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2 Lebanese University, IUT Saida, Saida 813, Lebanon

Correspondence should be addressed to Hussein El Ghor; hussein.ghor@ul.edu.lb

Received 3 March 2013; Revised 22 April 2013; Accepted 25 April 2013

Academic Editor: Guangjie Han

Copyright © 2013 Hussein El Ghor et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Ambient energy harvesting also known as energy scavenging is the process where energy is obtained from the environment,
converted, and stored to power small devices such as wireless sensors. We present a variant of EDF scheduling algorithm called
EH-EDF (Energy Harvesting-Earliest Deadline First). Decisions are taken at run-time without having prior knowledge about the
future energy production and task characteristics. We gauge the performance of EH-EDF bymeans of simulations in order to show
its benefits.We evaluate and compare several variants of EH-EDF in terms of percentage of feasible task sets.Metrics such as average
length of the idle times are also considered. Simulations tend to demonstrate that no online scheduler can reach optimality in a
real-time energy harvesting environment.

1. Introduction

An algorithm is said to be nonclairvoyant if its scheduling
decisions are taken at run-time with no prior knowledge
about the characteristics of the future tasks [1]. Consequently,
a nonclairvoyant scheduling algorithm is necessarily online.
The problem of online scheduling in real-time systems has
been a fertile ground for theoretical research for many years.

There are many real-time applications concerned with
nonpredictability and consequently with nonclairvoyant
scheduling. In that system, periodic and aperiodic tasks
coexist. Periodic tasks typically arise from sensor data or
control loops at regular intervals. In contrast, aperiodic tasks
generally arise from arbitrary events (external interrupts).

When considering real-time systems that take time as the
only limiting factor, it is important to differentiate between
underloaded and overloaded real-time systems. A real-time
system is said to be underloaded if there exists a feasible
schedule for theworkload; that is, the deadlines of all tasks are
met under timing constraints. On the contrary, overloaded
real-time systems do not have a feasible schedule where all
tasks meet their deadlines. Thus, the objective will be to
optimize some criteria such as the ratio of deadline success.

In addition, real-time systems can be classified into three
categories: hard, soft, and weakly hard. In hard real-time
systems, all tasksmust be guaranteed to complete within their
deadlines. For soft real-time systems, it is acceptable to miss
some of the deadlines occasionally with additional value for
the system to finish the task, even if it is late. In weakly hard
real-time systems, tasks are allowed to miss some of their
deadlines but there is no associated value if they finish after
the deadline.

Real-time task scheduling determines the order in which
tasks have to be executed. The well-known scheduling algo-
rithm is the Earliest Deadline First (EDF) algorithm [2].
EDF schedules at each instant of time 𝑡 the ready task
whose deadline is closest to 𝑡. EDF algorithm is optimal in
underloaded settings; that is, EDF is guaranteed to meet all
the task deadlines for any feasible task set.

Nowadays, energy management is becoming the central
topic of research in real-time systems. In today’s applications,
most real-time embedded systems are powered by batteries.
Therefore, great interest has risen in powering these sys-
tems by renewable energy sources. Many energy harvesting
methods can be used to harvest energy from a controlled
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or ambient environment either to power devices directly
or to store the energy in capacitors or batteries for later
use. Radio-frequency- (RF-) powered systems, solar-powered
systems, wind-powered systems, motional energy harvesting
systems, thermoelectric-powered systems, and piezoelectric
conversion systems are examples of such methods. These
harvestingmethods support awide range of applications such
as Heliomote [3] and Prometheus [4] and can also be used to
increase the lifetime of preexisting devices.

Recently, we addressed the scheduling problem for a
uniprocessor platform that is powered by a renewable energy
storage unit and uses an harvester such as photovoltaic cells.
We presented a scheduler called EDeg (Earliest Deadlinewith
energy guarantee) [5]. The set of tasks is perfectly known
offline as in applications where all the tasks run periodically.
EDeg is clairvoyant since it must know in advance both
the energy source profile and the characteristics of the tasks
(arrival time).

To extend the applicability of EDeg scheduling
framework, we need to adapt it to situations where the
scheduler has to take decisions without a priori knowledge
of the future. For real-time energy harvesting applications, a
scheduling algorithm will be nonclairvoyant if, in addition,
it ignores the incoming environmental energy in the future.
We may imagine an application where either the set of tasks
or the future energy profile is known but not both.

We focus here on on-line nonclairvoyant scheduling
in an underloaded real-time energy harvesting system that
executes aperiodic tasks on a uniprocessor platform. We
propose a scheduling algorithm named Energy Harvesting-
Earliest Deadline First (EH-EDF) which extends the well-
known EDF algorithm.Wemodify EDF so as to count for the
limitation of energy.We benefit from a slack-basedmethod to
let the processor idle and thus to recharge the energy storage
unit as much as possible without violating deadlines.

