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ABSTRACT 
 

The production of stereoscopic 3D HD content is considerably increasing and experience in 2-view acquisition is in 

progress. High quality material to the audience is required but not always ensured, and correction of the stereo views 

may be required. This is done via disparity-compensated view synthesis. A robust method has been developed dealing 

with these acquisition problems that introduce discomfort (e.g hyperdivergence and hyperconvergence…) as well as 

those ones that may disrupt the correction itself (vertical disparity, color difference between views…). The method has 

three phases: a preprocessing in order to correct the stereo images and estimate features (e.g. disparity range…) over the 

sequence. The second (main) phase proceeds then to disparity estimation and view synthesis. Dual disparity estimation 

based on robust block-matching, discontinuity-preserving filtering, consistency and occlusion handling has been 

developed. Accurate view synthesis is carried out through disparity compensation. Disparity assessment has been 

introduced in order to detect and quantify errors. A post-processing deals with these errors as a fallback mode. The paper 

focuses on disparity estimation and view synthesis of HD images. Quality assessment of synthesized views on a large set 

of HD video data has proved the effectiveness of our method. 

 

Keywords: Post-production, 2-view stereo correction, Disparity estimation, View synthesis, Quality assessment, Depth 

Image Based Rendering, Free Viewpoint Video 
 

 

1. INTRODUCTION 
 

The production of stereoscopic 3D HD content is considerably increasing and experience in 2-view acquisition is in 

progress. While high quality material to the audience is required this is not always ensured. In particular, a set of 

problems require modifying the views in post-production. This is the case for example when camera hyperconvergence 

or hyperdivergence introduce discomfort. Furthermore, different viewing conditions (e.g. 3DTV, movie theater) require 

also to adapt the acquisition data via view modifications
1
. The correction or modification is carried out through virtual 

view synthesis to replace at least one of the original views. 

 

In this production context, our work aims at providing high quality view synthesis. Then the objective is to develop 

accurate disparity estimation and view synthesis with minimized user assistance. This new Depth Image Based 

Rendering (DIBR) scheme is based on three main phases (Figure 1): 

 

 Stereo video pre-processing: existence of vertical disparity or color difference between images breaks a priori 

hypotheses the estimator relies on. Pre-processing is introduced to solve these issues as well as to estimate features (noise, 

disparity range…) over the stereo sequence to be used in the main phase. 

 

 Robust 1D disparity estimation and view synthesis: 

a. Disparity estimation: this is an ill-posed problem as numerous cases of image content introduce 

ambiguity in disparity (occlusions, textureless areas, periodic structures, transparency, light 

reflections...). The objective is to satisfactorily solve most of the sequences via a robust algorithm. The 

method results from the combination of four constraints assigned to disparity: minimal correspondence 

cost, spatial smoothness and consistency and visibility criteria. 

b. View synthesis is carried out in two steps: a disparity map is obtained for the image to be interpolated 

by projecting one estimated disparity map and managing occlusion areas. Then, pixels are interpolated 

through disparity compensation from either both views or from one of the original images in case of 

occlusion. 



 

 Post-processing: It is introduced to deal with ill-solved disparity-compensated view synthesis. Disparity quality 

is estimated via an objective quality assessment method comparing left and right views after disparity compensation. 

This allows highlighting the most visible errors that are then processed through a fallback mode. 

 

   

Figure 1 – Disparity-compensated view synthesis for s3D content correction 

 

The rest of the paper is devoted to the description of the main (second) phase: 1-D disparity estimation and view 

synthesis are respectively described in sections 2 and 3. Experimental results are shown and discussed in section 4. 

Section 5 concludes the paper. 

 

 

2. DISPARITY ESTIMATION 

2.1 Introduction 

We are faced with an unlimited range of scene contents in images that make the applicability of an algorithm 

necessarily limited. Moreover, HD format (e.g. 1920x1080p) and frequently large disparity range (e.g. 150 pixels) 

increase the difficulty with respect to commonly tested formats (e.g. Middlebury data sets
2
). Our approach consists in 

first dealing with the most frequent situations and then postponing the complex particular unresolved cases to post-

processing. 

