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MULTI-FREQUENCY CALDERÓN-ZYGMUND ANALYSIS AND

CONNEXION TO BOCHNER-RIESZ MULTIPLIERS

FRÉDÉRIC BERNICOT

Abstract. In this work, we describe several results exhibited during a talk at the El Escorial

2012 conference. We aim to pursue the development of a multi-frequency Calderón-Zygmund
analysis introduced in [10]. We set a definition of general multi-frequency Calderón-Zygmund
operators. Unweighted estimates are obtained using the corresponding multi-frequency de-
composition of [10]. Involving a new kind of maximal sharp function, weighted estimates are
obtained.

The so-called Calderón-Zygmund theory and its ramifications have proved to be a powerful
tool in many aspects of harmonic analysis and partial differential equations. The main thrust
of the theory is provided by

• the Calderón-Zygmund decomposition, whose impact is deep and far-reaching. This
decomposition is a crucial tool to obtain weak type (1, 1) estimates and consequently Lp

bounds for a variety of operators;

• the use of the “local” oscillation f −
(
−
∫
Q f
)
(for Q a ball). These oscillations appear

in the elementary functions of the “bad part” coming from the Calderón-Zygmund de-
composition and in the definition of the maximal sharp function, which allows to get
weighted estimates.

The oscillation f −
(
−
∫
Q f
)
can be seen as the distance between the function f and the set of

constant functions on the ball Q, indeed the average is the best way to locally approximate the
function by a constant. By this way, the constant function being associated to the frequency 0,
we understand how the classical Calderón-Zygmund theory is related to the frequency 0.

As for example, well-known Calderón-Zygmund operators are the Fourier multipliers associ-
ated to a symbol m satisfying Hörmander’s condition

|∂αm(ξ)| . |ξ|−|α| = d(ξ, 0)−|α|,

which encodes regularity assumption of the symbol relatively to the frequency 0.

In this work, we are interested in the extension of this theory with respect to a collection of fre-
quencies and we focus on sharp constants relatively to the number of the considered frequencies.

Such questions naturally arise as soon as we work on a multi-frequency problem:

• Uniform bounds for a Walsh model of the bilinear Hilbert transform (see [12] by Oberlin
and Thiele);
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• A variation norm variant of Carleson’s theorem (see [11] by Oberlin, Seeger, Tao, Thiele
and Wright);

• Such a multi-frequency Calderón-Zygmund was introduced by Nazarov, Oberlin and
Thiele in [10] for proving a variation norm variant of a Bourgain’s maximal inequality.

Similarly to the fact that a Fourier multiplier with a symbol satisfying Hörmander’s condition
is a classical Calderón-Zygmund, we may extend this property to a collection of frequencies.
More precisely, let Θ := (ξ1, ..., ξN ) be a collection of frequencies and consider a symbol m
verifying for all multi-indices α

|∂αm(ξ)| . d(ξ,Θ)−|α|,

with d(ξ,Θ) := min1≤i≤N |ξ − ξi|. Such symbols give rise to Fourier multipliers, which should
be the prototype of what we want to call multi-frequency Calderón-Zygmund operators.

In the 1-dimensional setting with a collection of frequencies Θ := (ξ1, ..., ξN ) (assumed to be
indexed by the increasing order ξ1 < ξ2 < · · · < ξN ), an example is given by the multi-frequency
Hilbert transform which corresponds to the symbol

m(ξ) =





−1, ξ < ξ1
(−1)j+1, ξj < ξ < ξj+1

(−1)N+1, ξ > ξN .

Let us now detail a definition of “multi-frequency Calderón-Zygmund” operator:

Definition 0.1. Let Θ := (ξ1, ..., ξN ) be a collection of N frequencies of Rn. An L2-bounded linear
operator T is said to be a Calderón-Zygmund operator relatively to Θ if there exist operators
(Tj)j=1,...,N and kernels (Kj)j=1,...,N verifying

• Decomposition: T =
∑N

j=1 Tj;

• Integral representation of Tj : for every function f ∈ L2 compactly supported and x ∈
supp(f)c,

Tj(f)(x) =

∫
Kj(x, y)f(y);

• Regularity of the modulated kernels: for every x 6= y

N∑

j=1

∣∣∣∇(x,y) e
iξj ·(x−y)Kj(x, y)

∣∣∣ . |x− y|−n−1.

Remark 0.1. As usual, we can weaken the regularity assumption and just require an ǫ-Hölder
regularity on the modulated kernels.