The remainder of the paper is organized as follows.
In the next section, we summarize the related work. The
system model and necessary terminology are introduced in
Section 3. In Section 4, we present the fundamental concepts
about the slack time. Section 5 describes our scheduling
scheme, EH-EDF, with some indications about practical
issues. Section 6 illustrates the simulation study, whereas
the preliminary results are presented in Section 7. Section 8
concludes the paper and gives some new directions for future
work.

2. Literature Review

Most of the previous researchwork around real-time schedul-
ing disregards energy management or assumes that the
energy is not a limiting factor for task execution.

Energy consideration is now added as a crucial issue
because of the great advances in both hardware and software
technology. This enables system designers to develop large,
complex embedded systems. Such systems consume a large
amount of power and relymainly on a limited energy storage.
Many technical challenges lie ahead in order to make an
energy harvesting system work effectively. Among them is

to either minimize the total energy consumption without
violating deadlines or maximize the performance of hard
energy constrained systems with a fixed energy budget.

With the goal to minimize the total energy consumption,
Pillai and Shin [6] present several novel algorithms for real-
time dynamic voltage scaling called real-time DVS (RT-
DVS). They modify the OS’s real-time scheduler and task
management service in order to achieve significant energy
savings without violating deadlines. Later, Aydin et al. [7]
address the problem of power-aware scheduling for periodic
tasks with the aim to reduce CPU energy consumption by
the help of dynamic voltage scaling. The authors propose
an offline algorithm to compute the optimal speed, assum-
ing worst-case workload for each arrival. An online speed
reduction mechanism is introduced to recompute energy
based on the actual workload. The third component in
this solution is to perform a speculative speed adjustment
mechanism based on the expectedworkload. Unlike thework
in [6], Aydin et al. [8] take into account the frequency-
dependent and -independent power components as well as
the power consumption of components other than the CPU
when addressing the problem of minimizing overall energy
consumption.

Many other studies address the ways to maximize the
system performance of underloaded real-time systems that
have to operate under a fixed energy budget.

Moser et al. [9] give an optimal scheduling algorithm
called LSA for tasks with deadlines, periodic or not, that run
on a monoprocessor device that is powered by a rechargeable
storage unit. They consider that the source power is pre-
dictable but time varying. LSA can be considered as an idling
variant of EDF. The system starts executing a task only if the
task has the earliest deadline among all ready tasks, and the
system can keep on running at the maximum power until the
deadline of the task. In that work, the consumption power
of the computing system is characterized by some maximum
value which implies that for every task, its total energy
consumption is directly connected to its execution time
through the constant power of the processing device. The
main disadvantage of this work lies in that the LSA algorithm
executes tasks at full power. Moreover, in practice, the total
energy consumed by a task is not necessarily proportional to
its execution time.

In [5], we relax the restrictive hypothesis that links
energy requirement and execution time of tasks. We present
a scheduling algorithm called EDeg (Earliest Deadline with
energy guarantee). Simply executing tasks according to the
EDF rule either as soon as possible (EDS) or as late as
possible (EDL) may lead to violate some deadlines. EDeg
executes tasks according to the EDF rule with idling phases
and relies on two fundamental concepts, namely, slack time
and slack energy. Before authorizing a task to execute, we
must ensure that the energy availability will permit to execute
all future occurring tasks and the current highest priority
one. When this condition is not verified, the processor has
to stay idle so that the storage unit recharges as much as
possible and as long as all the deadlines can still bemet despite
execution postponement. In [10], we prove the efficiency of
this scheduler through a simulation study. EDeg is clearly
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Figure 1: Real-time energy harvesting system.

clairvoyant since it needs both the characteristics of the future
occurring tasks and prediction about the future incoming
energy.

3. System Model and Terminology

3.1. Task Set. We consider a set of aperiodic tasks that execute
on a uniprocessor platform as depicted in Figure 1. Each task
is known by the system at the time of its arrival. An aperiodic
task set can be denoted as follows:Ψ = {𝜏

𝑖
, 𝑖 = 1, . . . , 𝑛}. Every

task 𝜏
𝑖
is characterized by (𝑟

𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, 𝐸
𝑖
), where 𝑟

𝑖
represents

the arrival time of task 𝜏
𝑖
. In the worst case, the execution of

𝜏
𝑖
requires a Worst Case Execution Time (WCET) of 𝐶

𝑖
time

units. And it consumes a Worst Case Energy Consumption
(WCEC) given by 𝐸

𝑖
. We assume that theWCEC of a task has

no relation with itsWCET. A deadline for 𝜏
𝑖
occurs at time𝐷

𝑖

by which the task should complete its execution. We assume
that 0 ≤ 𝐶

𝑖
≤ 𝐷
𝑖
− 𝑟
𝑖
for each 1 ≤ 𝑖 ≤ 𝑛.