The main common obstacles to unambiguous inter-frame correspondence are noise, occlusions and textureless areas. 

Of course, numerous other situations introduce problems: color mismatch, periodic structures, light reflections, 

transparency… On the other hand, algorithms have been proposed to solve the problem at least partially and a set of 

constraints have been identified to reduce ambiguity
2
: 

 Color/Luminance similarity: this provides a matching cost that must be robust with respect to noise and 

possible color mismatch 

 Smoothness constraint: neighboring pixels with similar color are favored to have similar disparity. 

Therefore, disparity discontinuities are encouraged to be located at color discontinuities 

 Consistency constraint: disparity of a point has the same module and opposite sign as its corresponding 

point in the other view 

 Visibility constraint
3
: an occlusion pixel must have no match on the other image and a non-occlusion pixel 

must have at least one match 

 Ordering constraint (e.g. in dynamic programming): two points with a given order along a scanline must 

have the same order in the other view. This may be a problem for example in case of a thin foreground 

object where a background point can be on its left side in the left view and on its right side in the right 

view
3,4

 

 Uniqueness constraint
4
: it enforces a one-to-one mapping between pixels in two images. It is not well 

adapted to horizontally slanted surfaces
3
. 

 

The constraints are generally expressed as energy terms and embedded in a global energy. An iterative global 

optimization algorithm is used to approximate the minimum of the energy. Graph cut
2
 and belief propagation

3,5
 are the 

most popular global optimization techniques for such energy minimization. On the other hand, bilateral or trilateral 

filtering has been shown to be an interesting alternative to global optimization techniques in motion estimation
6
 and 

disparity estimation in particular for the stereoscopic HD video applications
7,18

. 
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We propose a stereo algorithm that relies on the first four “generic” constraints in order to deal with a large range of 

scenes (the last ones are too specific). The similarity evaluation is based on normalized cross-correlation and smoothness 

constraint is introduced via the application of joint bilateral
8
 or trilateral filtering to the disparity maps. Both left and 

right disparity maps are symmetrically estimated under consistency and visibility constraints. 

In the recent estimators occlusion is explicitly processed. Egnal et al.
10

 have compared different occlusion detection 

techniques. Mutual left-right consistency checking (LRC) is often used (either alone or combined with another 

technique) to detect occlusions. In Yang et al.’s paper
5
, occlusion areas (areas occluded in the other view) are detected 

via LRC, discarded in order not to contaminate the matched pixels and then disparity is filled by surface fitting. 

Our symmetric framework combines in a first phase a classical hierarchical block-based method
9
 (to deal with large 

disparity range) and recursive filtering-based regularization. A second phase consists in deriving dense disparity maps. In 

a third phase, an iterative refinement loop classifies pixels as consistent, inconsistent or occluded and refines the two 

depth maps in the inconsistent areas and finally fills the occlusion areas. In our case, LRC is rather used to force disparity 

consistency via filtering, and occlusion is detected via another technique, OCC (occlusion constraint
10

): a disparity map 

of one view is used to detect the occlusion areas in the other view. Occlusion holes are then simply filled with the nearest 

background disparity value on the same scanline. 

Our symmetric stereo algorithm is illustrated in Figure 2. It provides a dense disparity map with ¼ pixel accuracy 

and an occlusion map for each view. The three phases are described in the next subsections: 

1. Hierarchical block-based estimation 

2. Disparity pixel-wise assignment 

3. Dense disparity refinement 

 

 

Figure 2 – Double dense disparity and occlusion estimator 

2.2 Hierarchical block-based estimation 

2.2.1 Hierarchical block matching (HBM) and filtering 

This estimation phase relies on an iterative coarse to fine algorithm that operates on an image pyramid where 

disparity at a coarser level is used to constrain a more local search at a finer level. Aggregated matching cost is based on 

normalized cross-correlation computed on luminance signal.  