Remark 0.2. If the decomposition is assumed to be orthogonal (which means that for i 6= j,
TiT

∗
j = 0) then it follows that each operator Tj is a modulated Calderón-Zygmund operator.

Such a multi-frequency Calderón-Zygmund operator can also be pointwisely bounded by a sum
of N modulated (classical) Calderón-Zygmund operators and have the same boundedness prop-
erties with an implicit constant of order N . The aim is to study how this order can be improved
using sharp estimates.

We first obtain unweighted estimates for such operators:

Theorem 0.1. Let Θ be a collection of N frequencies and T an associated multi-frequency
Calderón-Zygmund operator. Then
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• for p ∈ (1,∞), T is bounded on Lp with

‖T‖Lp→Lp . N

∣

∣

∣

1
p
− 1

2

∣

∣

∣

.

• for p = 1, T is of weak-type (1, 1) with

‖T‖L1→L1,∞ . N
1
2 .

This theorem relies on an adapted Calderón-Zygmund decomposition introduced in [10] by

Nazarov, Oberlin and Thiele. We point out that there the constant N
1
2 is shown to be optimal

and this is the same for the previous weak-type estimate.

Concerning weighted estimates, it is well-known that linear Calderón-Zygmund operators are
bounded on Lp(ω) for p ∈ (1,∞) and every weight ω belonging to the Muckenhoupt’s class Ap

(see Definitions 1.1 and 1.2 for more details about Muckenhoupt’s class Ap and Reverse Hölder
class RHs). Similar properties are satisfied by the Hardy-Littlewood maximal operator and some
other linear operators as Bochner-Riesz multipliers [15, 4] or non-integral operators (like Riesz
transforms) [1]. All these boundedness, obtained by using suitable Fefferman-Stein inequalities
related to maximal sharp functions, involve weights belonging to the class Wp(p0, q0) := A p

p0
∩

RH(
q0
p
)′ for some exponents p0 < q0.

1

As a consequence, it seems that these classes of weights are well-adapted for proving bounded-
ness of linear operators. Following this observation, we will consider a multi-frequency maximal
sharp function, in order to prove weighted estimates for our multi-frequency operators:

Theorem 0.2. Let Θ be a collection of N frequencies. For p ∈ (1,∞), s ∈ (1, p) and t ∈ (1,∞),
then every multi-frequency Calderón-Zygmund operator T is bounded on Lp(ω) for every weight
ω ∈ RHt′ ∩ A p

s
with

‖T‖Lp(ω)→Lp(ω) . Nγ

and

γ :=
tp

smin{2, s} +

∣∣∣∣
1

2
− 1

s

∣∣∣∣ .

We emphasize that this result is only interesting when γ < 1.

The current paper is organized as follows: after some preliminaries about weights, examples
of multi-frequency operators and the main lemma for the multi-frequency analysis, Theorem
0.1 is proved in Section 2. Then in Section 3, we develop the general approach for weighted
estimates, based on a suitable maximal sharp function. In Section 4, we describe how this point
of view could be used to Bochner-Riesz multipliers.

1From [8], we know that for r, s > 1,

Ar ∩RHs =
{

ω, ω
s
∈ A1+s(r−1)

}

,

so these classes of weights are equivalent to a class of powers of Muckenhoupt’s weights.
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1. Notations and preliminaries

Let us consider the Euclidean space R
n equipped with the Lebesgue measure dx and its

Euclidean distance |x− y|. Given a ball Q ⊂ R
n we denote its center by c(Q) and its radius by

rQ. For any λ > 1, we denote by λQ := B(c(Q), λrQ). We write Lp for Lp(Rn,R) or Lp(Rn,C).
For a subset E ⊂ R

n of finite and non-vanishing measure and f a locally integrable function,
the average of f on E is defined by

−
∫

E
fdx :=

1

|E|

∫

E
f(x)dx.

Let us denote by Q the collection of all balls in R
n. We write M for the maximal Hardy-

Littlewood function:

Mf(x) = sup
Q∈Q

x∈Q

−
∫

Q
|f |dx.

For p ∈ (1,∞), we set Mpf(x) = M(|f |p)(x)1/p. The Fourier transform will be denoted by

F as an operator and we make use of the other usual notation F(f) = f̂ too.

In the current work, we aim to develop a multi-frequency analysis, based on the following
lemma:

Lemma 1.1 ([2]). Let Θ ⊂ R
n be a finite collection of frequencies and Q be a ball. For every

function φ belonging to the subspace of L2(3Q), spanned by (eiξ·)ξ∈Θ, we have for p ∈ [1, 2]

(1) ‖φ‖L∞(Q) . (♯Θ)
1
p

(
−
∫

3Q
|φ|pdx

) 1
p

.