Definition 1. The processor load 𝐿
𝑝
of a task set Ψ gives the

processor utilization of Ψ :

𝐿
𝑝
=

𝑛

∑

𝑖=1

𝐶
𝑖

𝐷max
, (1)

where𝐷max represents the longest deadline in Ψ.

Definition 2. The energy load 𝐿
𝑒
, measured in joules/s or

energy unit/time unit, gives the average power consumed by
Ψ :

𝐿
𝑒
=

𝑛

∑

𝑖=1

𝐸
𝑖

𝐷max
. (2)

3.2. Energy Source. We assume that the ambient energy is
harvested and converted into electrical power. We cannot
control the energy source but we can predict the expected
availability with a lower bound on the harvested source
power output, namely, 𝑃

𝑟
(𝑡). Generally, the harvested power

is time varying including solar energy which can be assumed
constant on average in a long-term perspective. However,

on a short-term perspective, the harvested power is highly
unstable. This power is then the instantaneous charging rate
that incorporates all losses caused by power conversion and
charging process. Clearly, we make no assumption about
the nature and dynamics of the energy source, making our
approachmore easily implemented in real systemswhere data
about the energy source may not be available beforehand.

3.3. Energy Storage. We consider an ideal energy storage
unit (supercapacitor or battery) of nominal capacity 𝐸,
corresponding to a maximum energy (expressed in Joule or
energy unit). The energy level has to remain between two
boundaries 𝐸min and 𝐸max with 𝐸 = 𝐸max − 𝐸min. The stored
energy may be used at any time later and does not leak
any energy over time. If the storage is fully charged and we
continue to charge it, energy is wasted. In contrast, if the
storage is fully discharged, no task can be executed.

At some time 𝑡, the stored energy is denoted as 𝐸(𝑡).
At any time, the stored energy is no more than the storage
capacity; that is,

𝐸 (𝑡) < 𝐸 ∀𝑡. (3)

Considering a task set Γ = {𝜏
𝑖
= (𝑟
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, 𝐸
𝑖
) | 𝑖 = 1 . . . 𝑛},

we want to compute the remaining energy in the energy
storage unit at time 𝑡. We assume that the energy storage
capacity is equal to 𝐸 energy units at 𝑡 = 0. Let 𝜏

𝑖
be the

highest priority instance ready at time 𝑡 = 0. As tasks are
ordered according to their deadline under EDF, 𝜏

𝑖
must be

run first. The remaining energy in the energy storage unit at
time 𝑡 = 𝐶

𝑖
is

𝐸 (𝑡) = 𝐸 + ∫

𝐶𝑖

0

𝑃
𝑟 (𝑡) 𝑑𝑡 − 𝐸𝑖.

(4)

4. Fundamental Concepts

4.1. Slack Time. The slack time of a hard deadline task set at
current time 𝑡 is the length of the longest interval starting at
𝑡 during which the processor can stay idle without leading to
deadline violations.

Let us consider a task set Ψ as described previously. Let
Ψ
󸀠 be the set of tasks ready to be processed at current time 𝑡.

And let us define the slack time of task 𝜏
𝑗
as the maximum

processor time that can be used after executing 𝜏
𝑗
and higher

priority tasks. Then the slack time of 𝜏
𝑗
𝜖Ψ
󸀠 is computed as

follows:

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
𝑗
, 𝑡) = (𝐷

𝑗
− 𝑡) − ∑

𝐷𝑖≤𝐷𝑗

𝐶
𝑖
. (5)

It comes that the slack time of the system at time 𝑡 is
computed from the slack time of all the tasks as follows:

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝑡) = min (𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
𝑗
, 𝑡)) . (6)

4.2. Illustrative Example 1. Consider a task set Ψ = {𝜏
𝑖
, 𝑖 =

1, . . . , 4} with 𝜏
𝑖
= (𝑟
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
). Let 𝜏

1
= (0, 3, 18), 𝜏

2
=

(4, 2, 12), 𝜏
3
= (5, 3, 24), and 𝜏

4
= (0, 4, 16). Let us compute
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Figure 2: Computing the slack time at 𝑡 = 6.

the slack time at time 6 after executing the tasks according to
EDS from 0 to 6.

