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A UNIFIED VIEW OF CLASS-SELECTION WITH PROBABILISTIC

CLASSIFIERS

HOEL LE CAPITAINE

Abstract. The possibility of selecting a subset of classes instead of one unique class for

assignation is of great interest in many decision making systems. Selecting a subset of

classes instead of singleton allows to reduce the error rate and to propose a reduced set

to another classifier or an expert. This second step provides additional information, and

therefore increases the quality of the result. In this paper, a unified view of the problem of

class-selection with probabilistic classifiers is presented. The proposed framework, based

on the evaluation of the probabilistic equivalence, allows to retrieve class-selective frame-

works that have been proposed in the literature. We also describe an approach in which

the decision rules are compared by the help of a normalized area under the error/selection

curve. It allows to get a relative independence of the performance of a classifier without

reject option, and thus a reliable class-selection decision rule evaluation. The power of

this generic proposition is demonstrated by evaluating and comparing it to several state

of the art methods on nine real world data sets, and four different probabilistic classifiers.

1. Introduction

The process of accurately recognizing, or discriminating, real world observations con-

tained in a database is a fundamental task in data analysis [11]. Considered as a pattern

recognition problem, there has been many approaches for the classification of the objects

in known classes. Naturally, the more prior information, the more the classification algo-

rithm can be built according to this knowledge, therefore leading to a powerful recognition
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metric.
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system. In the special case where prior probabilities and conditional densities are known,

the Bayes decision rule is known to be optimal with respect to the error rate. However,

real distributions are never known in advance, so that the models do not reflect correctly

the data. Moreover, in many recognition problems, the data to be classified is issued from

mixed and/or noisy classes. In particular, it is not uncommon to find classes that are

overlapping in the feature space, so that classification is ambiguous [21]. Due to noise or

same lack of information, some samples do not even belong to any known class (known as

the zero-shot learning problem [19]).

Number of investigations in the field of pattern recognition focus on problems with a

large number of classes (e.g. face identification, image classification, character recognition

and so on ...). Therefore, the possibility of selecting a small subset of classes, which can be

associated to a new, larger class, containing the previous classes, shows a growing interest

[8]. Another growing interest resides in multi-label classification [38], where a sample can

be associated to a subset of true labels.

Selective classification must be distinguished from multi-label classification, in the sense

that in the case of selective classification, the true output is still a singleton, as opposed

to the several labels of samples in multi-label classification. However they show a similar

behavior since they both associate samples to subset of classes, but loss function, error

criterion used for the generation of the subsets are different, as we will see later. The interest

of this technique is immediate in numerous applications such as text categorization [37],

medical diagnosis [6], bioinformatics [13], recommender systems [34] or scene classification

[2]. For instance, in character recognition, it is very useful to reduce the number of possible

candidates from 26 letters to 2, and then use domain knowledge to infer the true letter

with more certainty.

Faced with overlapping and or noisy classes, authors have presented a number of various

propositions for multiple class-selection. These propositions differ from the usual reject



A UNIFIED VIEW OF CLASS-SELECTION WITH PROBABILISTIC CLASSIFIERS 3

option, where a classifier may withdraw a sample instead of classifying it, see e.g. [40] [1]

[16].

The two major approaches can be summarized as follows. The first approach tries to

model the fact that an observation may belong to several clusters. For instance, in [20],

the authors relax the constraint that hard membership vector sums to one in a mixture

model, allowing 2c possible assignments, where c is the number of classes. Note that all

these approaches are built in an unsupervised setting.

The second one, that represents the vast majority of approaches, relies on decisions

made on the basis of supervised classifier’ outputs. In other terms, a classifier is designed

without considering the possibility of selecting several classes, but posterior probabilities,

or decision functions, are used to determine the number of assignments. These approaches

are generally based on three families of criteria, leading to different solutions.

The first criteria is related to the cost of misclassification and the cost of selecting a

large number of classes1. This kind of criteria has been one of the first propositions [18]

aiming at selecting several classes for an unique sample. Based on the two costs, an optimal

decision rule is derived, and allows to select up to c classes for incoming samples.

The second kind of criteria relies on information-theoretic considerations of the proba-

bilistic tuple [29, 30]. For instance, one may want to maximize the dispersion around the

ambiguous value of posterior probability 0.5 for a binary classification problem.

The last family of approaches is based on performance measures [15]. There are a

number of different performance measures/ The most prominent works on this topic come

from usual error rates [15], ROC curves [29], or precision-recall [8, 7].

In this paper, we focus our attention on the second approach, but the formulation allows

to open bridges (and equivalences) to the first and the third approaches.

1It differs from the reject option, where the considered costs are the misclassification and the abstaining
ones.
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The Bayesian statistical decision theory is taken as the basis of the analysis. Therefore,

we start with the following three factors: the distribution family p(x|θ), prior distribution

for the parameters p(θ) and a loss function `(θ, α), where α is an action of the decision

space2 A [36]. An effective comparison criterion is the posterior expected loss, which can

be written as

(1) R(θ, α) =

∫
Θ
`(θ, α)p(θ|x)dθ

where Θ is the state space (we consider in the sequel the discrete case). The posterior

probability p(θ|x) is obtained thanks to the Bayes theorem, knowing the distribution family

and priors on θ ∈ Θ. Under the Bayes principle, the optimal rule is obtained by choosing

for x the action α that minimize the expected loss:

α(x) = arg min
α∈A

R(θ, α)

Naturally, if the expected loss (1) is minimum for all x, then the overall risk is also mini-

mized. If one seeks to minimize the error probability of classification, then the zero-one loss

function is used. One may also allow other actions than a binary and strict association to

classes. For instance, the reject option consists in adding another action in A [5, 40]. The

action leads to refuse, or withhold, the decision for the current sample. This is particularly

useful in close cases i.e. when the largest posterior probabilities are close. Naturally, the

no decision action must have a cost, or a loss, that needs to be modeled under the Bayes

minimum risk setting.

In this paper, we are interested in an even more increased action space A. In particular,

we consider the power set of Θ. Therefore, each sample x can be associated to one element

of the power set. The subset selection procedure is described in the next section.

