-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by HAL-Univ-Nantes

HAL

archives-ouvertes

Comparison of 3-RPR Planar Parallel Manipulators
with regard to their Dexterity and Sensitivity to
Geometric Uncertainties
Nicolas Binaud, Stéphane Caro, Philippe Wenger

» To cite this version:

Nicolas Binaud, Stéphane Caro, Philippe Wenger. Comparison of 3-RPR Planar Parallel Ma-
nipulators with regard to their Dexterity and Sensitivity to Geometric Uncertainties. Mecca-
nica, Springer Verlag, 2011, 46 (14), pp.75-88. <10.1007/s11012-010-9390-0>. <hal-00833524>

HAL Id: hal-00833524
https://hal.archives-ouvertes.fr /hal-00833524
Submitted on 13 Jun 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/53005872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00833524

COMPARISON OF 3-RPR PLANAR PARALLEL MANIPULATORS WITH REGARD TO
THEIR KINETOSTATIC PERFORMANCE AND SENSITIVITY TO GEOMETRIC
UNCERTAINTIES

Nicolas Binaud, Stéphane Caro, Philippe Wenger

Institut de Recherche en Communications et Cybernétique de Nantes
UMR CNRS n° 6597

1 rue de la Noé, 44321 Nantes, France

{binaud, caro, wenger}@irccyn.ec-nantes.fr

ABSTRACT: This paper deals with the sensitivity analysis of
3-RPR planar parallel manipulators. First, the manipulators
under study as well as their degeneracy conditions are presented.
Then, an optimization problem is formulated in order to obtain
their maximal regular dexterous workspace. — Moreover, the
sensitivity coefficients of the pose of the manipulator moving
platform to variations in the geometric parameters and in the
actuated variables are expressed algebraically. Two aggregate
sensitivity indices are determined, one related to the orientation
of the manipulator moving platform and another one related
to its position. Then, we compare two non-degenerate and
two degenerate 3-RPR planar parallel manipulators with re-
gard to their dexterity, workspace size and sensitivity. Finally,

two actuating modes are compared with regard to their sensitivity.

KEYWORDS: Sensitivity analysis, degenerate manipulators, reg-

ular dextrous workspace, transmission angle.

1 Introduction

Variations in the geometric parameters of PKMs can be ei-
ther compensated or amplified. For that reason, it is important
to analyze the sensitivity of the mechanism performance to vari-
ations in its geometric parameters. For instance, Wang et al. [1]
studied the effect of manufacturing tolerances on the accuracy of
a Stewart platform. Kim et al. [2] used a forward error bound
analysis to find the error bound of the end-effector of a Stewart
platform when the error bounds of the joints are given, and an
inverse error bound analysis to determine those of the joints for
the given error bound of the end-effector. Kim and Tsai [3] stud-

ied the effect of misalignment of linear actuators of a 3-Degree of

Freedom (DOF) translational parallel manipulator on the motion
of its moving platform. Caro et al. [4] developed a tolerance syn-
thesis method for mechanisms based on a robust design approach.
Cardou et al. [S] proposed some kinematic-sensitivity indices for
dimensionally nonhomogeneous jacobian matrices. Caro et al. [6]
proposed two indices to evaluate the sensitivity of the end-effector
pose (position + orientation) of Orthoglide 3-axis, a 3-DOF trans-
lational PKM, to variations in its design parameters. Besides, they
noticed that the better the dexterity, the higher the accuracy of the
manipulator. However, Yu et al. [7] claimed that the accuracy
of a 3-DOF Planar Parallel Manipulator (PPM) is not necessar-
ily related to its dexterity. Meng et al. [8] proposed a method
to analyze the accuracy of parallel manipulators with joint clear-
ances and ended up with a standard convex optimization problem

to evaluate the maximal pose error in a prescribed workspace.

Some architectures of planar parallel manipulators are com-
pared with regard to their sensitivity to geometric uncertainties
in [9].

This paper deals with the comparison of the sensitivity of two
degenerate and two non-degenerate 3-RPR PPMs. Likewise, the
sensitivity of two actuating modes of the 3-RPR PPM, namely
the 3-RPR PPM and the 3-RPR PPM, is analyzed. First, the
degeneracy conditions of 3-RPR manipulators and the manipula-
tors under study are presented. Then, the formulation of an op-
timization problem is introduced to obtain the regular dexterous
workspace of those manipulators. Finally, a methodology is intro-
duced to analyze and compare the sensitivity of the pose of their

moving platforms to variations in their geometric parameters.