 

Joint bilateral filtering is introduced at each of the four levels of the HBM estimator, before transmission of the 

current disparity map to the next finer level for the three first levels. It is applied to the disparity map in order to smooth 

it in particular in the textureless areas. The filtering encourages the blocks with similar luminance to have similar 

disparity. The spatial filter is defined as: 
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where x is the current block, d(u) is the disparity value at block u, y is a block of the NxN blocks window centered 

on x (N=11). Wxy  is the weight assigned to the disparity value of block y. Wxy is defined as follows: 
2121

xyxy

eWxy
 

(2) 

xy results from the luminance difference between block x and its neighboring blocks y; it is defined as: 

)()( xIyI BBxy  (3) 

As the disparity is defined on a block, luminance IB used here corresponds to the average of the luminance data on 

the block. xy is defined as the distance in the image grid between block x and block y: 

2
yxxy     (Euclidean norm) (4) 

 and γ are constant parameters. It is applied at each level with 2 iterations. 

Finally, the filtered disparity value dF is selected unless its matching cost is higher than the cost before filtering plus 

a penalizing weight , i.e.: 

)(,)(, xdxCxdxC F  
(5) 

2.2.2 Consistency constraint 

Consistency constraint is applied at the finest level on the block-based representation. It is introduced via a second 

bilateral filtering that combines both left and right disparity maps. The filter is given by (dL and dR are left and right 

disparity vectors): 
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2.3 Disparity pixel-wise assignment and filtering 

2.3.1 Disparity assignment 

Disparity pixel-wise assignment follows the block-based estimator in order to define a dense disparity map. For each 

pixel, the current disparity value plus the four values corresponding to the 4-connected neighboring blocks are candidates. 

The final disparity assigned to pixel x is the one among the five candidates that provides the minimal cost. For each 

disparity candidate, the color-weighted cost aggregation is performed as follows: 
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where x is the current pixel, d() is disparity, y is a pixel of the NxN window centered on x (N=3). The disparity-

compensated difference D(y,d(x)) of pixel y with disparity value d(x) is defined as follows: 
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where K and J are the left and right images. wxy  is the weight of pixel y defined as follows: 

xyewxy

1

 (9) 

Φxy results from the color difference between pixel x and its neighboring pixels y; it is defined as: 

bgrc

ccxy xIyI
,,

)()(  (10) 

This assignment is followed by a 3x3 median filtering applied to the whole disparity map. 



2.3.2 Disparity filtering 

Joint trilateral filtering is applied to the dense pixel-wise disparity map in order to decrease noise introduced by the 

previous step and increase smoothness in particular in the textureless areas. The spatial filter is defined by: 

y xy
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where x is the current pixel, d(u) is the disparity value at pixel u, y is a pixel of the NxN window centered on x 

(N=21 in our experiments). Vxy  is the weight assigned to the disparity value of pixel y. It is defined as follows: 

212121

yxyxy D

xy eV  (12) 

Γxy and Φxy have been previously defined (Equations (4) and (10)). Dy is the disparity-compensated difference of 

Equation (8) computed for pixel y with disparity value d(y): Dy =D(y,d(y)). ,  and  are fixed parameters. 

The trilateral filtering is combined with median filtering and the set is iterated a fixed number of times. 

 

2.4 Dense disparity refinement  

2.4.1 Introduction 

Figure 3 depicts the third phase which objective is mainly to jointly process inconsistencies and occlusions. 

 

  

Figure 3 – mixed left-right disparity refinement 

 

A first pixel labeling step is the detection in each view of successively: 

 pixels that are occluded in the other view 

 pixels with an inconsistent disparity vector 

 pixels which vector points at outside the frame in the other view 

The second step consists in jointly filtering both left and right inconsistent disparity maps. These two steps (labeling 

and filtering) are embedded in an iterative loop. 

Once the disparity map has been stabilized, disparity is filled in the “occlusion” areas (third step). 

 

2.4.2 Pixel labeling 

The simple test used to detect occlusions is illustrated in Figure 4 (“OCC” in reference
10

 ). The pixels in view K 

that are occluded in view J are detected as follows: considering the disparity map of view J and starting from each pixel 

in J, its corresponding point in view K is identified via its assigned disparity vector. Then the closest pixel to this point in 

view K is marked as “visible”. At the end of this visibility detection, the pixels that are not marked are classified as 

“occluded” in the other view. 

