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Let X be a second countable locally compact Abelian group containing
no subgroup topologically isomorphic to the circle group T. Let p be a
probability distribution on X such that its characteristic function fi(y) does
not vanish and ji(y) for some n > 3 satisfies the equation

n n n
ITawi+v)=]]awi-v, D vi=0 w....unyeY.

Then p is a convolution of a Gaussian distribution and a distribution sup-
ported in the subgroup of X generated by elements of order 2.

The present note is devoted to study a functional equation on a locally compact Abelian
group group which appears in characterization of probability distributions by the optimality of
an estimate.

Let X be a second countable locally compact Abelian group, Y = X* be its character group,
(z,y) be the value of a character y € Y at an element € X. Denote by M!(X) the convolution
semigroup of probability distribution on the group X, and denote by

Aly) = /X (. y)dpi(x)

the characteristic function of a distribution p € M*(X). For u € M'(X) define the distribution
fi € M'(X) by the formula ji(B) = u(—B) for all Borel sets of X. Then ji(y) = Ji(y).

A distribution v € M!(X) is called Gaussian if its characteristic function is represented in
the form

F(y) = (z,y) exp{—w(y)}, (1)
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where x € X, and ¢(y) is a continuous nonnegative function on the group Y satisfying the
equation

oy +y2) + oy — v2) = 2[p(y1) + o), v, pEY. (2)

A Gaussian distribution is called symmetric if in (1) = 0. Denote by I'(X) the set of Gaussian
distributions on the group X.

Consider a probability space (X, B, 1), where B is a o-algebra of Borel subsets of X, and
p € MY(X). Form a family of distributions us(A) = u(A —0), A€ B, # € X. Denote by T a
class of estimates f : X" — X satisfying the condition f(z1+c¢,...,z,+¢) = f(z1,...,2,)+nc
for all zy,...,2,,¢ € X. According to [1] (see also [2], [3, Ch. 7, §7.10]), an estimate fy € II
of a parameter nf is called an optimal estimate in the class II for a sample volume n if for any
estimate f € II and for all y € Y the inequality

Ey|(fo(x),y) — (n8,y)[* < Eo|(f(x),y) — (n6,y)[”

holds. It turns out that the existence of an optimal estimate of the papameter né gives the
possibility in some cases to describe completely the possible distributions p.
As has been proved in ([1]), if an estimate f, is represented in the form

Eo[(/(%), —9)
[Eo[(f(x), —v)

where f € II, and z = (23 — 21, ..., 2, — 1), then fy € I1, fu does not depend on the choice of
f and fj is an optimal estimate. It follows from (3) that fy is an optimal estimate if and only
if arg Eo[(fo(x),y)|z] = 0. When fo(x) = 377, z; it follows from this that the characteristic
function Ji(y) satisfies the equation

Huyﬁy =

J

z]

(fo(x),y) = (f(%),9) , YEeYy, (3)

z]|

Zy]:(), y177yn7y63/7 (4>

1

and 1" (y) > 0. When n > 3 this implies that if a group X contains no elements of order 2,
then p € T'(X) (see [1]).

This note is devoted to solving of equation (4) in a general case when X is a locally compact
Abelian group. Let us fix the notation. Denote by f2 X — X the endomorphism of X defined
by the formula fo(2) = 22. Put Xy = Ker fo, X¥ = Im f,. Denote by T the circle group,
and by Z the group of integers.

Let ¥ (y) be an arbitrary function on the group Y and h € Y. Denote by A, the finite
difference operator

Apth(y) =y +h) —9Y(y), yeY.

A continuous function ¢(y) on the group Y is called a polynomial if
AP (y) =0 (5)

for some m and for all y, h € Y. The minimal m for which (5) holds is called the degree of the
polynomial ¢(y).



From analytical point of view the result proved in [1] can be reformulated in the following
way. Let u € M'(X), the characteristic function fi(y) satisfy equation (4) for some n > 3 and
" (y) > 0. Then if the group X contains no elements of order 2, then p € I'(X).