2 Manipulator Architecture

Here and throughout this paper, R, P and P denote revolute,
prismatic and actuated prismatic joints, respectively. Figure. 1
illustrates the architecture of the manipulator under study. It is
composed of a base and a moving platform (MP) connected with
three legs. Points Ay, Ay and Az, (Cy, C> and C3, respectively) lie
at the corners of a triangle, of which point O (point P, resp.) is
the circumcenter. Each leg is composed of a R, a P and a R joints
in sequence. The three P joints are actuated. Accordingly, the
manipulator is named 3-RPR manipulator.

Fp and ¥, are the base and the moving platform frames of
the manipulator. In the scope of this paper, %, and ¥, are sup-
posed to be orthogonal. , is defined with the orthogonal dihe-
dron (qu7 dy), point O being its center and Ox parallel to seg-
ment AA,. Likewise, ¥, is defined with the orthogonal dihedron
(PX,PY), point C being its center and PX parallel to segment
Ci1Cs.

The pose of the manipulator MP, i.e., its position and its ori-
entation, is determined by means of the Cartesian coordinates vec-
tor p = [px, py]T of operation point P expressed in frame 7, and
angle ¢, that is the angle between frames %, and ¥,. Finally, the

passive joints do not have any stop.

Figure 1.  3-RPR manipulator

3 Degenerate and Non-Degenerate Manipulators

In this section, we focus on the sensitivity analysis of two de-
generate and two non-degenerate 3-RPR manipulators. First, the
degeneracy conditions of such manipulators are given. Then, the

architectures of the four manipulators under study are illustrated.

3.1 Degeneracy condition
The forward kinematic problem of a parallel manipulator of-

ten leads to complex equations and non analytic solutions, even

when considering 3-DOF PPMs [10]. For those manipulators,
Hunt showed that the forward kinematics admits at most six so-
lutions [11] and some authors proved that their forward kinemat-
ics can be reduced to the solution of a sixth-degree characteristic

polynomial [12, 13].
As shown in [14], [15] and [16], a 3-RPR PPM is said to

be degenerate when the degree of its characteristic polynomial
becomes smaller than six. Six types of degenerate 3-RPR PPMs

exists in the literature, namely,

1. 3-RPR PPMs with two coincident joints;

2. 3-RPR PPMs with similar aligned base and moving plat-
forms;

3. 3-RPR PPMs with nonsimilar aligned base and moving plat-
forms;

4. 3-RPR PPMs with similar triangular base and moving plat-
forms;

5. 3-RPR PPMs with the three actuated prismatic joints satisfy-
ing a certain relationship;

6. 3-RPR PPMs with congruent base and moving platforms, of
which the moving platform is rotated of 180 deg about one

of its side.

In the scope of this paper, we focus on the sensitivity analysis
of the fourth and the sixth cases. For the fourth case, the forward
kinematics is reduced to the solution of two quadratics in cascade.
For the sixth case, the forward kinematics degenerates over the
whole joint space and is reduced to the solution of a third-degree

polynomial and a quadratic in sequence.

3.2 Manipulators under study

Figures 2(a)-(d) illustrate the four manipulators under study,
named M;, M, M3 and My, respectively. M; and M, are non-
degenerate manipulators while M3 and M, are degenerate manip-
ulators. From Fig. 2(a), the base and moving platforms of M
are equilateral. From Fig. 2(b), the base and moving platforms of
M, are identical but in a different geometric configuration for an
orientation ¢ = 0. M3 and My illustrate the fourth and the sixth
degeneracy cases presented in Sec. 3.1. It is noteworthy that the
base and moving platforms of M», M3 and M4 have the same cir-
cumscribed circle, its radius being equal to \/f /2. As far as M is
concerned, the circumscribed circle of its moving platform is two

times smaller than the one of the base platform.

