
Proposal of an Approach to Automate the Generation of

a Transitic System’s Observer and Decision Support

using MDE

Mickaël Adam, Olivier Cardin, Pascal Berruet, Pierre Castagna

To cite this version:

Mickaël Adam, Olivier Cardin, Pascal Berruet, Pierre Castagna. Proposal of an Approach to
Automate the Generation of a Transitic System’s Observer and Decision Support using MDE.
IFAC World Congress, 2011, Milano, Italy. 18 (1), pp.3593-3598, 2011, <10.3182/20110828-6-
IT-1002.02521>. <hal-00808261>

HAL Id: hal-00808261

https://hal.archives-ouvertes.fr/hal-00808261

Submitted on 5 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00808261

Proposal of an Approach to Automate the Generation of a Transitic System’s

Observer and Decision Support using Model Driven Engineering.

M. Adam*, O. Cardin*, P. Berruet**

P. Castagna*

* Institut de Recherche en Communications et Cybernétique de Nantes, Nantes

France (e-mail: mickael.adam/olivier.cardin/pierre.castagna@univ-nantes.fr).

** Laboratoire en sciences et technologies de l'information,

de la communication et de la connaissance, Lorient, France

(e-mail: pascal.berruet@univ-ubs.fr).

Abstract: Short term decision support for manufacturing systems is generally difficult because of the

initial data needed by the calculations. Previous works suggest the use of a discrete event observer in order

to retrieve these data from a virtual copy of the workshop, as up to date as possible at any time. This

proposal offered many perspectives, but suffers from the difficulties to generate a decision support tool

combining decision calculations and observation. Meanwhile, interesting developments were made in

literature about automatic generation of logic control programs for those same manufacturing systems,

especially using the Model Driven Engineering. This paper suggests the use of Model Driven Engineering

to generate logic control programs, the observer and the decision support tool at the same time, based on

the same data collected by the designer of the system. Thus, the last section presents the evolution needed

in the initial data structure, as well as the conception flow suggested to automatize the generation.

1. INTRODUCTION

Because flexibility and performance are nowadays major

qualities required for manufacturing systems, their complexity

tends to rise. As a matter of fact, Decision Support Systems

are used to make the decisions as efficiently as possible. It is

possible to differentiate two types of decision support tools,

the “off-line”, for the long term decision support, and the

“online” ones, for short term.

This paper is based on the hypothesis that a decision is needed

to be computed when a disruption arrives. (Baillet et al.,

1993) define a disruption like an unpredictable event, which

troubles the objectives that have to be achieved. Five types of

disruptions were defined, dealing with internal resources

availability, supply issues, demand prediction, information

and decision.

In addition, a list of typologies of short term decision is

presented in (Pierreval, 1999). Among those, the “Affectation

decision” deals with the fact that several resources sharing one

or several operators are available to perform one task. The

“Attribution decision” happens when one or several resources

have the choice between several tasks to execute. The

“Questioning decision” appears when a disruption which

compromises the production arrives. Others types of decision

are related, dealing with other types of disruptions or

resources. The operator has to reorganize to include the

perturbation.

When a disturbance happens on the manufacturing system, a

decision needs to be taken. For example, when a new

fabrication order is placed, the operator has to decide the

parameters of the order in order to optimize its execution. The

first problem he encounters is to consider the influence of his

decision on the entire system (De Vin et al., 2004), as this

decision may change the behavior of the other order.

The second one is that this decision has to be taken quickly,

because the system evolves in an uncorrected state during the

decision computation. In order to help the operator, several

decision support systems have been developed. One may cite

for example Knowledge Based Systems (KBS), Fuzzy set,

Analytical Hierarchy Processes (AHP), Multi-Attribute Utility

Theory (MAUT), Case-Based Reasoning (CBR), Artificial

Neural Networks (ANN), goal programming and online

discrete event simulation.

Fig. 1. Classical behavior of decision support systems

Generally, decision support systems have the same behavior

(Fig. 1). Their role is generally to help the operator in charge

of production activity control of the system to make a decision

when a disturbance happens (1). A set of possible decisions

(2) is then tested or calculated. This calculation is based on

the data coming from the real system about its state, usually

used for initialization (3). Once the decision impact was

calculated and the results returned to the operator (4), he has

the possibility to discard these proposals in order to make a

new calculation (5). Finally, when the decision seems good, it

can be applied on the real system (6).