Remark 1.1. In [2], this lemma is stated and proved in a one-dimensional setting. However,
the proof only relies on the additive group structure of the ambient space by using translation
operators. So the exact same proof can be extended to a multi-dimensional setting.

Remark 1.2. The question of extending the previous lemma for p ∈ (2,∞) is still open in such
a general situation. Of course, (1) is true for p = ∞ and so it would be reasonable to expect
the result for intermediate exponents p ∈ (2,∞). Unfortunately, the well-known interpolation
theory does not apply here.
However, in some specific situations, we may extend this lemma for p ≥ 2. Indeed, if p = 2k is
an even integer then applying (1) with p = 2 and Θk := {θi1 + ...+ θik , θi ∈ Θ} to φk yields

‖φ‖L∞(Q) . ‖φk‖
1
k

L∞(Q)

. (♯Θk)
1
2k

(
−
∫

3Q
|φ|2kdx

) 1
2k

≃ (♯Θk)
1
p

(
−
∫

3Q
|φ|pdx

) 1
p

.

By this way, we see that an extension of (1) for p ≥ 2 may be related to sharp combinatorial
arguments, to estimate ♯Θk (a trivial bound is ♯Θk ≤ (♯Θ)k which does not improve (1)).

We aim to obtain weighted estimates, involving Muckenhoupt’s weights.
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Definition 1.1. A weight ω is a non-negative locally integrable function. We say that a weight
ω ∈ Ap, 1 < p < ∞, if there exists a positive constant C such that for every ball Q,

(
−
∫

Q
ω dx

)(
−
∫

Q
ω1−p′ dx

)p−1

≤ C.

For p = 1, we say that ω ∈ A1 if there is a positive constant C such that for every ball Q,

−
∫

Q
ω dx ≤ C ω(y), for a.e. y ∈ Q.

We write A∞ = ∪p≥1Ap.

We just recall that for p ∈ (1,∞), the maximal function M is bounded on Lp(ω) if and only
if ω ∈ Ap. We also need to introduce the reverse Hölder classes.

Definition 1.2. A weight ω ∈ RHp, 1 < p < ∞, if there is a constant C such that for every ball
Q, (

−
∫

Q
ωp dx

)1/p

≤ C

(
−
∫

Q
ω dx

)
.

It is well known that A∞ = ∪r>1RHr. Thus, for p = 1 it is understood that RH1 = A∞.

1.1. Examples of multi-frequency Calderón-Zygmund operators. Let us detail particu-
lar situations where such multi-frequency operators appear.

The multi-frequency Hilbert transform. As explained in the introduction, an example of such
multi-frequency operators in the 1-dimensional setting is the multi-frequency Hilbert transform.
In R, consider an arbitrary collection of frequencies Θ := (ξ1, ..., ξN ) (assumed to be indexed by
the increasing order ξ1 < ξ2 < · · · < ξN ). The associated multi-frequency Hilbert transform is
the Fourier multiplier corresponding to the symbol

m(ξ) =





−1, ξ < ξ1
(−1)j+1, ξj < ξ < ξj+1

(−1)N+1, ξ > ξN .

Associated to Θ, we have a collection of disjoint intervals ∆ := {(−∞, ξ1), (ξ1, ξ2), ..., (ξN ,∞)}.
It is well-known by Rubio de Francia’s work [13] that for q ∈ (1, 2], the functional

(2) f →
(
∑

ω∈∆

∣∣F−1[1ωFf ]
∣∣q
) 1

q

is bounded on Lp for p ∈ (q′,∞).
The boundedness of the multi-frequency Hilbert transform is closely related to the under-

standing of (2) for q → 1.

We point out that in Rubio de Francia’s result, the obtained estimates do not depend on the
collection of intervals ∆. More precisely, excepted the end-point p = q′, the range (q′,∞) is
optimal for a uniform (with respect to the collection ∆) Lp-boundedness of (2). So it is natural
that for q → 1 things are more difficult, which is illustrated by our multi-frequency Calderón-
Zygmund analysis. Indeed, for example if one considers the particular case Θ := (1, ..., N), then
following the notations of Remark 1.2, we have Θk = {k, ..., kN} and so ♯Θk = k(N−1)+1 ≃ kN .
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Hence, in this situation we have observed (see Remark 1.2) that we can extend Lemma 1.1 to
exponents p ∈ [1,∞] (the implicit constant appearing in (1) is only depending on p). By this
way, Theorem 0.2 can be improved and we obtain a better exponent

γ =
tp

s2
+

∣∣∣∣
1

2
− 1

s

∣∣∣∣ .

