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Abstract

A novel efficient time domain threshold based sparse channel estimation
technique is proposed for orthogonal frequency division multiplexing (OFDM)
systems. The proposed method aims to realize effective channel estimation
without prior knowledge of channel statistics and noise standard deviation
within a comparatively wide range of sparsity. Firstly, classical least squares
(LS) method is used to get an initial channel impulse response (CIR) es-
timate. Then, an effective threshold, estimated from the noise coefficients
of the initial estimated CIR, is proposed. Finally, the obtained threshold
is used to select the most significant taps. Theoretical analysis and simula-
tion results show that the proposed method achieves better performance in
both BER (bit error rate) and NMSE (normalized mean square error) than
the compared methods, has good spectral efficiency and moderate compu-
tational complexity.

Keywords: Sparse channel estimation; least squares; OFDM; time domain
threshold.

1. Introduction

Orthogonal frequency division multiplexing (OFDM) technique is widely
used in wireless communication system thanks to its advantages of high data
Preprint submitted to AEU - International Journal of Electronics and CommunicationsOctober 13, 2013



transmission rate over multipath fading channel. In OFDM systems, accu-
rate channel state information (CSI) is necessary for coherent detection at
the receiver. Therefore, how to optimally use the precious limited commu-
nication system resources to obtain effective CSI is the main challenge in
channel estimation field.

Channel estimation can be carried out in either frequency or time do-
main. In frequency domain, least squares (LS) and minimum mean square
error (MMSE) are the most common channel estimation methods [1]. Gen-
erally, MMSE method can achieve better channel estimation performance
than LS method, but MMSE method requires prior knowledge of channel
statistics and noise variance. Moreover, it has an increased computational
complexity [1, 2]. Comparatively, the complexity of LS is low and it is pop-
ular to combine LS method with different interpolation algorithms to realize
effective channel estimation [2, 3, 4]. Among them, linear interpolation with
lowest computational cost is the most classical one [2, 3, 4, 5, 6]. However,
its performance relies on comparatively high percentage of pilots and it is
vulnerable to noise, especially when the channel is sparse. For sparse chan-
nel, the channel impulse response (CIR) is characterized by a few dominant
channel taps and majority of zero or nearly zero channel taps. In time
domain, it is possible to estimate the sparse channel with limited number
of pilots by fully considering the maximum channel length and the char-
acteristics of channel sparsity. The most significant taps (MST) method,
firstly proposed in [7], is popular in estimating sparse channel. Following
that, different thresholds [8, 9] have been proposed for MST based meth-
ods. However, all these methods have drawbacks. For example, a statistical
threshold is derived for pilot aided sparse channel estimation in [8], which
needs prior knowledge of channel statistics and has reduced spectral effi-
ciency. [9] uses twice of the noise power as threshold, which can hardly
be optimal [6]. The noise standard deviation based threshold [10] is also
not optimal [11]. In order to overcome the drawbacks of the above sparse
channel estimation methods, recently, the theoretical optimal threshold is
derived for sparse Rayleigh channel estimation in OFDM system [12], which
relies on the accurate knowledge of the channel tap power delay profile and
the received pilot energy to noise ratio. In order to make the threshold more
robust to communication environment, a sub-optimal threshold is proposed
by assuming a uniform power delay profile [12], which is proven to be robust
with the true power delay profile and depends only on the received signal
to noise ratio (SNR).
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This paper proposes a novel sparse channel estimation method with ef-
fective time-domain threshold. The proposed method depends only on the
estimated noise standard deviation and needs no prior knowledge of chan-
nel statistics and noise standard deviation, it can realize effective channel
estimation within a wide range of sparsity rate (the ratio of non-zero taps
to the considered channel length) [13].