 

Disparity inconsistency is measured via the comparison of the disparity vector in the current view and its 

corresponding disparity vector in the other view. This is similar to left/right checking (LRC) in reference
10

 except that 

this is not used here to detect occlusions. Practically, according to Figure 5, for a given pixel x in view J, its 
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inconsistency value corresponds to the sum of the disparity vector dJ(x) of x and of the disparity vector dK(u) of the pixel 

u in view K that is the closest pixel to the endpoint of dJ(x) in K with abscissa x-dJ(x): 

xdxnpdxdJxdist JKJ),(  (13) 

with u=np(x-dJ(x)), with np(a) defined as the pixel closest to point a. The symmetrical process is applied to view K. 

 

The inconsistency value is simply compared to a threshold (equal to 1) to distinguish “consistent” and “inconsistent” 

(>1) pixels.  

 

Figure 4– Occlusion detection 

 

Figure 5– Inconsistency distance 

2.4.3 Inconsistent disparity processing 

 

Joint trilateral filtering combining both left and right disparity maps is then applied in the inconsistent areas in 

order to force consistency. The weight is defined as in section 2.3.2. 
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2.4.4 Disparity filling in “occlusion” areas 

Disparity vectors previously estimated in the occlusion areas (occluded in the other view) are discarded as they are 

not reliable. These areas are then filled from neighboring disparity vectors visible in both views. Each set of consecutive 

occlusion pixels along each scan line is processed separately. It is supposed to have an occluding region on one side and 

a relative background on the other side. So, considering the two corresponding disparity values, each occlusion pixel is 

replaced by the disparity value that corresponds to the largest depth except if its current value corresponds to a larger 

distance. 

The disparity vectors are finally 2D filtered via bilateral filtering (Equation (11)) where Vxy (Equation (12)) is 

limited to Φxy and Γxy, and then median filtering. 

2.5 Output 

The output is for each pair left and right disparity maps and occlusion maps. Figure 6 shows disparity and occlusion 

maps of a left view selected in the MPEG 3D “Amelia Retro” sequence (courtesy of DOLBY). Performance evaluation is 

discussed together with view synthesis in section 4. 

 

 

Figure 6 – “Amelia Retro” stereo HD sequence (courtesy of DOLBY): left image n°104, corresponding disparity and occlusion maps 

(dark areas are classified as “occluded in the right view”) 
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3. VIEW SYNTHESIS 
 

The heart of view interpolation consists in interpolating a disparity map for the new view, and then in synthesizing 

the view by interpolating video information using this interpolated disparity map and the left and right views. 

Our view interpolation relies on disparity maps, as can be seen in Figure 7; only the video interpolation in itself 

uses the original views. 
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Figure 7 - view synthesis overview 

3.1 Disparity map projection 

In our case the disparity map interpolation consists in projecting the left estimated disparity map onto the view to be 

synthesized. Our approach is similar to Scharstein’s work
11

 except that we project only one disparity map. 

The position of the view to be synthesized (between the original left and right views) can be defined by a factor, 

which is applied to the original disparity values. So that if the new view is positioned at alpha times the distance between 

the left and right views, the disparity values are multiplied by alpha. 

The left disparity map is scanned from left to right (so that information concerning occluding pixels overwrites, i.e. 

occludes, information concerning occluded pixels) and each disparity value is projected (shifted) at the position defined 

by this scaled disparity. This position is rounded to the nearest pixel location in the projected disparity map. 

 

During this process, because of disocclusion some pixels in the view to be synthesized get no disparity value 

projected to them. These pixels correspond to objects visible in the synthesized view but occluded in the left view. In 

order to fill these disoccluded areas, during the projection each disparity value is assigned to all pixels on the right side 

of the previously assigned pixel up to the pixel the current disparity value points at (Filling with background disparity). 

The same problem can also occur when two neighbor disparity values close to each other (in value) are projected to two 

non neighbor pixels in the interpolated view; and the same solution is applied. 