2The decision space is composed of possible outcomes of the system.
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The paper is organized as follows. The first part (Section 2) of this work follows and

extends the works in [18] and [30]. The second part (Section 3) is dedicated to the proba-

bilistic equivalence definition, extending the work proposed in [27]. The third part (Section

4) enlarges this approach by learning the probabilistic equivalence such that expected num-

ber of classes chosen for an incoming sample is close to the number of classes selected for its

closest neighbor(s). In Section 5, experimental results on different data sets, using different

classifier providing posterior probabilities, are given. The aim of this part is not to discuss

the relative superiority of a classifier over another, but rather to observe the behavior of

class-selective decision rules for a given classifier. Finally some concluding remarks are

drawn in Section 6.

2. Decision rules

2.1. Reject option, or how to abstain. In a supervised setting, we consider n pattern

xj (j = 1, · · · , n) that belong to one of the c classes of a problem, i.e. ∃ i ∈ {1, · · · , c} such

that xj ∈ θi, for every j. For writing convenience, the set {θ1, · · · , θc} is denoted Θ. Let

us assume that we know both the prior probabilities p(θi) and the conditional densities

p(x|θi). The probability that an incoming observed sample x belongs to the class θi is

given by the Bayes’ formula:

(2) p(θi|x) =
p(x|θi)p(θi)

p(x)
,

where p(x) is the mixture density function, also called evidence. This function ensures

that posterior probabilities over Θ sum up to one. Once all posterior probabilities have

been obtained, the Bayes decision rule consists in choosing the class for which the posterior

probability is the maximum (MAP rule). Under this rule, the probability of error is mini-

mized. An elegant way to allow other actions than exclusive classification is to introduce a

loss function, and to minimize the overall risk. Formally, we suppose that we have a finite

set of actions αj , the loss function `(αj |θi) denotes the loss incurred when choosing action
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αj when the true class is θi. Thus, the conditional risk can be written

(3) R(αj |x) =

c∑
i=1

`(αj |θi)p(θi|x).

Denoting the decision function α(x) for each x, the overall risk is obtained as follows

(4) R =

∫
R(α(x)|x)p(x)dx.

If α(x) is such that the conditional risk is minimum, then the overall risk is minimized.

Computationally, it consists in obtaining the conditional risk for every possible action, and

choose the action corresponding to the minimum. This minimum overall risk is then called

the Bayes risk.

In close cases, i.e. when the largest posterior probabilities are close, it may be useful to

withhold the decision, depending on the cost of the action no decision. The first attempt

to cope with such actions has been proposed by Chow [4], thereby introducing the reject

option. This option is primarily used in particular applications where the cost of misclas-

sification is large, with the possibility of leaving human experts classify the ambiguous

cases, e.g. medical diagnosis, nuclear plant monitoring, automatic driving, and so on ...

The reject option of Chow minimizes the error rate given a reject rate, and vice versa. The

Chow’s rule can be obtained as follows.

Proposition 1. Consider the loss function defined by

(5) `(αj |θi) =


0 j = i

Cr j = c+ 1

Ce otherwise

where Ce is the cost of an error, and Cr is the cost of rejection. Then the corresponding

minimum risk is equivalent to Chow’s rule [4].
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Proof. Choosing the action αj for a sample means that the conditional risk R(αj |x) is

lower than R(αj+1|x). It is straightforward to derive the following decision rule (referred

to as Chow’s rule):

• Decide θj if p(θj |x) ≥ p(θi|x) for all i, and if p(θj |x) ≥ 1− Cr/Ce = 1− t.
• Reject the sample x otherwise.

�

If t = 0, samples are always rejected because the cost of rejection is null. Conversely, if

t = 1, then the cost of rejection and error are equal, and the decision rule reduces to the

MAP (maximum a posteriori) rule. Naturally, t is reduced to Cr/Ce because the cost of

correct classification is zero. However, the general term for the threshold is (Cr−Cc)/(Ce−
Cc), where Cc is the cost of correct classification. The decision rule is illustrated in Figure

1b for the case of two classes. In a second paper [5], Chow also gives a detailed analysis of

the error-reject trade off. In particular, the author proves that the error probability e(t) is

an increasing function of t, while the reject probability r(t) is a decreasing function of t.

More precisely, we have ∂e/∂r = −t.
In [10], Dubuisson and Masson introduced the option of distance reject. Contrary to the

rule proposed by Chow, it removes the restriction that a pattern belongs to one of the c

classes. In particular, a distance reject class is introduced, and identifies the samples having

a small similarity to the prototypical vectors representing each classes. As the ambiguity

rejection, the distance rejection allows to reduce the error probability of the classifier.

According to [10], a sample x is rejected if its mixture density function p(x) is lower than a

threshold θ, as illustrated in Figure 1a. However, as pointed out in [32], the threshold is not

related the class distributions but to the mixture density, which can be problematic with

distributions having different parameters. To circumvent this problem, the authors propose

to use multiple distance reject thresholds, one for each class. Their approach to rejection

is related to generative models, since a pattern is rejected if its maximum conditional
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p(x)

x
h

distance
rejection

(a) Distance rejection

p(θ1|x) p(θ2|x)

x

1
h

ambiguity
rejection

(b) Reject option

p(θ1|x) p(θ3|x)
p(θ2|x)

x

1

h

1 1,2 1,2,3 2,3 3

subset
selection

(c) Class-selective decision rules

Figure 1. Illustration of the distance rejection on a mixture density (a),
ambiguity rejection using Chow’s rule where h = 1− t (b) and selection of
subset of classes using Ha’s rule, with h = t (c).

probability p(x|θi) is lower than a class-dependent threshold hi, while Chow’s work adopts

a discriminative approach, where posterior probabilities p(θi|x) are considered, see Figure

1b.