The rest of this paper is organized as follows. In Section 2, the sys-
tem model for sparse channel estimation in OFDM system is introduced
and the noise statistics are analyzed. Based on the characteristics of the
sparse channel, an effective time domain threshold is proposed for the im-
provement of channel estimation performance in Section 3. Some simulation
results comparing the performance of the proposed method and other ex-
isting methods and the computational complexity analysis are provided in
Section 4. Finally, conclusions are drawn in Section 5.

2. System Model

Consider a N subcarriers OFDM system. M pilots with index k0, k1, . . . , kM−1

are employed to estimate a sparse channel. The received pilot vector can
be expressed by [10]:

yp = XpFM×Lcp
h+ vp (1)

where Xp = diag[xk0 , xk1 , . . . , xkM−1
] is the diagonal matrix of transmitted

pilots with each element having same power and being normalized; yp =
[yk0 , yk1 , . . . , ykM−1

]T is the received pilot vector; h = [h0, h1, . . . , hLcp−1]
T

(Lcp is the length of Cyclic Prefix and if a CIR with length of L is considered,
then L ≤ Lcp) is the sparse channel vector; vp = [vk0 , vk1 , . . . , vkM−1

]T is the
complex additive white Gaussian noise (AWGN) vector with zero mean and
covariance matrix σ2

fIM , σ2
f = Nσ2

t [7], where σ2
t is the variance of the

AWGN in time domain. The partial Fourier matrix FM×Lcp
is obtained by

selecting the rows of Fourier matrix with index k0, k1, . . . , kM−1 and the first
Lcp columns as follows:

FM×Lcp
=











W k00
N W k01

N . . . W
k0(Lcp−1)
N

W k10
N W k11

N . . . W
k1(Lcp−1)
N

...
...

...
...

W
kM−10
N W

kM−11
N . . . W

kM−1(Lcp−1)
N











(2)
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where W
kpq
N = e

−j2πkpq

N , 0 ≤ p ≤ M − 1, 0 ≤ q ≤ Lcp − 1. Let A =
XpFM×Lcp

, (1) becomes

yp = Ah+ vp (3)

where A is generally known as measurement matrix.
The main task is to reconstruct the K (K ≪ Lcp) sparse channel taps

from a few number of pilots with almost no perceptual loss in performance.
An initial estimate of the channel vector h is firstly obtained by LS:

ĥLS = (AHA)
−1
AHyp (4)

Combining (3) and (4), the following formula is obtained:

ĥLS = (AHA)
−1
AHAh+ (AHA)

−1
AHvp (5)

In this paper, we consider the case where Lcp ≤ M < N (N is an
integer multiple of M) and the pilots are uniformly distributed, in this case
AHA = MILcp

, (5) can be rewritten as [7]:

ĥLS = h+ n (6)

where n = 1
M
AHvp, it is still an AWGN vector, with covariance matrix C

expressed as:

C = E(nnH) =
1

M
σ2
fILcp

=
N

M
σ2
t ILcp

(7)

From (6) and (7), the estimated CIR by LS is highly affected by the noise
when channel is sparse. Therefore, it is important to denoise the estimated
CIR by an appropriate threshold. To do this, the universal threshold, firstly
proposed in [11], and then widely used in compressed channel sensing [10,
14, 15] can be employed:

λ =
√

2lnLcpσn (8)

An accurate standard deviation σn of each element in the noise vector
n, is necessary in practical communication. However, it is difficult to ob-
tain an effective estimate of standard deviation of each element in n when
the noise vector n and the channel vector h are present together. In the
following, we propose an efficient threshold based on the estimated CIR and
the characteristics of the sparse channel.