To compare the sensitivity of these PPMs, the geometric pa-
rameters have to be normalized. Therefore, let R; and R, be
the radii of the base and moving platforms of the PPM. In or-
der to come up with finite values, R; and R, are normalized as
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Figure 2. The four 3-RPR manipulators under study with ¢ = 0 and
p=I1, 1.5]T: (a)-(b) non-degenerate manipulators, (c)-(d) degenerate
manipulators

in [17-19]. For that matter, let Ny be a normalizing factor:

Ny =(Ri+R)/2 ey
and
Fm=Rn/Nr, m=1,2 2)
Therefore,
ri+r=2 3)

From Egs.(2) and (3), we can notice that:

r €10,2],r €[0,2] 4)

As the former two-dimensional infinite space corresponding to
geometric parameters Ry and R; is reduced to a one-dimensional
finite space defined with Eq.(3), the workspace analysis of the

3-RPR manipulator under study turns out to be easier.

4 Regular Dexterous Workspace

In order to compare the sensitivity of the foregoing manipu-
lators, we first define their Regular Dexterous Workspace (RDW).
Then, the sensitivity of My, M>, M3 and M4 can be evaluated
throughout their RDW and compared. The RDW of a manipulator
is a regular-shaped part of its workspace with good and homoge-
neous kinetostatic performance. The shape of the RDW is up to
the designer. It may be a cube, a parallelepiped, a cylinder or
another regular shape. A good shape fits to the singular surfaces.

The kinetostatic performance of a manipulator is usually
characterized by the conditioning number of its kinematic Jaco-
bian matrix [20,21]. From [22,23], the transmission angle of a
3-DOF PPM can be also used to evaluate its kinetostatic perfor-
mance. Here, we prefer to use the transmission angle as a kineto-
static performance index as it does not require the normalization
of the kinematic Jacobian matrix. On the contrary, the kinematic
Jacobian matrix of 3-DOF PPM has to be normalized by means
of a normalizing length in order its conditioning number to make
sense [24].

4.1 Transmission angle
The transmission angle y; associated with the ith leg is de-
fined as the angle between force vector Fe; and translational ve-

locity vector Ve; at point C; as illustrated in Fig. 3.

Figure 3. Transmission angle of the 3-RPR PPMs

The direction of force Fc; is the direction of leg A;C;, namely,

Y; = arctan (i*? —iﬁi> ,i=1,2,3 )

The instantaneous centre of rotation depends on the leg under



study. For example, instantaneous centre of rotation /; associated
with leg 1 is the intersecting point of forces Fcy anf Fes.

Table 1 gives the Cartesian coordinates of instantaneous cen-
tre of rotation /; associated with the ith leg of the 3-RPR PPM,
expressed in frame ¥, with b; = yc, — xc; tany;, i = 1,2, 3.

The direction of V¢; is defined as,

Biarctan<u)+g,il,2,3 (6)
XC; — XI; 2
Accordingly,

vi=yi—Bil,i=1,2,3 @)

Finally, the transmission angle y of the overall mechanism is
defined as,

v =max(y;),i=1,2,3 )

and the smaller v, the better the force transmission of the mecha-

nism.

4.2 RDW determination

In the scope of this study, the RDW of the PPM is supposed
to be a cylinder of ¢-axis with good kinetostatic performance, i.e.,
the transmission angle y is smaller than 75° throughout the cylin-
der. In order to obtain such a RDW, we can solve the following

optimization problem:

min 1/R
X
Pbist. Ap>30°
vy <75°

R being the radius of the cylinder and A¢ the orientation range
of the MP of the manipulator within its RDW. Here, A¢ is equal
to 30° arbitrarily. This optimization problem has five decision

variables:

X = [R Ix Iy ¢min ¢max]

I and I, being the Cartesian coordinates of the center of the cylin-
der, ¢yin and ¢pqy being the lower and upper bounds of ¢ angle
(A¢ = q)max - q)min)-

This optimization problem is solved by means of a Tabu

search Hooke and Jeeves algorithm [25]. As a result, the RDW of
the manipulator is completely defined by means of the decision

variables corresponding to the global minimum'.

‘RDW;

9

(c) M3 (d) My

Figure 4. Maximal Regular Dexterous Workspace

Table 2. RDW radius of M|, M, M3 and M4

R, Ry R3 R4
1.21 0.62 0.75 2.69

Figures 4-(d) illustrate the workspace, the singularities and
the maximal RDW of M|, M, M3 and M4. Their radii are given
in Table 2. We can notice that M4 has the biggest RDW and M,

the smallest one.