2.2. Multiple class selection. More recently, Ha introduced the class-selective schemes

[18]. In contrast with the previous rule, where the two choices are classification or rejection,

the class-selective schemes allow to select classes that are most likely to issue the pattern,

and reject the others. The feature space is then partitioned into 2c regions, corresponding

to the power set of the c classes, see Figure 1c for an example with c = 3 classes. Provided

posterior probabilities, there are a lot of solutions to partition the decision space. The
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most commonly used is probably to set a constant number n of classes, and select the n-th

larger posterior probabilities. However, the selected number of classes does not vary, and

samples close to class centers may be assigned to several classes. The constant risk (CR)

is another popular rule [17]. It consists in selecting the minimum number of classes such

that the accumulated sum of posterior probabilities is lower than a threshold. In order to

obtain a reasonable partition, Ha proposes the following loss function

(6) `(αj |θi) = `e(αj |θi) + `n(αj)

The first part is related to usual loss functions, and helps to denote the cost of making an

error:

(7) `e(αj |θi) =

 0 if θi ∈ Sj
Ce otherwise

The second part penalizes the selection of a large number of classes. If the cardinal of

the selected subset is large, then the probability of error decreases, but many classes are

remaining which does not help the final exclusive classification by the expert. The loss

function is written as follows

(8) `n(αj) = Cn.card(Sj)

where Cn denotes the cost incurred when selecting classes. Using this loss, the conditional

risk becomes

(9) R(αj |x) = Cerisk(x) + Cncard(Sj)

where risk(x) is the conditional probability that the true class of x is not in the subset Sj

of selected classes. In other terms, the sum of posterior probabilities p(θi|x) such that i

does not belong to Sj . Minimizing the conditional risk gives the optimal number of selected
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classes with respect to the error rate (see [18] for details on derivation). Such minimization

gives the optimal number of selected classes n?(x, t) for the sample x and a given threshold

t as follows

(10) n?(x, t) = min
i∈[1,c]

{
i |p(θ(i+1)|x) ≤ t

}
where t = Cn/Ce, and p(θ(i)|x) is the decreasing sequence of posterior probabilities, i =

1, · · · , c. The author uses the convention p(θ(c+1)|x) = 0 so that c classes are selected if

none of the posterior probabilities is strictly greater than t.

Proposition 2. If one keeps the loss function `n as defined by (8), and defines the more

general loss function `e as

(11) `e(αj |θi) =

 Cc if θi ∈ Sj
Ce otherwise

where Cc is the cost of correct classification, then the optimum number of classes is given

by (10), where t is given by

(12) t =
Cn

Ce − Cc

Proof. Using both losses, the conditional risk can be written as follows

(13) R(αj |x) = Ce
∑
θi /∈Sj

p(θi|x) + Cc
∑
θi∈Sj

p(θi|x) + Cnn

where n = card(Sj). By convention, we have Ce > Cc, so that the conditional risk is

minimum when the n selected classes correspond to n maximum posterior probabilities.

This leads to the following conditional risk

(14) R(αj |x) = Ce

c∑
i=n+1

p(θ(i)|x) + Cc

n∑
i=1

p(θ(i)|x) + Cnn,
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which can be simplified into

R(αj |x) = −(Ce − Cc)
n∑
i=1

p(θ(i)|x) + Ce + Cnn,

= −
n∑
i=1

p(θ(i)|x) +
Ce

Ce − Cc
+ n

Cn
Ce − Cc

(15)

Let us denote Fn =
∑n

i=1 p(θ(i)|x), s = Ce
Ce−Cc and t = Cn

Ce−Cc . The conditional risk can now

be casted as a function of the number of selected classes and the sample x, i.e. R(n,x).

(16) R(n,x) = −Fk + s+ tn

Letting n? denoting the optimal number of selected classes, we have

R(n? + 1,x) ≥ R(n?,x)(17)

R(n? − 1,x) ≥ R(n?,x)(18)

Thanks to the convexity of (15), and using (17–18), we obtain

p(θ(n?+1)|x) ≤ t(19)

p(θ(n?)|x) ≥ t(20)

The two inequalities can be converted into (10), which concludes the proof. �

Naturally, setting the cost of correct classification to zero enables to retrieve the decision

rule proposed in [18]. The cost of correct classification is generally negative, since it is a

gain. If Cc is negative, then the threshold t decreases for fixed Ce and Cn, implying that

the accuracy increases.

In [22], the author proposes a new scheme for class selection. Starting from the ob-

servation that some outputs of Ha’s decision rule produce unwanted results, a new one is

proposed. The author does not write a loss function but directly defines the number of
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selected classes as a function of the difference of successive posterior probabilities

(21) n?(x, t) = min
i∈[1,c]

{
i |p(θ(i)|x)− p(θ(i+1)|x) ≥ s

}
One should note that (21) can be rewritten as

(22) n?(x, t) = min
i∈[1,c]

{
i |1− (p(θ(i)|x)− p(θ(i+1)|x)) ≤ t

}
where we use s = 1− t = (Ce − Cn)/Ce, in order to obtain a decision rule consistent with

the formulation adopted by Ha. In the sequel, (22) is used when referring to Horiuchi’s

rule. Naturally, the rule is not optimal with respect to the error rate given an average

number of selected classes. However, the author proves that it is optimum with respect

to the maximum distance between selected classes, given the average number of selected

classes. Another heuristic, proposed in [28], defined by

(23) n?(x, t) = min
i∈[1,c]

{
i|
p(θ(i+1)|x)

p(θ(i)|x)
≤ t
}
,

also uses a notion of similarity between consecutive posterior probabilities. The ratio comes

from the interpretation of consequent and antecedent in a logical implication. This rule is

denoted as LC (for Logical Confidence) in the sequel.

We restrict in this paper to standard approaches of class-selection (i.e. probability based

selection), but it should be noted that other strategies based on blockwise similarities [30]

or support vector machines [15] have been proposed.

2.3. A generic formulation. We propose to formulate adaptive class-selection decision

rules in a generic manner as follows

Proposition 3. An adaptive class-selective decision rule can be written as follows

(24) n?(x, t) = min
i∈[1,c]

{i |φi(p(θ|x)) ≤ t}
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where p(θ|x) is the vector [p(θ(1)|x), · · · , p(θ(c)|x)]T , and φi a function of individual poste-

rior probabilities that evaluates the ambiguity lying in p(θ|x).

