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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract 
 

In this report, a watermarking method for grayscale images is proposed that is 
invisible and robust to certain attacks. Chaotic maps are used to generate the 
watermark which improves the security of the method. The crown watermark is 
embedded in the real part of DFT domain and the embedding position is determined 
by the SURF algorithm. The peak signal-to-noise ratio is used to evaluate the 
perceived quality of the marked image. Normalized cross correlation is used for 
watermark detection. The original image is not required during the detection. 
Experiments are conducted to evaluate the robustness of the proposed method against 
different attacks on several images.  
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1. Introduction 
 

In this section, we will briefly introduce digital watermarking technique, along 
with some other techniques that are used in our watermarking method, such as chaotic 
maps and the SURF algorithm. Also, a review of previous watermarking methods that 
have been proposed are provided, which analyses the strengths and weaknesses of 
these methods. 

  

1.1 Digital Watermarking 
The rapid development of digital services and computer networks in modern days 

makes image distribution more convenient than ever. The digital representation of 
copyrighted images certainly offers many advantages, but also enables illegal use of 
digital images, which poses a serious threat to the rights of content owners, causing a 
pressing need for copyright protection and multimedia security. The conventional 
cryptographic system can prevent illegal access to the encrypted data without a key, 
but once the data is decrypted, there is no way to track its reproduction and 
redistribution. One solution to this problem is digital watermarking technique, which 
embeds information about the copyright owner permanently in the data and remains 
present within the data after any decryption process. 

Digital watermarking is a process that imperceptibly alters a host media to embed 
a message within that host media. The embedded watermark is a signal that contains 
ownership information. It should be invisible to human eyes and can only be detected 
by a computer program. 

Digital watermarking techniques have a wide variety of applications. It can be 
used for copyright protection, to identify the content owner, for fingerprinting, to 
identify the buyer of the content, for copy control, to prevent illegal copying, for 
broadcast monitoring, to determine royalty payment, and for content authentication, to 
determine whether the data has been altered in any manner from its original form. 
There are many other applications which all take advantage of watermarking for their 
own purposes. 

There are a number of desirable properties that a watermark should possess. 
These include invisible to human vision, robust to common distortions of the signal, 
resistant to hostile attacks which aim to remove the watermark, sufficient embedding 
capacity, and a proper algorithm complexity. Notice that these requirements are 
application dependent, which means with different target applications, the 
requirements we should focus on varies as well. For some applications robustness 
may be the first priority, while for other applications the main concern is the 
algorithm complexity. Therefore, it is important to carefully choose the properties to 
work on based on the requirement of application. These properties are discussed in 
more detail next. 

Invisibility: the watermark should not be noticeable and should not degrade the 
quality of the content. This property is often referred to as imperceptibility as well, 



 2 

which means the presence of the watermark should not interfere with the perceived 
quality of the host media, a perceptual similarity between the watermarked and 
unwatermarked content must be preserved. To achieve this goal, some of the early 
watermarking methods often place the watermark in perceptually insignificant regions 
of the data. However, this may compromise other properties of the watermark such as 
robustness. As technology develops, many alternative methods were proposed to 
obtain an acceptable level of invisibility while maintaining robust against distortions. 
Depends on the application, sometimes a modest perceptible watermark can be 
accepted in exchange for a higher robustness. Since an observer is not likely to 
compare the watermarked content with the original one, a slight difference may not be 
noticed. 

Robustness: a watermark should be able to survive common signal distortions 
such as spatial filtering, digital-to-analog and analog-to-digital conversion, lossy 
compression, printing and scanning and contrast enhancement, as well as common 
geometric distortions such as rotation, translation, scaling and cropping. A watermark 
is not required to be robust against all possible distortions, just the distortions that are 
likely to occur during the time between embedding and detection. In some 
applications like authentication, the robustness of a watermark is not even desirable at 
all, any distortion imposed on the image should cause the watermark to be lost. 
Meanwhile, there are other applications in which the watermark should be very robust 
due to the unpredictability of distortions that an image may undergo. Note that a 
robust watermarking method requires the watermark to not only remain present in the 
image after distortions, but also remain detectable in the detector. For example, 
watermarks embedded by some methods can remain in the image after distortion, but 
cannot be detected during detection. In this case, the watermarking method is 
considered not robust enough.  

Security: a watermark should be able to resist intentional tampering designed to 
remove the watermark such as unauthorized removal, unauthorized embedding and 
unauthorized detection, as opposed to common signal distortions. One form of 
unauthorized removal attacks is collusion attack, this attack is possible when several 
copies of the same content are available and contain different watermarks, then an 
adversary can combine them to produce a copy without watermark. Security is more 
important to applications whose algorithm is known to the public or the original 
unmarked content is available, which allows anybody to decode the watermark. If the 
original content or the key to generate the watermark is only known to the owner and 
buyer, then the watermark is more tamper resistant and secure. In this case, if the 
attacker wants to make sure that the watermark is completely destroyed, the only way 
is to increase the strength of attacks, which may cause the image fidelity to be 
severely damaged and holds no value to the attacker. 

Capacity: the maximum number of bits that can be hidden in a given data. 
Different applications may require different embedding capacity. For example, copy 
control applications only need 4-8 bits of information over a period of time while 
broadcast monitoring applications need 24 bits of information to identify all 
commercials. However, the more bits we embed within the data, the more visible the 
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watermark may be. Obviously, it is application dependent, and this is especially 
important to public applications. 

Complexity: the computational costs of the encoder and decoder. In general, the 
cost should be limited in a certain range. However, this requirement may constrain the 
complexity of the watermark, causing the watermark to be simple and more 
vulnerable to intentional tampering. But notice that the computational ability of 
computers improves very fast, and some computationally unrealistic methods today 
may become possible in the future, which allows us to spend more costs to deal with 
issues such as geometric distortions and intentional tampering.   

As mentioned before, these requirements of a watermark are application 
dependent and conflicting with each other. For example, when the robustness 
increases, the invisibility usually decreases, and similarly, when the capacity 
decreases, the invisibility typically increases. Therefore, it is important to find the best 
tradeoff between these requirements for a given application. In this report, we mainly 
focus on the invisibility and robustness tradeoff. The goal is to design a watermarking 
method which is invisible and able to withstand geometric distortions, known as the 
most devastating attacks on watermarking methods. 

A watermarking scheme usually contains two parts, the embedding part to embed 
the watermark in a given image, and the detection part to determine if the watermark 
is detectable or not. 

During the embedding process, the original unmarked image is first transformed 
into the domain we want to embed the watermark in, and then the watermark is 
generated using a secret key. After this, we embed the watermark within the chosen 
domain and perform an inverse transform to obtain the watermarked image. The block 
diagram of this process is shown below: 

 

 
Figure 1. Block diagram of embedding process 

 

The key is used in conjunction with watermarking algorithm to embed the 
watermark into a host media. The key may control the locations where the host media 
is modified (the embedding path) or may be used to generate other primitives that 
enter the embedding process. If an adversary do not have access to the key, then it is 
extremely difficult for them to remove the watermark without causing significant 
degradation in the fidelity of the image. Therefore, the watermarking algorithm can be 
made public without compromising the security of the watermark if the key remains 
secret.  

When we embed the watermark X into the original image V to obtain the 
watermarked image V’, we set an embedding strength α to determine the extent to 
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which the watermark alters the original content. Three most commonly used formulas 
to compute V’ are [3]: 

iii xvv ⋅+= α'                               (1) 

)1('
iii xvv ⋅+⋅= α                             (2) 

)(' ix
ii evv ⋅⋅= α                               (3) 

Formula (1) is called additive embedding, and it simply adds the values of 
coefficients in the original content with the values of the watermark. This may not be 
appropriate when the values of V vary widely. For example, if vi = 105 then adding 
100 may not be sufficient to make the watermark detectable, but if vi = 10 then adding 
100 may destroy the fidelity of the image. Formula (2) is called multiplicative 
embedding, and it is image dependent because how much we alter the original content 
depends on the value of V. This way it is more robust against such variation in scale. 
Formula (3) gives similar results as Formula (2) when αxi is small, and can be viewed 
as the logarithm version of Formula (1). 

The choice of embedding domain is also very important. Earlier watermarking 
methods simply embed the watermark in the spatial domain. Certainly it is easy to 
achieve invisibility and a high capacity, but the robustness is very weak, which makes 
the watermark unable to resist any distortions, unintentional or intentional. Later, 
people start to implement the watermark in the frequency domain using some discrete 
transform to exploit the properties of these transform domain. Thus, after the 
implementation and transformation back to the spatial domain, the energy of the 
watermark is distributed over the whole image, which improves the invisibility and 
robustness at the same time.  

