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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract A ballistic walking gait is designed for a 3D biped with two identical two-

link legs, a torso, and two identical one-link arms. In the single support phase, the biped

moves due to the existence of a momentum, produced mechanically, without applying

active torques in the inter-link joints. This biped is controlled with impulsive torques

at the instantaneous double support to obtain a cyclic gait. The impulsive torques are

applied in the seven inter-link joints. Then an infinity of solutions exists to find the

impulsive torques. An effort cost functional of these impulsive torques is minimized to

determine a unique solution. Numerical results show that for a given time period and

a given length of the walking gait step, there is an optimal swinging amplitude of the

arms. For this optimal motion of the arms, the cost functional is minimum.

Keywords: Arms, Biped, Ballistic walking gait, Impulsive torques, Optimization, In-

stantaneous double support.

1 Introduction

The motion of the arms has an effect, which is not well-known, on the human locomo-

tion [1–3]. This influence is studied in our paper.

Currently, many papers are devoted to the behavior of the locomotor system of bipeds.

However few studies and results exist to describe the influence of the trunk and the

arms on the dynamic walking gaits for a 3D biped. For instance, Pontzer et al. [3], from

analysis of human walking and running, support a passive arm swing hypothesis for

upper body movement. In order to study the influence of the arms on elderly adults,
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Ortega et al [1] prove that the greater metabolic cost of walking in elderly adults is

not caused by a greater cost of lateral stabilization. Moreover, arm swing reduces the

metabolic cost of walking for both young and elderly adults, likely by contributing to

stability. Bruijn et al. [4] show that pelvic and thoracic contributions to total body

angular momentum is low, while contributions of legs and arms are much larger for

human walking. Collins et al. [2] show that simulation results and experimental data

both support the proposition that the primary function of the arms during gait is

to reduce the fluctuations in vertical angular momentum defined with respect to the

body center of mass and external moment requirements. Therefore arm swinging is

not an evolutionary relic from quadrupedalism that serves little or no purpose but

minimizes energy use in locomotion. From biomechanics observations authors such as

Umberger [5] show that during walking the arms reduce a yaw moment, which acts

on the sole of the stance foot. This yaw moment is due to the non-symmetric roles

of the swing and the stance legs. Then for the bipedal robots the optimization of the

amplitude of the arm-swing during walking can minimize the effort cost functional.

To understand and to reproduce the influence of the human’s bodies during walking

with a biped is a difficult task. The human walking gait is the result of a complex or-

chestration of muscle forces, joint motions, and neural motor commands; the energetic

cost of producing muscle forces is complex to analyze, see Hill [6], Doke and Kuo [7],

Vaughan [8]. In our point of view, the study of ballistic walking of biped, along with hu-

man experiments, may provide insight in human walking. If human and animal motions

comprise alternating periods of muscle activity and relaxation, and the double support

is relatively short, then it is logical to consider the problem of purely ballistic swing

phases and double support phases with impulsive inter-link torques. Similar statement

of the problem is proposed by Formal’skii [9], [10], [11], Mochon and McMahon [12],

and McGeer [13]. This kind of motion with ballistic parts and impulsive torques ap-

pears to be less energy consuming, see Formal’skii [10].

We consider an anthropomorphic 3D biped with a pelvis, a torso, and one-link arms

but without feet (with point feet). The contribution of this paper is to solve for this

biped a boundary value problem to find a walking ballistic gait, which is cyclic, with

instantaneous double supports and impulsive torques, and to study the effect of the

arm-swing. Furthermore, we compute a minimum of the cost functional, which is cal-

culated through the impulsive torques during the instantaneous double support phase.

The research of these minima is done as a function of the amplitude of the arm-swing.

The impulsive control torques, which are applied in the inter-link joints between the

neighboring single support phases are described by delta-functions of Dirac. Of course,

it is not possible to realize these impulsive control torques. Therefore, our approach

can be considered as asymptotic. Using this approach we can evaluate the role of the

arm-swing in the walking process.