Clearly, when φi is large, which mean that there is a high doubt concerning the decision,

then the corresponding decision, i.e. select i classes, is not convenient. This rule can be

interpreted as follows: take the minimum number of classes such that the corresponding

decision ambiguity is below a given threshold. Note that the threshold t can also be a

function of the observation x, the probabilistic vector p(θ|x), or both. Now, we consider

the different class-selective schemes that have been proposed, and how they can be written

with a convenient φi function. It is interesting to see that even the decision rule of Chow,

despite it is not a class-selective decision rule, can be written using (24). By setting

φi = 1− p(θ(1)|x), we obtain the Chow’s decision rule, keeping the convention that if there

is no i such that the inequality holds implies that n?(x, t) is set to c. The constant risk

rule can also be written under this form, taking

(25) φi = 1−
i∑

j=1

p(θ(j)|x)

Naturally, it is straightforward to obtain the rules of Ha and Horiuchi by taking φi =

p(θ(i+1)|x) and φi = 1 − p(θ(i)|x) + p(θ(i+1)|x), respectively. There exists many other

ambiguity measures, e.g. entropy, measure of fuzziness, and so on. Using these information-

theoretic based measures for class selection is quite straightforward by using Proposition 3.

For instance, in this paper, and for comparison purpose, we propose to use the normalized

entropy as the measure φi:

(26) φi = 1− 1

log c

i∑
j=1

p(θ(j)|x) log(p(θ(j)|x))



14 HOEL LE CAPITAINE

The normalization factor 1
log c is here to ensure that φi lies into the unit interval, but does

not change the dynamic of the measure. In the next section, a new decision rule that

includes all traditional decision rules is presented.

3. Probabilistic equivalence

3.1. Probabilistic metric spaces. In this section, we propose to design a new decision

rule based on the equivalence of posterior probabilities. More precisely, the equivalence

is obtained by considering a probabilistic metric (PM) space where a convenient metric is

chosen between two values.

Formally, a metric space consists of a set X and a metric d allowing to compute distances

between two points u, v lying in X. A PM space replaces the distance d(u, v) between the

two points by considering a distribution function Fuv, whose value Fuv(x), for any x in

X, corresponds to the probability that d(u, v) ≤ x. However, one of the most important

property of distances is that they hold the triangle inequality d(u,w) ≤ d(u, v)+d(v, w), for

(u, v, w) ∈ X3. The corresponding problem with distribution function relies on the com-

parison and relationships of Fuw, Fuv and Fvw. This is the rationale under the proposition

of Menger, introducing the following inequality:

Fuw(x+ y) ≥ T (Fuv(x), Fvw(y)),

where T is a triangular norm (t-norm), i.e. a commutative, associative and monotone

binary function, having 1 as identity, see [25] for details. In this paper, the equivalence, or

the probabilistic metric is obtained with the Schweizer and Sklar triangular norm. More

precisely, the t-norm defined by

(27) T (x, y) =
(

max
(
xλ + yλ − 1, 0

))1/λ
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where (x, y) ∈ [0, 1]2 and λ ∈ [−∞,∞], leads to the following residual implication between

x and y

(28) I(x, y) =


(
1 + yλ − xλ

)1/λ
if x ≥ y

1 otherwise

Based on this implication, a T-equivalence is obtained by

(29) E(x, y) = min (I(x, y), I(y, x))

The Figure 2 illustrates the T-equivalence with various values of λ. A reference point is

chosen, and the other is varying in the unit interval. As can be seen, the metric induced is

not always symmetric. In particular, it only defines a pseudo-metric on the unit interval

when λ = 1. Otherwise, the operator defines a pre-metric. Moreover, depending on the

value of λ, the usual properties of a metric may not hold. In particular, the triangular

inequality holds if and and only if λ is set to 1. The absence of triangular inequality may

be interesting when evaluating similarity in specific spaces, as described in [24].

Another important point is the tendency to favor high values. In other terms, large

probabilities give rise to large similarities. This possibility is highly wanted in the context

of pattern recognition, because large probabilities reflect the confidence of the decision

step.

3.2. Probabilistic equivalence. Let us denote Fi the probability of being correct when

selecting the best i classes, so that

(30) Fi =

i∑
j=1

p(θ(j)|x)
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1

1

0

λ = 2

λ = 1

λ = 0

λ = −1
λ = −2

Figure 2. T-equalities for various values of λ with respect to typical ref-
erence value x = 0.5 and y ∈ [0, 1]. Symmetry over 0.5 is only obtained for
λ = 1.

and F0 =
∑0

j=1 p(θ(j)|x) = 0. We define the power difference dλ between two values x ≥ y,

(x, y) ∈ [0, 1]2 as

(31) dλ(x, y) = (x− y)λ

Now, we are interested in inspecting the behavior, in terms of risk (or in terms of probability

of being correct), when the number of selected classes varies. We consider three cases,

corresponding to different selections:

• changes when the number of considered classes is increased by one, dλ(Fi+1, Fi)

• changes when the number of considered classes is decreased by one, dλ(Fi, Fi−1)

• changes when zero (distance rejection) and c (no decision) classes are selected,

dλ(Fc, F0).

Keeping in mind that i is increasing when searching its optimal value (i.e. the number of

selected classes increases), we associate to dλ(Fc, F0) and dλ(Fi+1, Fi) a positive influence

(weight), while dλ(Fi, Fi−1), already considered in a previous step, has a negative influence.
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Consequently, we define the generalized decision function as

(32) φi = λ
√
dλ(Fc, F0) + dλ(Fi+1, Fi)− dλ(Fi, Fi−1),

where the λth root ensure values in the unit interval. Therefore, the generalized class-

selective decision is obtained by using the decision rule (24) where φi is defined by (32).