The most commonly used frequency domains are discrete cosine transform 
(DCT), discrete wavelet transform (DWT), and discrete Fourier transform (DFT), 
there are also some methods that use Fourier-Mellin transform for its invariance to 
rotation and scaling. Each method has its own strengths and drawbacks. DCT-based 
approach has a strong robustness against JPEG compressions since JPEG 
compressions itself takes place in DCT domain. In addition, it is robust to HVS based 
quantization. However, it is not robust to geometric distortions. DWT-based approach 
is robust to JPEG 2K compression, low-pass and median filtering, but not robust to 
geometric distortions and cannot be adapted to human visual system (HVS). 
DFT-based approach is very robust against geometric transformations since it is 
translation invariant and rotation resistant. It is also suitable for HVS models. 
However, it introduces round-off errors, which may cause loss of quality and errors in 
watermark extraction. Fourier-Mellin approach is rotation and translation invariant, 
which makes it very robust against geometric distortions. But it has a weak resistance 
to lossy compression and a high computational complexity. The advantages and 
disadvantages of these different embedding domains are listed in the table below: 
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Embedding 
Domains Strengths Drawbacks 

Spatial - Easily invisible 
- High capacity 

- Weak robustness 

DCT 
- Robust to JPEG compression 

- Robust to HVS based 
quantization 

- Not robust to geometric 
distortions 

DWT 
- Robust to JPEG 2K compression 
- Robust to low-pass and median 

filtering 

- Not robust to geometric 
distortions  

- Not adapted to HVS 

DFT 
- Robust to geometric distortions 

- Suitable for HVS models 
- Loss of quality and errors in 

watermark extraction 

Fourier-Mell
in 

- Rotation and translation invariant 
- Robust to geometric distortions 

- Weak resistance to lossy 
compression 

- High computational complexity 

Table 1. Strengths and drawbacks of different embedding domains 
 

Since the main goal of our work is to design a robust watermark, especially to 
geometric distortions, we choose to embed the watermark in DFT domain. 

After the watermarks are embedded, the quality of a watermarked image needs to 
be evaluated. The most commonly used metrics for quality assessment in image 
processing are peak signal-to-noise ratio (PSNR), visual information fidelity (VIF), 
visual signal-to-noise ratio (VSNR) and the structural similarity (SSIM). However, 
the watermarking community mainly uses the PSNR or SSIM. Here we use PSNR. 
Admittedly, it does not perform very well in some circumstances, but still considered 
to be a fair indicator to provide qualitative rank order scores in overall. The value of 
PSNR is often given in decibels. Generally, values above 40 dB suggest low 
degradation, while values below 30 dB suggest low quality. So, if the PSNR of a 
watermarked image is above 40 dB, we consider the watermark to be quite invisible.  

After the embedding, a detection process has to be proceeded to determine 
whether the embedded watermark is still present in the image after attacks. During 
detection, the watermarked and possibly attacked image is first transformed into the 
embedding domain where the watermark is embedded. Then we extract the watermark 
and compare it with the original watermark to see whether the watermark is able to 
survive from the attacks or not. The block diagram of this process is shown below: 
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Figure 2. Block diagram of detection process 

 

The dashed box in the block diagram marked the difference between two kinds of 
detectors, the blind detector and the non-blind detector. In some applications, the 
original unwatermarked image is available during detection. This will improve the 
detector performance significantly since the original image can be used to counteract 
any temporal or geometric distortions, which will reduce the damages caused by 
attacks to minimum. In other applications, the original image may be unavailable, so 
the detection must be conducted without the original.  

The non-blind detector is defined as a detector that requires access to the original 
unwatermarked image in the detection process, or some information about the original 
image rather than the entire image. As contrary to non-blind detector, the blind 
detector is defined as a detector that does not require any information related to the 
original unwatermarked image. Whether a watermarking system employs blind or 
non-blind detector can be crucial in determining whether it can be used for a given 
application. Non-blind detector can only be used in those applications where the 
original document is available. In general, the original documents are only available 
in private applications, and therefore non-blind detectors cannot be used in public 
applications. 

In this report, we use blind detector instead of non-blind detector in order to 
improve the adaptability of the proposed watermarking method. In this way, the 
watermarking system is no longer constrained by the presence of the original image, 
which makes it easier to adapt the method to other applications. 

There are two important probabilities that should be estimated during detection, 
the false positive probability and the false negative probability. False positive 
probability refers to the probability to detect a watermark in an unmarked image, also 
known as false alarm. False negative probability refers to the probability of not 
detecting the watermark in a marked image, also known as false rejection. We should 
try to keep both probabilities as low as possible, since a high false detection rate is 
unacceptable for most watermarking methods. The required false positive probability 
depends on the application. Some applications have strictly specified the allowed 
value, while some are comparably less strict. 

In order to determine whether the watermark is still present after attacks, we need 
to measure the similarity between the extracted watermark and the original watermark, 
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since it is highly unlikely that the two marks will be identical. There are many 
possible measures, and we choose to use normalized cross correlation for our method.  

The normalized cross correlation is computed by first normalizing the two 
vectors to unit magnitude. This is typically done by subtracting the mean and dividing 
by the standard deviation. Then it computes the inner product between the two vectors 
to get correlation coefficients. In our case, the two vectors are the extracted 
watermark and the original watermark, and the result is used to measure the similarity 
between them. Most methods will set a threshold T, and check whether the maximum 
value is above T. If it is, then the image is watermarked. If not, the image is not 
watermarked. For our method, we do not use a threshold, instead we conduct a test 
called Grubbs’ test to detect outliers. If the number of outliers is more than 1, which 
means there is more than one peak in the correlation map, then we consider the image 
to be watermarked. This will be explained in detail later. 
 

1.2 Chaotic Maps 
One of the novelties of our method is the use of chaotic maps to generate the 

watermark, which will enhance the resistance of the method against watermark 
removal attacks and improve the level of security.  

Here we use a discrete-time dynamical system: X(n) = F[X(n-1)]. It is capable of 
complex and unpredictable behavior. A chaotic dynamical system is: 

1. Deterministic, not random and unpredictable. This means that the system has 
no random or noisy inputs. The irregular behavior arises from the system’s 
nonlinearity. 

2. Aperiodic long term behavior for continuous-time dynamical system. Means 
that there should be trajectories which do not settle down to fixed points, periodic 
orbits or quasi-periodic orbits as t →∞. 

3. Periodic behavior for discrete-time dynamical system. 
4. Sensitive to initial conditions and initial parameters (Secret Key). This 

suggests that nearby trajectories separate exponentially fast, which means the system 
has positive Lyapunov exponent. 

There are many useful properties of chaotic sequences to ensure security. First, it 
is easy to generate, a simple discrete-time dynamical system is capable to generate a 
complex and random like behavior sequences. Second, a chaotic signal is 
deterministic, not random, which allows us to regenerate it. This is fundamentally 
different from random sequences, since a random process is non-deterministic, and 
two successive realizations of a random process will give different sequences, even if 
the initial state is the same. Also, it has a broadband spectrum. Third, a chaotic signal 
is extremely difficult to predict because of the high sensitivity of the secret key. A 
slightly difference of the secret key will result in an entirely different chaotic 
sequence, which will make it extremely difficult for attackers to regenerate or remove 
the watermark. Thus, the level of security will be significantly improved. Fourth, the 
number of orbits in finite region of phase space is very big, which makes it almost 
impossible to predict the sequences. 
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There are many chaotic generators which can be used to generate the chaotic 
sequences, such as Skew Tent map, Arnold cat map, PWLCM map, etc. In this work, 
the discrete Skew Tent map is used to generate the chaotic sequences. It is described 
by: 
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where P is the control parameter ranging from 1 to 2N-1, and N is the finite precision 
equal to 32 bits. 

However, a finite precision will lead the chaotic sequences into periodic orbits, 
while solving the periodic effect of finite precision produce the balance problem of 
the sequences. Perturbation technique is used in order to avoid this effect of the finite 
precision. Perturbation has some desirable characteristics such as controllable long 
cycle length and uniform distribution, while not degrading the good statistical 
properties of chaos dynamics. By adding a linear feedback shift register (LFSR), 
perturbation is done every delta number of iterations, where delta is orbit of the 
chaotic map without perturbation. The block diagram of this perturbation process is 
shown below: 

 
Figure 3. Block diagram of perturbation process 

 
After we generate the chaotic sequence using the Skew Tent map, we get a 

sequence with integer values ranging from 1 to 2N-1. Because of its noise-like 
appearance, we can easily normalize it into the range we want and use it to form the 
watermark. In our case, it will be normalized into decimal values ranging from -1 to 1. 
Also, it has very good auto and cross correlation properties, which in theory may help 
improve the performance of the detector. One thing we know for sure is that the use 
of chaotic sequences will improve the level of security due to the secrecy of the key. 

 

1.3 The SURF Algorithm 
Another novelty of our method is the use of the SURF algorithm to find feature 

points in the Fourier spectrum as embedding positions. And during the detection, we 
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apply SURF again on the watermarked image to try to find the locations where the 
watermarks are embedded. This will make the watermarking method image dependent, 
since SURF will find different feature points in different images, makes it harder for 
attackers to predict the watermarking location and easier for us to extract the 
watermark. 