The rest of the paper is outlined as follows. Section 2 is devoted to the biped model

presentation. Problem definition of the ballistic walking is given in Section 3. In the

same Section 3, the algebraic equations for the instantaneous double support are de-

signed. The effort cost functional for the impulsive control is presented in Section 4.

The results of simulation are shown in Section 5. Our conclusion and perspectives are

offered in Section 6.
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2 Biped Model

2.1 Physical parameters of the biped

For the seven-link biped (Figure 1) we use the physical parameters from [10]. The
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Fig. 1 The kinematic model with its DOF and link frames of the biped.

whole mass of the biped is 75 kg, its height is 1.75 m. Figure 2 the distance between

the knee joint and the center of mass for the shin is: Ss = 0.324 m, between the hip

joint and the center of mass for the thigh: St = 0.18 m, between the hip joint and

the center of mass for the trunk: ST = 0.386 m, and between the shoulder joint and

the center of mass for the arm: Sa = 0.33 m. The head mass is included in the trunk

that its length is lT . The distance between the shoulder joints and the hip joints is:

l5 + l10 = Sb = 0.5 m. Table 2.1 gathers the masses, the lengths and the inertia

moments for each link of the biped.
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Fig. 2 Schematic in the sagittal plane of the biped with the position of the centre of mass of
each link.

2.2 Geometric description of the biped

The studied anthropomorphic biped is depicted in Figure 1. All bodies (links) are

supposed massive, rigid, and are connected by revolute joints. The biped has a pelvis,

a torso, two identical one-link arms, and two identical two-link legs with one degree-of-

freedom revolute knees that are terminated with ”point” feet. Each hip and shoulder

contains a revolute joint with one degree of freedom. The torso has a one degree-

of-freedom revolute joint. This 3D biped is represented as a tree structure. In single

support, the stance leg tip is assumed to have no sliding motion, no take-off and no

yaw motion. Then the stance leg tip acts as a passive pivot in the sagittal and frontal

planes, and is modeled as a foot with two unactuated degrees of freedom. The friction

ground reaction is assumed sufficiently large to avoid a sliding sole around the vertical

axis. This model corresponds to the case of a biped with feet when the size of the feet

decreases to zero. The stance leg tip is the base of the tree structure.

Remark. During the rectilinear human walking the yaw motion in the ankle joint of

the stance leg is small. The yaw motion of the biped is introduced by the yaw motion

of the torso.

In Figure 1(a) the position of frames is defined according to the Denavit-Hartenberg

convention. The vector of the nine generalized coordinates is q = [q1, q2, q3, q4, q5, q6, q7, q8, q9]
t.

The absolute angles q1 and q2 are respectively the roll and pitch angles of the stance

leg, Figure 1(a). The variables q3 and q9 describe the relative joint angles of the stance-

leg and swing-leg knees, respectively. The variable angle q4 is the joint angle of the

stance leg hip relative to the pelvis. The variable angle q5 is the joint angle to describe

the yaw motion of the torso relatively to the pelvis. The variable angle q8 is the joint

angle of the swing leg hip relative to the pelvis. Variables q6 and q7 describe the joint

angles of the two arms with respect to the torso. The joint angles q1 and q2 are unac-
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Thigh Shin Trunk Arm

Length (m) lt = d4 = 0.41 ls = d3 = 0.497 lT = 0.625 la = 0.66

Mass (kg) mt = 8.6 ms = 4.6 mT = 16.5 ma = 4.6

Inertia in x Itx = 0 Isx = 0 ITx = 11.3 Iax = 0
(kg.m2)

Inertia in y Ity = 0.7414 Isy = 0.0521 ITy = 11.3 Iay = 0.7414
(kg.m2)

Inertia in z Itz = 0.7414 Isz = 0.0521 ITz = 11.3 Iaz = 0.7414
(kg.m2)

Hip
distances (m) l4 = l9 = 0.20

Shoulder
distances (m) l6 = l7 = 0.22

distance
Shoulders/Torso l10 = 0.5

Joint (m)
Torso Joint
/Pelvis (m) l5 = 0.0

Table 1 Biped’s Parameters

tuated, due to the passive contact, while q3, q4, q5, q6, q7, q8, and q9 are independently

actuated.