5 Sensitivity Analysis
In this section, the sensitivity of M, M, M3 and My is eval-

uated throughout their RDW for a matter of comparison. The

IThe solution obtained with a Tabu search Hooke and Jeeves algorithm will
not be necessarily the global optimum. However, it will provide a solution that is
close to the global one and satisfactory in the framework of this research work.



Table 1. Cartesian coordinates of instantaneous centres of rotation
I ) I
by — by by — b3 by — by
h tan(y,) — tan(y3) tan(y3) —tan(y;) tan(y;) — tan(y,)
Y bs tan(yz) —by tan(y3) by tan(y3) bs tan(yl) by tan(yl) — b tan(yz)
’ tan(y,) — tan(y3) tan(ys) — tan(y1) tan(y;) — tan(y2)

sensitivity coefficients, and, two aggregate sensitivity indices are
determined to analyze the sensitivity of the pose of the moving
platform of a 3-RPR manipulator to variations in its geometric
parameters. Then, the contours of these indices are plotted in M,
M>, M3 and M4 RDWs and the results are analyzed.

5.1 Sensitivity coefficients
P—-0,

,3 depicted in Fig. 1, the position vector p of point P can

From the closed-loop kinematic chains O —A; — C; —
i=1,...
be expressed in F, as follows,

|

a; and ¢; being the position vectors of points A; and C; expressed

Px

] =ai+(¢—a)+(p-¢c), i=1,....3 (9
Py

in F;,. Equation (9) can also be written as,
p = ah;+pu;+ck; (10)

with

cos (0 +B;+m)
sin (¢ +B; +7)

where a; is the distance between points O and A;, p; is the dis-
tance between points A; and C;, ¢; is the distance between points
C; and P, h; is the unit vector OA;/||OAj||2, u; is the unit vector
AiCi/||A:C;||> and k; is the unit vector C;P/||CiP||».

Upon differentiation of Eq.(10), we obtain:

Op = da;h; +a;d0,; Eh; 4 dp;u; + p; 66; Eu;

+6€iki+ci(8¢+55j) Ek; (1D

with matrix E defined as

(12)

]

Sp and 8¢ being the position and orientation errors of the MP.
Likewise, da;, 8ai;, dp;, 8¢; and 8f; denote the variations in a;, o,

pi, ¢; and P, respectively.

The idle variation 86; is eliminated by dot-multiplying
Eq.(11) by p,-uiT, thus obtaining

piuiTSp =p; Saiuirhi +pia; 80(,' ul-TEh,' + p,~8p,~

+pidc; uiTk,' +pici (dd+dpB;) uiTEk,' (13)
Equation (13) can now be cast in vector form, namely,
8(]) —Sa] 5061 5p1
5 =H, | day | +Hy [0 | +B | 0pa | +
P | 8a3 S0 dp3
8¢ o3P
H. | 6cy | + HB o> (14)
_66‘3 5B3
with
mi piuj p1 0 0
A= |m poul | ,B=[0p, 0 (15a)
ms psul 0 0p;
a = dlag pia Th] pzuzhz p3ll3 :| (]Sb)

H(x = dlag plalulEhl pzazquhQ p3a3u3 Eh3:| (150)

prufki poulky p3u§k3} (15d)

|
|
H, = dlag[
|

B = dlag piciuy Ek1 p2c2u, Ekz p3C3ll3 Ek3:| (156)
and

mi=—piciulEk;, i=1,...3 (16)

Let us notice that A and B are the direct and the inverse Jaco-
bian matrices of the manipulator, respectively. Assuming that A

is non singular, i.e., the manipulator does not meet any Type II sin-



gularity [26], we obtain upon multiplication of Eq.(14) by A~

50 da; Soy op1
ls ] =Ja|0ay | +Jo |00 | +J | Opa | +
P | 8a3 o dp3
_5C1 551
Je | 0co +J[3 o2 (17)
| 8¢3 B3
with
J=A"B (18a)
J.=A"H, (18b)
Jo=A""H, (18¢)
J.=A"H, (18d)
Js=A""Hp (18e)
and
1 1 Vi V2 V3
= — 19
det(A) | v; v, VJ (192
vi = pipr(u; x ) 'k (19b)
vi = E(m;piux —myp ju;) (19¢)
3
det(A) = ) mv; (19d)
i=1
k=ixj (19¢)