These methods generally need accurate data directly coming

from the real system to initialize the computation. For

example, (El-Bouri et al., 2006) use an Artificial Neural

Network as decision support system, applied on a job-shop to

select the best dispatching rule to be applied on each machine.

Without speaking of the learning phase, where lots of data

collected from the real system are used, this method needs a

vector at the entrance of the network which is made of several

key data, representing the actual state of the system as

accurately as possible.

In the same idea, online simulation was defined by (Davis et

al., 1998) as being a discrete event simulation constantly

connected to the real system, and initialized by the state of

this system when supervisor wants to simulate a short term

decision. This method results in a good prediction ability as

the modeling power of discrete event simulation is relatively

high.

The issue is that these data are not always available, either

because they are not measured or not measurable. Not

measured data often deal with the position of physical objects

on the system. Solutions do exist, like for example the use of

long focused Radio Frequency Identification (RFID) (Hotz et

al., 2006), but they have the disadvantage of cost and do not

always enable a sufficient precision. Furthermore, these

solutions do not give a solution for not measurable data, like

for example the data included in an electronic tag on a

transporter.

Fig. 2. Decision support proposal from (Cardin, 2007) based

on online simulation

 (Cardin, 2007) dealt with this kind of issues in the case of

online simulation. He suggested the use of a module which

would be able to reconstruct the missing data. This module is

always connected to the manufacturing system, scans known

states and data from the real system and reconstructs in real

time the missing data the online simulator needs. This module,

called an observer of the discrete event system, does the link

between the real system and the online simulation (Fig. 2) as

being a virtual copy of the real system, preformatted for the

initialization of online simulator as being developed with a

discrete event simulation formalism itself.

This approach was validated on a real manufacturing system.

This validation showed good prediction abilities from the

online simulator, with the reactivity needed thanks to the

observer. However some problems were still raised during

development phase.

The main problem for the use of such an observer is the

complexity of the development phase. This is the main

obstacle of its use in a wide industrial context. Indeed, the

difficulty is to perform the link between logic control of the

manufacturing system and the numerous observer’s data

needed. Same kind of problem was already raised by

(Gonzalez et al., 1998).

Furthermore, the design of the observer requires being an

expert of several formalisms, as the designer has to be able to

link the control of the real system with its modeling of the

observer and the online simulator.

All these problems dramatically increase the time needed for

the development of online simulation in a production

environment. As a matter of fact, this paper presents a

development solution meant to solve these issues, by

automating some steps of the development, especially those in

relationship with the real system.

To be able to benchmark the solution, this work is based on

(Cardin, 2007), who uses an observer made with the discrete

event simulator Arena. Hence, the observer developed here

will also be made of discrete event simulation. First part of

this paper presents in detail the observer of (Cardin, 2007).

Then a state of the art of automatic generation of simulation

models is presented, followed by a state of the art on logic

control automatic generation. Finally we will discuss about

the best way to use the generation approaches presented

before to generate our observer.

2. THE OBSERVER

The observer is essential element in the decision support

system established by (Cardin, 2007), enabling this system to

have access to any data of the real system. In this case, it was

used on the particular case of online simulation for the

production activity control of a manufacturing system.

The observer, meant to be able to give a complete picture of

the manufacturing system at any time, can be split into three

aspects:

1. It must be able to retrieve the data from the operating

system.

2. It must be able to reconstruct all needed unknown

data.

3. It must be able to inform (i.e. transmit data) the

decision support system as quickly as possible.

The choice of technology used to program the observer is

determined by these three aspects.

2.1 Data Collection Aspect

To be able to retrieve data from the real system, the observer

needs to be constantly connected to the system. (Cardin, 2007)

states that the observer should not influence the control logic,

which is generally constituted of the only variables needed for

control. This paper stands on the same hypothesis, and

considers such manufacturing systems, where the control

logic is implemented on Programmable logic controller

(PLC), linked through the OPC standard to the observer.

