaraldehyde (25%) in aqueous solution 

were purchased from Sigma–Aldrich. All synthetic oligonucleotides were purchased from 

EUROFINS MWG including 5-amino-modified DNA probe (NH2-5'-TCA-ATC-TCG-GGA-

ATC-TCA-ATG-TTA-G3’). Two 25-bases sequences are used as targets: complementary 

target (5’CTAACATTGAGATTCCCGAGATTGA3’), non complementary DNA target 

(5’TAAAGCCCAGTAAAGTCCCCCACC3’). Fluorescently DNA 5-amino-modified and 3’-

fluorescein modified DNA (NH2-5'-TCA-ATC-TCG-GGA-ATC-TCA-ATG-TTA-G3’-flu) 

http://www.sciencedirect.com/science/article/pii/S0956566308003680#ref_bib24


are used as probes. Phosphate buffered solution (PBS) with pH 7.4 was purchased from 

Sigma–Aldrich. 

 

2.2 Fabrication of poly SiNW FETs 

Polysilicon nanowires field-effect transistors are fabricated using a 5 masks process. The 

process described below is CMOS compatible and the maximum temperature process doesn’t 

exceed 600°C, which means that sensors can be fabricated on silicon substrate as well as on 

inexpensive glass substrates. N-type transistors with various parallel polysilicon nanowire 

channels are fabricated using the sidewall spacer method described below. This method is 

commonly used in submicron scale device silicon technology to insulate device active area. In 

our case, the spacer at nanometric scale made of polysilicon constitutes the nanowire. This is 

an alternative way to synthesize SiNWs in a 2D configuration, and it allows the fabrication of 

parallel SiNWs network over a large area in coplanar structure. The key nanowire fabrication 

steps are illustrated on figure 1. At first, substrate is covered with a SiO2 dielectric film 

deposited by APCVD (Atmospheric Pressure Chemical Vapor Deposition) at 420°C. Then, a 

100nm thick in-situ doped silicon layer is deposited by LPCVD (Low Pressure Chemical 

Vapor Deposition) in an amorphous state at 550°C and crystallized by thermal annealing 

under vacuum at 600°C during 12 hours. After patterning, a reactive ion etching (RIE) leads 

to the formation of the step-gate (Fig.1a) covered by a 100nm thick APCVD oxide acting as 

gate insulator (Fig.1b). After, two layers of polysilicon are successively deposited. The first 

one is an undoped layer and the second one is a heavily in-situ N-type doped polysilicon layer 

(Fig.1c). A patterning and a plasma etching are achieved to create an aperture in the gate 

insulator (Fig.1d). The two layers (undoped polysilicon and heavily doped polysilicon) are 

successively etched. Accurate control of the polysilicon layers etching rate leads to the 

formation of nanometric size sidewall spacers used as undoped nanowires (Fig.1e). Source 



and drain regions are made of heavily in-situ N-type doped polysilicon. Then, the polysilicon 

nanowires are capped with a 70nm thick APCVD oxide. Finally, an aluminum layer is 

deposited by thermal evaporation (Fig.1f) and patterned to define gate, source and drain 

contacts (Fig.1g). Fig. 2 shows a SEM image of a polysilicon nanowire obtained by sidewall 

spacer formation technique.  

 

2.3 Surface modification for probes immobilization  

Probes immobilization is performed by functionalization of the SiNW capping layer (SiO2). 

Figure 3 describes the procedure used to immobilize the DNA strands onto the nanowires 

surface. At first, such functionalization of the SiNW devices is carried out using APTES to 

convert surface silanol groups (SiOH) to amines. The silicon atom in the molecule of APTES 

will perform a chemical bond with the oxygen of the hydroxyl group. Samples are heated to 

100°C for one hour to ensure complete drying of the surface to be treated as the APTES reacts 

rapidly in contact with water, then samples are immersed in an APTES vapor for five minutes 

and then re-heat to 100°C for one hour. After this first step, amino groups (NH2) are the 

terminal units from the surface. Next, Glutaraldehyde is used as a grafting agent for DNA 

immobilization. Glutaraldehyde binding is achieved through its aldehyde group (COH) that 

will ensure a chemical bond with the amino group of APTES. For this step, samples are 

placed in a desiccator under vacuum containing glutaraldehyde in liquid state that evaporates 

and settles on the samples during 12h at room temperature. For probes immobilization, 3’-

amino group of DNA strands are linked to the aldehyde groups of the linker. A 10µl drop 

solution of synthetic 400ng/µl DNA probes is deposited onto the NWs for 1h. The major 

challenge in surface modification is the control of DNA probes immobilization over 

functional groups. To check the efficient probes immobilization, fluorescently DNA probes 

modified with fluorescein are immobilized and fluorescence images are observed. 