3.2 Disparity map pre-filtering 

View interpolation relies on disparity maps. Unfortunately the 1-layer disparity map format we use does not allow 

representing the scene as correctly as the video does. The video pixels can for example render transparency, blur (motion 

blur, defocus…) or object borders by combining video information of several objects into a single video pixel. 

Assigning a disparity to such mixed pixels is a problem since they correspond to two pixels in the other view. In the 

context of unique correspondence, disparity of such pixels should correspond either to the foreground object or to the 

background object. However intermediate disparity values may occur during disparity estimation (e.g. due to bilateral 

filtering); in other contexts such values can be created by anti-aliasing filtering. Such values can lead to artifacts during 

interpolation and need therefore to be corrected. 

The solution consists in identifying narrow disparity gradients and altering the inner disparity values toward outer 

disparity values. 

3.3 Occlusion area identification 

Some objects, because of occlusions, are visible in the synthesized view but occluded in the left view or in the right 

view. To render these parts, only one view will be used. 

During disparity estimation, the occlusion areas in the left and right views are identified (section 2.4.2). Therefore 

in order to identify in the synthesized view regions that are occluded in the left view or in the right view, this information 

is projected at the new view position. 

3.4 Occluded area border management 

After these operations, we know for each pixel of the new view which view (left or right or both or none of them) 

can be used (the case where none of them can be used is addressed in section 3.5). During the video interpolation, in the 

occluded areas only one view will be used to synthesize the new view (unidirectional interpolation), while in the rest of 

the picture a mix of both views is used (bidirectional interpolation). (Figure 8) 

Left

view

Right

view

Interpolated 

view

Pixels visible in both views: bidirectional interpolation

Pixels occluded in the left view: interpolation using the right picture only

Pixels occluded in the right view: interpolation using the left picture only

background object foreground object background object

 

Figure 8 - Interpolation scheme without border management 

The transition between these unidirectional (in the disoccluded area) and bidirectional interpolations can however 

be visible for various reasons. For instance, the disparity map does not necessarily match perfectly the object borders 

(particularly in case of blurred borders: where is the object border?); this can generate echoes in the new view. Also 

differences of luminance, color, reflections or flare between left and right views can create halos around objects. 

The occluded area borders management aims at reducing the visibility of the aforementioned artifacts. This consists 

in softening the transition between the unidirectional and the bidirectional interpolations on the border of occluded areas. 

The coefficients used for the bidirectional interpolation are changed on the right of the regions occluded in the left view, 

and on the left of the regions occluded in the right view. (Figure 9) 
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Figure 9 - Interpolation scheme with border management 

The blending coefficient definition block assigns a value to the blending coefficient (αLR) depending on the results 

of the occluded area borders management, resolving issues of areas located just between regions occluded in the left 

view and regions occluded in the right view, and also the case of regions occluded in both views. 

 

 

Figure 10 - Results on “Amelia Retro”: (a-c) without border management; (d-f) with border management 

3.5 Projected disparity inconsistency management 

This blending coefficient (αLR) will be used for the video interpolation to weight the bidirectional interpolation. 

However the left or right samples used for the interpolation can possibly not correspond to the correct object. This is for 

example what happens in regions occluded in both views; the disparity value can have been correctly estimated (i.e. the 

disparity corresponds to the correct depth of the occluded object), but the disparity value points at foreground objects. 

These mismatches between the projected disparity values in the new view and the disparity values they point at in 

the original views are checked and corrected. This consists in comparing the projected disparity values in the new view 

with the disparity values of the pixels they point at in the original views. In case of inconsistency, instead of using the 

pixel the disparity value points at, another pixel will be looked for in the original view; for example the nearest pixel 

having the corresponding disparity value can be used instead. 

This pixel corresponds to an object at the same depth as the supposed occluded object. However it is not sure that 

this video value correctly represents the occluded object. Also the proposed method will often lead to use a same video 

value for several neighbor pixels. Therefore more sophisticated solutions, using region filling techniques for example, 

can be advantageously used. (The proposed solution has the advantage of being simple and in most cases effective since 

the occluded areas are often small and locally homogeneous.) 