2.2 Reconstruction Aspect

An example of data reconstruction is the case of a conveyor

system with two sensors, one at the entrance and one at the

exit. If the exact products’ positions on the conveyor are

needed, the control logic only detects the position in front of

the sensors. The role of the observer is thus to determine

where the product is when it is not in front of a sensor.

Of course, deviation may happen. Due to an incorrect

evaluation of some of these parameters, there might be a

sensible difference between the real position of the products

on the conveyor and its estimation in the observer. As a matter

of fact, the observer must be able to synchronize its evolution

with the evolution of the real system. Figure 3 presents the

concept of synchronization applied to the case of the

conveyor: At t=t1, the observer estimates the product in front

of sensor1 whereas the real one is not arrived yet. Then the

observer stops the transporter in that position until the real

sensor s1 detects the real product. On the opposite, at t=t2, the

real product is in front of sensor s2 whereas the observer

displays the product far before sensor s2. The real system is

ahead the observer. The tracking will instantaneously put the

estimated product in the right position. By further analysis, a

detection of systematic synchronization for the same reason

could be used to reveal either a problem on the modeling of

the observer or a deviance of the real system’s behavior.

Fig. 3. Synchronization issue: the example of a conveyor

2.3 State Restitution Aspect

The state of the observer is designed to be, at any time, the

actual state of the real system. Obviously, some differences

exist, as the modeling is necessarily not perfect. However,

synchronization mechanisms keep the difference between the

observer and the real system at an acceptable level.

The link with the decision support system is different

according to the system. For example, ANN only need an

entrance vector, whereas online simulations need the state of

every simulation primitives of the observer.

An important feature of decision systems is the delay between

the request for a decision and the result of the computation. In

the context of online decision, this delay is obviously short, as

the system keeps on evolving during the computation. Thus,

the results of this computation might not be valid any more.

To permit this reactivity, the data structure of the observer

must be close to the data structure of the decision support

system, which is generally sensibly different from the data

structure of the control, main source of data for the observer.

The time objective leads to the conclusion that the conversion

between the data structure of control and the data structure of

the decision support system should be included in the design

of the observer: even if it makes the design of the observer

more complex, the data transfer to the decision support system

is made a lot easier and faster.

2.4 Problematic

The main problem with the observer to be a realist solution is

that it is too much complex to develop: the data link between

the real system and the observer is difficult to establish due to

the large amount of data to take into account on the real

system. Furthermore, to be efficient, the designer has to be

competent at a time in discrete event simulation to design the

observer, industrial network to establish the link with the

control and logic control programming, in order to be able to

identify the data of the control with the data of the observer.

3. AUTOMATIC GENERATION TECHNIQUES

3.1 Automatic generation of discrete-event simulation models

Automatic generation of simulation models is generally

performed in two steps: data organization and then call a

generation routine with these data as arguments.

To organize the data, several possibilities were explored.

(Gong et al., 1990) use text files to represent a manufacturing

system with Automated Guided Vehicles for transfers. In

(Young, 2000), the use of relational database enables to

generate a Flow Shop simulation for Arena and ProModel. (El

Haouzi et al., 2007) uses jointly Microsoft Excel and a UML

representation to represent a Demand Flow Technology

(DFT)manufacturing system.

Along the years, there has been a clear evolution on the

method used to order the data, linked to the development of

new formalisms. This evolution was guided by the need for a

better abstraction of the data organization for manufacturing

systems of growing complexity.

Almost every work on automatic simulation models

generation states that the use of libraries in the generation

routine is a good solution (Kang, 1997), (Young et al., 2000),

(El Haouzi et al., 2007), (Mueller et al., 2007), (De Miguel et

al., 2000). Libraries are models of atomic elements of the

manufacturing systems, accepting arguments. These atomic

models are instantiated, adapted (through the arguments) and

linked with each other according to the data presented before.

The terminology of libraries or template may differ in some

papers (Young et al., 2000), but the principle stays the same.

The use of libraries permits to facilitate the generation step,

but also permits to capitalize the atomic models, usually

called components.