The decision function (32) can be written using T-equivalences. In particular, it has

been shown in [26] that T-equivalences can be interpreted as similarity measures. In this

context, let us consider the equivalence, or similarity, between p(θ(i)|x) and p(θ(i+1)|x). It

is straightforward to obtain

(33) E
(
p(θ(i)|x), p(θ(i+1)|x)

)
=
(

1 + p(θ(i+1)|x)λ − p(θ(i)|x)λ
)1/λ

by ordering property of equivalences, which is equal to φi as defined by (32). Applied to

posterior probabilities, we propose to define the new decision rule as

(34) n?(x) = min
i∈[1,c]

{
i|E
(
p(θ(i)|x), p(θ(i+1)|x)

)
≤ t
}
,

called here after PE for Probabilistic Equivalence.

Now, we consider some particular cases of Equation (34) that uses the equivalence defined

by Equation (29), when using the implication (28).

Proposition 4. Using the decision function φi as defined by (32) with λ = −∞ within

(24), or equivalently by (34), leads to the decision rule

(35) n?(x, t) = min
i∈[1,c]

{
i |p(θ(i+1)|x) ≤ t

}
,

which is the decision rule of Ha [18].

Proof. By definition, Fc = 1 and F0 = 0. We give the proof by studying the function

(36) fλ(x, y) =
(

1 + yλ − xλ
)1/λ
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when λ→ −∞, giving limλ→−∞fλ(x, y) = y. Consequently, φi reduces to Fi+1−Fi, which

is equal to p(θ(i+1)|x)), concluding the proof. �

Proposition 5. Using the decision function φi as defined by (32) with λ = 1 within (24)

leads to the decision rule

(37) n?(x, t) = min
i∈[1,c]

{
i |1− (p(θ(i)|x)− p(θ(i+1)|x)) ≤ t

}
,

which is the decision rule of Horiuchi [22].

Proof. When λ = 1, we have

(38) φi = 1 + Fi+1 − Fi − Fi + Fi−1

Therefore, φi reduces to 1 + p(θ(i+1)|x)− p(θ(i)|x) = 1− (p(θ(i)|x)− p(θ(i+1)|x)). �

Proposition 6. Using the decision function φi as defined by (32) with λ = 0 within (24)

leads to the decision rule

(39) n?(x, t) = min
i∈[1,c]

{
i |(p(θ(i+1)|x)/p(θ(i)|x)) ≤ t

}
,

which is the decision rule LC [28].

Proof. Here again, considering (36), we obtain limλ→0fλ(x, y) = y/x. Therefore, φi can be

written as (Fi+1 − Fi)/(Fi − Fi−1), which reduces to p(θ(i+1)|x)/p(θ(i)|x), concluding the

proof. �

For illustration purpose, let us consider a toy problem. The dataset contains 1500 sam-

ples (see Figure 3) that can belong to three different classes θ1, θ2 and θ3 of 500 samples

each. The first class (red) is a mixture of two equi-weighted dimensional normal distribu-

tions N (µ,Σ) with parameters

µ1,1 = [0.4, 0.9]T µ1,2 = [4.5, 1.95]T ,
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and

Σ1,1 =

2 1

1 2

 Σ1,2 =

1.2 0.7

0 1.8


The second (green) and the third (blue) class are two-dimensional normal distributions

with the following parameters:

µ2 = [−1.5, 3]T µ3 = [−2.25, 0]T ,

and

Σ2 =

3 0

0 0.5

 Σ3 =

 1 0

−1.2 1.5

 , respectively.

The corresponding data is plotted in Figure 3. Knowing the distribution and prior proba-

bilities, posterior probabilities are computed using (2). Given a threshold, one can define

-6

-4

-2

0

2

4

6

8

-10 -5 0 5 10

Figure 3. Posterior probabilities are encoded as RGB values, correspond-
ing to their membership to the three classes: red, green and blue. For
instance, the pink area is the mixture of blue and red classes.

a partition of the feature space that corresponds to the different colors. In this case, the

white color corresponds to the entire set of classes {θ1, θ2, θ3}. Geometrically, it defines

the center of the three classes. For illustration purpose, we give in Figures 4 and 5 the

value of the probabilistic equivalence for the first order (i.e. the probabilistic equivalence of
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(a) λ = −2 (b) λ = 0 (c) λ = 1 (d) λ = 2

Figure 4. First order probabilistic equivalence values for different values of λ.

p(θ(1)|x) and p(θ(2)|x)) and the second order, respectively. The values range from 0 (black)

to 1 (white). In Figure 4, depending on the threshold, one or two classes are selected. Since

one class is selected if the equivalence is below the threshold and two or more are selected

if the equivalence is larger than the threshold, it is easy to see that the more the white,

the more we select two classes. As can be seen, when the value of λ increases the area

of possible multiple class selection increases, but still follows the boundaries observed in

Figure 3. Inversely, when the value of λ is rather low, the bandwidth of multiple selection

decreases, due to the property of creating sharp boundaries for low values of λ, as it has

been observed in Figure 2. One can see that in Figure 5, large values of equivalences are

located where it is interesting to select three classes, when the value of λ is rather low (e.g.

λ = −2, 0). When λ is increased, one can observe that the area where three classes can be

selected is augmented, except areas where selecting two classes is more appropriate, where

the probabilistic equivalence remains rather low.

4. Learning the equivalence function

The framework provided in the previous section is quite generic, and allows to retrieve

the majority of class-selective decision rules that have been proposed so far. However,

now comes the question of selecting the convenient free parameter λ in practice. A first
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(a) λ = −2 (b) λ = 0 (c) λ = 1 (d) λ = 2

Figure 5. Second order probabilistic equivalence values for different values of λ.

straightforward solution, adopted in [27], consists in making a grid search through a cross-

validation procedure in order to find the optimal value of λ. This is computationally

expensive and does not meet the requirements of a fast, accurate, and flexible classification

system. Therefore, in order to find the optimal value, we propose to learn it from the

available data. More precisely, we want a value λ such that the correct class belongs to

the selected subset, while keeping the number of selected classes as small as possible. The

procedure is separated into two phases. The first one, that corresponds to the learning of

λ values for each training sample, is as follows

• From the learning set Xtrain, one can determine the optimal and necessary number

of selected classes (nnc) based on computed posterior probabilities. In other terms,

one must select at least nnc classes in order to have the correct target into the

predicted set of classes. This number is set as the number of selected classes such

that the sum of posterior probabilities of selected classes, given that the sample

belongs to a selected class, is minimum.