2.3 Equations of motion of the biped in swing phase

The equations of motion of the 3D seven-link biped in the swing phase are obtained

through the Newton-Euler method, and they have the following symbolical form,

[

F0

Γ

]

= NE(q, q̇, q̈) (1)

where Γ is the 7 × 1 joint torques vector, F0 is a 4 × 1 vector composed of the three

components of the ground force and one moment around the vertical axis on the stance

leg tip. The number of degrees of freedom is nine, but there are only seven torques.

This means that the biped is an under actuated mechanism during the single support

phase.

Remark:

– At the impact, the previous supporting foot becomes the swing foot, and its velocity

after impact can differ from zero. Consequently, the modeling of the biped must be

able to describe a non-fixed stance leg tip. Since the dynamic model is calculated



6

with the Newton-Euler algorithm, it is convenient to define the linear velocity of

the origin of frame R0 with the Newton variables. This origin coincides with the

stance leg tip. Furthermore, the biped’s hips have a single revolute joint. There are

no adduction-abduction movements and internal-external rotation. Then for the

impact model, or the double support model the biped’s position with respect to an

inertial frame can be expressed by X = [x0, y0, z0,q
t]t, where x0, y0, and z0 are

the Cartesian coordinates of the origin of frame R0.

2.4 Double Support

During the biped’s gait, an impact occurs at the end of a single support phase, when

the swing leg tip touches the ground. At the instant of impact, denoted by T , the

double support phase is assumed instantaneous. At the instant of the passive inelastic

impact, the biped looses energy. Therefore, the velocity vector after the impact will not

be the desired one, if the bearing surface is horizontal. Then for the next ballistic step

the desired initial velocity vector will not be reached. As a consequence, a complete

walking cyclic gait of the biped cannot be realized on a horizontal surface without

active torques. However, theoretically, around the instantaneous double support it is

necessary to define impulsive torques in order to ensure the desired velocity jump, see

Formalskii [10], [11], Hurmuzlu, and Chang [14]. In the next Section, it is shown how

to define these impulsive torques.

3 Ballistic motion and impulsive control: Problem definition

3.1 Single support

In the single support phase, the stance leg tip is assumed to act as a passive pivot in

the sagittal and frontal planes with no yaw motion, no sliding motion, no take-off. In

this case, it is possible to model the biped as a manipulator robot with a tree structure

and nine degrees of freedom. The Lagrangian dynamic model of the biped in the swing

motion can be presented under the form of the following matrix equation

D(q)q̈+C(q, q̇) +G(q) = BΓ. (2)

Here D(q) is the symmetric, positive definite 9 × 9 inertia matrix; C(q, q̇) and G(q)

are the 9 × 1 vectors of the centrifugal, Coriolis and gravity forces respectively. The

9× 7 matrix B = [07×2, I7×7]
t is used to indicate whether a joint is actuated or not.

The notations 07×2 and I7×7 define the zero 7×2 matrix and the 7×7 identity matrix,

respectively. All matrices and vectors D, C, and G are calculated through the Newton

Euler equations.

Let q(0) be the initial configuration of the biped at time t = 0. We assume that in

the sagittal plane, the front and hind legs are the stance and swing legs respectively.

The final configuration of the biped in the single support phase at the given time

t = T is noted q(T ). Let this given configuration be similar to the initial configuration

with the legs swapped. Let L be the length of the step corresponding to a single

support. We consider a ballistic motion during the single support phase with Γ = 07×1.

Consequently, the equation (2) for ballistic motion becomes:

D(q)q̈+C(q, q̇) +G(q) = 09×1. (3)
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To design the ballistic walking, it is necessary to find the solution q(t) of the matrix

equations (3) with the given boundary conditions q(0) and q(T ). We have to find

the initial velocity vector q̇(0) such that solution q(t), starting from the given initial

configuration q(0) with the velocity vector q̇(0), reaches the given final configuration

q(T ) at the given time T . The given boundary conditions q(0) and q(T ) are chosen

such that the positions of the locomotor system and the trunk of the biped are similar

to human configurations. This boundary value problem can be numerically solved using

a Newton method with vector q̇(0) unknown. The motion of the biped is admissible,

if the vertical component of the ground reaction in the stance leg is positive (directed

upwards), and if the swing leg moves over the ground for 0 < t < T . We check these

constraints after solving the boundary value problem - a posteriori. The ground reaction

is calculated from (1) using the forward and the backward recursions.