Generation routine is generally homemade. Several techniques

are used to interpret the data: for example parsers to transform

XML or text files, or models transformation techniques

coming from Model Driven Engineering (MDE) theory for

UML descriptions. The MDE is a methodoly for software

development which permit to create and transform domain

models tanks to tools, concepts and languages.

3.2 Automatic generation of logic control programs

The singularity of discrete-event observer is its permanent

connection to the real system, and in particular to its

command. As a matter of fact, next section also reviews

techniques and methodologies to generate control models for

manufacturing systems.

Most papers focus on automatic generation of PLC code, and

especially IEC 61131-3 code generation. (Vogel-Heuser et al.,

2005) deals with Structured Text (ST), (Chiron, 2007),

(Estévez et al., 2007) generate Function Block Diagrams

(FBD). (Devinder et al., 2009) proposes Program

Organization Units (POU). The flow proposed in (Lallican et

al., 2007) generates Sequential Function Chart (SFC). All the

methods are based on the same previously mentioned tools:

parser and transformation models.

Fig. 4. Component approach from (Lallican et al., 2007)

(Lallican et al., 2007) and (berruet et al., 2007) work use a

component based approach to generate PLC code for transitic

system. The approach (Fig. 4) is split into three parts.

On the first step, the model of a transitic system is built using

a specific language and the component concept. The second

step consists in generating both an operative model and the

control logic code, IEC61131-3 compliant. The operative

model enables on the third step to check the generated PLC

code. If the verification is validated, the code can be

implemented on PLC; otherwise the model from the first step

has to be modified.

3.3 Overview

From this review of automatic models generation, we noticed

that the techniques include more and more UML based

modeling. The use of libraries is also an interesting point as it

provides reusability.

Moreover, (Lallican et al., 2007) approach introduces the

component approach to be as close as possible to the control.

This specificity might permit to solve the observer generation

problem. Thus, the presented approach is adapted from

Lallican’s, and we first delineate it.

To model transitic systems, (Lallican et al., 2007) has

proposed a formal language following MDE requirements.

This language enables to describe system from a library of

components. Components model a part of the system (e.g.

conveyors, sensors, jack, PLC). Aggregation provides a

bottom up approach. Components are composed of views,

which classify pieces of information. The operative view

physically characterizes the component, the control logic view

expresses the logic of the component, the constraint view

describes security/safety behavior constraint and the

topological view characterizes locations and areas of the

component. After the model edition, different model

transformations enable to generate the logic control and add it

to a target model. This step is performed using the ATL

language. The logic control can be imported on an IEC 61131-

3 editor and can be simulated with the operative model before

on-site implementation. The proposal also provides tools for

this.

4. THE PROPOSED FLOW

The main goal is to solve the observer implementation issues,

essentially due to the amount of engineering needed for

development and to the link between the real system, the

observer, and the decision support which is rather difficult to

establish. To do so, the main idea of this work is to generate

automatically the observer, in parallel with the control logic

and a part of the decision support. However, an observer as

defined previously is not useful without an associated decision

support tool. As a matter of fact, the automatic generation

should also deal with this decision support tool.

As presented in the state of the art, the work of (Lallican et

al., 2007) seems very interesting in this orientation thanks to

the developments that were shown, and thus will be used in

this paper: the method presented already generates in parallel

the control logic and a simulator. Furthermore, the genericity

of the tools that were used, like UML and ATL, makes it

easily adaptable. The method is based on MDE, which is an

ensemble of concepts and tools, which permit to model and to

transform models.

The approach of automatic generation of the observer using

Lallican’s methodology presents several benefits. First, the

component approach enables reusability of atomic models,

very convenient for the development of similar applications.

Second benefit is the opportunity to link the data of the

observer with the data of the logic control during the creation

of the logic control programs.

However, the meta-models transformations used by (Lallican

et al., 2007) have to be adapted. Indeed, some changes on the

meta-models themselves, and on the transformations have to

be done in order to integrate additional information about the

observer and the decision support system. This additional

information depends on the features that the observer and the

decision support tool have to provide. Once again, the

component approach is very convenient thanks to the concept

of views. These views contain all the information needed for a

specific aspect of an element. For example, warning the

operator about a significant difference between the real

system’s state and the associated prediction is simply

performed by adding a new view including warning time

delays information in the meta-model.