Consequently, it seems that for the Lp-boundedness of the multi-frequency Hilbert transform,
the collection Θ could play an important role (which was not the case for the ℓq-functional (2)
with q′ < p).

Multi-frequency operators coming from a covering of the frequency space. Let (Qj)j=1,...,N be a

family of disjoint cubes and φj a smooth function with φ̂j supported and adapted to Qj . Then
consider the linear operator given by

T (f) =
N∑

j=1

φj ∗ f.

It is easy to check that T is a multi-frequency Calderón-Zygmund operator, associated to the
collection Θ := (ξ1, ..., ξN ) where for every j, ξj := c(Qj) is the center of the ball Qj. With rj
the radius of Qj, we have the regularity estimate

N∑

j=1

∣∣∣∇(x,y) e
iξj ·(x−y)φj(x− y)

∣∣∣ . |x− y|−n−1
N∑

j=1

(rj|x− y|)n+1

(1 + rj |x− y|)M ,

for every integer M > 0.
So boundedness of T (Theorem 0.1) yields the inequality

(3)

∥∥∥∥∥∥

N∑

j=1

φj ∗ f

∥∥∥∥∥∥
Lp

. C(r1, ..., rN )N

∣

∣

∣

1
p
− 1

2

∣

∣

∣‖f‖Lp ,

with

C(r1, ..., rN ) := sup
t>0

N∑

j=1

(rjt)
n+1

(1 + rjt)M
.

Let us examine some particular situations:

• If the cubes (Qj)j have an equal side-length, then as for Proposition 4.1, simple argu-
ments imply (3) for p ∈ [1,∞] without the constant C(r1, ..., rN ).

• If the collection (Qj)j is dyadic: it exists a point ξ0, d(Qj , ξ0) ≃ rQj
≃ 2j then

Littlewood-Paley theory implies (3) without the factorN | 1
p
− 1

2
| (in this case C(r1, ..., rN ) ≃

1).
• If the cubes (Qj) have only the dyadic scale: rQj

≃ 2j (but no assumptions on the centers
of the balls) then Littlewood-Paley theory cannot be used. However, our previous results
can be applied in this situation and so (3) holds and C(r1, ..., rN ) ≃ 1.

We aim to use the new multi-frequency Calderón-Zygmund analysis to extend these inequal-
ities with replacing the convolution operators by more general Calderón-Zygmund operators,
still satisfying some orthogonality properties.
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Multi-frequency operators coming from variation norm estimates. As explained in the intro-
duction, the multi-frequency Calderón-Zygmund analysis has been first developed for proving
a variation norm variant of a Bourgain’s maximal inequality. So our results can be adapted
in such a framework. For example, in [7] Grafakos, Martell and Soria have studied maximal
inequalities of the form ∥∥∥∥∥ sup

j=1,...,N

∣∣∣T (eiθj ·f)
∣∣∣
∥∥∥∥∥
Lp

. ‖f‖Lp

where (θj)j=1,...,N is a collection of frequencies and T a fixed Calderón-Zygmund operator.
We can ask the same question, for a variation norm variant: for q ∈ [1,∞) consider




N∑

j=1

∣∣∣T (eiθj ·f)
∣∣∣
q




1
q

and study its boundedness on Lp, with a sharp control of the behaviour with respect to N . By a
linearization argument (involving Rademacher’s functions), this ℓq-functional can be realized as
an average of modulated Calderón-Zygmund operators, associated to the collection Θ := (θj)j .

2. Unweighted estimates for multi-frequency Calderón-Zygmund operators

In this section, we aim to prove the weak L1-estimate for a multi-frequency Calderón-Zygmund
operator, then Theorem 0.1 will easily follow from interpolation and duality.

Proposition 2.1. Let Θ = (ξ1, ..., ξN ) be a collection of N frequencies as above and T be a
Calderón-Zygmund operator relatively to Θ. Then T is of weak type (1, 1) with (uniformly with
respect to N)

‖T‖L1→L1,∞ . N
1
2 .

Proof. Consider f a function in L1 and λ > 0, we use the Calderón-Zygmund decomposition2

of [10] related to the collection of frequencies Θ. So the function f can be decomposed f =
g +

∑
J∈J bJ with the following properties:

• J is a collection of balls and (3J)J∈J has a bounded overlap;
• for each J ∈ J, bJ is supported in 3J ;
• we have

(4)
∑

J∈J

|J | .
√
N‖f‖L1λ−1;

• the “good part” g satisfies

(5) ‖g‖2L2 . ‖f‖L1

√
Nλ;

• the cubes J satisfy

(6) ‖f‖L1(J) . |J |λN− 1
2 , ‖f − bJ‖L2(J) .