Jj=(i+1) modulo 3; k= (i+2) modulo 3; i = 1,2,3. J is the
kinematic Jacobian matrix of the manipulator whereas J,, Jq,
Jc and Jp are named sensitivity Jacobian matrices of the pose
of the MP to variations in a;, 0, ¢; and B;, respectively. Indeed,
the terms of J,, Ja, J. and Jp are the sensitivity coefficients of
the position and the orientation of the moving platform of the
manipulator to variations in the Polar coordinates of points A; and
C;. Likewise, J contains the sensitivity coefficients of the pose of
the MP of the manipulator to variations in the prismatic actuated
joints. It is noteworthy that all these sensitivity coefficients are

expressed algebraically.

Let da;x and da;, denote the position errors of points A;,
i=1,2,3, along Ox and 6y, namely, the variations in the Carte-
sian coordinates of points A;. Likewise, let dcix and dc;y denote
the position errors of points C; along PX and PY, namely, the

variations in the Cartesian coordinates of points C;.

From Fig. 1,
Saix coso; —a; sin (0.4 5(1,’
= . (20a)
aa,'y sino; a; coso; 506,'
56‘,')( _ CF)S B,’ —C;SIin B,’ 56‘,’ (20b)
56‘,')/ sSin ﬁ,’ C;iCOS B,’ SB,

Accordingly, from Eq.(17) and Egs.(20a)-(b), we obtain the fol-
lowing relation between the pose error of the MP and variations
in the Cartesian coordinates of points A; and C;:

daiy dcix
5a1y 5 dciy
P1
) dany )
Lﬂ = Saz +3 | 8pa | +Jc BCZX @1
Ay C
1Y : 2y 503 X 2y
a3y C3X
_5a3y_ _863y_

Ja and J¢ being named sensitivity Jacobian matrices of the pose
of the MP to variations in the Cartesian coordinates of points A;
and G;, respectively. Indeed, the terms of J4 and J¢ are the sensi-
tivity coefficients of the pose of the MP to variations in the Carte-

sian coordinates of points A; and C;.

In order to better highlight the sensitivity coefficients, let us
write the 3 x 6 matrices J4 and J¢ and the 3 x 3 matrix J as fol-

lows:

Ja = [Ja Jas Jas | (220)
Jc = {Jcl Jc, JQ} (22b)
I =it ds] (220)

the 3 x 2 matrices J4, and J¢, and the three dimensional vectors

ji being expressed as:

Yo, = |0 =123 (23a)
_JAiP

Jo,= |19 =123 (23b)
_JCil’

Gi= 70, =123 (23¢)
_.]ip




with

1

Jao det(A) |:Vt qi Vi rli| (24a)
1
ira — Lo vt 24b
JCio det(A) |:Vt Si Vi tl:| ( )
. Pivi
i = 24
0= Get(A) (240)
1 _q,'V~Ti rivli
Jaip = Lo (24d)
P det(A) _CIiV,-T.] riViTJ
1 _S,'V»Ti l,'V»Ti
Jep = oo 24e
Cip det(A) _SiViTj t,'V,»Tj ( )
, 1 [pn7i
ip = 24
Y da(a) [ i (240
qi, i, si and ¢; taking the form:
_ Ts
qi = piu; 1 (25a)
ri = piuj j (25b)
S; = pl'lllrk,' cos ﬁ,’ — p,'lllTEk,' sin B,’ (25¢)
t; = piu! k;sinB; 4 pu! Ek; cos B; (25d)

Ja0» Jco and Jip contain the sensitivity coefficients of the orien-
tation of the MP of the manipulator to variations in the Cartesian
coordinates of points A;, C; and prismatic actuated variables, re-
spectively. Similarly, J4,,, Jc;p and j;, contain the sensitivity co-
efficients related to the position of the MP.

Accordingly, the designer of such a planar parallel manipula-
tor can easily identify the most influential geometric variations to
the pose of its MP and synthesize proper dimensional tolerances
from the previous sensitivity coefficients. Two aggregate sensitiv-
ity indices related to the geometric errors of the moving and base

platforms are introduced thereafter.

5.2 Global sensitivity indices

The pose errors of the manipulator MP depend on variations
in the geometric parameters as well as on the manipulator configu-
ration. In order to analyze the influence of the manipulator config-
uration on those errors, let us first formulate some indices in order
to assess the aggregate sensitivity of the MP pose to variations in
the geometric parameters for a given manipulator configuration.