After dealing with the meta-models, second aspect of this

work is to define the correct transformations. To do so, it is

relevant to define the target meta-models, one for the observer

and one for the decision support tool. On (Lallican et al.,

2007) work, the target meta-model is IEC 61131-3 compliant.

The new target meta-models are oriented to discrete-event

simulation, with the objective to demonstrate the feasibility of

the approach with online simulation decision support.

The development phase is relatively complex. To ease the

understanding, two types of users, defined by (Chiron, 2007),

are considered: Modelers and Designers. A modeler develops

models, components, libraries, meta-model transformations

and an Integrated Development Environment (IDE), who

enables the generation of the observer and of the decision

supports. The designer instantiate the modeler’s work in order

to model his specific transitic system, and then call the

transformations programmed by the modeler in order to obtain

the desired model.

Fig. 5. Proposed flow of automatic generation

The general flow is represented in (Fig. 5). First (1), the

modeler has to define the types of components which will be

found on the transitic system. These components take the

same specifications, views, hierarchy and typology (Fig. 6)

than the components which were defined by (Lallican et al.,

2007). Every system has to be represented by components in

this approach. The next step is to create the Meta-models of

these components of the transitic system.

Fig. 6. Component typology meta-model

When this is done, the modeler creates the templates in the

final language (i.e. SIMAN Arena in this case) of the

observer, and the templates needed to build the decision

support tool (2). Obviously, these templates must match the

meta-models of the transitic system. Next meta-models

corresponding to these templates have to be created (3).

At this step, transformations can be programmed in ATL (4).

A part of the Integrated Development Environment (IDE) is

next automatically generated thanks to MDE tools. The

modeler integrates previous transformations on this IDE,

permitting to generate the observer model and decision

support model corresponding to their respective meta-models.

All these meta-models are placed in a library, on the IDE, so

that it can be used by the designer.

The IDE permits the designer to edit a transitic model

corresponding to the transitic Meta- model (5) representing

the real system. He sets up all components, their views, and

the relationships between the components and the control

logic. ATL transformations are applied on this model (6) to

generate decision support model and observer model (7). Both

these models are imported by template instantiation (8)

created before by the modeler.

It has to be noticed that this approach does not generate a

complete decision support tools ready to use, but only a basis

mostly able to do the link with the observer. This facilitates

the creation of a fully functional decision support tool. The

conception and the validation of the tools are the last task of

the designer.

5. CONCLUSION

Short term decision support for manufacturing systems is

generally difficult because of the initial data needed by the

calculations. (Cardin, 2007) suggested to use a discrete event

observer in order to retrieve these data from a virtual copy of

the workshop, as up to date as possible at any time. This

proposal offered many perspectives, but suffers from the

difficulties to generate a decision support tool combining

decision calculations and observation, especially about the

necessary connection with the data of the manufacturing

system.

Meanwhile, interesting developments were made in literature

about automatic generation of logic control programs for

those same manufacturing systems. The literature review

exposed in the second section shows that works using MDE

(Berruet et al., 2007) (Lallican et al., 2007) can be particularly

interesting for the generation of the decision support tool.

Last section of this paper presents the adaptation of the initial

data structure of (Lallican et al., 2007) needed for

implementing the observer, and the suggested conception

flow.

Future work deals with the implementation of the framework,

creation of new components, views, template, models and

transformations with the associated IDE. The flow will then

be tested on a real transitic system to validate the approach

and the framework.

REFERENCES

Baillet, Couvreur, Cauvin, (1993). Disturbance classification

for reactive scheduling Production research. In:

Proceedings of the 12th International

Conference on Production Research,

Lappeenranta, Finland, pp.16-20.

Berruet, P., J.L. Lallican, A. Rossi, J.L. Philippe, (2007).

"Generation of control for conveying systems based on

component approach", IEEE SMC 2007, pp.1408-

1414, Montréal.