SURF is short for Speed-Up Robust Features. It is a scale and rotation invariant 
interest point detector and descriptor. SURF approximates or even outperforms 
previously proposed schemes with respect to repeatability, distinctiveness, and 
robustness, yet can be computed and compared much faster. This is achieved by 
relying on integral images for image convolutions; by building on the strengths of the 
leading existing detectors and descriptors (specifically, using a Hessian matrix-based 
measure for the detector, and a distribution-based descriptor); and by simplifying 
these methods to the essential. This leads to a combination of novel detection, 
description, and matching steps. 

SURF is based on sums of 2D Haar wavelet responses and makes an efficient use 
of integral images. It uses an integer approximation to the determinant of 
Hessian blob detector, which can be computed extremely quickly with an integral 
image (3 integer operations). For features, it uses the sum of the Haar wavelet 
response around the point of interest. Again, these can be computed with the aid of 
the integral image. 

An integral image (also known as summed area table) is a data 
structure and algorithm for quickly and efficiently generating the sum of values in a 
rectangular subset of a grid. It allows for fast computation of box type convolution 
filters. The entry of an integral image I∑(x) at a location x = (x, y)T represents the sum 
of all pixels in the input image I within a rectangular region formed by the origin and 
x. The value at any point (x, y) in the integral image is just the sum of all the pixels 
above and to the left of (x, y): 

∑∑
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The Hessian matrix is a square matrix of second-order partial derivatives of 
a function. It describes the local curvature of a function of many variables. SURF 
bases the detector on the Hessian matrix because of its good performance in accuracy. 
More precisely, it detects blob-like structures at locations where the determinant is 
maximum. Given a point x = (x, y) in an image I, the Hessian matrix H(x, σ) in x at 
scale σ is defined as follows: 
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where Lxx(x, σ) is the convolution of the Gaussian second order derivative )(2
2

σg
x∂
∂  

with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ). 
Generally speaking, the task of finding image point correspondences can be 

divided into three main steps. First, interest points are selected at distinctive locations 
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in the image, such as corners, blobs, and T-junctions. The most valuable property of 
an interest point detector is its repeatability. The repeatability expresses the reliability 
of a detector for finding the same physical interest points under different viewing 
conditions. This property is extremely important to our watermarking method because 
one of the main challenges in the detection process is to find the same interest points 
even when the image has gone through signal or geometric distortions. Next, the 
neighborhood of every interest point is represented by a feature vector. This 
descriptor has to be distinctive and at the same time robust to noise, detection 
displacements and geometric deformations, which is very important to the robustness 
of the watermark. Finally, the descriptor vectors are matched between different 
images. The matching is based on a distance between the vectors. 

As for SURF, it is partly inspired by the SIFT descriptor. Similarly to the SIFT 
approach, SURF selects interest points of an image from the salient features of its 
linear box-space, a series of images obtained by the convolution of the initial image 
with box filters at several scales. Then SURF builds local features based on the 
histograms of gradient-like local operators. However, the standard version of SURF is 
several times faster than SIFT and claimed by its authors to be more robust against 
different image transformations than SIFT.  

In conclusion, SURF is a fast and robust algorithm for local feature point 
detection and comparison. It has a comparable and sometimes even better 
performance than the state-of-the-art detectors, and a high repeatability which is 
advantageous for watermarking methods to find embedding positions. And the most 
important is the speed of the detector, which outperformed most of the existing 
methods. But notice that SURF is usually used in spatial domain, while in our method 
it is used in a much noisier environment of DFT domain. Therefore, the actual 
performance of SURF in Fourier spectrum has to be tested to prove its adaptability in 
a highly noisy environment. 

 

1.4 Related Works 
Several previous digital watermarking methods have been proposed. This is not a 

complete list of all the watermarking methods, just the ones that are closely connected 
to our method.  

Early works of watermarking mainly focused on hiding information within a 
signal without considering other requirements such as robustness and security. 
Tamper resistance is not an issue if the communication channel is covert and only the 
communication parties are aware of it. Therefore, early works of watermarking can be 
seen as steganography.   

Solachidis et al [1] proposed a blind image watermarking method that is resistant 
to geometric transformations. The watermark is embedded on a ring in the DFT 
domain using a private key, since embedding in the Fourier domain has certain 
advantages for scaling and rotation invariance. Also it is embedded in the middle 
frequency of the magnitude of Fourier spectrum to achieve balance between 
robustness and invisibility. The watermark possesses circular symmetry to solve 
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rotation invariance in an easy way. Correlation is used for watermark detection and 
the original image is not required in detection. This method is robust against several 
image processing attacks, especially geometrical distortions. And if we want to search 
only for scaling or for cropping or for some rotation angles only, the calculation is 
very fast. However, the algorithm does not perform well after a rather large rotation, 
and it uses additive embedding not multiplicative embedding, so it is not image 
dependent. 

Solachidis et al [2] also presented a statistical analysis of the behavior of a blind 
robust watermarking system based on pseudorandom signals embedded in the 
magnitude of the Fourier transform domain, and the design of an optimal detector for 
multiplicative watermarking embedding. The watermark is embedded in the DFT 
domain so that it can be more robust to geometric distortions. The DFT magnitude 
distribution is analytically calculated which is proven to be different than the 
generally used Weibull distribution. It also constructs the optimal detector according 
to the Neyman-Pearson criterion instead of using correlation detector since correlation 
detector is optimal only in case of the signal follows a Gaussian distribution. However, 
it did not give a comparison between the proposed detector and the Weilbull one. And 
in threshold estimation step, they have to know the detector distribution in case of 
erroneous watermark detection and they assume that the distribution is Gaussian, 
which may not be the case under some circumstances. 

Cox et al [3] proposed a robust watermarking scheme which takes advantage of 
spread spectrum. It spread the watermark over many frequency bins so that the energy 
in any bin is very small and undetectable, thus ensuring imperceptibility. Also, it is 
argued that the watermark should be inserted in the perceptually most significant 
components of the data and composed of random numbers drawn from a Gaussian 
distribution since watermarks in perceptually insignificant regions can be easily 
removed, this has a huge influence on several watermarking methods proposed later. 
The strength of this method is the embedding of watermark in perceptually most 
significant regions, which makes the watermark robust against common signal 
processing, and can withstand collusion attacks. The weakness is that the extraction 
progress needs the original unmarked document, thus only allows the watermark to be 
extracted by the content owner. Moreover, it is not suitable against geometric 
distortions. 

Cox et al [4] also provided a review of the properties and a basic framework of 
watermarks, along with some proposed watermarking methods of different kinds. 
They focused on the desirable characteristics of a watermark for copyright control, 
including invisibility, robust to common signal distortions, resistant to tampering, bit 
rate, modification and multiple watermarks, and scalability. And they suggested that a 
watermark should be placed in the perceptually significant regions of the data to 
enhance robustness. Also, the PSNR should be high for the watermark to be 
unnoticeable. Followed by that, they introduced a mathematical framework to analyze 
the existing watermarking methods, and reached a conclusion that a prefiltering and 
nonlinear insertion is to be preferred. Finally they outlined many proposed 
watermarking scheme and analyzes the strengths and weaknesses regarding to 
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prefiltering and image spectral shaping. 
O’Ruanaidh et al [5] described how Fourier-Mellin transform-based invariants can 

be used for digital image watermarking. The embedded watermarks are designed to be 
robust against any combination of translation, rotation and scale. The watermark is 
also embedded in the perceptually significant components of the image and it also 
uses spread spectrum technique to achieve security and error reduction. The 
importance of invertibility of the integral transform invariants was emphasized. One 
of the significant points of this method is the novel application of the Fourier-Mellin 
transform to digital image watermarking. There are several advantages in using 
integral transform domain marks. First, the transform space contains a large number 
of samples which can be used to hide a spread spectrum signal. In addition, it makes 
the method robust to changes in scale and rotation. However, it has a weak resistance 
to lossy image compression and cropping, and cannot resist changes in aspect ratio or 
shear transformations. Also, in practice the inverse log-polar mapping is a 
computational bottleneck. 

Poljicak et al [6] proposed a blind watermarking method which minimizes the 
impact of the watermark implementation on the overall quality of an image. The 
watermark is embedded in magnitudes of the Fourier transform, and the obtained 
results were used to develop a watermarking strategy that chooses the optimal radius 
of the implementation which maximizes the PSNR value to minimize quality 
degradation. It is image dependent because with different images, the radius of the 
watermark changes accordingly to provide a better result. It has a high level of 
security due to the varying radius of implementation. It is computationally simple, 
device independent, adaptable and more robust while maintaining the same influence 
on overall quality of a watermarked image. However, the watermark is composed of 
circular dots of random noise, resulting in a low capacity and may not be suitable for 
other shapes of watermarks. And the PSNR may not be the best metric to evaluate the 
quality of images if it wants to obtain the optimal radius of implementation. 