The amplitude of complex white Gaussian noise ni in ith element of
vector n follows Rayleigh distribution with standard deviation σn =

√
2σ,

4



where σ is the standard deviation of either the real or imaginary parts of ni.
The cumulative distribution function of Rayleigh distribution is expressed
as:

F (x) = 1− e−x2/2σ2

(9)

When F (x) = 0.5, the corresponding value of x is the median of |ni|,
therefore the relation between the standard deviation of |ni| and its median
value can be written as [16]:

σn =
√
2σ =

√
2
median(|ni|)√

ln4
(10)

For sparse channel, the majority of coefficients in CIR are noise, there-
fore it is possible to obtain an approximated estimation of noise standard
deviation σ̂′

n:

σ̂′
n =

√
2σ̂′ =

√
2
median

∣

∣

∣
ĥLS

∣

∣

∣

√
ln4

(11)

However, the presence of channel taps results in bias on the estimated
noise standard deviation, especially when the SNR is high and the channel
is not sufficiently sparse. In general, we have σ̂′

n > σn. If the majority
number of channel taps in ĥLS are removed, the remaining coefficients can
be regarded approximately as noise coefficients, which can be used to get
a better estimate of the noise standard deviation σ̂′′

n. With this estimated
noise standard deviation σ̂′′

n, an effective threshold can be obtained.

3. Proposed Threshold for Sparse Channel Estimation

The main framework of the proposed threshold for sparse channel esti-
mation is shown in Fig 1. The different steps are described as follows.

Step.1. LS is used to get an initial CIR estimate with length Lcp (4).
Step.2. To get a good estimate of the noise standard deviation, a thresh-

old is needed to eliminate the majority of channel taps in the initial esti-
mated CIR. An initial rough estimate of noise standard deviation can be
obtained from the coefficients of sparse channel vector ĥLS by (11). Then,
T =

√

2lnLcpσ̂
′
n is used as a threshold to eliminate the majority of channel

taps present in the estimated CIR. By comparing with T , the vector of noise
coefficients (the coefficients ĥLS[j] with amplitude equal or smaller than T )
denoted by c (c = [c[0], c[1], . . . , c[Lcp

′ − 1]], Lcp
′ < Lcp) is extracted.
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Figure 1: Proposed sparse channel estimation scheme

Step.3. With the vector of noise coefficients c (with no or much fewer

channel taps than in ĥLS), σ̂′′
n is estimated by σ̂′′

n =
√
2median(|c|)√

ln4
. Then, an

effective threshold is obtained by η =
√

2lnLcp
′σ̂′′

n. The final estimated CIR
is given by:

ĥ[n] =







ĥLS[n],
∣

∣

∣
ĥLS[n]

∣

∣

∣
> η

0,
∣

∣

∣
ĥLS[n]

∣

∣

∣
≤ η

0 ≤ n ≤ Lcp − 1 (12)

4. Simulations

In this section, simulations are carried out to evaluate the estimation
performance of the proposed method and compare it with that of other
existing methods. We consider two QPSK modulated OFDM systems for
two different channel models:

1) An OFDM system with 1024 subcarriers, of which 64 subcarriers are
pilots. The length of cyclic prefix is Lcp = 64.

2) An OFDM system with 1024 subcarriers, of which 256 subcarriers are
pilots. The length of cyclic prefix is Lcp = 256.

For the first OFDM system, the channel model is a simplified version of
DVB-T channel model whose channel impulse response is given in Table 1
[7].

For the second OFDM system, we use the ATTC (Advanced Television
Technology Center) and the Grand Alliance DTV laboratory’s ensemble E
model whose CIR is given by [7]:

h[n] = δ[n] + 0.3162δ[n− 2] + 0.1995δ[n− 17] + 0.1296δ[n− 36]

+ 0.1δ[n− 75] + 0.1δ[n− 137].
(13)
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Table 1: CIR for the first OFDM system

Delay (OFDM samples) Gain Phase(rad)
0 0.2478 -2.5694
1 0.1287 -2.1208
3 0.3088 0.3548
4 0.4252 0.4187
5 0.4900 2.7201
7 0.0365 -1.4375
8 0.1197 1.1302
12 0.1948 -0.8092
17 0.4187 -0.1545
24 0.3170 -2.2159
29 0.2055 2.8372
49 0.1846 2.8641

The coefficients in (13) and the gains in Table 1 represent the standard
deviation of the corresponding zero mean complex Gaussian random vari-
able. In the simulations, one OFDM sample period is assumed to be the
same as the unit delay of the channel, the CIR is static for each OFDM
symbol duration and each OFDM symbol has a newly generated Rayleigh
channel. Additionally, the channel tap gains are obtained by multiplying
the CIR coefficients with zero mean unit variance complex Gaussian random
variables. Moreover, 10 OFDM symbols are considered for each iteration;
and there are totally 800 iterations. Therefore, 8000 independent channel
realizations have been considered in each simulation.

