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Abstract

The problem of estimating the density-weighted average derivative of a regression
function is considered. We present a new consistent estimator based on a plug-in ap-
proach and wavelet projections. Its performances are explored under various depen-
dence structures on the observations: the independent case, the ρ-mixing case and the
α-mixing case. More precisely, denoting n the number of observations, in the indepen-
dent case, we prove that it attains 1/n under the mean squared error, in the ρ-mixing
case, 1/

√
n under the mean absolute error, and, in the α-mixing case,

√
lnn/n under

the mean absolute error. A short simulation study illustrates the theory.

Key words and phrases: Nonparametric estimation of density-weighted average deriva-
tive, ’Plug-in’ approach, Wavelets, Consistency, ρ-mixing, α-mixing.

AMS 2000 Subject Classifications: 62G07, 62G20.

1 Introduction

We consider the following nonparametric regression model:

Yi = f(Xi) + ξi, i ∈ {1, . . . , n}, (1.1)

1



where the design variables (or input variables) X1, . . . , Xn are n identically distributed
random variables with common unknown density function g, the noise ξ1, . . . , ξn are n
identically distributed random variables with E(ξ1) = 0 and E(ξ4

1) < ∞, and f is an
unknown regression function. Moreover, it is understood that ξi is independent of Xi, for
any i ∈ {1, . . . , n}. In this paper, we are interested in the pointwise estimation of the
density-weighted average derivative, which is defined as follows

δ = E
(
g(X1)f ′(X1)

)
=

∫
g2(x)f ′(x)dx, (1.2)

from (X1, Y1), . . . , (Xn, Yn). It is known that the estimation of δ is of interest in many
statistical and econometric models, especially in the context of estimation of coefficients in
index models (for review see, e.g., Powell (1994) and Matzkin (2007)). Indeed, estimation
of coefficients in single index models relies on the fact that averaged derivatives of the
conditional mean are proportional to the coefficients (see, e.g., Stoker (1986, 1989), Powell
et al. (1989) and Härdle and Stoker (1989)). Also further motivation of average derivative
estimate can be found in specific problems in economics, such as measuring the positive
definiteness of the aggregate income effects matrix for assessing the ”Law of Demand” (see
Härdle et al. (1991)), policy analysis of tax and subsidy reform (see Deaton and Ng (1998)),
and nonlinear pricing in labor markets (see Coppejans and Sieg (2005)).

When (X1, Y1), . . . , (Xn, Yn) are i.i.d., the most frequently used nonparametric tech-
niques are based on kernel estimators. Three different approaches can be found in Härdle
and Stoker (1989), Powell et al. (1989) and Stoker (1991). Their consistency are established.
Recent theoretical and practical developments related to these estimators can be found in,
e.g., Härdle et al. (1992), Türlach (1994), Powell and Stoker (1996), Banerjee (2007), Schaf-
gans and Zinde-Walsh (2010) and Cattaneo et al. (2010, 2011). A new estimator based on
orthogonal series methods has been introduced in Prakasa Rao (1995). More precisely, using
the same plug-in approach of Powell et al. (1989), δ̂ the estimator of the density-weighted
average derivative has the following form

δ̂ = − 2

n

n∑
i=1

Yiĝ
′
i(Xi), (1.3)

where ĝ′i denotes an orthogonal series estimator of g′ constructed fromX1, . . . , Xi−1, Xi+1, Xn.
Moreover, the consistency of this estimator is proved.

In this study, we develop a new estimator based on a different plug-in approach to the
one in Powell et al. (1989) and a particular orthogonal series method: the wavelet series
method. The main advantage of this method is its adaptability to the varying degrees
of smoothness of the underlying unknown curves. For a complete discussion of wavelets
and their applications in statistics, we refer to Antoniadis (1997), Härdle et al. (1998) and
Vidakovic (1999).
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When (X1, Y1), . . . , (Xn, Yn) are i.i.d., we prove that our estimator attains the paramet-
ric rate of convergence 1/n under the Mean Square Error (MSE). This rate is a bit better
to the one attains by the estimator in Prakasa Rao (1995). Moreover, the flexibility of our
approach enables us to consider possible dependent observations, thus opening new perspec-
tives of applications. This is illustrated by the considerations of the ρ-mixing dependence
introduced by Kolmogorov and Rozanov (1960) and the α-mixing dependence introduced by
Rosenblatt (1956). Adopting the Mean Absolute Error (MAE), we prove that our estimator
attains the rate of convergence 1/

√
n in the ρ-mixing case, and

√
lnn/n in the α-mixing

case. All these results prove the consistency of our estimator and its robustness in term of
dependence on the observations. Mention that, to the best of our knowledge, the estima-
tion of δ in such a dependent setting has never been explored earlier. A simulation study
illustrates the performance of the proposed wavelet method in finite sample situations.

The remainder of the paper is set out as follows. Next, in Section 2, we discuss the
preliminaries of the wavelet orthogonal bases and we recall the definition of some mixing
conditions. Section is devoted to our wavelet estimator. Assumptions on (1.1) are described
in Section 4. Section 5 presents our main theoretical results. A short simulation study
illustrates the theory in Section 6. Finally, the proofs are postponed to Section 7.

2 Preliminaries and Definitions

2.1 Orthonormal bases of compactly supported wavelets

Let the following set of functions

L2([0, 1]) =

{
h : [0, 1]→ R; ||h||22 =

∫ 1

0
(h(x))2dx

}
.

For the purposes of this paper, we use the compactly supported wavelet bases on [0, 1]
briefly described below.

Let N ≥ 10 be a fixed integer, and φ and ψ be the initial wavelet functions of the
Daubechies wavelets db2N . These functions have the features to be compactly supported
and C1 (see Daubechies (1992)). Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k)

and Λj = {0, . . . , 2j − 1}. Then, with an appropriate treatment at the boundaries, the
collection

B = {φτ,k, k ∈ Λτ ; ψj,k; j ∈ N− {0, . . . , τ − 1}, k ∈ Λj}

is an orthonormal basis of L2([0, 1]), provided the primary resolution level τ is large enough
to ensure that the support of φτ,k and ψτ,k with k ∈ Λτ is not the whole of [0, 1] (see, e.g.,
Cohen et al. (1993) and Mallat (2009)).
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Hence, any h ∈ L2([0, 1]) can be expanded on B as

h(x) =
∑
k∈Λτ

ατ,kφτ,k(x) +
∞∑
j=τ

∑
k∈Λj

βj,kψj,k(x), (2.1)

where

ατ,k =

∫ 1

0
h(x)φτ,k(x)dx, βj,k =

∫ 1

0
h(x)ψj,k(x)dx.