𝜏
4
is executed from time 0 to time 4 and 𝜏

2
from time

4 to time 6. At time 6, tasks 𝜏
1
and 𝜏

3
are both ready for

execution. Their slack time and the slack time of the system
are computed according to (5) and (6):

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
1
, 6) = (𝐷

1
− 6) − ∑

𝐷𝑖≤𝐷1

𝐶
𝑖
= (18 − 6) − 3 = 9,

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
3
, 6) = (𝐷

3
− 6) − ∑

𝐷𝑖≤𝐷3

𝐶
𝑖
= (24 − 6) − 6 = 12,

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (6) = min (𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
1
, 6) ,

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
3
, 6)) = 9.

(7)

Figure 2 describes the resulting schedule where the pro-
cessor is let idle from time 6 during a time interval whose
length equals the slack time. We note that 𝜏

1
starts execution

at the latest time while 𝜏
3
has a slack equal to 3 time units

before deadline. This corresponds to the slack time of 𝜏
3

minus the slack time of the system.

4.3. Illustrative Example 2. Consider the same task set as
in Section 4.2. Nevertheless, we add a task 𝜏

5
= (8, 5, 20).

Assume that we execute 𝜏
4
from time 0 to time 4 and then 𝜏

2

from time 4 to time 6.When computing the slack time at time
6, we have two ready tasks 𝜏

1
and 𝜏
3
with 𝑠𝑙𝑎𝑐𝑘⋅𝑡𝑖𝑚𝑒(𝜏

1
, 6) = 9

and 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝜏
3
, 6) = 12. Consequently 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(6) = 9.

𝜏
5
is released at 𝑡 = 8. This leads to the update of the

slack time. First, we note that the slack time function linearly
decreases with time when the processor is let idle. And the
slack time of a task is only affected by tasks with a lower
deadline. As the deadline of 𝜏

3
is lower than the deadline of

the new occurring task 𝜏
5
, we deduce that 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝜏

3
, 8) =

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝜏
3
, 6) − 2 = 10.

18

124
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16

8 20
Slack
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Slack time
Execution of aperiodic tasks according EDF

Figure 3: Updating the slack time at 𝑡 = 8.

As the deadline of 𝜏
1
is greater than the deadline of the

new occurring task 𝜏
5
, the computation of the slack time of

𝜏
1
must be achieved thanks to (5):

𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒 (𝜏
3
, 8) = (24 − 8) − (3 + 3 + 5) = 5. (8)

By the help of (5), we have 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝜏
5
, 8) = 4. Thus

the slack time of the system will be changed to 4 in order to
meet the deadline of the new occurring task (𝜏

5
).

Now, we are prepared to introduce a new online scheduler
specifically adapted to aperiodic tasks in an energy harvesting
context.

5. The EH-EDF Scheduling Algorithm

In this section, the scheduler ignores the future energy
production and the future arrival times of tasks.

5.1. Presentation of the Scheduler. The intuition behind EH-
EDF algorithm is to schedule aperiodic tasks as soon as
possible according to EDF. When a new task arrives, it is
inserted in the ready task list. When the energy in the storage
unit reveals to be insufficient for executing tasks, the only
solution consists in postponing them as much as possible.
We have to perform the computation of the slack time of
the system from the ready task list. The scheduler lets the
processor idle until the energy storage unit replenishes or the
slack time becomes zero.

The slack time is updated whenever a new task arrives
even in the recharging phase. The processor continues idling
as long as the system has slack.

We propose the so-called Energy Harvesting-Earliest
Deadline First (EH-EDF) algorithm following the idea
described previously.

Themajor components of the EH-EDF algorithm are 𝐸(𝑡)
and 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝑡). 𝐸(𝑡) is the residual capacity of the storage
unit at time 𝑡 which is the energy that is currently stored



International Journal of Distributed Sensor Networks 5

and 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝑡) is the slack time of the system at current
time 𝑡. PENDING is a Boolean which equals true whenever
there is at least one instance in the ready list queue. We use
the function wait() to put the processor in sleep mode and
function execute() to put the processor in active mode and
schedule the tasks according to EDF.

The framework of the EH-EDF scheduling algorithm is as
Algorithm 1.

From the EH-EDF framework, we notice that tasks do
not run after 𝐸min. EH-EDF charges the energy storage to
the maximum level, provided there is sufficient slack time
and the storage unit is not fully replenished. Such condition
can be easily detected through an interrupt mechanism
and adequate circuitry between the storage unit and the
processing device.The slack time is computed when entering
the wait state and decremented at each time instant.

Therefore, wewaste recharging power onlywhen there are
no pending tasks in the ready list and the storage unit is full.