√
|J |λ;

2In [10], the multi-frequency Calderón-Zygmund decomposition is only described in R. The proof is a combi-
nation of Lemma 1.1 and the usual Calderón-Zygmund decomposition. Since both of them can be extended in a
multi-dimensional framework, the multi-frequency Calderón-Zygmund decomposition performed in [10] still holds
in R

n.
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• we have cancellation for all the frequencies of Θ: for all j = 1, ..., N and J ∈ J, b̂J(ξj) = 0.

We aim to estimate the measure of the level-set

Υλ := {x, |T (f)(x)| > λ} .
With b =

∑
J bJ , we have

|Υλ| ≤ |{x, |T (g)(x)| > λ/2}|+ |{x, |T (b)(x)| > λ/2}|
. λ−2‖T (g)‖2L2 + |{x, |T (b)(x)| > λ/2}|
. λ−1

√
N‖f‖L1 + |{x, |T (b)(x)| > λ/2}| ,

where we used the L2-boundedness of T . So it remains us to study the last term. Since (4), we
get ∣∣∣∣∣

⋃

J∈J

4J

∣∣∣∣∣ .
∑

J

|J | .
√
N‖f‖L1λ−1.

Consequently, it only remains to estimate the measure of the set

Oλ :=

{
x ∈

(
⋃

J∈J

4J

)c

, |T (b)(x)| > λ/2

}
.

Since

(7) |Oλ| . λ−1
∑

J

‖T (bJ)‖L1((2J)c),

it is sufficient to estimate the L1-norms. ConsiderK the kernel of T and a point x0 ∈
(⋃

J∈J 4J
)c
.

Then, we can use the integral representation and we have

T (b)(x0) =

∫
K(x0, y)b(y)dy =

∑

J

∫

3J
K(x0, y)bJ (y)dy.

To each J , we aim to take advantage of the cancellation properties of bJ , so we subtract the
projection of [y → K(x0, y)] on the space, spanned by (eiy·η)η∈Θ. So we have

T (b)(x0) =
∑

J

N∑

j=1

∫

3J

[
Kj(x0, y)− eiξj ·c(J)Kj(x0, c(J))e

−iξj ·y
]
bJ(y)dy

=
∑

J

N∑

j=1

∫

3J

[
K̃j(x0, y)− K̃j(x0, c(J))

]
eiξj ·(x0−y)bJ(y)dy

where c(J) is the center of J and K̃j(x, y) := Kj(x, y)e
−iξj ·(x−y). We then write

Tj(b)(x0) :=

∫ [
K̃j(x0, y)− K̃j(x0, c(J))

]
eiξj ·(x0−y)b(y)dy.

such that T (b) =
∑

j Tj(b). Due to the regularity assumption on K (and so on K̃j), it comes

for y ∈ J and x0 ∈ (2J)c

(8)

N∑

j=1

∣∣∣K̃j(x0, y)− K̃j(x0, c(J))
∣∣∣ . rJ

|x0 − y|n+1
.
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So we have

‖T (bJ)‖L1((2J)c) .

∫∫

|x−y|≥rJ

rJ
|x− y|n+1

|bJ (y)|dxdy . ‖bJ‖L1 . |J |λ.

Finally, we obtain with (7) that

|Oλ| .
∑

J

|J | .
√
N‖f‖L1λ−1,

which concludes the proof. �

Remark 2.1. Following [10], the bound of order N
1
2 is optimal for the multi-frequency decom-

position and for the weak-L1 estimate.

3. Weighted estimates for multi-frequency Calderón-Zygmund operators

Aiming to obtain weighted estimates on such multi-frequency operators (using Good-lambda
inequalities), we also have to define a suitable maximal sharp function, associated to a collection
of frequencies.

Definition 3.1 (Maximal sharp function). Let Θ be a collection of N frequencies and s ∈ [1,∞).
Consider a ball Q, we denote by PΘ,Q the projection operator (in the Ls-sense) on the subspace
of Ls(3Q), spanned by (exp iξ·)ξ∈Θ. Let us specify this projection operator: consider E the

finite dimensional sub-space of Ls(3Q), spanned by (eiξ·)ξ∈Θ and equipped with the Ls(3Q)-
norm. Since E is of finite dimension, then for every f ∈ Ls(Q) there exists v := PΘ,Q(f) ∈ E
such that

‖f − v‖Ls(3Q) = inf
φ∈E

‖f − φ‖Ls(3Q).