The simulations focus on the performance of bit error rate (BER) and
normalized mean square error (NMSE) comparison between the proposed
method, the classical method (frequency domain LS method with linear
interpolation) [2, 3, 4, 5, 6], LS method with ideal channel knowledge (exact
number of channel taps and their position), LS method with MST proposed
by Minn et al [7] (MST method uses a fixed number of MST, which is
double of the designed number of channel taps as recommended in [7]) and
LS method with the threshold proposed by Kang et al [9] (for convenient
comparisons, the exact noise standard deviation is used for the threshold
proposed by Kang et al).

Fig 2 illustrates the BER performance of different algorithms of the first
OFDM system. With only 6.25% of pilots, the proposed method outper-
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Figure 2: BER performance comparison of the first OFDM system

forms the classical frequency domain method with 25.3% of pilots in the
overall considered Eb/N0. Meanwhile, with the same percentage (6.25%) of
pilots, compared with LS method with the threshold proposed by Kang et
al and LS method with MST proposed by Minn et al, the proposed method
achieves the same BER performance with at least 1dB gain in high Eb/N0

(13dB-30dB). Moreover, the proposed method has almost the same per-
formance as LS method with ideal channel knowledge in the majority of
considered Eb/N0 (8dB-30dB). Additionally, LS method without threshold
has the poorest performance, there is at least 2dB gap in Eb/N0 between
LS method without threshold and LS method with ideal channel knowledge
for a same BER. Comparatively, the known CSI (instantaneous channel fre-
quency response is known) has the best BER performance, however, for the
majority of considered Eb/N0 (8dB-30dB), the performance gap between
the proposed method and known CSI is less than 1dB in Eb/N0.

In the following, we consider the NMSE of the channel frequency re-
sponse defined by [17]:

NMSE =
E[‖g − ĝ‖22]
E[‖g‖22]

(14)

where g = [g0, g1, ..., gN−1]
T , gk =

∑Lcp−1
l=0 hle

−j2πlk

N , 0 ≤ k ≤ N − 1 and ĝ is
8
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Figure 3: NMSE performance comparison of the first OFDM system

an estimate of g.
Fig 3 shows that the NMSE performance of the first OFDM system has

similar trends as that of the BER performance except that the differences
between algorithms are much more obvious. For example, when the NMSE
reaches 10−3, there is an approximate 4dB gains in Eb/N0 for the proposed
method compared with LS method with threshold proposed by Kang et al.

In Fig 4, the NMSE performance of different algorithms of the second
OFDM system is compared. The proposed method maintains at least 4dB
performance advantage in the all considered Eb/N0 for a same NMSE com-
pared with LS method with MST proposed by Minn et al and LS method
with the threshold proposed by Kang et al, which is bigger than in the
first OFDM system. Furthermore, in the second OFDM system, the NMSE
performance gap between the proposed method and LS method with ideal
channel knowledge is slightly smaller than in the first OFDM system due
to more accurate estimation on noise standard deviation and changes on σn