After solving the boundary value problem, the vector of the initial velocities q̇(0) is

known. We denote it by q̇a. If the initial conditions q(0), q̇a are known, then by

integration of the system (3) the vector of the terminal velocities q̇(T ) can also be

found. We denote it by q̇b. The stance point foot is defined as the origin point of frame

R0 during the ballistic motion. Then in order to write the impulsive impact equations

for the initial time and the final time of the ballistic motion, we introduce the extended

velocity vectors Ẋa = [0, 0, 0, (q̇a)t]t and Ẋb = [0, 0, 0, (q̇b)t]t.

3.2 Structure of double support phase

The Lagrangian dynamic model of the swing motion, which takes into account the

3× 1 ground reaction Rj for the supporting leg j (j = 1 or 2) can be presented in the

following matrix form:

DeẌ+Ce(q, q̇) +Ge(q) = BeΓ + J
t
jRj (4)

Here De(q) is the symmetric, positive definite 12 × 12 inertia matrix; Ce(q, q̇) and

Ge(q) are the 12×1 vectors of the centrifugal, Coriolis and gravity forces respectively;

the 12 × 7 matrix Be = [07×5, I7×7]
t is used to indicate whether a joint is actuated

or not; Jj(q) (j = 1, 2) are the 3 × 12 Jacobian matrices of constraint functions. The

Jacobian matrix Jj(q) can be calculated with the backward recursion of the algorithm

of Newton-Euler, by considering the velocity and acceleration of each link as null. These

constraints are relative to the contact between the ground and the tip of the stance leg

j. Setting to zero the acceleration of the stance leg tip

Jj(q)Ẍ+Hj(q, q̇) = 0 (5)

implies that the Cartesian coordinates of the leg tip j do not change, if its initial

velocity is null. Hj(q, q̇) = J̇jẊ is a 3× 1 vector.

Let us consider the current ballistic motion on the stance leg 1 and the following

ballistic motion on the stance leg 2. Let the final velocity vector Ẋb of the current

ballistic swing motion and the initial velocity vector Ẋa of the next ballistic swing

motion be known from the solution of the boundary value problem1 and the numerical

integration of the matrix equation (3) or (4) with Γ = 0, ẍ0 = ÿ0 = z̈0 = 0. Let

us apply the impulsive torques in the joints with the intensity vectors I− and I+,

1 Therefore there is a permutation operation between Ẋa and the solution of the boundary
value problem to take into account the exchange of the role of both legs.
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respectively just before and just after the passive impact with the ground to create a

complete cyclic motion. Then we divide the instantaneous double support phase into

three sub-phases and detail these sub-phases, which are presented in Figure 3.

Fig. 3 Decomposition of the impulsive impact.

– The swing leg 2 touches the ground at the end of the ballistic single support motion

on leg 1, and an impact occurs. Just before contact with the ground, in the first sub-

phase at time T−, impulsive torques Γ−(t) = I−δ(t−T−) are applied at the seven

inter-link joints. Here δ(t−T−) is the Dirac delta-function. At the same instant T−,

the impulsive ground reaction R−

1
= I−

R1
δ(t − T−) is applied in the hind leg tip.

Here I−
R1

(I−R1x
, I−R1y

, I−R1z
) is the vector of the magnitudes of the impulsive reaction

in leg 1. Under the impulsive torques, the velocity vector Ẋ of the biped changes

instantaneously from the value Ẋb to some value Ẋ−. The corresponding equations

for the velocities jump can be obtained through the integration of equations of

motion (4), (5) for the infinitesimal time from T− to T . The torques provided by

the Coriolis and gravity forces have finite values. Thus, they do not influence the

velocity jump:

De[q(T )](Ẋ
− − Ẋb) = BeI

− + Jt
1[q(T )]I

−

R1
(6)

J1[q(T )](Ẋ
− − Ẋb) = 03×1 (7)

Here q(T ) denotes the configuration of the biped at the instant of impulsive

actions (at the double support). This configuration does not change at the in-

stants of the first, second, and third sub-phases. The velocity of the hind leg

tip remains zero after the first sub-phase. Then the biped has the velocity vec-

tor Ẋ− = [0, 0, 0, (q̇−)t]t just before the next (second) sub-phase, which is a

passive impact with the ground.