For more details about wavelet bases, we refer to Meyer (1992), Daubechies (1992), Cohen
et al. (1993) and Mallat (2009).

2.2 Mixing conditions

In this subsection, we recall the definitions of two standard kinds of dependence for random
sequences: the ρ-mixing dependence and the α-mixing dependence.
Let Z = (Zt)t∈Z be a strictly stationary random sequence defined on a probability space
(Ω,A,P). For j ∈ Z, define the σ-fields

FZ−∞,j = σ(Zk, k ≤ j), FZj,∞ = σ(Zk, k ≥ j).

Definition 2.1 (ρ-mixing dependence) For any m ∈ Z, we define the m-th maximal
correlation coefficient of (Zt)t∈Z by

ρm = sup
(U,V )∈L2(FZ−∞,0)×L2(FZm,∞)

|Cov(U, V )|√
V(U)V(V )

,

where Cov(., .) denotes the covariance function and L2(D) denotes the space of square-
integrable, D-measurable (real-valued) random variables for any D ∈ {FZ−∞,0,FZm,∞}.

We say that (Zt)t∈Z is ρ-mixing if and only if limm→∞ ρm = 0.

Full details on ρ-mixing can be found in, e.g., Kolmogorov and Rozanov (1960), Doukhan
(1994), Shao (1995) and Zhengyan and Lu (1996).

Definition 2.2 (α-mixing dependence) For any m ∈ Z, we define the m-th strong mix-
ing coefficient of (Zt)t∈Z by

αm = sup
(A,B)∈FZ−∞,0×FZm,∞

|P(A ∩B)− P(A)P(B)| .

We say that (Zt)t∈Z is α-mixing if and only if limm→∞ αm = 0.

Full details on α-mixing can be found in, e.g., Rosenblatt (1956), Doukhan (1994), Carrasco
and Chen (2002) and Fryzlewicz and Subba Rao (2011).
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3 A new wavelet-based estimator for δ

Proposition 3.1 below provides another expression of the density-weighted average derivative
(1.2) in terms of wavelet coefficients.

Proposition 3.1 Consider the regression model with random design (1.1). Suppose that
supp(X1) = [0, 1], fg ∈ L2([0, 1]), g′ ∈ L2([0, 1]) and g(0) = g(1) = 0. Then the density-
weighted average derivative (1.2) can be expressed as

δ = −2

∑
k∈Λτ

ατ,kcτ,k +

∞∑
j=τ

∑
k∈Λj

βj,kdj,k

 ,

where

ατ,k =

∫ 1

0
f(x)g(x)φτ,k(x)dx, cτ,k =

∫ 1

0
g′(x)φτ,k(x)dx, (3.1)

βj,k =

∫ 1

0
f(x)g(x)ψj,k(x)dx, dj,k =

∫ 1

0
g′(x)ψj,k(x)dx. (3.2)

We consider the following plug-in estimator for δ:

δ̂ = −2

∑
k∈Λτ

α̂τ,k ĉτ,k +

j0∑
j=τ

∑
k∈Λj

β̂j,kd̂j,k

 , (3.3)

where

α̂τ,k =
1

n

n∑
i=1

Yiφτ,k(Xi), ĉτ,k = − 1

n

n∑
i=1

(φτ,k)
′(Xi), (3.4)

β̂j,k =
1

n

n∑
i=1

Yiψj,k(Xi), d̂j,k = − 1

n

n∑
i=1

(ψj,k)
′(Xi) (3.5)

and j0 is an integer which will be chosen a posteriori.

Remark 3.1 The construction of our estimator (3.3) uses a plug-in approach derived to
Proposition 3.1. Note that it completely differs to the estimator (1.3) of Prakasa Rao (1995).

Remark 3.2 Mention that ĉτ,k (3.4) and d̂j,k (3.5) have been introduced by Prakasa Rao
(1996) in the derivative density estimation problem via wavelets. In the context of dependent
observations, see Chaubey et al. (2005) and Chaubey et al. (2006).
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Proposition 3.2 Suppose that supp(X1) = [0, 1]. Then

• α̂τ,k (3.4) and β̂j,k (3.5) are unbiased estimators for ατ,k (3.1) and βj,k (3.2) respec-
tively.

• under g(0) = g(1) = 0, ĉτ,k (3.4) and d̂j,k (3.5) are unbiased estimators for cτ,k (3.1)
and dj,k (3.2) respectively.

4 Model assumptions

4.1 Assumptions on f and g

We formulate the following assumptions on f and g:

H1. The support of X1, denoted by supp(X1), is compact. In order to fix the notations,
we suppose that supp(X1) = [0, 1].

H2. There exists a known constant C1 > 0 such that

sup
x∈[0,1]

|f(x)| ≤ C1.

H3. The function g satisfies g(0) = g(1) = 0 and there exist two known constants C2 > 0
and C3 > 0 such that

sup
x∈[0,1]

g(x) ≤ C2, sup
x∈[0,1]

|g′(x)| ≤ C3.

Let us now make some brief comments on these assumptions. The assumption H1 is
similar to (Härdle and Tsybakov, 1993, Assumption (A3)) or (Banerjee, 2007, Assumption
A1). In our study, we make it to apply the wavelet methodology described in Section
3. The noncompactly supported case arises several technical difficulties for the wavelet
methods (see Juditsky and Lambert-Lacroix (2004) and Reynaud-Bouret et al. (2011)).
Their adaptations in the context of the density-weighted average derivative estimation is
not immediatly clear. The assumptions H2 and H3 are standard in this framework. They
are satisfied by a wide variety of functions.

4.2 Assumptions on the wavelet coefficients of fg and g′

Let s1 > 0, s2 > 0 and βj,k and dj,k be given by (3.2). We formulate the following
assumptions on βj,k and dj,k:
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H4(s1). There exists a constant C4 > 0 such that

|βj,k| ≤ C42−j(s1+1/2).