5.2. Illustrative Example. Consider a task set Ψ with five
aperiodic tasks as in the previous example such thatΨ = {𝜏

𝑖
|

1 ≤ 𝑖 ≤ 5}, where 𝜏
𝑖
= (𝑟
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, 𝐸
𝑖
). Let 𝜏

1
= (0, 3, 18, 9),

𝜏
2
= (4, 2, 12, 12), 𝜏

3
= (5, 3, 24, 7), 𝜏

4
= (0, 4, 16, 10), and

𝜏
5
= (8, 3, 20, 10). The energy storage capacity is assumed

to be equal to 10 energy units. For sake of simplicity, the
rechargeable power, 𝑃

𝑟
, is constant along time and equals 2.

Ψ is temporally feasible; that is, all deadlines can be met
when abstracting for energy. But Ψ reveals to be not feasible
with energy limitations since the storage unit empties at time
6.

When applying EH-EDF (Figure 4) toΨ, the energy stor-
age capacity empties at 𝑡 = 6. The energy storage recharges as
much as possible. The recharging time is computed from the
current slack time in order to still guarantee all the deadlines
while avoiding energy overflow.

In details, the energy storage is full at time 0. The highest
priority task𝑇

4
executes until time 4 when the energy storage

capacity is given by the following formula: 𝐸(4) = 𝐸max−𝐸1+
𝑃
𝑟
𝐶
1
= 8 energy units.

𝑇
2
is ready at time 4. As the highest priority task, it

executes until time 6 when the energy storage empties. The
processor has to remain idle as long as the storage has not
fulfilled and the slack time is not zero. According to (5), the
slack time of all released tasks and the slack time of the system
are computed.

𝑇
1
and 𝑇

3
are released at time 6. The slack time of 𝑇

1
and

𝑇
3
is equal to 9 and 15, respectively. As 𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(6) = 9,

the processor has to stay idle until time 15 for recharging the
energy storage unit.

𝑇
5
is released at time 8. As the slack time for𝑇

5
is 6, 𝑠𝑙𝑎𝑐𝑘⋅

𝑡𝑖𝑚𝑒(8) = 6. The battery is recharged until time 11 when it
is full. Thus, we stop recharging at time 11 to avoid wasting
energy.

At time 11, the energy storage is equal to 10 energy units,
and 𝑇

1
has the highest priority. It executes until time 14 and

the remaining energy 𝐸(14) = 7 energy units. 𝑇
5
is then

the highest priority task and executes until time 17 when the
energy level equals 3 energy units.

At time 17,𝑇
3
executes until time 20where the energy level

equals 2 energy units. The processor has no task to execute
and remains idle until time 24 where the energy storage is
full again.

In contrast to EDF, EH-EDF feasibly schedules the task set
Ψ given the characteristics of the storage unit and the power
source profile.

6. Simulation Study

This section describes experiments that have been conducted
to evaluate the EnergyHarvesting-EDF (EH-EDF) algorithm.
To measure the effectiveness of EH-EDF, we develop a
discrete-event simulation in C/C++. We report a perfor-
mance analysis which consists of five experiments.

The simulation environment consists of a simulation
kernel (scheduler) with a number of components involved
in the management and analysis of simulations. The main
components are the task generator, the scheduler, and the
CPU.

The generator of aperiodic tasks has been designed to
accept the following input parameters: the number of desired
tasks 𝑛, the processor load 𝐿

𝑝
, the energy load 𝐿

𝑒
, and

the recharging power 𝑃
𝑟
(𝑡). The output is a task set Ψ =

{𝜏
𝑖
(𝑟
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, 𝐸
𝑖
), 𝑖 = 1 𝑡𝑜 𝑛}. The execution time of tasks

is randomly generated such that 𝐿
𝑝
= ∑
𝑛

𝑖=1
(𝐶
𝑖
/𝐷max) ≤

1. Moreover, the energy consumption of tasks is randomly
generated from the energy load factor such that 𝐿

𝑒
=

∑
𝑛

𝑖=1
(𝐸
𝑖
/𝐷max) ≤ 𝑃

𝑟
. Deadlines are greater than or equal to

the computation times.
Simulation results are then ordered to excel files to be

stored and analyzed.

6.1. Formal Definition of Scheduling Strategies. For the sake of
comparison, we implement five energy harvesting scheduling
policies where aperiodic tasks execute as soon as possible
according to 𝐸𝐷𝐹.

EH-EDF: when the battery empties, the processor is
put into sleep mode until the battery replenishes or
the slack time becomes zero.

EH-EDF𝑥: when the battery empties, the processor is
put into sleep mode for 𝑥 units of time where 𝑥 is an
input of the scheduler.

EH-EDF1: when the battery empties, the processor is
put into sleep mode until the energy level reaches a
threshold value, namely, 𝐸th, given as an input of the
scheduler.