• Once the nnc have been computed, one must select the value λ such that the

decision rule gives the correct number of classes. To do so, it must respect the two

inequalities

(40)
(

1 + p(θ(i+1)|xm)λm − p(θ(i)|xm)λm
)
≤ tλm
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and

(41)
(

1 + p(θ(i)|xm)λm − p(θ(i−1)|xm)λm
)
> tλm

The corresponding algorithm is given in Algorithm 1

The second phase corresponds to the test step, where each test sample is associated to

a subset of classes. It is built as follows

• In the test set Xtest, we look for the closest sample of the learning set. The term

closest depends on a notion of proximity defined by the user. The distance can be

computed in the feature space or in the probabilistic space. Moreover, the distance

chosen can be a simple Euclidean one, or a more sophisticated Mahalanobis distance

where feature vectors are projected into new representation spaces. In this paper,

an Euclidean distance is used for simplicity.

• The λ value λ` of the closest sample computed in Algorithm 1 is used for the test

sample, and the number of selected classes for a sample xj is given by

(42) n?(xj) = min
i∈[1,c]

{
i|
(
1 + p(θ(k+1)|xj)λ` − p(θ(k)|xj)λ`

)1/λ` ≤ t
}

The corresponding algorithm is given in Algorithm 2.

The value λ can take particular values of the t-norm. In this case the measure used is the

one corresponding to the associated t-norm. For instance, if λ = 0, then the equivalence

obtained by the product is used, thanks to the continuity around 0 of (27). In practice,

we set the range of values for λ to [−10, 10], because the difference of E−∞ and E−10, E∞

and E10 is small, and thanks again to the continuity of the equivalence function.

5. Comparative study

In theory, the rule defined by Ha is the optimum decision rule in the sense that there

are no other rules yielding a lower error rate for a given average number of selected classes.
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Algorithm 1 Learning

1: Input: Xtrain, p(Θ|Xtrain) and t
2: for each training sample xm in Xtrain, m = 1, · · · , N do
3: compute the necessary number of classes of xm nncm as follows

nncm = argmini

{∑
i

p(θ(i)|xm)|xm ∈ θi
}

4: i← nncm
5: select λm such that (40) and (41) holds
6: end for
7: return the vector Λ of N lambda values

Algorithm 2 Predict

1: Input: Xtest, p(Θ|Xtest), t and Λ
2: for each test sample xj in Xtest do
3: set the closest training sample xm of xj according to a pre-defined distance d:
4: `← argminm∈{1,··· ,N}d(xj ,xm)

5: λ` = Λ(`)
6: set the number of selected classes, by using (42)
7: end for

This optimum is reached when the distribution of the data is known and true which is

rarely the case in practice: posterior probabilities are often inaccurate, they are not known

in advance and are estimated by algorithms that try to optimize the accuracy on the test

sets. Moreover, this is an optimum rule with respect to the average number of selected

classes, which may not be the only criteria that must be considered.

In this section, we conduct a detailed study on the behavior of each of the class-selective

decision rules presented above, namely the constant risk, Ha, Horiuchi, LC, and the two

variants of the new generalized decision rule.

5.1. Experimental setup. In order to compare the various decision rules that have been

presented in the previous sections, we consider several datasets available online. Experi-

ments are carried out on nine real datasets briefly described in Table 1. The datasets are

publicly available from the UCI repository [14]. As can be seen in the Table, the datasets
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present a larger variety in terms of number of classes, features and samples. Moreover,

they are coming from various application domain such handwriting recognition, image

segmentation, bioinformatics

For each data set, some samples are randomly selected as the learning set (see Table 1

for details). For comparison purpose, four different classifiers are used:

• a Linear Bayes classifier (LB),

• a Quadratic Bayes classifier assuming normal densities (QB),

• a multi layer perceptron, with one hidden layer having 20 hidden units (MLP),

• and a multi-class support vector classifier (SVM). According to comparative studies

provided in [35], the one-against-all strategy is employed for the construction of the

models.

The last two classifiers do not provide posterior probabilities, therefore a transformation

(or a calibration) is needed to obtain an approximation of posterior probabilities. It is

important to note that what is evaluated here is the selection rule, and not the classifiers.

Several classifiers are used in order to assess the consistency of a possible superiority of a

decision rule for a given classifier. Individual components such as the SVM classifier comes

from the implementation given in [3], and calibration is operated with a gradient descent

based method described in [39].

The source code used in this paper for the selection part is available online3.

5.2. Evaluation. Reject options, and more generally class-selective decision rules cannot

be evaluated by considering only their corresponding accuracy. This is due to two major

reasons. The first is that they generally use a specified threshold, therefore giving different

classification and rejection rates. The second reason comes from the tradeoff they imply.

For the reject option, the tradeoff to find is between the error rate and the rejection rate.

One wants to minimize the error rate, and to keep the reject rate low. For class-selective

3http://www.polytech.univ-nantes.fr/lecapitaine/RPC.
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Table 1. Datasets used in the experiments.

Dataset #training #testing #classes #features

Vehicle 846 0 4 18
Segment 2310 0 7 19
Vowel 528 462 11 10
Letter 15000 5000 26 16
Shuttle 43500 14500 7 9
USPS 7291 2007 10 256
MNIST 60000 10000 10 780
Satimage 4435 2000 6 36

Dna 2000 1186 3 180

decision, the tradeoff is between a low error rate, and a low average number of selected

classes.

Therefore, a common quality measure is to evaluate the area under the curve (Er-

ror(Rate) for the reject options, Error(Average class selection) for class-selective rules [18]).

This curve is composed of operating points that can be attained when setting a specific

threshold t. Naturally, if t is a function of the input, this kind of evaluation is not adapted,

and one should find another way to evaluate a class-selective scheme. More recently, in

[33], the authors present three different relationships between two error/rejection curves.