Cardin, O.(2007). Contribution of online simulation to

production activity control decision support - application

to a flexible manufacture system. Phd Thesis, Université

de Nantes, Nantes

Chiron, F. (2007). Contribution à la flexibilité Contribution à

la flexibilité et à la rapidité de conception des systèmes et

à la rapidité de conception des systèmes automatisés avec

l'utilisation d'UML. PhD Thesis, Université Blaise Pascal

de Clermont-Ferrand.

Davis, Wayne J. (1998). Online simulation: Need and

evolving research requirements. In: Handbook of

Simulation, de Jerry Banks, pp.465-516.

De Miguel, M., T. Lambolais, S. Piekarec, S. Betgé-Brezetz,

J. Péquery, W. Emmerich and S. Tai (2001). Automatic

Generation of Simulation Models for the Evaluation of

Perfomance and Reliability of Architectures Specified in

UML. In: EDO 2000, LNCS 1999, pp. 83-101, 2001.

Springer-Verlag Berlin Heidelberg

De Vin, L.J., H.C. Amos, Ng and J. Oscarsson (2004).

Simulation-Based Decision Support for Manufacturing

System Life Cycle Management. In: Journal of

Advanced Manufacturing Systems, vol. 3, pp.115-

128

Devinder, Thada, C.M. Park, S.C. Park, G.N. Wang (2009).

Auto-generation of IEC Standard PLC Code Using t-

MPSG. In: International Journal of Control,

Automation and Systems, Vol. 7, N. 2, pp.165-174.

Drake, Glenn R., and Jeffrey S. Smith. (1996). Simulation

system for real-time planning, scheduling, and control.

28th conference on Winter simulation. Coronado

In: ACM Press, pp.1083 - 1090.

El-Bouri, A. and Shah P., (2006), A neural network for

dispatching rule selection in a job shop, International

Journal of Advanced Manufacturing

Technology, Vol. 31, N. 3-4, pp.342-349.

El Haouzi, H., R. Pannequin And A . Thomas (2007).

Génération automatique de plateformes de simulation

pour des systèmes organisés en flux tirés, 7e Congrès

International de Génie Industriel, Trois Rivières,

Canada

Estévez, E., M. Marcos, et al. (2007). Automatic generation of

PLC automation projects from component-based models.

In: The International Journal of Advanced

Manufacturing Technology, Vol. 35, N. 5-6, pp.527-

540.

Gong, D-C., L.F. McGinnis. (1990). An AGVS Simulation

Code Generator for Manufacturing Applications. 22nd

Winter Simulation Conference. IEEE Press

Piscataway, NJ, USA, pp.676-682.

Gonzalez, Fernando G., et Wayne J. Davis. (1998).

Initializing on-line simulations from the state of a

distributed system. in: 30th Winter simulation.

Washington, D.C. In: IEEE Computer Society

Press, pp.507-514.

Hotz, I., A. Hanisch, and T. Schulze. (2006). Simulation-

based early warning systems as a practical approach for

the automotive industry. 37th conference on Winter

simulation. Monterey, California, pp.1962-1970.

Kang, S., (1997). Knowledge based automatic simulation

model generation system, In: IEE Proc-Circuits

Devices Syst., Vol. 144, No 2, pp.88-96.

Lallican, J.L, P. Berruet, A. Rossi, J-L. Philippe, (2007). A

component-based approach for conveying systems control

design, IFAC ICINCO, Angers, May 9-12, pp.329-

336.

Mueller, R., C. Alexopoulos, L.F. McGinnis, (2007).

Automatic Generation of Simulation Models for

Semiconductor Manufactoring. 39th Winter

Simulation Conference, IEEE Press Piscataway, NJ,

USA, pp.648-657

Pierreval, H., (1999). Proposition de typologie des décisions

en temps réel agissant sur les flux des systèmes de

production, MOSIM, Annecy.

Vogel-Heuser, B., D. Witsch, et al. (2005). Automatic Code

Generation from a UML model to IEC 61131-3 and

system configuration tools. International Conference

on Control and Automation, pp. 1034-1039.

Young, J.S., Albert T. Jones, Richard A. Wysh. (2000).

Automatic Generation of simulation models from neutral

libraries: an example. Winter Simulation

Conference Proceeding, U.S.A, vol.2, pp.1558-1567.