EH-EDF2: when the battery empties, the processor is
put into sleep mode until the slack time becomes zero
regardless of the energy level.

EH-EDF3: there are two threshold parameters,
namely, 𝐸thmin and 𝐸thmax. when the energy level
reaches 𝐸thmin, the system is put into sleep mode
until either the slack time be null or the energy level
be 𝐸thmax.
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Input:A Set of aperiodic Tasks Ψ = {𝜏
𝑖
| 𝜏
𝑖
= (𝑟
𝑖
, 𝐶
𝑖
, 𝐸
𝑖
, 𝐷
𝑖
) 𝑖 = 1, . . . , 𝑛}

Scheduled according to 𝐸𝐷𝐹, current time 𝑡, battery with capacity ranging from 𝐸max to 𝐸min,
energy level of the battery 𝐸(𝑡), source power 𝑃

𝑟
(𝑡).

Output:EH-EDF Schedule.
(1) while “(1)” do
(2) while “PENDING=true” do
(3) while “(𝐸(𝑡) > 𝐸min)” do
(4) execute()
(5) end “while
(6) while” (𝐸(𝑡) < 𝐸max and 𝑆𝑙𝑎𝑐𝑘 ⋅ 𝑡𝑖𝑚𝑒(𝑡) > 0) “do
(7) wait()
(8) end” while
(9) end “while
(10) while” PENDING=false “do
(11) wait()
(12) end” while
(13) end “while

Algorithm 1: Energy Harvesting-Earliest Deadline First (EH-EDF).
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Figure 4: Example on EH-EDF scheduling.

6.2. Measurement Support

6.2.1. Aperiodic Task Sets Generation. Weuse a simulator that
generates 50 tasks with maximum deadline equal to 3360.
The worst-case computation times are set according to the

processor load𝐿
𝑝
, where𝐿

𝑝
can be 30%, 60%, or 90%.Results

presented in this section are averages over groups of fifty task
sets.

6.2.2. Energy Parameters Generation. The energy consump-
tions of tasks (WCEC) are randomly generated but con-
strained by the energy load 𝐿

𝑒
. All tasks are assumed to

linearly consume their energy budget over time. In addition,
all tasks are dischargeable. This means that 𝐸

𝑖
/𝐶
𝑖
is greater

than 𝑃
𝑟
(𝑡) for all 𝑡. The rechargeable power is constant along

time during the execution of a task and varies from one
task execution to another. A random generator enables us to
produce for every quantum of time a power energy profile
with minimum value 10 and a maximum value here 35.

6.2.3. Simulations Description. We start the simulation with
a battery fully recharged (𝐸(0) = 𝐸max). When a deadline is
missed, we discard the task and update the slack time. The
simulation is repeated for 50 task sets for a given processor
and energy utilization ratio. For a fair comparison of the
previous strategies, all simulations are performed under the
same conditions. We report the performance analysis that
consists of the following measures:

(i) percentage of feasible task sets;
(ii) the impact of the slack time and energy storage
capacity on the performance of EH-EDF;
(iii) average idle time corresponding to recharging
phases of the energy storage;
(iv) energy storage low level.

The above measurements are compared under different
scenarios for the five energy harvesting scheduling policies
stated previously. These policies cover all the possibilities of
the EH-EDF algorithm. We measure the impact of the slack
time and energy storage capacity on the performance of EH-
EDF, EH-EDF𝑥, and EH-EDF1.
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Figure 5: Effects of parameter 𝑥 on EH-EDF𝑥 (𝐸max = 100).

7. Preliminary Results

7.1. Impact of Parameter 𝑥 on EH-EDF𝑥. In this section, we
experiment on the effect of the slack time (𝑥) on EH-EDF𝑥.
We report the results of this simulation study where the
processor load 𝐿

𝑝
is set to 0.3, 0.6, and 0.9, respectively.

The rechargeable power is constant during execution of a
task and varies between a task and another. We took a
random function that randomly gives a number between 10
and 35. The maximum ambient power is 35. So all tasks are
discharging tasks (𝐿

𝑒
≤ 35). Simulations are performed first

with 𝐸max = 100 (Figure 5) and second with 𝐸max = 200

(Figure 6).
When 𝐿

𝑝
is set to 0.3, EH-EDF𝑥 benefits from the high

idle time to recharge the energy storage.Thus, any parameter
𝑥 will be acceptable to recharge the battery without violating
deadlines till 𝑥 = 30. After this value, the percentage of
feasible task sets begins to decrease, and a higher number of
deadlines are missed.

When 𝐿
𝑝
is set to 0.6, the total idle time decreases.