It is easy to see that if v is a symmetric Gaussian distribution on the group X and 7 €
M'(X(2)), then the characteristic functions F(y) and 7(y) satisfy equation (4), and hence the
characteristic function of the distribution p = v % 7 also satisfies equation (4). Describe first
the groups X for which the converse statement is true.

Theorem 1. Let X be a second countable locally compact Abelian group, p € M*(X). Let
the characteristic function [(y) satisfy equation (4) for some n > 3 and [i(y) # 0. Assume that
the following condition holds: (i) the group X contains no subgroup topologically isomorphic to
the circle group T. Then p =y xm, where v € T(X) and m € M*(X(9)).

Proof. Set v = pu* i. Then U(y) = |i(y)]*> > 0. Put ¢(y) = —Inv(y). Equation (4) is
equivalent to the equation

Movlyi+y) =) ¢Wwi—v), D u=0 Y. Umy€Y. (6)
=1 j=1 =1

We also note that
V(—y)=¢(y), yevY. (7)

Substituting in (6) y3 = —y; — Y2, Y4 =--- =y, = 0 and taking into account (7), we get
Y +ya+y) =y +y —y) =0 +y) =Y —y)

+o(e+y) — (Y2 =), Yi,%, yEY. (8)
Setting successively y = y1 + 4o, ¥ = 41, Y = Yo, we find from (8) that

Y2y + 2y2) = (2y1) + 201 + ) — 20 — 32) + ¥ (2%2), Y1, Y2 €Y.

This implies that

V(241 + 2y2) + ¥ (2y1 — 2y2) = 2[0(2y1) + ¥ (2y2)], Y1, €Y,

i.e. the function 1 (y) satisfies equation (2) on the subgroup Y ®, and hence, the function 1 (y)

satisfies equation (2) on the subgroup Y. Denote by ¢o(y) the restriction of the function
¥(y) to the subgroup Y 2.
It is well known that we can associate to each function ¢(y) satisfying equation (2) a

symmetric 2-additive function
1
®(u,v) = Slp(u+v) —pu) —pv)], wvel.

Then ¢(y) = ®(y,y). Using this representation it is not difficult to verify that the function

¥(y) on the subgroup Y satisfies the equation

AfAgy p(y) =0, k, yeY®, heY. (9)
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Return to equation (8) and apply the finite difference method to solve it. Let h; be an
arbitrary element of the group Y. Put ky = h;. Substitute y, + hy for yo and y + k1 for y in
equation (8). Subtracting equation (8) from the resulting equation we obtain

Aopy, V(i +y2+y) = Apy V(1 +y) — Apy, ¥y —y) + Dopy, (Y2 + ). (10)

Next, let hy be an arbitrary element of the group Y. Put ky = —hy. Substitute yo + ho for gy
and y + ko for y in equation (10). Subtracting equation (10) from the resulting equation we get

A_p, Apy Yy +y) — Ap Ay, vy —y) = 0.

Reasoning similarly we find from this

Aopa A_p, Ay, W(yr +y) =0,

and finally
Aopy Ap, Ap Ay, ¥(y) = 0. (11)

Note that h;, y;,y are arbitrary elements of the group Y. Setting in (11) hy = h, —hy = h; =
y1 = k, we find

Fix h € Y. On the one hand, it follows from (12) that the function As,1(y) is a polynomial
of degree < 2 on the group Y. On the other hand, as follows from (9) the function Ayy1(y) is

a polynomial of degree < 1 on the subgroup Y. Then as not difficult to verify, the function
Aogpp(y) must be a polynomial of degree < 1 on the group Y, i.e.

AfDon ¥(y) =0, k, h, yeY. (13)
Theorem 1 follows now from the following lemma.

Lemma 1 (|5, Prop. 1]). Let X be a second countable locally compact Abelian group
containing no subgroup topologically isopmorphic to the circle group T. Let p € MY (X), v = pxji
and

v(y) = exp{—1(y)},

where the function (y) satisfies equation (13). Then pu = v % w, where v € T'(X) and 7 €
MY (X (2)).

Remark 1. Obviously, the above mentioned Rukhin’s theorem follows directly from The-
orem 1.