H5(s2). There exists a constant C5 > 0 such that

|dj,k| ≤ C52−j(s2+1/2).

The assumptions H4(s1) and H5(s2) characterize the degrees of smoothness of fg and g′

respectively.

Remark 4.1 In terms of function sets, H4(s1) and H5(s2) are equivalent to fg ∈ Ls1(M1)
and g′ ∈ Ls2(M2) with M1 > 0 and M2 > 0 respectively, where

Ls(M) =
{
h : [0, 1]→ R; |h(bsc)(x)− h(bsc)(y)| ≤M |x− y|α, s = bsc+ α, α ∈ (0, 1]

}
,

M > 0, bsc is the integer part of s and h(bsc) the bsc-th derivatives of h. We refer to (Härdle
et al., 1998, Chapter 8).

5 Main results

5.1 The independent case

In this subsection, we suppose that (X1, Y1), . . . , (Xn, Yn) are independent.
Before presenting the main result, let us set two propositions which will be usefull in

the proofs.

Proposition 5.1 Consider the nonparametric regression model, defined by (1.1). Assume
that H1, H2 and H3 hold. Let βj,k and dj,k be given by (3.2), and β̂j,k and d̂j,k be given
by (3.5) with j such that 2j ≤ n. Then

• there exists a constant C > 0 such that

E
(

(β̂j,k − βj,k)4
)
≤ C 1

n2
, (5.1)

• there exists a constant C > 0 such that

E
(

(d̂j,k − dj,k)4
)
≤ C 24j

n2
. (5.2)

These inequalities hold with (α̂τ,k, ĉτ,k) in (3.4) instead of (β̂j,k, d̂j,k), and (ατ,k, cτ,k) in (3.1)
instead of (βj,k, dj,k) for j = τ .
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Proposition 5.2 Consider the nonparametric regression model, defined by (1.1).

• Suppose that H1, H2, H3, H4(s1) and H5(s2) hold. Let βj,k and dj,k be given by

(3.2), and β̂j,k and d̂j,k be given by (3.5) with j such that 2j ≤ n. Then there exists a
constant C > 0 such that

E
(

(β̂j,kd̂j,k − βj,kdj,k)2
)
≤ C

(
2−j(2s1−1)

n
+

2−j(2s2+1)

n
+

22j

n2

)
.

• Suppose that H1, H2 and H3 hold. Let ατ,k and cτ,k be given by (3.1), and α̂τ,k and
ĉτ,k be given by (3.4). Then there exists a constant C > 0 such that

E
(
(α̂τ,k ĉτ,k − ατ,kcτ,k)2

)
≤ C 1

n
.

The following theorem establishes the upper bound of the MSE of our estimator.

Theorem 5.1 Assume that H1, H2, H3, H4(s1) with s1 > 3/2 and H5(s2) with s2 > 1/2
hold. Let δ be given by (1.2) and δ̂ be given by (3.3) with j0 such that n1/4 < 2j0+1 ≤ 2n1/4.
Then there exists a constant C > 0 such that

E
(

(δ̂ − δ)2
)
≤ C 1

n
.

Remark 5.1 Theorem 5.1 shows that, under some assumptions, our estimator (3.3) has
a better MSE than the one in Prakasa Rao (1995), i.e. q2(n)/n, where q(n) satifies
limn→∞ q(n) =∞.

Remark 5.2 The level j0 described in Theorem 5.1 is such that δ̂ attains the parametric
rate of convergence 1/n without depending on the knowledge of the regularity of f or g in
its construction. In this sense, δ̂ is adaptive.

There are many practical situations in which it is not appropriate to assume that the
observations (X1, Y1), . . . , (Xn, Yn) are independent. The most typical scenario concerns
the dynamic economic systems which are modelled as multiple time series. For details and
applications of dependent nonparametric regression model (1.1), see White and Domowitz
(1984), Lütkepohl (1992) and the references therein.

The rest of the study is devoted to the estimation of δ in the ρ-mixing case and the
α-mixing case. For technical convenience, the performance of (3.3) is explored via the MAE
(not the MSE).
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5.2 The ρ-mixing case

Now, we assume that (X1, Y1), . . . , (Xn, Yn) coming from a ρ-mixing strictly stationary
process (Xt, Yt)t∈Z (1.1) (for details see Definition 2.1).

Before presenting the main result, let us set two propositions which will be usefull in
the proofs.

Proposition 5.3 Consider the nonparametric regression model, defined by (1.1). Suppose
that H1, H2, H3 and (5.5) hold. Let βj,k and dj,k be given by (3.2), and β̂j,k and d̂j,k be
given by (3.5). Then

• there exists a constant C > 0 such that

E
(

(β̂j,k − βj,k)2
)
≤ C 1

n
, (5.3)

• there exists a constant C > 0 such that

E
(

(d̂j,k − dj,k)2
)
≤ C 22j

n
. (5.4)

These inequalities hold with (α̂τ,k, ĉτ,k) in (3.4) instead of (β̂j,k, d̂j,k), and (ατ,k, cτ,k) in (3.1)
instead of (βj,k, dj,k) for j = τ .

Proposition 5.4 Consider the nonparametric regression model, defined by (1.1).

• Suppose that H1, H2, H3, H4(s1), H5(s2) and (5.5) hold, Let βj,k and dj,k be given

by (3.2), and β̂j,k and d̂j,k be given by (3.5). Then there exists a constant C > 0 such
that

E
(
|β̂j,kd̂j,k − βj,kdj,k|

)
≤ C

(
2−j(s1−1/2)

√
n

+
2−j(s2+1/2)

√
n

+
2j

n

)
.

• Suppose that H1, H2, H3 and (5.5) hold. Let ατ,k and cτ,k be given by (3.1), and
α̂τ,k and ĉτ,k be given by (3.4). Then there exists a constant C > 0 such that

E (|α̂τ,kĉτ,k − ατ,kcτ,k|) ≤ C
1√
n
.

Theorem 5.2 determines the upper bound of the MAE of our estimator in the ρ-mixing case.

Theorem 5.2 Consider the nonparametric regression model, defined by (1.1). Suppose that

9



• there exists a constant C∗ > 0 such that

∞∑
m=1

ρm ≤ C∗, (5.5)

• H1, H2, H3, H4(s1) with s1 > 3/2 and H5(s2) with s2 > 1/2 hold.