Tataru et al [7] proposed a modified DCT watermarking method for grey images 
realized in frequency domain, with resilience to certain watermarking attacks and an 
improvement in terms of security, assured by the use of chaotic sequences. It also 
designed a watermark removal attack based on neighbor's mean to evaluate the 
performance between the proposed chaotic method and the standard method proposed 
in Zhao et al [12]. The main novelty of this method is the use of chaotic maps to 
scramble the watermark. It eliminates the inconvenience of the original standard 
method brought by the raster scan of the blocks and the fixed position used at the 
insertion. It is proven to be imperceptible, robust and most of all much more secure 
than the standard method. However, it uses a length of the watermark smaller than the 
capacity of the host image for security reasons, which may restrict the use of this 
method if the application requires a large capacity. Also, the PSNR decreases slightly 
with the chaotic method. 

Solanki et al [8] proposed a watermarking method to hide information into images 
that achieves robustness against printing and scanning with blind decoding, in which 
the original image is not required at the decoder to recover the embedding data. A 
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significant contribution of this paper is that it proposed a technique to estimate and 
undo rotation. The method is based on the fact that laser printers use an ordered 
digital half toning algorithm for printing, and embedding in the transform domain 
with synchronization and error correction using powerful turbo-like channel codes. 
The proposed method named “Selective Embedding in Low Frequencies (SELF)” is 
based on the DFT magnitude, in which information is hidden only in dynamically 
selected low frequency DFT coefficients. The strength of this method is that there is 
no penalty in hiding rate for achieving robustness against rotation. Moreover, the 
estimation and automatic derotation allows more information to be hidden because of 
its accurate estimation of the rotation angle. However, it cannot be applied to a 
general rotation attack, and only has a good performance for watermarking 
applications if the watermark sequence is known to the decoder and can be correlated 
with the hidden data to detect the watermark. 

Solanki et al [9] introduced an improved watermarking system of their last method. 
They propose two methods to hide information into images that achieves robustness 
against printing and scanning with blind decoding, namely “Selective Embedding in 
Low Frequencies (SELF)” (as mentioned in the last method) which hides information 
in the magnitude of selected low-frequency DFT coefficients, and “Differential 
Quantization Index Modulation (DQIM)” which embeds information in the phase 
spectrum of images by quantizing the difference in phase of adjacent frequency 
locations. A significant contribution of this method is a systematic analytical and 
experimental modeling of the print-scan process. It reaches the conclusions that 
during print-scan process, the low and mid frequency coefficients are preserved better 
than high ones, high magnitude coefficients are preserved better than low ones, and 
the difference in phase of adjacent frequency locations is preserved for the high 
magnitude coefficients. Several hundred information bits can be embedded into 
images with perfect recovery against the print-scan operation compared to other 
methods which embeds only a single bit or a few bits of information. The hidden 
images also survive several other attacks, such as Gaussian or median filtering, 
scaling or aspect ratio change, heavy JPEG compression, and rows and/or columns 
removal. However, the volume of embedding of DQIM is less than SELF since it is 
hard to embed data in the phase spectrum without introducing much perceptual 
distortion. And it is only suited for rotation attacks whose printing process is based on 
ordered digital halftoning algorithm. 

Voloshynovskiy et al [10] proposed a new content adaptive stochastic approach 
which is based on the computation of a Noise Visibility Function (NVF) that embeds 
the watermark into the cover image according to local image properties, identifying 
textured and edge regions where the mark should be more strongly embedded. It 
examines two NVFs based on non-stationary Gaussian model and stationary 
Generalized Gaussian model respectively, and shows that the problem of the 
watermark estimation is equivalent to image denoising and derive content adaptive 
criteria. It is applicable for very different types of images, and not constrained with 
the identification of an adequate set of parameters to be determined before the 
identification of the local characteristics. Also, it may be applied to different domains. 
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Meanwhile, some changes can be made to further improve this method. For example, 
in content adaptive watermark embedding, the watermark strength in very flat regions 
should be replaced with an image-dependent variable instead of a fixed value, which 
can take the luminance sensitivity of HVS into account. 

LeCallet et al [11] presented a review of both subjective and objective quality 
assessment of images and video in the field of watermarking and data hiding 
applications, in which the first aim is to highlight the deficiencies of some metrics for 
data hiding purposes. A deep review of subjective experiment protocols has been 
carried out and both usual statistical metrics, and a few advanced objective metrics, 
have been detailed. First it presented a quality benchmark, which is used to determine 
among several existing objective quality metrics, the one that would best predict the 
subjective scores. Then it argued that PSNR may not be the best metric to evaluate the 
quality of a watermarked image. Although one objective metric has provided a rather 
good prediction of the MOS, existing objective metrics may not yet be efficient 
enough to assess the quality of one single embedding technique for various contents 
or for different embedding strengths. For future work, further research could be 
devoted to the development of an efficient quality metric within the aforementioned 
range, and the design of a metric giving the right weight to perceptual ineffective 
geometric distortions is still a challenging matter of research. 
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2. Proposed Watermarking Method 
 

In this section, we will discuss our proposed watermarking method in detail, 
including how to generate the watermark, how to choose the embedding location, and 
the detailed process of watermark embedding and detection. 

 

2.1 Watermark Generation 
There are many kinds of watermarks proposed in the past. Some spread the 

watermark throughout the spectrum of an image, over many frequency bins so that the 
energy in any one bin is very small and undetectable; some embed dots circularly 
around the center of the spectrum. While in our method, we will embed a 
crown-shaped watermark composed of decimal values ranging from -1 to 1.  

The reason the watermark is crown-shaped is that we do not want the embedding 
watermarks interfere with the interest points found by SURF. If the watermark is a 
filled circle, then the property of the interest point may be changed by the watermark, 
causing SURF to lose this interest point during detection. Therefore, the inner radius 
of the crown watermark should be large enough to minimize its impact on interest 
points to minimum. Moreover, the watermarks are composed of sequences of decimal 
values instead of binary values because binary watermarks are less resistant to 
tampering and more visible. 

As mentioned before, for our method, we will take advantage of chaotic maps, to 
be specific, the discrete Skew Tent map, to generate chaotic sequences and use them 
to construct the watermark. The sequences are generated using Formula (4), and the 
values are between 1 and 2N-1, where N is the finite precision equal to 32 bits. The 
key used to generate the sequences is comprised of 4 parameters: the control 
parameter P, the initial value of the sequence X1, the initial register value of the 
perturbation Q0, and the orbit of the chaotic map without perturbation Δ. The first 
three parameters are generated randomly, while the last parameter Δ is set to be 31, 
which means perturbation is done every 31 number of iterations.  

In fact, the setting of parameter Δ is very important to our method. Because when 
Δ is set to a larger value, the orbit of the chaotic sequence appears to be predictable, 
which means despite the uniform distribution of the sequence, the organization of it is 
not random. This will result in the structure of the watermark appears to be regular, 
which will affect the invisibility of the watermark and the performance of the detector. 
Therefore in our method, we set Δ to be a small value as 31. 

The key of the sequence is only known to the content owner, makes it almost 
impossible for attacks to regenerate the watermark, which improves the level of 
security significantly. The polynomial equation used for the perturbation is: 

1)( 1101315 ++++= xxxxxg                       (7) 

After the chaotic sequence is generated, it has to be normalized into values of -1 
to 1 to form the watermark. In order to achieve this, we use the following formula: 
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where Xµ is the value in the chaotic sequence before normalization, and X is the value 
after normalization. 

After the normalization, we get a sequence with decimal values ranging from -1 
to 1, with a uniform distribution and a mean value close to 0. The length of the 
sequence depends on the size of the watermark. It should be greater than the area of 
the circumscribed square of the watermark, since the values in the sequence will be 
filtered by a ring and used to construct the watermark. Also, the first 100 values are 
discarded since they have not reached to a stable periodic orbit. 

With the normalized chaotic sequence, we can begin to form the watermark. First 
we load the sequence and save it as a square image, the size of which equals to the 
diameter of the watermark. Then we create an image of the same size, with a ring 
filled with values of 1, and the background is set to be 0. The radius and thickness of 
the ring equals to those of the watermark. By multiplying these two images, we can 
obtain the watermark with a zero background and a ring filled with decimal values of 
-1 to 1, generated by Skew Tent map. The watermark is saved for further use. This 
process is illustrated below: 

 

                     
Figure 4. The process of watermark generation 

 
In order to evaluate the performance of the chaotic sequence generator, we 

designed a random noise generator for comparison purpose. The procedure of 
generating the watermark is similar to the chaotic generator, but instead of using 
chaotic map to generate the chaotic sequence, it uses a random generator to produce a 
sequence of random noise.  