Remark 2. Let X be a second countable locally compact Abelian group containing a
subgroup topologically isomorphic to the circle group T. Then we can consider any distribution
1 on the circle group T as a distribution on X. Note that Z is the character group of T.
Following to [1| consider on the group Z the function

A exp{—m?}, if meZz®,
m) =
exp{—m?+¢}, if m ¢ Z®),
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where £ > 0 is small enough. Then

o) = 3 Flm)e ™ >0

m=—00

Let p be a distribution on T with density p(t) with respect to the Lebesque measure. Then
f(m) is the characteristic function of a distribution x on the circle group T. Considering u as a
distribution on the group X, we see that fi(y) > 0 and the characteristic function ji(y) satisfies
equation (4), but as easily seen, 1 & I'(X) * M'(X(3)). This example shows that condition (¢)
in Theorem 1 is sharp.

Remark 3. Let X be a second countable locally compact Abelian group. In the articles
[4] and [5] (see also [5, §16]) were studied group analogs of the well-known Heyde theorem,
where a Gaussian distribution is characterized by the symmetry of the conditional distribution
of a linear form Ly = 51& + -+ - + 3,&, of independent random variables ; given Ly = o & +
-+ + &, (coeflicients of the forms are topological automorphisms of the group X). Let 1i;(y)
be the characteristic function of the random variable §;. It is interesting to remark that if
the number of independent random variables n = 2, then the functions ¢;(y) = —In |fi;(y)|?
also satisfy equation (13). For the groups X containing no subgroup topologically isomorphic
to the circle group T, and also for the two-dimensional torus X = T? this implies that all
Wi € F(X) * Ml(.X(Q)).

We use Theorem 1 to prove the following statement, a significant part of which refers to the
case when the group X contains a subgroup topologically isomorphic to the circle group T.

Theorem 2. Let X be a second countable locally compact Abelian group. Let pu € M'(X),
let the characteristic function [(y) satify equation (4) for some odd n, and i"(y) > 0. Assume
that the group X satisfies the condition: (i) the subgroup X sy is finite. Then p = vo* T, where
Y € I'(X), and 7 is a signed measure on X(g).

Proof. Put ¢(y) = —In|fi(y)|. Then the function 1 (y) satisfies equation (13). As has been
proved in [5] in this case the function ¢ (y) is represented in the form

V()=o) +ra, YEY+YD,

where ¢(y) is a continuous function satisfying equation (2), and ¥V = |, (yo +Y @) is a

decomposition of the group Y with respect to the subgroup V(2. Since X (2) is a finite subgroup,

it is easy to see that the function g(y) = exp{—ra}, v € yo+Y?, is the chracteristic function
of a signed measure 7 on the subgroup X,). It follows from this that

1(y)| =3 ()7 (y),

where v € T'(X) and 7(y) = exp{—¢(y)}.
Set I(y) = 11(y)/|(y)| and check that the function I(y) is a character of the group Y. Hence,
Theorem 2 will be proved.



Note that the function [(y) satisfies equation (4) and

(=y)=1ly), "y)=1, yeY (14)

Putin (4) yo = —y1, y3 = -+ =y, = 0. We get

U2y + )=y +y) = (=y)lyr — U= —y), Y, y1, Y2 €Y.

Taking into account (14), it follows from this that

Ply+y)lPy—y)=10), v neY.
Set m(y) = I%(y). Then the function m(y) satisfies the equation
m(u+v)m(u —v) =m?(u), u, veY. (15)
We find by induction from (15) that
m(py) =m’(y), pE€ZL, yey. (16)
Now we formulate as a lemma the following statement.

Lemma 2. Let Y =Y +Y5, let a continuous function m(y) on'Y satisfy equation (15) and
m”™(y) =1 for some odd n. Then, if the restriction of the function m(y) toY; is a character of
the group Y;, j = 1,2, then m(y) is a character of the group Y.