Let δ be given by (1.2) and δ̂ be given by (3.3) with j0 such that n1/4 < 2j0+1 ≤ 2n1/4. Then
there exists a constant C > 0 such that

E
(
|δ̂ − δ|

)
≤ C 1√

n
.

5.3 The α-mixing case

Here, we assume that (X1, Y1), . . . , (Xn, Yn) coming from a α-mixing strictly stationary
process (Xt, Yt)t∈Z (1.1) (for details see Definition 2.2).

Again, before presenting the main result, let us set two propositions which will be usefull
in the proofs.

Proposition 5.5 Consider the nonparametric regression model, defined by (1.1). Suppose
that

• there exist two constants a > 0 and b > 0 such that the strong mixing coefficient
satisfies

αm ≤ ab−m, (5.6)

• H1, H2, H3, H4(s1) with s1 > 3/2 and H5(s2) with s2 > 1/2 hold.

Let βj,k and dj,k be given by (3.2), and β̂j,k and d̂j,k be given by (3.5) with j such that
2j ≤ n. Then

• there exists a constant C > 0 such that

E
(

(β̂j,k − βj,k)2
)
≤ C lnn

n
, (5.7)

• there exists a constant C > 0 such that

E
(

(d̂j,k − dj,k)2
)
≤ C 22j lnn

n
. (5.8)

These inequalities hold with (α̂τ,k, ĉτ,k) in (3.4) instead of (β̂j,k, d̂j,k), and (ατ,k, cτ,k) in (3.1)
instead of (βj,k, dj,k) for j = τ .
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Proposition 5.6 Consider the nonparametric regression model, defined by (1.1).

• Suppose that H1, H2, H3, H4(s1), H5(s2) and (5.6) hold. Let βj,k and dj,k be given

by (3.2), and β̂j,k and d̂j,k be given by (3.5) with j satisfying 2j ≤ n. Then there exists
a constant C > 0 such that

E
(
|β̂j,kd̂j,k − βj,kdj,k|

)
≤ C

(
2−j(s1−1/2)

√
lnn

n
+ 2−j(s2+1/2)

√
lnn

n
+ 2j

lnn

n

)
.

• Suppose that H1, H2, H3 and (5.6) hold. Let ατ,k and cτ,k be given by (3.1), and
α̂τ,k and ĉτ,k be given by (3.4). Then there exists a constant C > 0 such that

E (|α̂τ,k ĉτ,k − ατ,kcτ,k|) ≤ C
√

lnn

n
.

Theorem 5.3 investigates the upper bound of the MAE of our estimator in the α-mixing
case.

Theorem 5.3 Consider the nonparametric regression model, defined by (1.1). Suppose that
H1, H2, H3, H4(s1) with s1 > 3/2, H5(s2) with s2 > 1/2 and (5.6) hold. Let δ be given
by (1.2) and δ̂ be given by (3.3) with j0 such that (n/ lnn)1/4 < 2j0+1 ≤ 2(n/ lnn)1/4. Then
there exists a constant C > 0 such that

E
(
|δ̂ − δ|

)
≤ C

√
lnn

n
.

6 Simulation results

In this section, we present a simulation study designed to illustrate the finite-sample perfor-
mance of the proposed wavelet density-weighted average derivative estimator δ̂ (3.3). We
consider the nonparametric regression model (1.1) whith i.i.d. X1, . . . , Xn having a com-
mon unknown density function g and the error (ξt)t∈Z is an autoregressive process of order
one (AR(1)) given by

ξi = αξi−1 + εi,

where (εt)t∈Z is a sequence of i.i.d. random variables having the normal distribution
N(0, σ2

ε ). Note that Y1, . . . , Yn are dependent, (ξt)t∈Z is strictly stationary and strongly
mixing for |α| < 1, (see, e.g., Doukhan (1994) and Carrasco and Chen (2002)) and the
variance of ξ1 is σ2

ξ = σ2
ε /(1 − α2). We aim to estimate δ (1.2) from (Xi, Yi)’s data gener-

ated according to (1.1). The performance of the proposed method was studied for two sets
of designs distribution for Xi, a Beta(2, 2) (i.e., g1(x) = 6x(1 − x)) and a Beta(3, 3) (i.e.,
g2(x) = 30x2(1− x)2) with three test regression functions (see Figure 1). They are defined
by

11
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Figure 1: Theoretical regression functions (a): f1. (b): f2. (c): f3. Design densities (d): g1

and g2.

(a) Sine:
f1(x) = 0.5 + 0.3 sin(4πx).

(b) Wave (see Marron et al. (1998)):

f2(x) = 0.5 + 0.2 cos(4πx) + 0.1 cos(24πx).

(a) Cusp:
f3(x) =

√
|x− 0.5|

The primary level is τ = 0, and the Symmlet wavelet with 6 vanishing moments were
used throughout all experiments. Here, j0 = log2(n)/2, thus we keep only the 2j0 wavelet
coefficients to perform the reconstruction. We conduct N = 100 Monte Carlo replications
for each experiment on samples of size n = 256, 512, 1024 and 2048. The MAE performance
is computed as MAE(δ̂) = N−1

∑N
i=1 |δ̂i−δi|. All simulations were carried out using Matlab.

It is also of interest to make comparisons with the popular kernel estimator developed
by Powell et al. (1989) and the proposed estimator. More precisely, we consider the kernel
estimator defined as follow

δ̂K = − 2

n

n∑
i=1

Yiĝ
′
i(Xi),

where

ĝ′i(x) =
1

(n− 1)h2

n∑
j=1
j 6=i

K ′
(
x−Xj

h

)
,

h is the bandwidth and K ′ denotes the derivative of a kernel function K. This estimator
only makes sense if K ′ exists and is non-zero. Since the Gaussian kernel has derivatives

12



of all orders this is a common choice for density derivative estimation. Even if no theory
exists in this dependent context, for the sake of simplicity, the Silverman rule-of-thumb
(rot) is used to select the bandwidth. Indeed, this rule may also be applied to density
derivative estimation and, since we use second order Gaussian kernel, the rot bandwidth is
hrot = 0.97σ̂n−1/7, where σ̂ is the sample standard deviation (see, e.g., Hansen (2009)).