– The second sub-phase is assumed to be a passive impact, i.e. without torques

applied in the inter-link joints, absolutely inelastic, and such that the legs do not

slip. Given these conditions, the ground reactions at the instant of an impact can be

considered as impulsive forces and defined by the delta-functions R2 = IR2
δ(t −

T ). Here IR2
(IR2x

, IR2y
, IR2z

) is the vector of the magnitudes of the impulsive

reaction in leg 2, see [10]. The corresponding equations for the velocities jump can

be obtained through the integration of the matrix equation (4) for the infinitesimal

time. The velocity of the stance leg tip 1 before an impact is equal to zero.
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Generally speaking, two results are possible after the passive impact, if we assume

that there is no slipping of the leg tips. The stance leg lifts off the ground or both

legs remain on the ground. Numerical investigations were carried out after impact

to check the ground reaction in the stance leg tip and the linear velocity of this leg

tip. We considered numerically both cases. From these numerical investigations we

concluded that the first case (stance leg lifts off the ground) takes place in all our

variants. In this case, the vertical component of the velocity of the taking-off leg tip

just after the impact is directed upwards. Also there is no interaction (no friction,

no sticking) between the taking-off leg tip and the ground. The ground reaction

in this taking-off leg tip is null. If we assume that after the impact the stance leg

remains on the ground (second case), the vertical component of the ground reaction

in this leg must be null or directed upwards. But our calculations show that this

component is directed downwards. This means that both legs cannot remain on

the ground. For the first case, the impact equations can be written in the following

matrix form:

De[q(T )]
(

Ẋ
+
− Ẋ

−

)

= J
t
2[q(T )]IR2

(8)

Here Ẋ+ is the velocity vector just after an inelastic passive impact. The swing leg

2 after the impact becomes a stance leg. Therefore, its tip velocity becomes zero

after the impact,

J2[q(T )]Ẋ
+ = 03×1 (9)

– The swing leg 1 takes off the ground at the second sub-phase, which is the passive

impact. Then, the next ballistic single support motion on leg 2 starts. However,

before the next ballistic swing motion (just after the take off), in the third sub-phase

at time T+, impulsive torques Γ+(t) = I+δ(t − T+) are applied in the inter-link

joints to change the velocity of the biped instantaneously from the velocity vector

just after passive impact Ẋ+ to the known velocity vector Ẋa. Integrating the

differential equations (4) we come to the following matrix relation:

De[q(T )](Ẋ
a − Ẋ+) = BeI

+ + Jt
2[q(T )]I

+

R2
(10)

System (6)-(10) is composed of 42 scalar equations to find 47 unknown variables,

which are the components of the vectors: Ẋ−(12 × 1), I−(7 × 1), I−
R1

(3 × 1) (for

the first sub-phase), Ẋ+(12× 1), IR2
(3× 1) (for the second sub-phase), I+(7× 1) and

I+
R2

(3 × 1) (for the third sub-phase). Then the problem of impulsive control has an

infinite number of solutions. But if the number of equations is less than the number

of unknown variables, it is possible to extract a unique solution minimizing some cost

functional. The components of the above-mentioned vectors are the subjects of the

minimization. Among this set of components, five can be defined as parameters to

minimize a cost functional.

4 Effort cost functional of impulsive control

The choice of a cost functional for a walking biped is complex. Assumptions can be

stated like the actuators are not regenerative - energy cannot be restored in the muscles.