To this end, let Eq.(21) be expressed as:

[zﬂ =, [Sai 5p; scif (26)

with
3= 143 3c] @7)

and

8ai = | Sai ar, Sasy Sazy Bas, as, | (28a)
opi = [Spl dp2 6p3} (28b)
5Ci = [Sclx 56‘]}/ 56‘2)( SCQY 56‘3)( 563)/} (280)

The 3 x 15 matrix J is named “sensitivity Jacobian matrix” and

can be written as follows:

Js
Js = ¢ 29
B @)

with
sy = [J’Alq) Jare Jase Jio J2o J3o Jcio Jcro jcm} (30a)

Js, = [JAlp Jasp Jasp d1p d2p 33p Jcip Joop JC3p:| (30b)

From Eq.(30a), we can define an aggregate sensitivity index
Vg of the orientation of the MP of the manipulator to variations in

its geometric parameters and prismatic actuated joints, namely,

il
ny

€1y

n, being the number of variations that are considered. Here, n, is
equal to 15.

Likewise, from Eq.(30b), an aggregate sensitivity index v
of the position of the MP of the manipulator to variations in its
geometric parameters and prismatic actuated joints can be defined

as follows:

o) sl .

ny

For any given manipulator configuration, the lower vy, the
lower the overall sensitivity of the orientation of its MP to vari-

ations in the geometric parameters. Similarly, the lower v, the



lower the overall sensitivity of the MP position to variations in
the geometric parameters. As a matter of fact, vy (v, resp.) char-
acterizes the intrinsic sensitivity of the MP orientation (position,
resp.) to any variation in the geometric parameters. Let us notice
that v, as well as the sensitivity coefficients related to the MP
position defined in Sections 5.1 are frame dependent, whereas v,
and the sensitivity coefficients related to the MP orientation are
not.

In order to evaluate the sensitivity of the manipulator over its
workspace or part of it, four global sensitivity indices are defined

as follows:

dw
vy = dw Yo W (332)
fy W
Vo = Max(Vo) (33b)
— Jw vpdW
P aw (33¢)
Vpmae = Max(vp) (33d)

Vo and Vv, are the average values of vy and v, over W, W being
the manipulator workspace or part of it. Likewise, V,,,, and V...
are the maximum values of vy and v, over W.

Finally, v¢, V¢ and vy, are expressed in [rad/L], whereas v,

V, and V.. are dimensionless, [L] being the unit of length.

5.3 Comparison of two non-degenerate and two de-
dgenerate 3-RPR PPMs

In this section, the sensitivity of My, M>, M3 and My is eval-
uated within their RDW for a matter of comparison based on ag-
gregate sensitivity indices V¢ and v,, defined in Eqs.(31) and (32)
and global sensitivity indices Vg, Vg¢,...» Vp and v, . defined in
Eqgs.(33a)-(d).

Figures 5(a)-(d) (Figures 6(a)-(d), resp.) illustrate the isocon-
tours of the maximum value of vy (v, resp.). for a given orien-
tation ¢ of the MP throughout the RDW of M, M>, M3 and My,

respectively.

Table 3. Values of Vg, Vg0, Vp @and vy, . for My, M, M3 and My

M M, M; n
Vo 0.292 0.254 0.233 0.192
Voo | 0426 0365 0386 0322
v, 0.171 0.231 0.194 0.316
Vo | 0263 0327 0284 0441

Table 3 and Fig. 7 illustrate the values of Vg, v,,,., Vp and

Ve fOr the four manipulators under study. It is apparent that
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Figure 6. Vv, isocontours of: (a) M1, (b) M2, (c) M3 and (d) M4

M, has the least sensitive orientation of its MP and that M; has
the least sensitive position of its MP. On the contrary, M4 has the
most sensitive position of its MP and M has the most sensitive

orientation of its MP.
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6 Sensitivity Comparison of Two Actuating Modes

In this section, two actuating modes of the 3-RPR PPM,
namely the 3-RPR PPM and the 3-RPR PPM, are compared with
regard to their sensitivity to variations in geometric parameters>.