Although this method can be adapted for class-selective evaluation, it relies on a graphi-

cal interpretation, which may be difficult when curves are somewhat similar, in particular

when they are crossing each other.

A quantitative measure has been proposed in [29], however this evaluation measure is

not adapted for the comparison of decision rules used on different classifiers, because each

classifier provides different accuracies without rejecting samples. In other terms, depending

on the classifier, the analysis of decision rules is not on the same scale, so that results are

not interpretable. Instead, we propose to use the normalized area under the curve (see

Figure 6) presented in [27] in order to overcome this problem. The normalized area is

obtained by considering the curve and its associated area, but starting on the baseline,
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Figure 6. Area under the curve: the performance score is given by the
ratio of the dark gray area over light gray area and itself (i.e. the rectangle
defined by (C0, 1) and (1, n)).

i.e. the classification accuracy without rejection of the considered classifier. Therefore, the

normalized area under the curve is defined by

(43) nAUC =

∫ 1
0 (C(t)− C0) dt∫ 1

0 (1− C0) dt

where C0 is the baseline accuracy of the classifier (i.e. the classification rate without

reject option), and t is the threshold used in the decision rule (34). The term C(t) is the

classification rate obtained by selecting subset of classes using (34). The convention is to

say that the classification is correct if one label of the subset is the true label of the sample.

It can be proved that C0 ≤ C(t) ≤ 1 for any t in the unit interval (we have in particular

C(0) = 1 and C(1) = C0), so that 0 ≤ nAUC ≤ 1. A nAUC equal to 1 means that for

any t, the error rate with subset selection is equal to zero, while nAUC value equal to

zero means that adding subset of classes does not increase the classification rate at all (i.e.

exclusive classification is the best choice). Therefore, the higher the better for nAUC.

The performance of a selection rule is a function of the threshold t that can be manually

selected by the user or the experts as a function error and selection costs (see section 2.2).
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The proposed evaluation measure does not allow to proceed to a point wise comparison

of decision rules, but gives an average performance, by computing the mean performances

of a rule for all possible thresholds. If one already have specified costs, then the simplest

way to select a decision rule is a point evaluation, with a constant t value. If the mean

number of classes to be selected is known, then one have simply to select the corresponding

threshold. Finally, the threshold can be selected using methods of operating point selection

of ROC curves [31].

5.3. Results. The results for each dataset and each decision rule are given in Table 2,

where best scores for each dataset are reported in bold font. The last column is the

average rank of each selection rule over all datasets for a given classifier. The considered

decision rules are the following : CR (for constant risk, defined by (25)), Ha (defined by

(10)), Horiuchi (defined by (22)), LC (for logical confidence, defined by (23)), Entropy

(defined by (26)), PE and PE? (defined by (34)) which are the proposed decision rules

without or with equivalence learning, respectively.

As can be seen in the Table 2, the proposed methods are superior to the other rules :

the average ranks of both rules are the lowest for all classifiers.

Looking more in depth the results, one can say that one can observe a larger difference

between rules for LB than for QB, which is explained by the quality of estimation of

posterior probabilities. The nAUC score is generally better for QB than for NB, due

to the performances rates of individual methods. Moreover, the nAUC score follows the

quality of classification of each classifier, as one can observe the general tendency of ranking

LB ≺ QB ≺ MLP ≺ SVM.

It is interesting to note that one can distinguish two groups of datasets, one set (com-

posed of Vehicle, Segment, Letter and Satimage) for which the results of all methods are

quite similar, and another set (composed of Vowel, Shuttle, USPS, MNIST and Dna) for

which the results are clearly in advantage for PE and its variant PE?.
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Table 2. Normalized AUC (nAUC) for all datasets and all decision rules.
Right column indicates the average rank of decision rules over all datasets
for a given classifier.

Datasets

Classifier Rule Vehicle Segment Vowel Letter Shuttle USPS MNIST Satimage Dna Avg. Rank

CR 66.74 63.60 85.11 83.05 88.87 73.18 77.41 57.01 88.08 4.33

Ha 66.94 63.61 84.77 81.61 88.63 72.79 76.54 57.02 87.29 4.77

Horiuchi 53.36 64.80 65.04 70.59 82.01 77.85 75.35 56.82 85.04 6.11
LB LC 65.52 64.67 82.17 79.89 89.01 78.13 79.44 57.22 86.78 4.22

Entropy 52.10 62.72 82.67 85.10 83.52 77.89 77.61 56.56 85.27 5.33

PE 67.75 77.96 85.09 84.94 89.87 84.77 80.08 70.19 88.41 2.22
PE? 73.64 90.00 89.69 87.08 97.77 94.36 91.00 89.82 97.72 1.00

CR 88.09 92.49 59.22 84.24 95.36 74.80 81.06 88.07 85.33 5.00

Ha 88.05 92.50 59.25 83.44 95.42 73.54 80.65 89.61 85.39 4.66
Horiuchi 84.09 89.04 53.27 85.09 92.23 80.17 78.82 80.08 83.15 6.22

QB LC 88.63 92.88 60.33 90.79 95.52 79.50 82.74 89.42 84.73 3.44

Entropy 82.90 90.39 54.84 90.62 92.77 80.18 81.50 81.80 82.56 5.44
PE 89.56 93.19 60.21 91.07 95.97 85.73 84.22 89.58 85.79 2.22
PE? 95.80 96.14 73.59 94.36 97.85 94.61 91.35 90.68 97.89 1.00

CR 96.05 96.70 61.48 93.49 85.73 78.84 72.70 92.11 59.03 5.22

Ha 96.23 96.72 61.26 92.23 85.88 77.04 72.26 92.12 59.83 5.11
Horiuchi 90.86 95.88 58.72 84.58 87.77 81.62 76.46 83.99 60.42 5.55

MLP LC 96.01 97.33 62.46 90.84 86.60 82.01 76.45 91.93 60.62 4.22

Entropy 89.82 96.50 59.34 94.19 86.27 82.51 75.06 85.22 60.68 4.77
PE 96.58 97.50 62.79 94.87 88.05 82.19 84.79 92.18 83.96 2.11
PE? 96.74 98.72 78.24 95.16 99.55 96.18 94.80 94.95 97.42 1.00