 

2.4 Target DNA hybridization 

After probes immobilization, a drop with DNA targets is deposited on the nanowires surface 

to hybridize to the DNA probes. Complementary and no-complementary targets are used, with 

various concentrations after dilution with PBS solution. After 1h, samples are washed with 

PBS to remove excess targets and NWFET static electrical characteristics are performed.  

 

3. Results and discussion 

3.1 Electrical measurements of the step-gate poly-Si NWFETs 

Static electrical characteristics are collected at room temperature using a HP4155B 

semiconductor parameter analyzer. Figure 4 presents output ID-VDS and transfer ID-VGS 

characteristics for the 70nm curvature radius SiNW based n-channel FET. Fig. 4a highlights 

the field effect modulation of drain current with positive gate voltage, linear and saturation 

regions are observed. Transfer characteristic (fig.4b) shows current drain switched between 

‘on’ and ‘off’ state by varying potential of the gate electrode and the switching ratio between 

‘on’ and ‘off’ state is ~ 1.7x10
4
. Threshold voltage, VT, and optimum field effect mobility, 

µFE, are determined according to the classical electrical conduction model used for the 

MOSFET (Metal Oxide Semiconductor Field Effect Transistor). µFE is deduced from the 

maximum slope of the ID-VGS curve plotted in the saturation mode, and VT is determined by 

the intercept of the ID-VGS curve in linear mode with the gate axis voltage. The field effect 

mobility (~ 60 cm
2
/V.s) and the high threshold voltage (VT  7.5 V) values are related to the 

poor crystalline quality of the channel. Indeed, note that the step-gate NWFET channel is 

located on the sidewall of the patterned gate (fig.5) which is the lateral seed layer containing a 

higher defect density than the upper polycrystalline SiNW surface. Electrical properties of 

polycrystalline silicon are strongly controlled by defects caused by dangling bonds and 



strained bonds within the grain boundaries [Fortunato, 1997]. These grain boundaries and 

intergranular defects as well as gate insulator/SiNWs interface defects mainly located in the 

channel region degrade the carrier transport. However, the influence of the gate voltage on 

drain current shows that the device can be sensitive to charged molecules. In particular, 

negative charges carried by the phosphate groups of DNA bound onto NW surface will play 

the role of chemical gates that exert an electric field.  

 

3.2 Probes immobilization 

Fluorescently DNA probes modified with fluorescein are immobilized on unmodified surface 

and on functionalized surface. Fluorescence images are observed to check the efficiency of 

probes immobilization. DNA strands cannot be linked on the nanowire without 

functionalization and thus the fluorescence was not observed on fig 6-a. The intensity of 

fluorescence on sample with functionalization suggests effective DNA strands immobilization 

(fig.6-b). 

 

3.3 Electrical response after DNA hybridization  

Hybridization phenomenon is detected on electrical characteristics of the SiNWFET. The 

transfer characteristic of the transistor after probes immobilization is used as reference (see 

circles in figure 7). Then, we load a drop of a solution containing a complementary DNA 

targets (concentration 10fM) on the transistor. After incubation and rinsing, we observe (see 

squares in Figure 7) a shift of the characteristic in the direction of the lower positive voltages 

(negative shift) due to the detection of negative charges carried by the phosphate groups of the 

hybridized complementary DNA. Indeed, negative surface charges act as chemical gate that 

exert an electric field, inducing a cumulative effect with a positive bias voltage in n-channel 

formation. Since the surface charge acts as an additional gate, current in the n-channel of the 

NW-FET at fixed positive step-gate bias increases if negative concentration increases on the 



surface. As a result, lower threshold voltage of the ID-VGS curve of the NWFET is observed. 