Then the cost functional can be defined from the energy consumption similarly to

Channon et al. [15] and Formal’skii [10] or from the torques, see Chevallereau and

Aoustin [16]. We do not know if a cost functional is optimized during a human walking,
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and if yes, which cost functional. To try to introduce the muscle effects, we have chosen

the following effort cost functional:

W =

7
∑

i=1







T
∫

T−

∣

∣

∣
Γ−

i (t)
∣

∣

∣
dt+

T+
∫

T

∣

∣

∣
Γ+
i (t)

∣

∣

∣
dt







(11)

But Γ−(t) = I−δ(t− T−) and Γ+(t) = I+δ(t− T+). Here δ(t) means delta-function.

Then after calculating the integrals in expression (11) the effort cost functional be-

comes:

W =

7
∑

i=1

[∣

∣

∣
I−i

∣

∣

∣
+
∣

∣

∣
I+i

∣

∣

∣

]

(12)

In simulation, with a given length L and a time period T of the step, for each arms

amplitude, we choose a unique solution of the system (6) - (10) by minimizing quantity

(12). We take into account the following constraints: I−
R1x

> 0, IR2x
> 0, and I+

R2x
> 0.

Furthermore, we ensure that the linear vector of the swing leg tip just before the passive

impact is directed to the ground and just after the passive impact is directed to the top.

Therefore, our minimization problem is the problem of parametric minimization with

constraints. We used the SQP method (Sequential Quadratic Programming) [17], [18]

with the fmincon function of Matlab R© to solve this problem numerically.

We consider the minimal quantity (12) corresponding to this solution as the effort

cost functional for the biped walking with given L, T , and arms amplitude.

5 Simulation

During the walking, the swing leg moves over the support and bends with knee forward.

The stance leg remains almost straight (the oscillation of the stance leg knee angle q3
is less than 0.4◦). The ballistic motion is valid because the vertical component of the

ground reaction in the stance leg is always positive (directed upwards). These features

have not been prescribed in the statement of the problem previously. There is one

oscillation in the yaw joint of the trunk (variable q5); the amplitude of this oscillation

is close to 1.0◦. There is a little rotation described by the roll angle q1 of the biped in

its frontal plane.

For several values of the step length L and of the time period T , we numerically

studied the influence of the arm swinging amplitude on the effort cost of the biped

walking.

In Figure 4, the effort cost functional as a function of the amplitude of the arm-

swinging is shown for the fixed time period T = 0.45 s and a varying step length L

(L = 0.40 m, 0.45 m and 0.50 m). We can see from Figure 4 that for T = 0.45 s

and L = 0.45 m with amplitude 23.5◦, the effort cost functional is minimal. Conse-

quently, this amplitude is optimal for this particular time period and the step length.

These numerical results enhance the observations of experiments of Collins [2] that arm

swinging minimizes energy use in locomotion. This amplitude of the optimal swing of

the arms is close to the human data that we can find in [3]. If the length of the step

increases, the effort cost functional increases; the optimal amplitude of the arm-swing

also increases. The walking of a planar biped with arms is studied by Aoustin and

Formal’skii [21]. The physical parameters of the biped are the same as considered here.



11

5 10 15 20 25 30 35 40 45 50
100

105

110

115

120

125

130

135

W
(N

. m
)

(◦)

Fig. 4 Normal-gait: for T = 0.45 s, cost functional W versus motion amplitude of the arms
[degrees] L = 0.40 m (dashed), L = 0.45 m (solid), and L = 0.50 m (dashdot).

For the case L = 0.45 m, T = 0.45 s, the optimal arms swinging amplitude found is

35.2◦. It seems that value 23.5◦, which is obtained here, is closer to the arm amplitude

for the real human walking, see Collins et al. [2]. In literature, see Pontzer et al. [3] for

human walking the observed value of the amplitude of the arms swinging is close to

20◦.