(See (7), the σn will be reduced with the increase of the number of pilots).
The noise standard deviation estimation plays a central role in the pro-

posed method. In order to show the performance of the proposed noise
standard deviation estimation method, we consider the absolute relative er-
ror on the estimated standard deviation ε = |σ̂n−σn|

|σn| (σn is the true noise
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Figure 4: NMSE performance comparison of the second OFDM system

standard deviation for each element of vector n and σ̂n is the estimated one)
of different estimation methods for both DVB and DTV channels with 8000
independent channel realizations. As can be seen from Table 2, for both
channel models, when Eb/N0 increases, there is slight changes on the rela-
tive estimation error of standard deviation estimation for both the median

based estimation method σ̂′
n =

√
2

median|ĥLS|√
ln4

in formula (11) (used in the

first threshold to eliminating the majority of channel taps) and the proposed
method (the improved standard deviation estimation after eliminating the
majority of channel taps). We can also see that the relative estimation er-
ror of the proposed method is smaller than the median based estimation
method. Furthermore, the classical standard deviation estimation method

σ̂′′′
n =

√

1
Lcp

∑Lcp−1
i=0 |ĥLS[i]−mean(ĥLS)|

2
and Bayesian estimation method

[18] provide biased estimation, especially for high Eb/N0, due to the pres-
ence of non-zero channel taps.

From the above analysis of simulation results, we observe that even
though the sparsity rate [13] K

Lcp
has changed significantly (2.34% for the

second channel and 18.75% for the first channel), the proposed method still
maintains good performance of both the noise standard deviation estimation
and channel estimation. Therefore, we can draw the conclusion that even
without prior knowledge of channel statistics and noise standard deviation,
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Table 2: Absolute relative error of different noise standard deviation estimation methods
Channel Model DVB Model DTV Model
Eb/N0(dB) 10 20 30 10 20 30

Proposed method 0.0860 0.0808 0.0778 0.0368 0.0363 0.0368
Median method 0.1650 0.1785 0.1778 0.0391 0.0392 0.0394
Classical method 3.3607 12.4768 41.5017 2.6978 10.3039 34.6210
Bayesian method 3.5083 12.9357 42.9288 2.9407 11.0520 36.9536

the proposed method can still work within a wide range of sparsity rate.

Table 3: (Complex) Computational complexity comparison

Proposed Method Classical Method
Alg LS+Thr FFT LS+Lin Inter

Comp O(M
2
log2M +M) O(N

2
log2N) O(N)

In Table 3, the computational complexity (for simplicity only complex
multiplications are considered) comparison for the proposed method and
the classical frequency domain method is presented. The proposed method
is composed of three algorithms, which are LS algorithm (time domain),
threshold estimation algorithm and FFT algorithm. The LS and threshold
estimation have a total complexity of O(M

2
log2M +M) (in the case of this

paper, LS algorithm can mainly be realized by a M size IFFT computation),
while the FFT method has complexity of O(N

2
log2N). Therefore, the total

computational complexity of the proposed method is around O(Nlog2N).
Obviously, the proposed method has higher computational complexity than
that of the classical method, which is the combination of LS (frequency
domain) and linear interpolation algorithms and has computational com-
plexity of O(N). However, for the same performance of BER and NMSE
the proposed method allows to use much fewer pilots than that of the clas-
sical frequency domain method, thus it has better spectral efficiency.

5. Conclusion

Channel estimation methods with good estimation performance without
requiring prior knowledge of channel statistics and noise standard deviation
will significantly benefit the practical wireless communications. In this pa-
per, an effective sparse channel estimation method based on LS is proposed
in OFDM system. In this method, a novel effective time domain threshold
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depending only on the effective noise standard deviation estimated from the
noise coefficients obtained by eliminating the channel coefficients with an
initial estimated threshold is proposed. Both theoretical analysis and sim-
ulation results show that the proposed method can achieve better perfor-
mance in both BER and NMSE than the compared methods within a wide
range of sparsity rate, has good spectral efficiency and moderate computa-
tional complexity. The proposed two-step threshold estimation technique is
general, other threshold, like the suboptimal threshold proposed in [12] can
be used in the same way as the universal threshold used in this paper.

Acknowledgment

This work was supported by China Scholarship Council (No.2010615039).