First we use the function cvRNG() in OpenCV to initialize the generator. It has 
one parameter called seed, which is a 64-bit value used to initialize a random 
sequence. This function initializes a random number generator state and returns the 
state. The pointer to the state can be then passed to the cvRandReal() function. 
cvRandReal() has one parameter rng, which is a random number generator state 
initialized by cvRNG(). The function returns a uniformly-distributed random 
floating-point number between 0 and 1. The sequence is then multiplied by 2 and 
minus 1, which produces a sequence with real values ranging from -1 to 1. This 
sequence is subsequently used to generate a watermark with random noise, and the 
generation process is the same as the chaotic watermark. Both the chaotic watermark 

× 
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and the random-noise watermark will be tested to evaluate their performance when 
subjected to different kinds of attacks. 

 

2.2 Watermark Location  
After the watermark is generated, the next thing to determine is the embedding 

location of the watermark. As mentioned before, we decide to embed the watermark 
in the Fourier domain due to its robustness against geometric distortions. Now the 
question becomes, which locations in the Fourier domain do we want to embed the 
watermark on. In our method, we use SURF to help find these locations. 

SURF is generally used to find correspondences between two images of the same 
scene or object. It detects interest points in a given image and matches them between 
different images. In our case, we use it to find interest points in DFT domain. While it 
is not originally designed for a highly noisy environment like DFT domain, the 
experiments we conduct show that SURF has a good adaptability and perform quite 
well in DFT domain. Moreover, it is very robust to different image transformations, 
which allows us to relocate the interest points we find in the original image after the 
image is watermarked. Even when the watermarked image has been attacked, it can 
still find some interest points near the original points, if not the exact ones. This is 
very important to our method since the performance of the detector highly depends on 
whether SURF can retrieve the interest points where the watermarks are embedded. 
After relocating the interest points, we can easily retrieve the watermarks and 
compare it with the original watermark. 

Therefore, for a given image, we first compute its Fourier transform, split it into 
real and imaginary parts, and then compute the magnitude of the spectrum. After the 
magnitude coefficients of the spectrum is obtained, we then apply SURF on it to find 
interest points over the spectrum, as shown in Figure 5, where each white point 
represents a interest point found by SURF.  

        
Figure 5. Interest points found by SURF in Fourier domain 

 
However, not all interest points are suitable for embedding, we have to sift 

through these points and get rid of the ones that are not qualified as embedding 
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locations.  
First, the watermarks should be embedded in the middle frequencies of the 

Fourier domain. Modifications in the low frequencies of the Fourier transform will 
cause visible changes in the spatial domain, which will degrade the perceived quality 
of the image severely. Embedding in the high frequencies of the Fourier transform is 
not robust enough against attacks since common distortions tend to affect the high 
frequencies more than lower frequencies. Thus, the watermarks should be added in 
the middle frequency range because, if carefully designed, it will be robust against 
distortions and invisible at the same time. Therefore, we need to filter out the interest 
points in the low and high frequencies, and only keep the ones in the middle 
frequencies, as shown in Figure 6. 

        
Figure 6. Remove the points that are in the low and high frequencies of the Fourier domain 

 

We should also remove the points that are too close to others, because if not, the 
watermarks embedded around these points will overlap and affect the performance of 
the detector. Since SURF ranks the interest points by level of importance, if two 
points are too close, we will remove the less important one (also likely less robust). 
The distance between two points should be greater than the diameter of the watermark, 
thus ensures every watermark we embed will not overlap with others. This 
elimination process is shown in Figure 7. 

           
Figure 7. Remove the points that are too close to others and less important 



 19 

 

After all the disqualified interest points are eliminated, the points left are the 
locations where we plan to embed the watermarks. The watermark will be embedded 
around every interest point, and the coordinate of the point is the center of the 
watermark. 
 

2.3 Watermark Embedding 
After the problems of how to generate the watermark and where to embed the 

watermark are solved, we can begin the embedding process. 
The general scheme of our embedding process can be summarized as follows. 

For a given image, first perform Discrete Fourier Transform (DFT) on it, split the real 
part and the imaginary part of the spectrum and compute the magnitude coefficients 
of the Fourier spectrum. Then apply SURF algorithm on the magnitude coefficients to 
find some interest points. After filtering the interest points, only those points in the 
middle frequencies of the spectrum are kept as embedding locations. The crown 
watermark is generated using chaotic map and embedded around these interest points 
in the real part of the Fourier spectrum. Afterwards, the real part and the imaginary 
part of the Fourier spectrum are merged together and an inverse Fourier transform is 
performed to obtain the watermarked image. In addition, the PSNR of the 
watermarked image should be computed to evaluate its perceived quality. Both the 
watermark and the watermarked image are saved for further use during detection. 
This process will be analyzed in detail later. The block diagram of this process is 
shown below: 

 

 
Figure 8. Block diagram of our embedding process 

 
During embedding, the original image is first loaded and converted to grayscale. 

Then we perform DFT on the grayscale image. The Fourier Transform will 
decompose an image into its sinus and cosines components. In other words, it will 
transform an image from its spatial domain to its frequency domain. The idea is that 
any function may be approximated exactly with the sum of infinite sinus and cosines 
functions. Mathematically a two dimensional images Fourier transform is: 
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Here f is the image value in its spatial domain and F in its frequency domain. 
The result of the transformation is complex numbers. Displaying this is possible either 
via a magnitude image and a phase image or via a real image and an imaginary image. 
Basically the magnitude of the Fourier transform at a point is how much frequency 
content there is, while the location is given by phase, which is the argument of the 
Fourier transform at a point. The real part is how much of a cosine of that frequency 
you need, while the imaginary part is how much of a sine of that frequency you need. 
However, throughout the image processing algorithms only the magnitude image is 
interesting as this contains all the information we need about the images geometric 
structure. This is also the reason why we apply SURF on the magnitude of the Fourier 
spectrum. Nevertheless, we intend to make some modifications of the image in these 
forms, and to retransform it we need to preserve all of these.  

Since the image is converted to grayscale values between 0 and 255, the Fourier 
Transform also needs to be of a discrete type, resulting in a Discrete Fourier 
Transform. It is used to determine the structure of an image from a geometrical point 
of view. Note that changes in the spatial domain will affect the frequency domain as 
well. Circular shifts in the spatial domain do not affect the magnitude of Fourier 
transform, but will cause a linear shift in the phase component. Scaling in the spatial 
domain causes inverse scaling in the frequency domain. And rotation in the spatial 
domain causes the same rotation in the frequency domain. 

In order to perform a DFT, first we need to expand the image to an optimal size. 
The performance of a DFT is dependent of the image size. It tends to be the fastest for 
image sizes that are multiple of the numbers two, three and five. Therefore, to achieve 
maximal performance it is generally a good idea to pad border values to the image to 
get a size with such traits. 

Then we compute the discrete Fourier transform, and rearrange the quadrants of 
Fourier spectrum so that the origin is at the image center. The result of a Fourier 
Transform is complex, which implies that for each image value the result is two 
image values (one per component), the real part (Re) and the imaginary part (Im). 
Moreover, the frequency domains range is much larger than its spatial counterpart. 
Therefore, we store these results in a float format.  

After we split the real part and the imaginary part of the Fourier spectrum, we 
can compute the magnitude of the Fourier spectrum using: 

22 ImReMag +=                           (11) 

However, the dynamic range of the Fourier coefficients is too large to be 
displayed on the screen. There are some small and high changing values that we can’t 
observe with human eyes. Therefore the high values will all turn out as white points, 
while the small ones as black. To solve this problem, we transform the linear scale to 
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a logarithmic one for visualization: 

)1log(' MagMag +=                           (12) 

Finally we have to scale the image and throw away the new values introduced 
when we expand the image.  

Now that we have obtained the magnitude of the Fourier spectrum, we can use 
SURF on it to find the interest points. The process of finding and filtering the interest 
points was described elaborately in section 2.2. Since the magnitude coefficients 
contain all the information about the geometric structure of the image, SURF is most 
likely to find the most robust interest points in it. The coordinates of these interest 
points are saved into a text file as future watermark embedding positions.  

Once the embedding locations are determined, we can start to generate the 
watermark. The process of generating the watermark was explained in detail in 
section 2.1, in which we have described two ways to generate the watermark: using 
the chaotic sequence generator or random noise generator. The chaotic sequence 
generator is the main research object in this report, while the random noise generator 
serves as a comparison object to evaluate the performance of the former. The 
watermark is saved as a text image because we do not want any loss of precision of 
the values in the watermark. All the values are saved without any round off. 

After all the preparatory work is completed, we can begin the actual embedding 
procedure to place the generated watermark on every embedding location in the 
Fourier domain. However, there is one thing that we should pay attention to, which is 
the symmetry property of the Fourier transform, specifically the fact that for time 
functions that are real-valued, the Fourier transform is conjugate symmetric. From 
this it follows that the real part and the magnitude of the Fourier transform of 
real-valued time function are even functions of frequency and that the imaginary part 
and phase are odd functions of frequency. 