Proof. Denote by y = (y1,%2), 11 € Y1,y2 € Y, elements of the group Y. Put a(y;,y2) =
m(y1,0)m(0,y2), b(y1,y2) = m(y1,y2)/a(y1,y2). Then b(y1,0) = b(0,42) =1, y1 € Y1,y € V3.
It is obvious that the function b(yy, y2) also satisfies equation (15). Substitute in (15) u = (yy, 0),
v = (y1,92). We have

b(2y1, y2)b(0, —ya) = b*(y1,0), y1 € Y1, 12 € Yo.

This implies that b(2y1,y2) = 1 for 13 € Yi,90 € Y5. In particular, b(2y,2ys) = 1. But it
follows from (16) that b(2y, 2ys) = b*(y1,y2). Hence, b(y1,y2) = 1. Since b™(y1,42) = 1 and
n is odd, we have b(y;,ys) = 1 for y; € Y1, 42 € Y, i.e. m(y1,v2) = a(y1,y2) is a character of
the group Y.

Continue the proof of Theorem 2. Since, by the assumption, X9 is a finite subgroup,
there exist ¢ > 0 such that the group X contains a subgroup topologically isomorphic to the
group T9, but X does not contain a subgroup topologically isomorphic to the group T¢+!. It
is well known that a subgroup of X topologically isomorphic to a group of the form T* is a
topologically direct summand in X. For this reason the group X is represented in the form
X = TY+ G, where the group G contains no subgroup topologically isomorphic to the circle
group T. We have Y = Z?+ H, H = G*. It follows from Lemma 2 and (16) by induction that
the function m(y) on the group Z?, satisfying equation (15) and the condition m"(y) =1 is a
character of the group Z?. By Theorem 1 the restriction of the function ji(y) to H is a product
of the characteristic function of a Gaussian distribution on the group G and the characteristic
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function of a distribution on the subgroup G(3). Taking into account that the characteristic
function of any distribution on Gs) takes only real values, it follows from the equality

i(y) = law)*m(y), yevy,

that the restriction of the function m(y) to H is a character of the subgroup H. Applying again
Lemma 2 to the group Y, we obtain that m(y) is a character of the group Y.

Since n is odd, we have 2r + ns = 1 for some integers  and s. Taking into account (14)
this implies that I(y) = (I(y))* ™ = (m(y))" is a character of the group Y. Theorem 2 is
completely proved.

We note that the example given in Remark 2 shows that a signed measure = needs not be
a measure.

Remark 4. Consider the infinite-dimensional torus X = T¥. Then Y = ZY* where
ZRo* is the group of all sequences of integers such that in each sequence only finite number of
members are not equal to zero.

Consider on the group Z the sequence of the functions

_ 2 ' (2)

exp{—aym-}, it meZ"%,

fu(m) = L 2} : (2)
exp{—apym* +k}, if m¢gZ",

where £k =1,2,.... Put
!
f(my,...,my,0,...) :ka(mk), (my,...,my,0,...) € Z ",
k=1

Take a; > 0 such that

Z f(m17~--;ml,0,...)<2.

(m1 ,...,m[,O,... )EZNO*

Then
p(ty, .. ty,...) = Z flmy, .. ymy, 0, )e mbittmilite) 5 g0 ¢ ¢ R,
(ml,...,ml,o,...)eZ“O*
It follows from this that f(ms,...,my,0,...) is the characteristic function of a distribution

p € MY(T™0) such that fi(y) > 0 and fi(y) satisfies equation (4), but u can not be represented

as a convolution y = v % 7, where v € T'(TY), and 7 a signed measure on the group T?QO). The

subgroup Té") is infinite in this case. This example shows that condition (¢) in Theorem 2 is

sharp.

Remark 5. We assumed in Theorem 2 that n is odd. This condition can not be omitted
even for the circle group X = T. Indeed, let n = 4. Take a in such a way that the function

f(m) = exp{—am? + igm3}, m € Z



be the characteristic function of a distribution y € M!(T). On the one hand, it is ibvious
that the function f(m) satisfies equation (4) and f*(m) > 0, m € Z. On the other hand, the
distribution g can not be represented in the form p = v x 7, where v € I'(T), and 7 is a signed
measure on Ty).

This example also shows that a function f(y) satisfying equation (4), generally speaking,
needs not be real.
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