Table 4 shows the eight actuating modes of the 3-RPR PPM.
For instance, the first actuating mode corresponds to the 3-
RPR PPM, also called RPR|-RPR>-RPR3 PPM in the scope of
this paper, as the first revolute joints (located at points A;) of its
limbs are actuated. Likewise, the eighth actuating mode corre-
sponds to the 3-RPR PPM, also called RPR-RPR,-RPR3 PPM,
as the prismatic joints of its limbs are actuated. For the fourth ac-
tuating mode, the prismatic joint of the first limb is actuated while

the first revolute joints of the two other limbs are actuated.

Table 4. The eight actuating modes of the 3-RPR PPM

Actuating mode number | active angles
1 | RPR1-RPR>-RPR3 01, 62, 03
2 | RPRi-RPR>-RPR; 01, 62, p3
3 | RPR|-RPR>-RPR3 01, p2, 63
4 | RPR{-RPR>-RPR; p1. 62, 63
5 | RPRi-RPR>-RPR; 01, p2, p3
6 | RPRi-RPR>-RPR; p1. P2, 03
7| RPR{-RPR>-RPR3 p1, 62, p3
8 | RPRi-RPR>-RPR;3 P1, P2, P3

Table 5. RDW radius of M1 and M5
R Rs
1.21 1.60

2 As the actuators are not of the same type for the two manipulators (revolute ac-
tuators for the first one and prismatic actuators of the second one), their variations
are not considered in order the sensitivity comparison of the two manipulators to
make sense.

05 0 05 1 15 05 0 05 1 15
(a) M, (b) Ms

Figure 8. Two actuating modes: (a) 3-RPR manipulator, (b) 3-RPR ma-
nipulator, » = 0 and p = [1.5,1]"

RDWs

(o]

2

e
y 2 T

Figure 9. M5 Regular Dexterous Workspace

Let M; and M5 denote the 3-RPR and the 3-RPR PPMs,
respectively, as shown in Figs. 8(a)-(b). The RDW of Mj is illus-
trated in Fig. 9. From Table 5, we can notice that the RDW of M3
is larger than the one of M.

Figures 10(a)-(b) show the isocontours of the maximum
value of Vgu, and Veus throughout the RDW of My and Ms. Like-
wise, Figs. 11(a)-(b) show the isocontours of the maximum value
of Vi, and V. As a matter of fact, those isocontours corre-
spond to the maximal global positioning and orientation errors
with regard to the orientation ¢ of the moving platform of the ma-

nipulator.

Table 6 and Fig. 12 illustrate the values of Vg, v,,,., V, and
Ve fOr the two actuating modes under study. It is apparent that
M is better than M5, both in terms of orientation and position-
ing errors of its moving platform due to variations in geometric

parameters.
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Figure 10. (a) M V¢ and (b) M5 V¢ isocontours
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Figure 11. (a) M} Vv, and (b) M5 Vv, isocontours

Table 6. Values of Vo, Vomax, Vp and V pyay for My and M

M, Ms
Vo 0.251 0.289
Vo, | 0.448 0501
v, | 0163 0222
Vo | 0369 0423
Vo Vomax Vp V piax

0.5
0.4 N

0.3 //
0.2 ] N

N

0.1

Figure 12. Comparison of e—e: M and x—x*: M5

7 Conclusions

This paper dealt with the sensitivity analysis of 3-RPR pla-
nar parallel manipulators (PPMs). First, the manipulators un-
der study as well as their degeneracy conditions were presented.

Then, an optimization problem was formulated in order to obtain

their maximal regular dexterous workspace (RDW). Accordingly,
the sensitivity of the pose of their moving platform to variations
in geometric parameters was evaluated within their RDW. Then, a
methodology was proposed to compare PPMs with regard to their
dexterity and sensitivity. Four 3-RPR PPMs were compared as
illustrative examples. Moreover, two actuating modes were com-
pared with regard to their sensitivity to geometric uncertainties.
Finally, four global sensitivity indices were introduced in order to
evaluate the sensitivity of PPMs over their Cartesian workspace.
Those indices characterize the intrinsic sensitivity of the moving
platform pose to any variation in the geometric parameters. They
are like amplification factors of errors in geometric parameters.
There values remain always lower than one for the manipulators
under study. It means that there is no amplification of errors in
geometric parameters. The proposed indices can also be used to
help the designer of PPMs select a good manipulator architecture

at the conceptual design stage.
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