This projection operator may depend on s, which is not important for our purpose so this is
implicit in the notation and we forget it.

Since 0 ∈ E, we obviously have

(9) ‖PΘ,Q(f)‖Ls(3Q) ≤ 2‖f‖Ls(Q).

Then, we may define the maximal sharp function

M♯
s,Θ(f)(x0) := sup

x0∈Q

(
−
∫

Q
|f − PΘ,Q(f1Q)|s dx

) 1
s

.

Note that the usual sharp maximal function is the one obtained for Θ := {0} and in this
situation it is well-known that the maximal sharp function satisfies a so-called Fefferman-Stein
inequality (see [6]). We first prove an equivalent property for this generalised maximal sharp
function:

Proposition 3.1. Let s ∈ (1,∞), t ∈ [1,∞) and p ∈ (s,∞) be fixed. Then for every function
f ∈ Ls and every weight ω ∈ RHt′, we have for every p ≥ s

‖f‖Lp(ω) . N
tp

s
max{ 1

2
, 1
s
}
∥∥∥M♯

s,Θ(f)
∥∥∥
Lp(ω)

.

The proof relies on a Good-lambda inequality and Lemma 1.1.
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Proof. We make use on the abstract theory developed in [1] by Auscher and Martell. We also
follow notations of [1, Theorem 3.1]. Indeed, for each ball Q ⊂ R

n we have the following

F (x) := |f(x)|s . |f(x)− PΘ,Q(f1Q)(x)|s + |PΘ,Q(f1Q)(x)|s := GQ(x) +HQ(x).

By definition, it comes

−
∫

Q
GQdx ≤ inf

Q
M♯

s,Θ(f)
s

and following Lemma 1.1 (with (9))

sup
x∈Q

HQ = ‖PΘ,Q(f1Q)‖sL∞(Q) . N smax{ 1
2
, 1
s
}

(
−
∫

3Q
|PΘ,Q(f1Q)|sdx

)

. N smax{ 1
2
, 1
s
}

(
−
∫

Q
|f |sdx

)
. N smax{ 1

2
, 1
s
} inf

Q
MF.

So we can apply [1, Theorem 3.1] (with q = ∞ and a ≃ N smax{ 1
2
, 1
s
}) and by checking the

behaviour of the constants with respect to “a” in its proof, we obtain for every p ≥ 1

‖Ms(f)
s‖Lp(ω) . N sptmax{ 1

2
, 1
s
}
∥∥∥M♯

s,Θ(f)
s
∥∥∥
Lp(ω)

,

which yields the desired result. �

Then, we evaluate a multi-frequency Calderón-Zygmund operator via this new maximal sharp
function.

Proposition 3.2. Let T be a Calderón-Zygmund operator relatively to Θ and s ∈ (1,∞). Then,
we have the following pointwise estimate:

M♯
s,Θ(T (f)) . N | 1

s
− 1

2
|Ms(f).

Proof. We follow the well-known proof for usual Calderón-Zygmund operators and adapt the
arguments to the current situation. So consider a point x0 and a ball Q ⊂ R

n containing x0, we
have to estimate

(
−
∫

Q
|T (f)− PΘ,Q(T (f)1Q)|s dx

) 1
s

.

We split the function into a local part f0 and an off-diagonal part f∞:

f = f0 + f∞ := f110Q + f1(10Q)c .

By definition of the projection operator, we know that

(
−
∫

Q
|T (f)− PΘ,Q(T (f)1Q)|s dx

) 1
s

≤
(
−
∫

Q
|T (f)− PΘ,Q(T (f∞)1Q)|s dx

) 1
s

≤
(
−
∫

Q
|T (f0)|s dx

) 1
s

+

(
−
∫

Q
|T (f∞)− PΘ,Q(T (f∞)1Q)|s dx

) 1
s

.
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For the local part, we use boundedness in Ls of the operator T (Proposition 2.1), hence
(
−
∫

Q
|T (f0)|s dx

) 1
s

. |Q|− 1
s ‖T (f0)‖Ls(Q) . N ( 1

2
− 1

s
)
(
|Q|− 1

s ‖f0‖Ls

)

. N | 1
2
− 1

s
|Ms(f)(x0).

Then let us focus on the second part, involving f∞.
We use the decomposition (with an integral representation) since we are in the off-diagonal case:
for x ∈ Q

T (f∞)(x) =

N∑

j=1

∫
Kj(x, y)f∞(y)dy.