We study the influence of the noise level (i.e., the variance of the AR(1)-process σ2
ξ ,

ranging from ”low noise” with σε = 0.02, and α = 0.05, thus σξ = 0.02 through ”medium
noise” with σε = 0.06, and α = 0.6, thus σξ = 0.075 to ”high noise” with σε = 0.1, and
α = 0.7, thus σξ = 0.14) on the estimators.

Table 1 reports the mean of the MAE over 100 replications, calculated across the sam-
pled times for each realization. As expected, increasing the variance of the AR(1)-process
increases the MAE and the MAE is decreasing as the sample size increases. Our wavelet
estimator is slightly better than the Kernel one in almost all cases but none of them clearly
outperforms the others for all tests functions, level of noise and all sample sizes.

Conclusion

In this paper we introduce a new density-weighted average derivative estimator using wavelet
methods. We evaluate its theoretical performances under various dependence assumptions
on the observations. In particular, Theorems 5.1, 5.2 and 5.3 imply the consistency of
our estimator (3.3), i.e. limn→∞ δ̂

p
= δ, for the considered dependence structures. This

illustrates the flexibility of our approach. Our results could be useful to econometricians
and statisticians working with density-weighted average derivative estimation, as a simple
theory using dependent observations has been absent in this literature until now.

7 Proofs

7.1 On the construction of δ̂

Proof of Proposition 3.1

Using supp(X1) = [0, 1], g(0) = g(1) = 0 and an integration by part, we obtain

δ =
[
g2(x)f(x)

]1
0
− 2

∫ 1

0
f(x)g(x)g′(x)dx = −2

∫ 1

0
f(x)g(x)g′(x)dx. (7.1)

Since fg ∈ L2([0, 1]) and g′ ∈ L2([0, 1]), we can expand fg on B as (2.1):

f(x)g(x) =
∑
k∈Λτ

ατ,kφτ,k(x) +

∞∑
j=τ

∑
k∈Λj

βj,kψj,k(x),

13



Table 1: 100× mean MAE values of estimator (3.3), from 100 replications of the model
(1.1) of sample sizes 256, 512, 1024 and 2048.

σξ = 0.02

g1 g2

n 256 512 1024 2048 256 512 1024 2048

MAE(δ̂f1) 16.995 10.874 7.368 5.463 21.306 14.124 10.853 7.767

MAE(δ̂Kf1) 26.595 28.040 25.159 22.465 46.443 50.442 54.003 57.082

MAE(δ̂f2) 13.161 9.299 6.527 4.555 15.404 11.626 8.088 5.852

MAE(δ̂Kf2) 13.401 9.184 6.030 4.949 18.633 13.262 10.741 7.169

MAE(δ̂f3) 16.049 10.838 7.574 5.373 17.800 12.659 10.017 6.695

MAE(δ̂Kf3) 12.389 8.816 6.065 4.710 15.960 11.290 9.090 6.309

σξ = 0.075

MAE(δ̂f1) 16.499 10.857 6.555 6.369 32.286 34.796 32.016 34.532

MAE(δ̂Kf1) 28.144 24.984 24.802 22.961 49.598 49.585 49.357 51.668

MAE(δ̂f2) 12.637 9.448 5.858 5.095 15.978 14.015 8.961 5.729

MAE(δ̂Kf2) 13.230 9.089 6.632 5.864 12.902 10.682 6.936 4.517

MAE(δ̂f3) 15.758 11.163 6.918 6.425 18.598 16.780 9.879 7.175

MAE(δ̂Kf3) 11.834 8.746 6.209 5.363 11.062 10.098 6.652 4.484

σξ = 0.14

MAE(δ̂f1) 14.874 9.934 7.500 5.044 34.457 32.840 33.062 33.222

MAE(δ̂Kf1) 26.266 25.873 24.093 20.847 45.886 51.442 50.582 52.013

MAE(δ̂f2) 12.093 8.196 6.759 4.377 18.663 12.750 9.186 6.622

MAE(δ̂Kf2) 12.594 9.668 8.074 5.340 14.944 9.628 7.558 4.862

MAE(δ̂f3) 14.385 9.923 8.390 5.215 21.728 15.784 12.041 7.256

MAE(δ̂Kf3) 11.807 9.246 7.335 4.650 13.235 8.812 7.480 4.931

where ατ,k and βj,k are (3.1), and

g′(x) =
∑
k∈Λτ

cτ,kφτ,k(x) +

∞∑
j=τ

∑
k∈Λj

dj,kψj,k(x),
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where cτ,k and dj,k are (3.2). Observing that the integral term in (7.1) is the scalar product
of fg and g′, the orthonormality of B on L2([0, 1]) yields

δ = −2

∫ 1

0
f(x)g(x)g′(x)dx = −2

∑
k∈Λτ

ατ,kcτ,k +

∞∑
j=τ

∑
k∈Λj

βj,kdj,k

 .

Proposition 3.1 is proved. �

Proof of Proposition 3.2

• Since (Y1, X1), . . . , (Yn, Xn) are identically distributed, ξi and Xi are independent for
any i ∈ {1, . . . , n}, and E(ξ1) = 0, we have

E(β̂j,k) = E(Y1ψj,k(X1)) = E(f(X1)ψj,k(X1)) =

∫ 1

0
f(x)g(x)ψj,k(x)dx = βj,k.

Similarly, we prove that E(α̂τ,k) = ατ,k.

• Using the identical distribution of X1, . . . , Xn, E(ξ1) = 0, an integration by parts and
g(0) = g(1) = 0, we obtain

E(d̂j,k) = −E((ψj,k)
′(X1)) = −

∫ 1

0
g(x)(ψj,k)

′(x)dx

= −
(

[g(x)ψj,k(x)]10 −
∫ 1

0
g′(x)ψj,k(x)dx

)
=

∫ 1

0
g′(x)ψj,k(x)dx = dj,k.

Similarly, we prove that E(ĉτ,k) = cτ,k.