CR 96.83 99.89 83.01 94.27 89.94 66.47 82.68 91.31 82.54 5.22
Ha 96.99 99.91 85.80 92.31 89.95 82.81 80.59 91.79 91.41 4.22

Horiuchi 92.75 99.56 66.11 94.65 96.41 93.82 69.40 86.03 87.26 5.77
SVM LC 96.58 99.90 73.60 95.35 93.21 91.37 79.07 88.68 90.74 4.77

Entropy 91.79 99.72 79.07 96.46 96.52 94.22 77.41 86.04 86.52 4.77
PE 97.01 99.94 85.87 95.44 96.59 93.88 84.18 91.81 91.44 2.22

PE? 97.99 99.97 87.09 98.91 99.94 97.73 95.07 95.82 98.06 1.00

For this second group, one can remark that they are constituted by strongly overlapping

classes, and do not necessarily follows normal distributions. This demonstrates the utility

of the local adaptation of our proposition, based both on probabilities and local distances.
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Table 3. Ranking statistics

Classifier χ2
F FF

LB 36.95 17.34
QB 40.38 23.72

MLP 35.42 15.26
SVM 34.85 14.56

ALL 142.43 67.76

As a side note, one should remark that the best rank of Ha’s measure is obtained for

the SVM classifier. Since this measure is theoretically the best one, it may seems that the

SVM classifier provides the best approximation of the true distribution of the data (or at

least the best approximation of posterior probabilities).

In order to test the significance of differences between decision rules, we propose to use

the non-parametric Friedman test, as suggested in [9]. Let Rij be the rank of the j-th

selection rule on the i-th dataset. The Friedman test compares the average ranks Rj over

all datasets (last column of Table 2). Under the null-hypothesis, stating that two selection

rules are equivalent, their ranks should be equal (here Rj should be equal to 4 for all j).

The Friedman statistic is given by

(44) χ2
F =

12N

ns(ns+ 1)

∑
j

R2
j −

ns(ns+ 1)2

4


where N , the number of datasets, and ns the number of selection rules are big enough,

typically N > 10 and ns > 5. A derived and better statistic proposed in [23] is given by

(45) FF =
(N − 1)χ2

F

N(ns− 1)− χ2
F

The Table 3 gives χ2
F and FF rank statistics for each classifier.
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FF is distributed according to the F distribution with 7−1 = 6 and (7−1)×(9−1) = 48

degrees of freedom. The critical value at a probability level of 5 % is 2.29, so that the null-

hypothesis of the equivalence between selection rules is rejected (compared to the FF values

of Table 3).

If the null hypothesis is rejected, two post-hoc tests can be considered, the Nemenyi or

the Bonferroni-Dunn tests. However, as stated in [9], one should prefer the later because

it does not make pairwise comparisons for the proposed method. The performance of two

selection rules is significantly different if their corresponding average ranks differ by at least

the critical difference, defined by

(46) CD = qα

√
ns(ns+ 1)

6N
,

where qα values are based on the Studentized range statistic divided by
√

2, (see [9] for

details). For a confidence level of 95%, we have q0.05 = 2.638, so that the critical difference

for this experiment is equal to 2.68. Therefore, one can say that the selection rule PE?

is statistically better than all the other rules (except its non learned variant PE), for all

classifiers. Although one can see that PE? performs better than PE, one cannot conclude

on the significant difference the two rules at α = 0.05.

Now we consider all the classifiers at once for the comparison, and rank statistics are

given in the last line (ALL) of Table 3. Here again the null hypothesis of equivalence

between selection rules is highly rejected, since the critical value at a probability level of 5

% is 2.14, compared to the value 67.76 given in the Table. Since there are more experiments

involved, the critical difference of the Bonferroni-Dunn test is 1.345 for a confidence level

of 95%. Therefore, the difference between PE and PE? is almost equal to the theoretical

critical difference, showing a statistical superiority of PE? over PE, and naturally over all

the other decision rules.
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Figure 7. Critical differences of the selection rules for the four classifiers
used in this study, the whitest the largest.
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Figure 8. Critical differences of the selection rules for all classifiers

Finally, we propose a visual interpretation of the critical differences between the per-

formances of the selection rules for a specified classifier (Figure 7) and for all classifiers

(Figure 8). These plots should be read as follows. Each cell has grey value corresponding

the normalized critical difference of all selection rules. In other terms, the larger critical

difference leads to a value of 1 (white), and the lowest to a value of 0 (black). The order

retained is the same as the one used in the tables, i.e. CR, Ha, Horiuchi, LC, Entropy, PE

and PE?. As can be seen, two categories (or two blocks in the Figures) of selection rules

can be distinguished, PE and PE? against the others.

6. Conclusion

In pattern recognition or related problems, the possibility of selecting a subset of classes

instead of singletons for assignation is of great interest. It exists many ways of selecting
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possible subsets among the power set of classes, and this implies that one cannot explore

the entire solution space. To this aim, several heuristics have been proposed, but they

cannot handle the diversity and variety of specific datasets.

In this paper, a generalized approach to class-selection is presented. Given a classifier

providing posterior probabilities outputs, the proposed rule allows to retrieve the three

class-selective decision rules proposed in the literature. The new decision rule has a log-

ical justification, since the class-selection is made upon the evaluation of the equivalence

between posterior probabilities. We also describe an approach in which the decision rules

are compared by the help of a normalized area under the error/selection curve. It allows

to get a relative independence of the performance of a classifier without reject option, and

thus a reliable class-selection decision rule evaluation.

As a potential future work, we could cite another method of evaluation for set-valued

classifiers proposed in [8], which is based on usual information retrieval quality measures.

Moreover, the basis for a theoretical analysis of characterization of risk-coverage trade-off

given in [12] can help to provide new elements with respect to the optimality of decision

rules. Let us also mention the multi-label multi-class classification, where each sample may

actually belong to several classes. In this case, there is no more tradeoff of error/selection,

and the set selection must be made using other loss functions, e.g. from information

retrieval applications.
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