We observe that the performance of EH-EDF𝑥 is roughly
constant until 𝑥 reaches 20 where the number of violated
deadlines begins to increase.

At higher values of processor load, the performance of
EH-EDF𝑥 is approximately constant until 𝑥 reaches a value
of 15 where a higher number of deadlines are violated.

In the second experiment, we double the size of the energy
storage unit (𝐸max = 200)while keeping the other parameters
unchanged.

When 𝐿
𝑝
is set to 0.3, any parameter of 𝑥 will be

acceptable to recharge the energy storage without violating
deadlines till a high value of 𝑥 = 42 where the percentage of
feasible task sets begins to decrease.Thepercentage of feasible
task sets is 84% when 𝑥 = 42 which is approximately 58%
more than in the case when 𝐸max = 100. This is because as
the size of the energy storage increases, EH-EDF𝑥will be able
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Figure 6: Effects of parameter 𝑥 on EH-EDF𝑥 (𝐸max = 200).

to execute more tasks, and consequently the percentage of
feasible task sets will increase. As 𝐿

𝑝
increases, the percentage

of feasible task sets is, respectively, 44% and 50% more for
𝐿
𝑝
= 0.6 and 0.9 than in the case when 𝐸max = 100.
We conclude that the slack time and the energy storage

capacity have a great impact on the system performance. As
we increase the energy storage size, the mean system life time
increases, but without reaching optimality.

7.2. Impact of Parameter 𝐸th on EH-EDF1. In this section, we
experiment on the effect of parameter 𝐸th on EH-EDF1. We
report the results of this simulation studywhere the processor
load 𝐿

𝑝
is set to 0.3, 0.6, and 0.9, respectively. Simulations

are performed first for 𝐸max = 100 (case a) and second for
𝐸max = 200 (case b).

For 𝐸max = 100, we observe that EH-EDF1 gives
approximately an average constant performance until 𝐸th =
0.2𝐸max. In details, when 𝐿

𝑝
is set to 0.3, the percentage of

feasible task sets for EH-EDF1 is constant until a critical value
of 𝐸th (15% for case (a) and 25% for case (b)). After this
critical value, the performance increases without reaching
optimality. When 𝐿

𝑝
= 0.6, the performance of EH-EDF1 is

constant until a critical value of𝐸th (20% for case (a) and 30%
for case (b)). As 𝐿

𝑝
increases, the percentage of feasible task

sets decreases until it reaches a maximum (76% for case (a)
and 89% for case (b)).

As a conclusion, we demonstrate through the previous
simulations that the slack time and energy storage capacity
have a great effect on the performance of EH-EDF algorithm.
In addition, we note that EH-EDF𝑥 and EH-EDF1 give
approximately the same performance levels in terms of
deadline missings.
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Figure 7: Effects of parameter 𝐸th on EH-EDF1 (case a).
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Figure 8: Effects of parameter 𝐸th on EH-EDF1 (case b).

7.3. Percentage of Feasible Task Sets. In this section, we
experiment on task sets which are feasible. Simulations are
performed by varying 𝐸max. Based on the previous simula-
tions, we choose 𝑥 = 20 for EH-EDF𝑥 and𝐸th = 25% for EH-
EDF1 and EH-EDF3. We report the results of this simulation
study where the processor load (𝐿

𝑝
) is set to 0.3, 0.6, and 0.9,

respectively. EH-EDF2 is eliminated from this section due to
its poor performance. This proves that the maximum upper
bound for the energy storage capacity has a great impact on
the performance.

First, we consider that 𝐸max = 100. Our experiment
demonstrates that EH-EDF outperforms the other policies.
This is because EH-EDF will benefit from the idle time
to recharge the energy storage capacity without violating
deadlines.
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Figure 9: Percentage of feasible task sets (𝐸max = 100).

In details, when 𝐿
𝑝
is set to 0.3, EH-EDF proves to have

the highest percentage of feasible task sets with 6.9%, 9.5%,
and 27.4% more than EH-EDF1, EH-EDF3, and EH-EDF𝑥,
respectively. As 𝐿

𝑝
increases, EH-EDF outperforms the other

policies but with a performance decrease of 15% from the
first case. This is because as 𝐿

𝑝
increases, the total idle

time decreases and consequently the relative performance of
EH-EDF decreases. At higher values of processor load, the
performance loss of EH-EDF is about 34% when compared
with low processor load.

Secondly, we double the size of the capacity of the energy
storage unit while keeping the other parameters unchanged.
As previously, EH-EDF gives a percentage of feasible task sets
11%, 18%, and 24%, respectively, higher than with EH-EDF1,
EH-EDF3, and EH-EDF𝑥, respectively. When the size of the
energy storage unit is doubled, the performance increases of
about 21%.