Consider the following function, defined on 3Q by (where c(Q) is the center of Q)

Φ := x ∈ 3Q →
N∑

j=1

∫
eiξj ·(x−c(Q))Kj(c(Q), y)f∞(y)dy.

So Φ ∈ E (see Definition 3.1) and hence

(10)

(
−
∫

Q
|T (f∞)− PΘ,Q(T (f∞)1Q)|s dx

) 1
s

≤
(
−
∫

Q
|T (f∞)− Φ|s dx

) 1
s

.

If we set K̃j(x, z) := Kj(x, z)e
−iξj ·(x−z), then

T (f∞)(x)− Φ(x) =
∑

j

∫ [
K̃j(x, y)− K̃j(c(Q), y)

]
eiξj(x−y)f∞(y)dy.

From the regularity assumption on the kernels Kj’s, we have for y ∈ (10Q)c

(11)
∑

j

∣∣∣K̃j(x, y)− K̃j(c(Q), y)
∣∣∣ . rQ sup

z∈Q

∑

j

∣∣∣∇xK̃j(z, y)
∣∣∣ . r−n

Q

(
1 +

d(y,Q)

rQ

)−n−1

.

We also have (since y ∈ (10Q)c and x, c(Q) ∈ Q)

|T (f∞)(x)− Φ(x)| .
∫

|z|≥10rQ

r−n
Q

(
1 +

|x− c(Q)− z|
rQ

)−n−1

|f(c(Q) + z)|dz

.

∫

|z|≥5rQ

r−n
Q

(
1 +

|z|
rQ

)−n−1

|f(x0 + z)|dz

. M(f)(x0),

which concludes the proof. �

We obtain the following corollary:

Corollary 3.3. Let Θ be a collection of N frequencies. For p ∈ (2,∞), s ∈ [2, p) and t ∈
(1,∞), a multi-frequency Calderón-Zygmund operator T is bounded on Lp(ω) for every weight
ω ∈ RHt′ ∩ A p

s
with

‖T‖Lp(ω)→Lp(ω) . N
tp

2s
+( 1

2
− 1

s).
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Proof. Using Propositions 3.1 and 3.2, it follows that for p > s ≥ 2 (assuming ω ∈ A p

s
)

‖T (f)‖Lp(ω) . N
tp

2s

∥∥∥M♯
s,Θ[T (f)]

∥∥∥
Lp(ω)

. N
tp
2s

+( 1
2
− 1

s) ‖Ms(f)‖Lp(ω)

. N
tp

2s
+( 1

2
− 1

s) ‖f‖Lp(ω) ,

where we used weighted boundedness of the maximal function since ω ∈ A p

s
. �

As explained in the introduction, this estimate is only interesting when the exponent tp
2s+

(
1
2 − 1

s

)

is lower than 1.

4. Connexion to Bochner-Riesz multipliers

In this section, we aim to describe how such arguments could be applied to generalized
Bochner-Riesz multipliers. Weighted estimates for Bochner-Riesz multipliers has been initiated
in [15, 5, 4]. We first emphasize that we do not pretend to obtain new weighted estimates
for Bochner-Riesz multipliers. But we only want to describe here a new point of view and a
new approach for such estimates, which will be the subject of a future investigation. Such an
application is a great motivation for pursuing the study of a multi-frequency Calderón-Zygmund
analysis.

Consider also Ω a bounded open subset of Rn such that its boundary Γ := Ω \Ω is an hyper-
manifold of Hausdorff dimension n− 1. For δ > 0, we then define the generalized Bochner-Riesz
multiplier, given by

RΩ,δ(f)(x) :=

∫

Ω
eix·ξf̂(ξ)mδdξ,

where mδ is a smooth symbol supported in Ω and satisfying in Ω

|∂αmδ(ξ)| . d(ξ,Γ)δ−|α|.

We first use a Whitney covering (Oi)i of Ω. That is a collection of sub-balls such that

• the collection (Oi)i covers Ω and has a bounded overlap;
• the radius rOi

is equivalent to d(Oi,Γ).

Associated to this collection, we build a partition of the unity (χi)i of smooth functions such
that χi is supported on Oi with ∑

i

χi(ξ) = 1Ω(ξ)

and ‖∂αχi‖∞ . r
−|α|
Oi

.
Then, Rδ may be written as

Rδ(f)(x) =

∞∑

j=−∞

Tj(f)(x),
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with

Tj(f)(x) :=
∑

l,

2j≤rOl
<2j+1

∫

Ω
eix·ξ f̂(ξ)mδ(ξ)χl(ξ)dξ

= 2jδUj(f)(x),(12)

where we set

Uj(f)(x) :=
∑

l,

2j≤rOl
<2j+1

∫

Ω
eix·ξ f̂(ξ)(2−jδmδ(ξ))χl(ξ)dξ.