We have compared the values of the effort cost criterion W for the normal gait (like

in human gait - in opposite phase) and the anti-normal gait (each arm swings in phase

with the ipsilateral leg). For the case L = 0.40 s, T = 0.45 s the optimal amplitude of

the arms for the normal gait is 21.1◦ and W = 101.22 N .m. But in this case for the

same amplitude of the arms and for the anti-normal gait W = 106.07 N .m. For the case

L = 0.45 m, T = 0.45 s the optimal amplitude of the arms for the normal gait equals

23.5◦, and W = 101.9 N .m. But in this case for the same amplitude of the arms and for

the anti-normal gait W = 111.5 N .m. For the case L = 0.50 m, T = 0.45 s the optimal

amplitude of the arms for the normal gait is 25.76◦ and W = 103.92 N .m. But in this

case for the same amplitude of the arms and for the anti-normal gait W = 117.9 N .m.

So, for these three cases the effort cost criterion W is less for the normal-gait. The

different step lengths and time periods T = 0.48 s, and T = 0.50 s were considered. In

all considered cases, the effort cost criterion W is greater for the anti-normal gaits.

In Figure 5, with the parameters L = 0.45 m, T = 0.45 s, and the amplitude of

the arms equals 23.5◦, for two successive steps the behavior of the angular momentum

around the vertical axes crossed the stance point feet is drawn. The angular momen-

tum is shown for the normal gait (see the solid line) and for the anti-normal gait (see

the dashed line). Remind that at the instant of the double support the stance leg be-

comes transferring one, and the transferring leg becomes stance one. Therefore, the

angular momentum is calculated for the first step around one vertical axis, and for

the next step around another vertical axis. These successive steps are similar (sym-

metrical), therefore these two curves are symmetrical with respect to point (0.45, 0).

For the Normal gait the angular momentum, at the instant T+ - just after to touch
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Fig. 5 For two successive steps, profiles of the angular momentum with respect to the vertical
axes crossed the stance point feet, in Normal gait (solid line) and Anti-Normal gait (dashed
line).

the ground, is equal to 7.65 kg.m2/s and to 11.98 kg.m2/s for the Anti-normal gait.

We have calculated also the angular momentum of the biped around the vertical axis

crossed the tip of the transferred leg at the instant T− - just before to touch the

ground. This angular momentum is equal to −11.94 kg.m2/s for the Normal gait and

to −16.04 kg.m2/s for the Anti-Normal gait. So, the jump of the angular momen-

tum for the Normal gait at the instant of double support is equal to the difference

7.65 kg.m2/s − (−11.94 kg.m2/s) = 19.59 kg.m2/s. For the Anti-normal gait, this

jump equals 11.98 kg.m2/s − (−16.04 kg.m2/s) = 28.02 kg.m2/s. Thus, the jump of

the angular momentum for the Normal gait is essentially less than the jump of the

angular momentum for the Anti-normal gait. This means that the yaw torque in the

double support, which is produced by the ground reaction torque at the supporting

leg tip, and by the ground force at the other leg tip, is essentially less for the Normal

gait than for the Anti-normal one. We observe this result with several ballistic walking

gaits. But this difference of jump of the angular momentum, between the anti-normal

mode and the normal mode for the arm swing, is less when the amplitude of this arm

swing decreases.

The described results about optimal amplitude of the arm-swing and the behavior

of the angular momentum complete the studies of Collins et al [2], [1], Bruijin et al [4],

Eke-Okoro et al [22], and Humberger [5]. The arms mainly have a role of manipulators

in daily life. But in the free balancing motion (without payload) they adopt the optimal

amplitude. This amplitude increases with the velocity of the biped to balance the

dynamic effects of the swing leg and thereby to reduce the effort cost functional.
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6 Conclusion

Using ballistic trajectories and an impulsive control, numerically we have shown the

existence of an optimal amplitude of the arms swinging for a 3D biped walking. The

optimal amplitudes of the arms swinging lie between 20 and 26 degrees. For three

walking gaits this optimal amplitude increases with their velocity. The effort cost func-

tional for the walk is minimal, if the arms swing with optimal amplitude. For the gait

with motion of the arms and legs in phase, the effort cost functional is higher than

for the gait with motion of the arms and legs in opposite phase (normal, like human

gait). Our perspectives are to add a joint in each hip, and to design ballistic walking to

follow curved trajectories, such as circles. The justification of the effort cost functional

is still an open problem, which have to be an open future research topic to improve

our understanding of the human walking gait.
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