As a summary, this experiment shows that it is highly
probable that no online algorithm can achieve optimality. In
other words, only clairvoyant algorithms that have a complete
knowledge of the task properties and energy production can
achieve a valid schedule whenever one exists.

7.4. Energy Storage Low Level. In this section, wemeasure the
number of times the energy storage unit empties by varying
the processor load. We consider the same values as depicted
in Section 7.3. Simulations are performed for 𝐸max = 100

(case a) and 𝐸max = 200 (case b). When 𝐸max = 100,
we observe from Figure 11 that EH-EDF presents the best
behavior relative to the other policies. This is because EH-
EDF will benefit from the idle time to recharge the energy
storage to its maximum value while respecting all deadlines.
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Figure 10: Percentage of feasible task sets (𝐸max = 200).
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Figure 11: Battery low level (𝐸max = 100).

In details, the average number of times the energy storage is
empty under EH-EDF is, respectively, 38% and 49% less than
under EH-EDF𝑥 and EH-EDF1.

Furthermore, we note that EH-EDF3 cannot reach the
empty state 𝐸min since the system is put in the empty state
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Figure 12: Battery low level (𝐸max = 200).

when the energy capacity reaches 𝐸thmin that is greater than
𝐸min (by default equal to zero).

When the energy storage capacity is doubled, EH-EDF
still has the lowest number of energy storage low level
(Figure 12). The average number of times the energy storage
empties under EH-EDF is, respectively, 32% and 45% less
than under EH-EDF𝑥 and EH-EDF1. As the energy storage
capacity increases, the number of energy storage low levels
decreases since the energy storage has a higher ability to
execute tasks.

7.5. Average Idle Time. The average idle time has a great
impact when studying the efficiency of EH-EDF especially
in systems that use the Dynamic Power Management mech-
anism (DPM). DPM provides efficiency only if the idle
times are sufficiently long because of inherent time and
energy overhead induced by state switching. Consequently,
the longer is the average idle time, the lower is the impact
of the energy and time overheads incurred by DPM on the
overall performance.

Moreover, the length of the idle time has a great impact
on the life time of the energy storage unit regardless of its
type (battery or supercapacitor). Charging any storage unit
is not linear and consequently the more it is paused, the more
energy it recharges.

In this section, we compute the average idle time by
taking two values for 𝐸max. When 𝐸max = 100 (Figure 13),
we observe that EH-EDF maximizes the average idle time,
respectively, by 70%, 58%, and 45%when comparedwith EH-
EDF𝑥, EH-EDF3, and EH-EDF1. The reason is that, in EH-
EDF, the processor is put into sleep mode as long as the slack
time is positive and the energy level is less than 𝐸max.
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Figure 13: Average idle time (𝐸max = 100).
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Figure 14: Average idle time (𝐸max = 200).

When 𝐸max = 200, we observe from Figure 14 that EH-
EDF still maximizes the average idle time, respectively, by
77%, 60%, and 49% when compared with EH-EDF𝑥, EH-
EDF3, and EH-EDF1.

8. Conclusions

We studied an energy harvesting sensor node which supports
a set of aperiodic tasks with real-time constraints.The arrival
times, deadlines, and energy demands of the tasks are not
known to the node in advance. We focussed on online
scheduling with no lookahead including energy production.
We presented and analyzed through an experiment an idling-
EDF-based scheduling algorithm called EH-EDF.

Traditional online algorithms such as EDF behave poorly
because they consume the energy greedily and not adaptively.
We recently proved in [11] that EDF remains the best
nonidling scheduler but has a zero competitive factor for the
energy harvesting model. We consequently propose several
variants of EDF to derive more efficient scheduling solutions.

The experiment demonstrates that EH-EDF offers an
acceptable and even good performance in a wide range of
situations. We study the impact of the slack time and the
threshold energy level on the performance of EH-EDF in
terms of percentage of feasible task sets. We show that EH-
EDF outperforms EH-EDF1, EH-EDF3, and EH-EDF𝑥 by,
respectively, 7%, 10%, and 27%. Furthermore, EH-EDFproves
to be better than EH-EDF𝑥 and EH-EDF1, respectively, by
38% and 49% in terms of the number of times the energy
storage empties.

Finally, the advantage of the EH-EDF algorithm lies in
the average duration of the processor idle times which is
higher compared with other heuristics. As a result, leakage
and overhead incurred by the implementation of DPM
mechanism are avoided under EH-EDF.

Thenext step of our workwill be to extend EH-EDF to the
DynamicVoltage and Frequency Scaling (DVFS) technology.
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