When we take the Fourier transform of a real function, for example a one- 
dimensional sound signal or a two-dimensional image, we obtain a complex Fourier 
transform. This Fourier transform has special symmetry properties that are essential 
when calculating and/or manipulating Fourier transforms. 

Suppose in two dimensional we have an image f(x,y), and the Fourier transform 
of this image can be written as: 

),(),(),( vuiFvuFvuF ir +=                       (13) 

The real part is symmetric and the imaginary part is anti-symmetric, where in 
two dimensions the symmetry conditions for the real part of the Fourier transform are 
given by: 
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And the symmetry conditions for the imaginary part of the Fourier transform are 
given by: 
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Similarly the two dimensional power spectrum is also symmetric, with: 
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This symmetry conditions are shown schematically in Figure 9, which shows a 
series of symmetric points. 

 
Figure 9. The symmetry conditions of Fourier transform 

 
This symmetry property has a major significance in the digital calculations of 

Fourier transforms and should not be destructed. Since we are embedding the 
watermark in the real part of the Fourier transform, therefore the watermarks 
embedded in the first and second quadrants should be symmetric to the watermarks 
embedded in the third and fourth quadrants. Only in this way, the symmetry of the 
Fourier transform can be preserved. 

Because of the symmetry of the Fourier transform, the interest points found by 
SURF are also central symmetric and the symmetry point is at the center of the image. 
For example, for image Lena, with given conditions, SURF can find four interest 
points in the middle frequencies of Fourier spectrum, which are central symmetric: 

 
Figure 10. Interest points found by SURF for Lena image 
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First we need to create a new image with a size equal to the original image and 

set the background to 0. Then load the coordinates of the interest points found by 
SURF. We only need to go through half of the interest points which are in the third 
and fourth quadrants, and add the watermark around these points. After this, we create 
a central symmetric version of this image by performing a simultaneous horizontal 
and vertical flipping of the image. The last step is to simply add up these two images 
so that the watermarks in the first and second quadrants are symmetric to the 
watermarks in the third and fourth quadrants. The following image is marked as wm, 
which will be used in the next step: 

 
Figure 11. Final image wm with central symmetric watermarks 

 
Finally, we embed these watermarks at the corresponding locations in the real 

part of the Fourier transform. As mentioned before, the most commonly used 
embedding functions are additive embedding and multiplicative embedding. In our 
method, we choose to use multiplicative embedding. It is more image-dependent 
because how much the watermark alters the original image depends on the value of 
the image at a given point. We also slightly modified the standard multiplicative 
embedding function (see Formula (2)) to make it more suitable for our embedding 
method. To embed a watermark X in the original image V with the embedding 
strength α to obtain the watermarked image V’, the embedding function we use is as 
follows: 

iii vxv ⋅⋅=α'                             (17) 

We load the coordinates of the interest points again and go through the real part 
of the Fourier transform, and every time we reach a watermarking location (the ring 
area around the interest point), the original value is replaced by the result of 
multiplying the absolute value of it by the value in wm at the same location and the 
embedding strength. The reason for multiplying the watermark by the absolute value 
of the real part is that we want the sign of the modified coefficients to be consistent 
with the sign of the watermark. If the value of the watermark is positive, then the 
value of the corresponding real part after embedding is also positive. Accordingly, if 
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the value of the watermark is negative, the value of the corresponding real part after 
embedding is negative as well. This way, for every modified coefficient, the sign of 
the coefficient after embedding would be the same with the sign of the watermark. 
Since we use cross correlation to evaluate the similarity between the watermark and 
the watermarked image during detection, keeping their signs consistent will certainly 
improve the correlation value, which will consequently improve the performance of 
the detector. 

After the embedding is finished, the real part and the imaginary part are merged 
together to form the new Fourier domain containing the watermarks. The Fourier 
domain after embedding is shown below (contrast of the image is enhanced to make 
the watermark more visible): 

 
Figure 12. Fourier domain after embedding 

 
The reason we are embedding in the real part of the Fourier transform instead of 

the magnitude is that the real part contains both positive and negative values, while 
the magnitude is consisted of all positive values. The embedded watermarks have 
both positive and negative values too like the real part, so the correlation between the 
watermark and the real part is likely to be higher. If the embedding takes place in the 
magnitude, then some of the positive values may be changed into negative values. In 
fact, the embedding function we use is specifically designed for embedding in the real 
part of the Fourier transform. 

Also, we have embedded several watermarks in various locations instead of one 
watermark. This is a form of redundant embedding in order to improve the robustness 
of the watermark. When an image is distorted, not all coefficients in its representation 
are affected equally. Some coefficients may be affected more severe than others. One 
general strategy for the method to survive a wide variety of distortions is to embed a 
watermark redundantly across several coefficients. If some of these coefficients are 
damaged, the watermark in other coefficients should remain detectable. 

Watermarks that are embedded redundantly by tiling can be detected in a number 
of ways. One method is to combine data from all the tiles in an image and then decode 
the result and test for the watermarks in their average. Another method is to test for 
the watermark in each tile independently, announcing that the watermark is present if 
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it is detected in more than some fraction of the locations. In our method the latter one 
is used. As long as one watermark survives the distortion, we assume that the 
watermark is detectable. 

After all the watermarks are embedded in the Fourier transform, there is still one 
thing left before the embedding process is completed. An inverse Fourier transform 
has to be performed to map the signal back from the frequency domain into the spatial 
domain: 
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As soon as the inverse DFT is computed, we can get the watermarked image. 
The operating result of the embedding process is shown in Figure 13. The original and 
the watermarked images are shown in Figure 14. As we can see, the watermarks are 
quite invisible. 

 

 
Figure 13. Screenshot of the operating result of embedding process 
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(a)                                    (b) 

Figure 14. The original image (a) and the watermarked image (b) 

 
PSNR is used as an objective metric to evaluate the perceived quality of the 

watermarked image in addition to human eye observation. The PSNR is defined as: 
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where MAX denotes the highest value in an image, and MSE denotes the mean 
squared error, which is defined as: 
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where m and n are the dimensions of an image, x and y are the coordinates of an 
image, Iw is the watermarked image and I is the original image. 

Because many signals have a very wide dynamic range, the value of PSNR is 
usually expressed in terms of the logarithmic decibel scale. Values above 40 dB 
indicate good quality, while values below 30 dB indicate low quality, the higher the 
better. Therefore, we consider the watermark to be quite invisible if the PSNR value is 
above 40 dB. 
 

2.4 Watermark Detection 
When the embedding process is completed, a detection process has to be 

proceeded to determine whether the watermark is detectable after the image has gone 
through common distortions or intentional tampering. 

The general scheme of our detection process can be summarized as follows. First 
take the watermarked (and probably distorted) image, perform discrete Fourier 
transform on it and compute the magnitude coefficients. When the magnitude is 
obtained, run SURF on it to find new interest points. Since the image is watermarked 
and distorted, the interest points found by SURF are likely to be slighted different 
from the ones found during embedding. After we get the new interest points, instead 
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of embedding watermarks, we extract the square regions around these points in the 
real part of Fourier spectrum, the size of which equals to the diameter of the 
watermark. These regions are considered to be the possible regions that contain the 
watermarks. The normalized cross correlation between them and the original 
watermark is computed to determine if the watermarks are detectable or not. Also, the 
Grubbs’ test is implemented to compute the number of outliers in the correlation maps. 
It is used as an alternative to a detection threshold. The block diagram of this process 
is shown below: 

 
Figure 15. Block diagram of our detection process 

 
The first two steps in detection are the same with the embedding. The only 

difference is that this time the watermarked image is used. Since the detector we 
implemented is a blind detector, we do not need the initial unwatermarked image, 
only the watermarked one. This will not doubt improve the adaptability of our 
proposing method because it is not constrained by the presence of the original image. 
In some applications where the original image is not available, non-blind detector is 
of no use, while blind detector can work perfectly fine. 

Therefore, we take the watermarked image generated in embedding process and 
perform DFT on it. After splitting the real part and imaginary part of the Fourier 
transform, the magnitude coefficients are computed. Then SURF is applied again in 
the magnitude coefficients to find new interest points. Because the image is 
watermarked and possibly distorted, this will impose changes in the Fourier transform, 
causing SURF to find interest points that are shifted from the original ones found 
during embedding, or find completely different points. Since we do not know which 
points are the actual embedding locations, we have to consider all points to be 
potential embedding locations and save them all.  