References

[1] D. B. J. J. Van, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson, “On
channel estimation in OFDM systems,” Vehicular Technology Conf, vol. 2, pp. 815-
819, Jul. 1995.

[2] M. Hsieh and C.Wei, “Channel estimation for OFDM systems based on comb-type
pilot arrangement in frequency selective fading channels,” IEEE Trans. Consumer
Electron., vol. 44, pp. 217–225, Feb. 1998.

[3] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based
on pilot arrangement in OFDM systems,” IEEE Trans. Broadcast., vol. 48, no. 3,
pp. 223–229, Sep. 2002.

[4] S. G. Kang, Y. M. Ha, and E. K. Joo, “A comparative investigation on channel esti-
mation algorithms for OFDM in mobile communications,” IEEE Trans. Broadcast.,
vol. 49, No. 2, pp. 142-149, 2003.

[5] X. Dong, W. S. Lu and A.C.K. Soong, “Linear interpolation in pilot symbol assisted
channel estimation for OFDM,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp.
1910-1920, May 2007.

[6] Y. S. Lee, H. C. Shin, and H. N Kim, “Channel estimation based on time-domain
threshold for OFDM systems,” IEEE Trans on Broadcast., vol. 55, no. 3, pp. 656-
662, Sep. 2009.

[7] H. Minn and V. K. Bhargava, “An investigation into time-domain approach for
OFDM channel estimation,” IEEE Trans on Broadcast., vol. 46, no. 4, pp. 240-248,
Dec. 2000.

[8] J. Oliver, R. Aravind, and K. M. M. Prabhu, “Sparse channel estimation in OFDM
system by threshold-based pruning,” Electron. Lett., vol. 44, no. 13, pp. 830-832,
Jun. 2008.

[9] Y. Kang, K. Kim and H. Park, “Efficient DFT-based channel estimation for OFDM
system on multipath channels,” IET Commun., vol. 1, no. 2, pp. 197-202, 2007.

12



[10] W. U. Bajwa, J. Haupt, Akbar M. Sayeed, AND Robert Nowak, “Compressed chan-
nel sensing: a new approach to estimating sparse multipath channels,” Proc of IEEE,
vol. 98, no. 6, pp. 1058-1076, Jun. 2010.

[11] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,”
Biometrika, vol. 81, no. 3, pp. 425-455, 1994.

[12] S. Rosati, G. E. Corazza, and A. Vanelli-Coralli, “OFDM channel estimation based
on impulse response decimation: Analysis and novel algorithms,” IEEE Trans on
Commun, vol.60, no.7, pp.1996-2008, Jul. 2012.

[13] S. Sarvotham, D. Bron, and R. G. Baraniuk, “Sudocodes - Fast measurement and
reconstruction of sparse signals,” in Proc. IEEE Int. Symp. Inf. Theory, 2006.

[14] U. W. Bajwa, J. Haupt, G. Raz, and R. Nowak, “Compressed Channel Sensing,”
42nd Info Sci and Syst. Conf, pp. 5-10, Mar. 2008.

[15] W. U. Bajwa, A. M. Sayeed, and R. Nowak, “Sparse multipath channels: Modeling
and estimation,” in Proc. 13th IEEE Digital Signal Processing Workshop, pp. 320-
325, Jan. 2009.

[16] K. Peter, “Phase preserving denoising of images,” in Proc. Conf. Australian Pattern
Recognition Society, pp. 212-217, Dec. 1999.

[17] M. R. Raghavendra and K. Giridhar, “Improving channel estimation in OFDM sys-
tems for sparse multipath channels,” IEEE Signal Precessing Lett., vol. 12, no. 1,
pp. 52-55, Jan. 2005.

[18] A. M. Abd-Elfattah, S. H. Amal, D. M. Ziedan, “Efficiency of Bayes Estimator for
Rayleigh Distribution,” Statistics on the Internet., # 005 July, 2006.

13