Observation : The main idea is to observe that the operator Uj is a multi-frequency Calderón-
Zygmund operator associated to the collection

Θj := {c(Ol), 2j ≤ rOl
< 2j+1} with ♯Θj ≃ 2−j(n−1).

However, these operators have specific properties, one of them is that the considered balls
have equivalent radius, which means that these operators have only one scale 2j . For example,
this observation allows us to easily prove some boundedness:

Proposition 4.1. Uniformly with j . 0, the multiplier Uj is a convolution operation with a
kernel Kj satisfying

‖Kj‖L1 . 2−j n−1
2 .

Hence, it follows that Uj is bounded on Lebesgue space Lp for every p ∈ [1,∞]. Moreover for
every s ∈ [1, 2], p ∈ (s,∞) and every weight ω ∈ A p

s
, Uj is bounded on Lp(ω) with

‖Uj‖Lp(ω)→Lp(ω) . 2−j n−1
s .

Proof. The operator Uj is a Fourier multiplier, associated to the symbol

σj(ξ) :=
∑

l,

2j≤rOl
<2j+1

(2−jδmδ(ξ))χl(ξ).

Since the considered balls (Ol)l are almost disjoint, it comes that

‖σj‖L2 . |{ξ, d(ξ, ∂Ω) ≃ 2j}| 12 . 2
j

2 .

Moreover, using regularity assumptions on mδ, we deduce that for every α

‖∂ασj‖L2 . 2−j|α||{ξ, d(ξ, ∂Ω) ≃ 2j}| 12 . 2j(
1
2
−|α|).

So with Kj := F(σj), it follows that for any integer M

(13)
∥∥(1 + 2j | · |)MKj

∥∥
L2 . 2

j

2 .

Hence

‖Kj‖L1 . 2−j n−1
2 .

Using Minkowski inequality, we deduce that for every p ∈ [1,∞]

‖Uj‖Lp→Lp . ‖Kj‖L1 . 2−j n−1
2 .
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Let us now focus on the second claim about weighted estimates. Using integrations by parts for
computing the kernel Kj , it comes for any integer M

(14)
∥∥(1 + 2j | · |)MKj

∥∥
L∞ . 2j .

By interpolation with (13), for s ∈ [1, 2] we get

(15)
∥∥(1 + 2j | · |)MKj

∥∥
Ls′ . 2

j

s ,

which gives

Uj(f) . 2−j n−1
s Ms(f).

Hence, for every p > s and every weight ω ∈ A p

s

‖Uj‖Lp(ω)→Lp(ω) . 2−j n−1
s .

�

In this context, ♯Θj ≃ 2−j(n−1), so the constant 2−j n−1
s is equivalent to (♯Θj)

1
s and this is a

better constant than the one obtained in Corollary 3.3 (for a subclass of A p

s
weights).

So improving these “easy bounds” means to obtain inequalities such as

‖Uj‖Lp(ω)→Lp(ω) . (♯Θj)
γ

for some better exponent γ < 1
s .

Let us finish by suggesting how could we get improvements of our approach to get interesting
results for Bochner-Riesz multipliers:

Question : The general approach, developed in the previous section, only allows to get an
exponent

γ =
tp

2s
+

(
1

2
− 1

s

)

(with some s ∈ [2, p)) which is bigger than 1
2 (since p > s ≥ 2 and t > 1). So to improve this

exponent γ, two things seem to be crucial:

• to extend the use of Lemma 1.1 for p ≥ 2 which would allow us to get an exponent tp
s2

instead of tp
2s ;

• to use the geometry of the boundary Γ to get better exponents, even for the unweighted
estimates. Indeed, for example for the unit ball (using its non vanishing curvature), we
know that (see [9, 14])

‖Uj‖Lp→Lp . 2−jδ(p)

with if n = 2

δ(p) := max

{
2

∣∣∣∣
1

2
− 1

p

∣∣∣∣−
1

2
, 0

}
.

and if n ≥ 3 and p ≥ 2(n+2)
n or p ≤ 2(n+2)

n+4

δ(p) := max

{
n

∣∣∣∣
1

2
− 1

p

∣∣∣∣−
1

2
, 0

}
.
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