For example, the image below is a comparison between the interest points find 
by SURF with the original Lena image (during embedding) and the watermarked 
image without attacks (during detection). The white points are found during 
embedding, while the pink points are found during detection. We can see that the two 
points in the first and third quadrants are slightly shifted while the two points in the 
second and fourth quadrants are completely different. But as long as we can find some 
of the original points or points close to the original ones, the detector is still working. 
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Figure 16. Interest points found during embedding and detection 

 
After the new interest points are found, the next step is to extract the potential 

watermarked regions. Since the embedding is done in the real part of the Fourier 
transform, the extraction also needs to take place in the real part. Once the coordinates 
of the new interest points are loaded, we go into the real part and start the extraction. 
The size of the extracted square regions equals to the diameter of the watermark, the 
center of those regions are the coordinates of the interest points. As mentioned before, 
the Fourier transform has symmetry property, so the spectrum itself and the interest 
points found by SURF are both symmetric. Hence, we only need to save half of 
regions in the third and fourth quadrants, because the ones in the first and second 
quadrants are the symmetric version of these ones, and the correlation will be exactly 
the same. These regions are saved as text image for further use. The two images 
below are the two regions extracted in the third and fourth quadrants of the real part of 
the watermarked Lena image without attack. The left one contains a large portion of 
the watermark, so it is the right watermarked region. The right one contains no 
watermark, so this region is not watermarked. 

           
(a)                   (b) 

Figure 17. The extracted regions of the real part of Fourier transform 

  
The reason we extract these regions is to calculate the similarities between them 

and the watermark, in order to determine if the watermark is robust enough and can 
still remain detectable even after distortions. This way, we do not need to go through 
the whole real part to compute similarities at every point, but rather target on the 
regions that have the biggest probabilities of containing the watermarks, which will 
make it faster to compute and easier to find peaks in the correlation maps. 

There are many possible measurements to assess the similarity between two 
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images, and in our case, we use the normalized cross correlation. Cross correlation is 
a standard method of estimating the degree to which two series are correlated. It is a 
measure of similarity. For image-processing applications in which the brightness of 
the image and template can vary due to lighting and exposure conditions, the images 
should be first normalized. This is typically done at every step by subtracting the 
mean and dividing by the standard deviation. The value of the normalized cross 
correlation will vary between -1 and 1. A value of 1 indicates that at that point, the 
two images have the exact same shape, while a value of -1 indicates that they have the 
same shape except that they have the opposite signs. A value close to 0 indicates that 
they are uncorrelated.  

To identify the maximum correlation, we have to compare the original watermark 
against the extracted region by sliding it. By sliding, we mean moving the patch one 
pixel at a time, left to right, up to down. At each location, a metric is calculated so it 
represents how good or bad the match at that location is, or how similar the 
watermark is to that particular area of the extracted region. For each location, the 
result is stored into a two dimensional array called correlation map. Therefore, the 
height of the correlation map equals to 2*h-1, and the width equals to 2*w-1, where h 
and w are the height and width of the watermark respectively. When all the results are 
calculated and saved into correlation map, the largest one in the map is the maximum 
correlation, which means at that point, the similarity between the extracted region and 
the watermark is the highest. If we take a look at the correlation map, we can see that 
the brightest location indicates the highest match, while the dark region indicates low 
similarity. The following image is the correlation map for watermarked Lena image 
with 1 degree of rotation, and the bright point marked by the red circle is the 
maximum correlation. 

 
Figure 18. The correlation map 

 
We have also tried the template matching function to compute the correlation, 

which is a powerful function provided by OpenCV. However, it does not work as well 
as the function we implemented. Because unlikely the function we use, template 
matching can only slide the template image within the boundary of the source image. 
If the extracted region contains a small portion of the watermark, while our method 
can detect it, template match cannot because the watermark cannot slide outside the 
extracted region. These two ways of sliding are illustrated below: 

 



 30 

         
(a)                                             (b) 

Figure 19. The two ways of sliding: (a) Implemented method; (b) Template matching 
 

Be aware that the maximum correlation for our method may not be very high 
since we implemented a blind detector which do not requires the original unmarked 
image. Without the original image, we cannot extract the watermark, only the regions 
that may contain the watermark. So we have to correlate the original watermark which 
ranges between -1 and 1 with the extract region of real part whose range is tens of 
thousands times larger. Therefore, the decrease of correlation is to be expected. This 
is not a big problem, as long as the maximum correlation can be separated from the 
rest of the values. In other words, there should be a clear peak in the correlation map. 
The image below is the 3D plot of the correlation map shown in Figure 18. As we can 
see, the peak is clearly separated from other values. In cases like this, we can 
conclude that the watermark is detectable. 

 
Figure 20. 3D plot of correlation map 
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Until now, we can only determine whether the watermark is detectable by 

viewing the correlation map and check if there is a peak. However, it would be too 
much trouble to do it for every region we extracted and for every image. So, it would 
be nice to implement an auto-detection function to tell us if there is a peak in the 
correlation map.  

Commonly, most watermarking methods will set a value T as the threshold 
during detection. When the maximum correlation is returned, they compare the 
maximum value with the threshold T. If the maximum value is above T, the 
watermark is detectable. If not, the watermark is undetectable. This is the usual way 
to determine the presence of the watermark. The problem is how to choose the 
appropriate T value. Most methods simply use an empirical value obtained by 
conducting experiments on the test images. While it works well for this specific image 
dataset, it may not be suitable for other datasets with completely different image 
structure. So, instead of using a fixed threshold, we choose to use Grubbs’ test to 
detect outliers, which is image dependent and highly adaptable. As long as we can 
find a clear peak (an outlier) in the correlation map, we consider the watermark is 
detectable.  

Grubbs' test is a statistical test used to detect outliers in a univariate data set that 
follows an approximately normal distribution. It is also known as the maximum 
normed residual test. Grubbs' test detects one outlier at a time. This outlier is 
expunged from the dataset and the test is iterated until no outliers are detected.  

Grubbs' test is defined for the hypothesis: 
H0: There are no outliers in the data set 
Ha: There is at least one outlier in the data set 

The Grubbs' test statistic is defined as: 

s
YY

G i −=
max

                         (21) 

where Y  and s denote the sample mean and standard deviation, respectively. The 
Grubbs' test statistic is the largest absolute deviation from the sample mean in units of 
the sample standard deviation. 

This is the two-sided version of the test. The Grubbs' test can also be defined as 
one of the following one-sided tests: 

1. Test whether the minimum value is an outlier: 

 
s
YYG min−

=                              (22) 

with Ymin denoting the minimum value. 
2. Test whether the maximum value is an outlier: 

s
YYG −

= max                              (23) 

with Ymax denoting the maximum value. 
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For the two-sided test, the hypothesis of no outliers is rejected at significance 
level α if: 
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with tα/(2N),  N-2 denoting the critical value of the t distribution with (N-2) degrees of 
freedom and a significance level of α/(2N). For the one-sided tests, replace α/(2N) 
with α/N. 

The significance level α (different from the embedding strength α in embedding 
process) is the criterion used for rejecting the null hypothesis. It is the probability of 
incorrectly rejecting a given null hypothesis in favor of a second alternative 
hypothesis. In our method, α is set to 0.01, which means the false positive rate is 
controlled at 0.01. 

Since the Grubbs’ test can only be applied on a Gaussian distributed data set, and 
the correlation map does follow an approximately Gaussian distribution, therefore we 
apply Grubbs’ test on the correlation map to find the number of outliers in it. If the 
number of outliers is more than 1, we conclude that the watermark is detectable. If not, 
the watermark is undetectable. The following plot is the histogram of the correlation 
map shown in Figure 18. We can see that it indeed follows a Gaussian distribution. 

 
Figure 21. Histogram of the correlation map 

 
The operating result of the detection process is shown below. As we can see, for 

the two regions we extracted before (see Figure 17, one contains the watermark, one 
does not), the one containing the watermark returns a relatively high maximum 
correlation with two outliers, one outlier value equals to the maximum correlation; 
while the one that does not contain the watermark returns a low maximum correlation 
with no outliers. Therefore, we conclude that the watermark in the first region is 
detectable while the watermark in the second region is undetectable. 
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Figure 22. Screenshot of the operating result of detection process 
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3. Experimental Results 
 

In this section, we will first test a variety of parameter combinations to decide an 
optimal one. Then, experiments are conducted to test the robustness and invisibility of 
the proposed method. Results are also provided to demonstrate that our method has 
considerable robustness against rotation, noise, Gaussian blur and JPEG compression 
while maintaining a relatively good perceived quality of the image. 
 

3.1 Parameter Selection 
In our method, there are mainly five parameters that require tuning, the radius of 

the watermark (radius), the thickness of the watermark (thickness), the radius of the 
inner filter (filter_in), the radius of the outer filter (filter_out), and the embedding 
strength α. 

The first two parameters together determine the size of the watermark. Since our 
watermark is a crown watermark, the parameter radius denotes the distance from the 
center of the circle to the middle of the ring, while thickness denotes the thickness of 
the ring. Therefore, the radius of the inner ring is radius_in=radius – thickness/2, and 
the radius of the outer ring is radius_out=radius + thickness/2. This is illustrated 
below: 

 
Figure 23. Parameters of radius and thickness 

 
These two parameters need to be tested because if the watermark is too small, it 

may change the property of the interest point and cause SURF to lose this point 
during detection, which affects the robustness; if the watermark is too big, it will 
impose more changes on the Fourier transform and cause the PSNR to decrease, 
which affects the invisibility. 