After this operation, the two pixels that will be used for the bidirectional interpolation will not necessarily 

correspond to a same point of the 3D scene. This means that the vectors pointing at these pixels are not necessarily a 

function of the disparity value (in both directions). Therefore after this consistency operation a disparity value is no 

longer sufficient to refer to corresponding pixels in the left and the right views, and so vectors (VL and VR) pointed at the 

corresponding pixels in each view are used instead. 

(f) (e) (d) (c) (b) (a) 



3.6 Video interpolation 

The new view can then be synthesized. This step consists in interpolating the video values of the new view using 

the left and right video sources. The video samples used for the interpolation are those pointed by the vectors VL and VR 

(we use linear interpolation to point at sub-pixel position). These left and right samples are combined using the blending 

coefficient αLR. 

3.7 Dealiasing 

Optionally a dealiasing block can be added. This aims at suppressing the aliasing effect, which can appear on the 

object borders. This effect occurs because in the 1-layer disparity map format we use, only one disparity value is stored 

per pixel (cf. section 3.2). Therefore in the disparity map object borders are located at pixel borders. This means that in 

the interpolated disparity map object borders exhibit aliasing. 

 

     

Figure 11 - Disparity map and corresponding interpolated video without dealiasing 

Our solution consists in using locally a 2-layer representation. But instead of using the video to define an alpha 

value (using a matting information estimation like in the most common solutions
12,13,14

), we propose to simply fill the 

stairs along the object borders with foreground information. This is done by detecting the aliased borders in the 

interpolated disparity map (by comparing the disparity values) and by virtually adding a sub-pixel shape to smooth these 

contours. Therefore one line of pixels along the object borders will use two disparity values, and thus a combination of 

background and foreground information. The piece of foreground video information is interpolated using the blending 

coefficient and the vectors VL and VR of one of the neighbor pixels (in the direction of the aliased contour) and is then 

combined with the not-dealiased sample (background information) using the dealiasing coefficient. 

 

     

Figure 12 - Disparity map and corresponding interpolated video with dealiasing 

The figures 11 and 12 illustrate this process on a basic example. The Figure 11 shows on the left an interpolated 

disparity map and on the right the result of interpolation without dealiasing. The Figure 12 shows on the left the same 

disparity map with the virtual shape (of foreground information) to be added onto the background of the aliased contour 

and on the right the corresponding result with dealiasing. The results on Figure 13 show how the aliasing and the “cut-

out” appearance are reduced. 

 

Figure 13 - Results on “Amelia Retro”: (a-c) without dealiasing; (d-f) with dealiasing 

(f) (e) (d) (c) (b) (a) 



4. EXPERIMENTAL RESULTS AND DISCUSSION 
 

Two sets of experiments have been carried out on MPEG sequences in order to compare our method with available 

MPEG software
16

 (VSRS Revision 2216). In both cases, the two methods are compared by assessing resulting synthesized 

views through our new objective image quality assessment metric VSQA
15

 (View Synthesis Quality Assessment). 

VSQA
15

 is dedicated to artifacts detection in synthesized view-points. It aims to handle areas where either disparity 

estimation or interpolation fail by using three visibility maps which characterize complexity in terms of textures, 

diversity of gradient orientations and presence of high contrast. The quality assessment is done by comparing original 

and interpolated images with VSQA. For each frame it returns the number of pixels considered by VSQA as erroneous 

(also called VSQA score). The less this score is, the better the tested approach is. 

 

The first experimental test consists in comparing our disparity-compensated view synthesis and the MPEG software 

in an extrapolation scenario
17

 (see example Figure 15). Only one camera and the associated depth map are used to render 

the synthesized views (therefore, occlusions remain). Moreover, the quality assessment is done only for pixels that are 

considered as visible in the two reference views by the two methods. Test frames from 3 (1024 768) sequences have 

been used: Book Arrival, Lovebird1 and Newspaper. Figure 16 shows the quality results. 