In addition, non-complementary DNA targets have been tested to check specific 

hybridization. We observed that the electric characteristics remained unchanged, indicating 

that no additional charges were present on the surface and also that there is no-specific 

binding of DNA targets on glutaraldehyde.  

These preliminary results indicate that specific DNA molecules may be detected using the 

SiNW technology described in this paper. The detection range and the lowest detectable 

concentration have been estimated. The relationship between current variation (ΔID = ID targets - 

ID probes for VGS=8V) and target concentration is plotted on figure 8, and reveals a logarithmic 

dependence. Concentration as weak as 1fM is detected and this first result using innovative 

step-gate polysilicon nanowires field effect transistor is promising for the development of low 

cost and ultrasensitive polysilicon nanowires based DNA sensing applications compatible 

with the CMOS technology.  

 

4. Conclusions 

The detailed fabrication procedure for a step-gate polysilicon NWFET sensor is described. We 

demonstrate that this device can be used as biological sensor for detection of DNA 

hybridization. This sensor has experimentally demonstrated its high sensitivity using synthetic 

sequences as probes and targets. No-complementary and complementary sequences were 

clearly discriminated and detection limits to 1fM is achieved. Thus, the poly-Si NW FET can 

be an interesting alternative to conventional DNA-hybridization detection because, in a few 

minutes, they can analyze biomolecular interactions in realtime and in a label-free way. The 

first results are promising for the development of low cost, label-free and sensitive polysilicon 

nanowires based DNA sensing applications compatible with the CMOS technology. Fabricate 



a large amount of devices, control the electrical properties and reduce the cost to a reasonable 

range will be an important issue for using Si NW FET in biomedical applications. Next 

studies will focus on the sensitivity limitations, in particular on the detection of DNA 

mutations which is of crucial interest in molecular biology. Particularly, it is a relevant tool for 

the diagnosis of several diseases, like some types of cancer related to inherited mutations. 
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Figure captions 

 

Figure 1. Key fabrication steps of poly-Si NW FET. (a) Step-gate formation on a Si substrate 

capped with an oxide layer. (b) The step gate is covered with an APCVD oxide acting as gate 

dielectric. (c) Two poly-Si layers are deposited by LPCVD technique: the first one (purple 

color) is an undoped poly-Si and the second one (green color) is an N-type doped poly-Si. (d) 

Creation of gate contact. (e) Creation of nanowires after plasma etching. (f) Aluminum layer 

deposition. (g) 3-D view of the final structure of the fabricated device 

 

Figure 2. SEM image of a polysilicon nanowire. 

 

Figure 3. Schematic of poly-Si nanowire surface functionalization of. (1) The APCVD oxide 

capping the poly-Si NW is coated with APTES. (2) Glutaraldehyde is linked to the amino 

groups. (3) The DNA probe reacts with the aldehyde groups. (4) Complementary DNA target 

is hybridized with the DNA probe. 

 

Figure 4: Electrical characterization of poly-Si NWFET: a) output characteristics ID-VDS and 

b) transfer characteristics ID-VGS 70nm curvature radius SiNW based FET transistor (6 

nanowires, L=5µm). 

 

Figure 5: Schematic illustration of structural defects in the core of the polycrystalline silicon 

NWs and of an increase in negative charges on the nanowire surface resulted from 

hybridization between complementary DNA target and probe. 

 

Figure 6: (a). Functionalized surface without DNA. (b) Fluorescence observed after DNA 



hybridization on a functionalized surface. 

 

Figure 7: ID-VGS curves obtained from a functionalized step-gate poly-SiNW transistor (2 

nanowires, L=3µm) after probes immobilization and then after hybridization of 10fM 

complementary targets. A constant VDS is set at 1V. 

 

Figure 8: Poly-Si NWFET (L=3µm) drain current shift versus target DNA concentration. The 

voltage shift is extracted from concentration-dependant ID-VGS curves at a constant gate 

voltage (VGS=8V) and drain voltage (VDS=1V). The correlation coefficient of the linear fit is 

R=0.987. 
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