This ends the proof of Proposition 3.2. �

7.2 Proof of the main results

7.2.1 The independent case

In the sequel, we assume that (X1, Y1), · · · , (Xn, Yn) are independent. To bound the fouth
cental moment of the estimators, defined by (3.4) and (3.5), we use the following version of
the Rosenthal inequality (see Rosenthal (1970)).
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Lemma 7.1 Let n be a positive integer, p ≥ 2 and U1, . . . , Un be n zero mean independent
random variables such that supi∈{1,...,n} E(|Ui|p) < ∞. Then there exists a constant C > 0
such that

E

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣
p)
≤ C

 n∑
i=1

E (|Ui|p) +

(
n∑
i=1

E
(
U2
i

))p/2 .

Proof of Proposition 5.1

• Observe that

E
(

(β̂j,k − βj,k)4
)

=
1

n4
E

( n∑
i=1

(Yiψj,k(Xi)− βj,k)

)4
 .

Set
Ui = Yiψj,k(Xi)− βj,k, i ∈ {1, . . . , n}.

Since (X1, Y1), . . . , (Xn, Yn) are i.i.d., we get that U1, . . . , Un are also i.i.d.. Moreover,
from Proposition 3.2, we have E(U1) = 0. Thus, Lemma 7.1 (with p = 4) yields

E
(

(β̂j,k − βj,k)4
)
≤ C 1

n4

(
nE(U4

1 ) + n2(E(U2
1 ))2

)
.

Using H1, H2, the Hölder inequality, H3, the independence between ξ1 and X1,
E(ξ4

1) < ∞, applying the change of variables y = 2jx − k, and using the fact that ψ
is compactly supported, we have for any u ∈ {2, 4},

E(Uu1 ) ≤ CE((Y1ψj,k(X1))u) ≤ C(Cu1 + E(ξu1 ))E((ψj,k(X1))u)

= C

∫ 1

0
(ψj,k(x))ug(x)dx ≤ C

∫ 1

0
(ψj,k(x))udx

= C2j(u−2)/2

∫ 1

0
(ψ(x))udx ≤ C2j(u−2)/2. (7.2)

Therefore, since 2j ≤ n, we obtain

E
(

(β̂j,k − βj,k)4
)
≤ C

(
1

n3
2j +

1

n2

)
≤ C 1

n2
.

• We have

E
(

(d̂j,k − dj,k)4
)

=
1

n4
E

( n∑
i=1

((ψj,k)
′(Xi)− dj,k)

)4
 .
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Now, set
Ui = (ψj,k)

′(Xi)− dj,k, i ∈ {1, . . . , n}.

Since X1, . . . , Xn are i.i.d., it is clear that U1, . . . , Un are also i.i.d.. Moreover, by
Propostion 3.2, we have E(U1) = 0. Hence, Lemma 7.1 (with p = 4) yields

E
(

(d̂j,k − dj,k)4
)
≤ C 1

n4

(
nE(U4

1 ) + n2(E(U2
1 ))2

)
.

Using H2, the Hölder inequality, H3, (ψj,k)
′(x) = 23j/2ψ′(2jx − k), applying the

change of variables y = 2jx−k, and using the fact that ψ is compactly supported and
C1, we have for any u ∈ {2, 4},

E(Uu1 ) ≤ CE(((ψj,k)
′(X1))u) = C

∫ 1

0
((ψj,k)

′(x))ug(x)dx ≤ C
∫ 1

0
((ψj,k)

′(x))udx

= C2j(3u−2)/2

∫ 1

0
(ψ′(x))udx ≤ C2j(3u−2)/2. (7.3)

Putting these inequalities together and using 2j ≤ n, we obtain

E
(

(d̂j,k − dj,k)4
)
≤ C

(
25j

n3
+

24j

n2

)
≤ C 24j

n2
.

Proposition 5.1 is proved. �

Proof of Proposition 5.2

• We have the following decomposition

β̂j,kd̂j,k − βj,kdj,k = βj,k(d̂j,k − dj,k) + dj,k(β̂j,k − βj,k) + (β̂j,k − βj,k)(d̂j,k − dj,k).

Therefore

E
(

(β̂j,kd̂j,k − βj,kdj,k)2
)
≤ 3(T1 + T2 + T3),

where
T1 = β2

j,kE
(

(d̂j,k − dj,k)2
)
, T2 = d2

j,kE
(

(β̂j,k − βj,k)2
)

and
T3 = E

(
(β̂j,k − βj,k)2(d̂j,k − dj,k)2

)
.
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Upper bound for T1. It follows from the Cauchy-Schwarz inequality, the second point
in Proposition 5.1 and H4(s1) that

T1 ≤ C2
42−2j(s1+1/2)

√
E
(

(d̂j,k − dj,k)4
)
≤ C2−2j(s1+1/2) 22j

n
= C

2−j(2s1−1)

n
.

Upper bound for T2. By the Cauchy-Schwarz inequality, the first point in Proposition
5.1 and H5(s2), we obtain

T2 ≤ C2
52−2j(s2+1/2)

√
E
(

(β̂j,k − βj,k)4
)
≤ C 2−j(2s2+1)

n
.

Upper bound for T3. The Cauchy-Schwarz inequality and Proposition 5.1 yield

T3 ≤
√

(E
(

(β̂j,k − βj,k)4
)
E
(

(d̂j,k − dj,k)4
)
≤ C

√
1

n2

24j

n2
= C

22j

n2
.

Combining the inequalities above, we obtain

E
(

(β̂j,kd̂j,k − βj,kdj,k)2
)
≤ C

(
2−j(2s1−1)

n
+

2−j(2s2+1)

n
+

22j

n2

)
.

• The proof of the second point is identical to the first one but with the bounds |ατ,k| ≤
C and |cτ,k| ≤ C thanks to H2 and H3.

This ends the proof of Proposition 5.2. �

The following Lemma will be very usefull for the proof of Theorem 5.1. It is a conse-
quence of the Cauchy-Schwarz inequality.

Lemma 7.2 Let n be a positive integer and U1, . . . , Un be n random variables such that
supi∈{1,...,n} E(U2

i ) <∞. Then

E

( n∑
i=1

Ui

)2
 ≤ ( n∑

i=1

√
E(U2

i )

)2

.