The next two parameters filter_in and filter_out determine the embedding area. 
Since we want to embed in the middle frequencies of the Fourier transform, we have 
to set up two filters to eliminate the interest points found in low and high frequencies. 
The parameter filter_in denotes the radius of the low frequency filter, and filter_out 
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denotes the radius of the high frequency filter. This is illustrated below: 

 
Figure 24. Parameters of filter_in and filter_out 

 
These two parameters need to be tested because we want to give SURF enough 

space to find interest points while keeping these points away from the low and high 
frequencies, since modifications in the low frequencies will affect the invisibility and 
modifications in the high frequencies will affect the robustness. 

The last parameter α determines the extent to which the watermark alters the 
image. It needs to be tested because if it is too small, the watermark will not be robust 
enough; if it is too big, the watermark will not be invisible enough. 

We have tested 20 different parameter combinations in total on the Lena image 
with both the chaotic generator and random generator. With each combination, the 
PSNR of the watermarked image is recorded. The watermarked image is then attacked 
by: rotation of 0.5°, 1°, 1.5°, 2°, 2.5° and 3° respectively; Gaussian noise with a mean 
of zero and a standard deviation of 5 and 10 respectively; Gaussian blur with a 
standard deviation of 1; JPEG compression with a compression ratio of 70%. After 
each attack, the correlation is recorded, along with the correlation when there is no 
attack. 

During the experiments, we confirmed that as the embedding strength increases, 
the PSNR decreases while the correlation increases. Also, as the embedding locations 
shift towards higher frequencies, the PSNR increases while the correlation decreases. 
As for the comparison between the chaotic generator and the random generator, the 
PSNRs are very close with the same parameters, while the correlations are 
inconclusive. For some parameter combinations, the chaotic generator outperforms 
the random generator against certain attacks, while for other parameter combinations 
the random generator outperforms the chaotic generator for certain attacks. But 
despite the differences in maximum correlation values, the two generators can both 
detect the watermarks under most circumstances. And since the chaotic generator is 
more secure than the random generator, we decide to choose the former one. 

Figure 25(a) is the average PSNRs of different embedding strength (α = 3, 4, 5, 6, 
7) for both chaotic and random generators. As we can see, the PSNR drops as the 
embedding strength increases.  



 36 

Figure 25(b) is the average PSNRs of different embedding areas and the 
corresponding parameters are shown below, where w represents the width of the 
image and radius_out represents the radius of the outer ring of the watermark. 

 

tick label filter_in filter_out 

1 w
4
1  outradiusw _2

2
1

⋅−  

2 w
4
1  outradiusw _

2
1

−  

3 w
3
1  outradiusw _

2
1

−  

Table 2. Corresponding parameters used in Figure 25(b) 

 
The drop in the middle is because SURF finds more interest points in this area. 

So it embeds more watermarks than the other two using this parameter combination, 
which will no doubt deteriorate the image quality. And in both plots, the PSNRs of 
random generator are slightly higher than chaotic generators, but the differences are 
very small. Also, the average PSNRs are all above 40, which indicate good perceived 
quality. 

 

 
(a)                                       (b) 

Figure 25. Average PSNRs of the Lena image under different circumstances 

 
In Figure 26 we have displayed six plots of the correlations of a watermarked 

image under different attacks. The image used here is the Lena image. These are only 
part of the combinations we have tested (6 out of 20), displayed in order to explain 
how we choose the optimal parameter combination. A hollow circle means the 
detection is successful, and a filled square or an arrow means the detection is 
unsuccessful. The parameter combinations we use in the following plots are as 
follows:  
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No. radius thickness filter_in filter_out α 

(a) 40 10 w
4
1  outradiusw _2

2
1

⋅−  5 

(b) 30 10 w
4
1  outradiusw _2

2
1

⋅−  5 

(c) 40 10 w
3
1  outradiusw _

2
1

−  5 

(d) 40 10 w
4
1  outradiusw _

2
1

−  5 

(e) 40 10 w
4
1  outradiusw _

2
1

−  4 

(f) 40 10 w
4
1  outradiusw _

2
1

−  6 

Table 3. Parameter combinations 
 
 

 
(a)                                      (b) 

 
(c)                                      (d) 
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(e)                                      (f) 

Figure 26. Correlations of the Lena image under different circumstances 

 
The difference between (a) and (b) is the size of the watermark, as we can see, if 

the size decreases, the robustness against rotation decreases as well. The difference 
between (c) and (d) is the embedding frequencies, and as the embedding locations 
move towards higher frequencies, the robustness against all attacks decreases 
accordingly. The difference between (e) and (f) is the embedding strength, and as the 
embedding strength decreases, the robustness against all attacks also decreases. 

The results of the Grubbs’ test are shown below. Figure 27(a) is a very 
successful Grubbs’ test on image Lena without attack. Figure 27(b) is a mildly 
successful Grubbs’ test on image Lena with 0.5 degree rotation. Figure 27(c) is an 
unsuccessful Grubbs’ test on image Lena with 2.5 degree rotation.  

   
(a) A very successful Grubbs’ test 

 

   
(b) A mildly successful Grubbs’s test 
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(c) An unsuccessful Grubbs’ test 

Figure 27. Results of the Grubbs’ test on image Lena  

 
After considering the tradeoffs between the robustness and invisibility, we 

decide to use the following parameter combination:  
 

radius thickness filter_in filter_out α generator 

40 10 w
4
1  outradiusw _

2
1

−  5 chaotic 

Table 4. The optimal parameter combination 

 
We believe that with this parameter combination, the method can achieve a good 

robustness and invisibility at the same time. 
 

3.2 Experiment Results 
After we determined the final parameter combination based on image Lena, we 

conducted a number of experiments on 10 different images with this chosen parameter 
combination to test the robustness and invisibility of the proposed method. The results 
are shown below: 

 
(1) Image Lena                             (2) Image Elaine                           
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(3) Image Tank                             (4) Image Couple 

 

 
(5) Image House                            (6) Image Airplane 

 

 
(7) Image Mandrill                          (8) Image Peppers 
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(9) Image Stream                           (10) Image Tank 

Figure 28. Correlations under attacks for different watermarked images 
 

 
Figure 29. PSNRs of different watermarked images 

 

As we can see from Figure 28, almost all the test images can resist up to 2 degree 
rotation, some can even resist to a 2.5 degree rotation while some of the watermarking 
approaches cannot even resist a 0.5 degree rotation. All the images can withstand 
noise attack, most of them can resist JPEG compression, and more than half of them 
can resist Gaussian blur. And the Grubbs’ test can provide satisfying results for most 
of the tests. A hollow circle represents a successful detection, and a filled square 
represents an unsuccessful detection. Also, from Figure 29 we can see that almost all 
the test images have a PSNR above 40 after embedding, except Mandrill and Stream. 
These experiment results show that our proposed watermarking method has 
considerable robustness against different kinds of distortions while maintaining a 
good perceived quality.  

It should be mentioned that there is not enough time for us to conduct 
experiments about the false positive probability and false negative probability. Such a 
study could have been useful to further compare the performance between the chaotic 
sequence generator and the random noise generator.   
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4. Conclusion 
 

In this report we presented a novel watermarking method based on crown-shaped 
watermarks applied in the DFT domain. The embedding locations are found using 
SURF algorithm and the watermarks are generated using chaotic map. Multiplicative 
embedding is applied during the embedding procedure, and the original image is not 
required in the detection procedure. The watermarks are embedded in the middle 
frequencies of the DFT domain. PSNR is used to evaluate the perceived quality of the 
watermarked image. Normalized cross correlation is used to evaluate the similarity 
between the original watermark and the extracted regions containing the watermark. 
Grubbs’ test is implemented to detect outliers in the correlation maps in order to 
determine whether the watermark is detectable.  

Experimental results show that this method is robust against a variety of 
distortions, including rotation (up to 2 degree), Gaussian noise, Gaussian blur and 
JPEG compression. Also, the security level is improved due to the use of chaotic 
sequences to form the watermark. 

There is still much room for improvement in future works. First, our method is 
only applicable to grayscale images, all the color images are converted to grayscale 
images before embedding. We can try to expand the scope of the method to color 
images. Second, although SURF works fine with the 10 images we tested, if may fail 
when applied to other images because it is original designed to be used in spatial 
domain, not frequency domain. We can try to improve it or find new ways to find 
interest points in a highly noisy environment like DFT domain. Third, we can try to 
use 2D Gaussian function to smooth the edges, which may improve the performance 
of the method. Fourth, we can try to adjust the parameters dynamically with different 
images instead of applying one fixed set of parameters on every image. This will 
make the method more image dependant and achieve better robustness. Fifth, we can 
use some masking techniques to increase the invisibility of the watermarks. Sixth, 
conduct experiments about the false positive and false negative probabilities to further 
compare the performance of chaotic sequence generator with random noise generator. 
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