 

   
 

(a) 
 

 

(b) 
 

 

(c) 
 

   
 

(d) 
 

(e) 
 

(f) 

Figure 14 – Comparison between the proposed disparity-compensated view synthesis and MPEG disparity estimation and view 

synthesis. Camera 6 is extrapolated from camera 4 (Newspaper, 136). Original view (a) and zoom on details (d), synthesized view 

with detected occlusions (proposed approach) (b) and zoom on details (e), synthesized view with detected occlusions (MPEG 

software) (c) and zoom on details (f). 

In Figure 15, we notice that geometric distortions in (c) and (f) are more noticeable in comparison with (b) and (e). 

More generally, Figure 16 shows that our approach gives synthesized views with a better quality compared to MPEG 

approach. As previously, the same tests have been performed with the Structural SIMilarity (SSIM) index
20

 and lead to 

the same conclusions. All these results prove that our approach exceeds the MPEG disparity estimation and view 

synthesis in rendering areas visible in both reference views. 

 

 



 

Figure 15 - Quality assessment with VSQA metric between extrapolated and original (at the same position) views from Book Arrival 

(BA), Lovebird1 (LB) and Newspaper (NP) sequences. The extrapolated views are obtained with the proposed disparity-compensated 

view synthesis and MPEG disparity estimation and view synthesis. Occluded areas are not taken into account. 

 

In a second set of experiments, the disparity estimation and view synthesis modules have been separated and the 

four possible combinations between MPEG modules and ours have been compared along the whole Book Arrival 

sequence. This test consists in rendering camera 8 from cameras 10 and 6. The quality assessment is done by comparing 

original and virtual cameras 8 with VSQA. The main difference with the first experiment is that now the occlusion areas 

are considered. 

 

 

Figure 16 - Quality assessment between original and synthesized Book Arrival sequences with VSQA metric. All possible 

combinations between the disparity estimation and view synthesis modules of the proposed method and MPEG method16 are tested. 

Camera 8 is rendered from cameras 10 and 6. 

Firstly, let us compare blue and purple curves (our disparity estimation with our view synthesis and with MPEG 

view synthesis respectively) and green and red curves (MPEG disparity estimation with our view synthesis and with 

MPEG view synthesis respectively) in Figure 14. They show that the same quality level is reached by the two 
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interpolation algorithms. Secondly, if we compare blue and green curves (our view synthesis with our disparity 

estimation and with MPEG disparity estimation respectively) and purple and red curves (MPEG view synthesis with our 

disparity estimation and with MPEG disparity estimation respectively), we notice that MPEG disparity estimation gives 

better results. It is due to the use of 3 original views in the MPEG software for disparity estimation whereas our approach 

only uses a pair. Consequently, the occluded areas are better rendered with MPEG algorithms. Note that SSIM
20

 has also 

been used as quality metric and gives the same conclusions. 

 

A large set of HD real and animation stereo sequences have been processed in order to evaluate our method. Very 

good results have been obtained in animation sequences. Of course the results are not always as good in real sequences: 

The worst encountered problems include large occlusions with hardly predictable content (e.g. light visible in one view 

only), transparency, very thin objects with large disparity range. Between these two extremities, there is space for 

improving reasonable artifacts either by improving the method itself or developing alternative methods, either with more 

specific methods adapted to particular complex cases or with masking techniques as a fallback mode. 

 

The quality assessment proposed in our framework can be useful in order to identify the more distorted frames 

within a sequence. A quality threshold can be set with respect to the required quality level (depending on the application). 

Only the frames with a VSQA score under this threshold need to be corrected (in a semi-automatic or automatic way). 

 

 

5. CONCLUSION AND FUTURE WORK 
 

A disparity estimation and view synthesis method has been developed for s3D content correction. Our experiments 

have shown that the algorithm provides satisfying results in a wide set of stereo data. While we consider that results can 

be improved in some specific situations via moderate modifications (e.g. occlusions, thin objects), some other cases 

cannot be satisfactorily processed by our current method (e.g. transparency) and require complex solutions. Large 

occlusions are also a problem in particular when an object with a particular disparity is present in only one view. These 

cases where our current method fails are detected via quality evaluation and either automatic or semi-automatic 

additional tools will be addressed in the future to post-process these failing areas. One promising solution is to consider 

temporally distant information to solve local ambiguity (e.g. in large occlusions
19

) 
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