Proof of Theorem 5.1

It follows from Proposition 3.1 that

δ̂ − δ = −2
∑
k∈Λτ

(α̂τ,k ĉτ,k − ατ,kcτ,k)− 2

j0∑
j=τ

∑
k∈Λj

(β̂j,kd̂j,k − βj,kdj,k)

+ 2
∞∑

j=j0+1

∑
k∈Λj

βj,kdj,k.
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Therefore

E
(

(δ̂ − δ)2
)
≤ 12(W1 +W2 +W3), (7.4)

where

W1 = E

∑
k∈Λτ

(α̂τ,k ĉτ,k − ατ,kcτ,k)

2 ,

W2 = E

 j0∑
j=τ

∑
k∈Λj

(β̂j,kd̂j,k − βj,kdj,k)

2
and

W3 =

 ∞∑
j=j0+1

∑
k∈Λj

βj,kdj,k

2

.

Let us now bound W1 and W2 in turn.
Upper bound for W1. Owing to Lemma 7.2, the second point of Proposition 5.2 and
Card(Λτ ) = 2τ , we obtain

W1 ≤

∑
k∈Λτ

√
E ((α̂τ,k ĉτ,k − ατ,kcτ,k)2)

2

≤ C 1

n
. (7.5)

Upper bound for W2. It follows from Lemma 7.2, the first point of Proposition 5.2,
Card(Λj) = 2j , the elementary inequality:

√
a+ b+ c ≤

√
a+
√
b+
√
c, s1 > 3/2, s2 > 1/2

and 2j0 ≤ n1/4 that

W2 ≤

 j0∑
j=τ

∑
k∈Λj

√
E
(

(β̂j,kd̂j,k − βj,kdj,k)2
)2

≤ C

 j0∑
j=τ

2j

√
2−j(2s1−1)

n
+

2−j(2s2+1)

n
+

22j

n2

2

≤ C

 j0∑
j=τ

(
2−j(s1−3/2)

√
n

+
2−j(s2−1/2)

√
n

+
22j

n

)2

≤ C

 1√
n

j0∑
j=τ

2−j(s1−3/2) +
1√
n

j0∑
j=τ

2−j(s2−1/2) +
1

n

j0∑
j=τ

22j

2

≤ C

(
1√
n

+
1√
n

+
22j0

n

)2

≤ C 1

n
. (7.6)
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Upper bound for W3. By H4(s1) with s1 > 3/2, H5(s2) with s2 > 1/2 and 2j0+1 > n1/4,
we have

W3 ≤

 ∞∑
j=j0+1

∑
k∈Λj

|βj,k||dj,k|

2

≤ C

 ∞∑
j=j0+1

2j2−j(s1+1/2)2−j(s2+1/2)

2

≤ C2−2j0(s1+s2)

≤ C2−4j0 ≤ C 1

n
. (7.7)

Putting (7.4), (7.5), (7.6) and (7.7) together, we obtain

E
(

(δ̂ − δ)2
)
≤ C 1

n
.

This ends the proof of Theorem 5.1. �

7.2.2 The ρ-mixing case

In the sequel, we assume that (X1, Y1), . . . , (Xn, Yn) coming from a ρ-mixing strictly sta-
tionary process (Xt, Yt)t∈Z (1.1) (see Definition 2.1).

Proof of Proposition 5.3

• From Proposition 3.2, we have E(β̂j,k) = βj,k. It follows that

E
(

(β̂j,k − βj,k)2
)

=
1

n2
V

(
n∑
i=1

Yiψj,k(Xi)

)
= S1 + S2,

where

S1 =
1

n
V(Y1ψj,k(X1)), S2 =

2

n2

n∑
v=2

v−1∑
`=1

Cov (Yvψj,k(Xv), Y`ψj,k(X`)) .

Upper bound for S1. It follows from (7.2) with u = 2 that

S1 ≤
1

n
E
(
(Y1ψj,k(X1))2

)
≤ C 1

n
.

Upper bound for S2. The stationarity of (Xt, Yt)t∈Z implies that

S2 =
2

n2

n−1∑
m=1

(n−m)Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1))

≤ 2

n

n−1∑
m=1

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) |.
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A standard covariance inequality for ρ-mixing gives

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) | ≤ E((Y1ψj,k(X1))2)ρm

(see, for instance, (Zhengyan and Lu, 1996, Lemma 1.2.7.)).

Equation (7.2) with u = 2 yields

E((Y1ψj,k(X1))2) ≤ C.

Therefore, using (5.5),

S2 ≤ C
1

n

n−1∑
m=1

ρm ≤ C
1

n

∞∑
m=1

ρm ≤ C
1

n
.

Combining the inequalities above, we obtain

E
(

(β̂j,k − βj,k)2
)
≤ C 1

n
.

• Proceeding as for the first point but with (ψj,k)
′(Xi) instead of Yiψj,k(Xi) and (7.3)

instead of (7.2).

Proposition 5.3 is proved. �

Proof of Proposition 5.4

• We have the following decomposition

β̂j,kd̂j,k − βj,kdj,k = βj,k(d̂j,k − dj,k) + dj,k(β̂j,k − βj,k) + (β̂j,k − βj,k)(d̂j,k − dj,k).

Therefore

E
(
|β̂j,kd̂j,k − βj,kdj,k|

)
≤ T1 + T2 + T3,

where
T1 = |βj,k|E

(
|d̂j,k − dj,k|

)
, T2 = |dj,k|E

(
|β̂j,k − βj,k|

)
and

T3 = E
(
|(β̂j,k − βj,k)(d̂j,k − dj,k)|

)
.

Upper bound for T1. Using the Cauchy-Schwarz inequality, the second point in Propo-
sition 5.3 and H4(s1), we obtain

T1 ≤ C42−j(s1+1/2)

√
E
(

(d̂j,k − dj,k)2
)
≤ C2−j(s1+1/2) 2j√

n
= C

2−j(s1−1/2)

√
n

.
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Upper bound for T2. By the Cauchy-Schwarz inequality, the first point in Proposition
5.3 and H5(s2), we obtain

T2 ≤ C52−j(s2+1/2)

√
E
(

(β̂j,k − βj,k)2
)
≤ C 2−j(s2+1/2)

√
n

.

Upper bound for T3. The Cauchy-Schwarz inequality and Proposition 5.3 yield

T3 ≤
√

(E
(

(β̂j,k − βj,k)2
)
E
(

(d̂j,k − dj,k)2
)
≤ C

√
1

n

22j

n
= C

2j

n
.

The above inequalities imply that

E
(
|β̂j,kd̂j,k − βj,kdj,k|

)
≤ C

(
2−j(s1−1/2)

√
n

+
2−j(s2+1/2)

√
n

+
2j

n

)
.

• The proof of the second point is identical to the first one but with the bounds |ατ,k| ≤
C and |cτ,k| ≤ C thanks to H2 and H3.

This ends the proof of Proposition 5.4. �

Proof of Theorem 5.2

Using Proposition 3.1, we have

δ̂ − δ = −2
∑
k∈Λτ

(α̂τ,kĉτ,k − ατ,kcτ,k)− 2

j0∑
j=τ

∑
k∈Λj

(β̂j,kd̂j,k − βj,kdj,k)

+ 2

∞∑
j=j0+1

∑
k∈Λj

βj,kdj,k.

Therefore

E
(
|δ̂ − δ|

)
≤W1 +W2 +W3, (7.8)

where

W1 =
∑
k∈Λτ

E (|α̂τ,k ĉτ,k − ατ,kcτ,k|) , W2 =

j0∑
j=τ

∑
k∈Λj

E
(
|β̂j,kd̂j,k − βj,kdj,k|

)
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and

W3 =
∞∑

j=j0+1

∑
k∈Λj

|βj,k||dj,k|.

Upper bound for W1. The second point of Proposition 5.4 and Card(Λτ ) = 2τ give

W1 ≤ C
1√
n
. (7.9)

Upper bound for W2. It follows from the first point of Proposition 5.4, Card(Λj) = 2j ,
s1 > 3/2, s2 > 1/2 and 2j0 ≤ n1/4 that

W2 ≤ C

j0∑
j=τ

2j

(
2−j(s1−1/2)

√
n

+
2−j(s2+1/2)

√
n

+
2j

n

)

≤ C

 1√
n

j0∑
j=τ

2−j(s1−3/2) +
1√
n

j0∑
j=τ

2−j(s2−1/2) +
1

n

j0∑
j=τ

22j


≤ C

(
1√
n

+
1√
n

+
22j0

n

)
≤ C 1√

n
. (7.10)

Upper bound for W3. By H4(s1) with s1 > 3/2, H5(s2) with s2 > 1/2 and 2j0+1 > n1/4,
we have

W3 ≤ C
∞∑

j=j0+1

2j2−j(s1+1/2)2−j(s2+1/2) ≤ C2−j0(s1+s2) ≤ C2−2j0 ≤ C 1√
n
. (7.11)

Putting (7.8), (7.9), (7.10) and (7.11) together, we obtain

E
(
|δ̂ − δ|

)
≤ C 1√

n
.

This ends the proof of Theorem 5.2. �

7.2.3 The α-mixing case

Recall that, here, we assume that (X1, Y1), . . . , (Xn, Yn) coming from a α-mixing strictly
stationary process (Xt, Yt)t∈Z (1.1) (see Definition 2.2).
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Proof of Proposition 5.5

• Proposition 3.2 yields E(β̂j,k) = βj,k. Therefore,

E
(

(β̂j,k − βj,k)2
)

=
1

n2
V

(
n∑
i=1

Yiψj,k(Xi)

)
= S1 + S2,

where

S1 =
1

n
V(Y1ψj,k(X1)), S2 =

2

n2

n∑
v=2

v−1∑
`=1

Cov (Yvψj,k(Xv), Y`ψj,k(X`)) .

Upper bound for S1. It follows from (7.2) with u = 2 that

S1 ≤
1

n
E
(
(Y1ψj,k(X1))2

)
≤ C 1

n
.

Upper bound for S2. The stationarity of (Xt, Yt)t∈Z implies that

S2 =
2

n2

n−1∑
m=1

(n−m)Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1))

≤ 2

n

n−1∑
m=1

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) |.

Let [c lnn] be the integer part of c lnn where c = 1/ ln b. We have

n−1∑
m=1

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) | =

[c lnn]∑
m=1

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) |

+
n−1∑

m=[c lnn]+1

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) |.

On the one hand, the Cauchy-Schwarz inequality and (7.2) with u = 2 yield

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) | ≤ E((Y1ψj,k(X1))2) ≤ C.

Hence
[c lnn]∑
m=1

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) ≤ C lnn.
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On the other hand, a standard covariance inequality for α-mixing gives, for any γ ∈
(0, 1),

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) | ≤ 10αγm

(
E
(
|Y1ψj,k(X1)|2/(1−γ)

))1−γ
.

(See, for instance, Davydov (1970)).

Taking γ = 1/2 and using (5.6), again (7.2) with u = 4 and 2j ≤ n, we obtain

n−1∑
m=[c lnn]+1

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) |

≤ C

√
E
(

(Y1ψj,k(X1))4
) n−1∑
m=[c lnn]+1

√
αm

≤ C2j/2
∞∑

m=[c lnn]+1

b−m/2 ≤ C
√
nb−c lnn/2 ≤ C.

Hence
n−1∑

m=[c lnn]+1

|Cov (Ym+1ψj,k(Xm+1), Y1ψj,k(X1)) | ≤ C.

Then

S2 ≤ C
lnn

n
.

Combining the inequalities above, we obtain

E
(

(β̂j,k − βj,k)2
)
≤ C lnn

n
.

• The proof is similar to the first point. It is enough to replace Yiψj,k(Xi) by (ψj,k)
′(Xi),

apply (7.3) instead of (7.2) and observe that

n−1∑
m=[c lnn]+1

|Cov
(
(ψj,k)

′(Xm+1), (ψj,k)
′(X1)

)
|

≤ C

√
E
(

((ψj,k)′(X1))4
) n−1∑
m=[c lnn]+1

√
αm

≤ C23j/22j
∞∑

m=[c lnn]+1

b−m/2 ≤ C22j√nb−c lnn/2 ≤ C22j .

Proposition 5.5 is proved. �
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Proof of Proposition 5.6

The proof of Proposition 5.6 is identical to the one of Proposition 5.4. It is enough to use
Proposition 5.5 instead of Proposition 5.3 and to replace 1/n by lnn/n. �

Proof of Theorem 5.3

The proof of Theorem 5.3 is identical to the one of Theorem 5.2. It suffices to use Proposition
5.6 instead of Proposition 5.4 and to replace 1/n by lnn/n. �
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