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Abstract. The chaos theory emerged at the end of the 19th century, and it has

given birth to a deep mathematical theory in the 20th century, with a strong practi-

cal impact (e.g., weather forecast, turbulence analysis). Periodic orbits play a key

role in understanding chaotic systems. Their rigorous computation provides some

insights on the chaotic behavior of the system and it enables computer assisted

proofs of chaos related properties (e.g., topological entropy).

In this paper, we show that the (numerical) constraint programming framework

provides a very convenient and efficient method for computing periodic orbits of

chaotic dynamical systems: Indeed, the flexibility of CP modeling allows con-

sidering various models as well as including additional constraints (e.g., symme-

try breaking constraints). Furthermore, the richness of the different solving tech-

niques (tunable local propagators, search strategies, etc.) leads to highly efficient

computations. These strengths of the CP framework are illustrated by experimen-

tal results on classical chaotic systems from the literature.

Keywords: Chaotic dynamical systems; periodic orbits; topological entropy; nu-

merical constraint satisfaction; symmetry breaking.

1 Introduction

A dynamical system is defined by a state space X (here X ⊆ R
d, so a state is a vector

of d reals) and an evolution function, which describes how the state xt ∈ X changes

as time t passes. Continuous time dynamical systems (i.e., t ∈ R) usually involve

differential equations; in this case the evolution function is often called a flow. In this

paper, we focus on discrete time dynamical systems (i.e., t ∈ Z). They arise either

from discrete models or discretizing continuous time dynamical systems (e.g., using

the Poincaré map). In this case, the evolution function is a map f : X → X , and the

evolution of an initial condition x0 ∈ X is computed by xk+1 = f(xk), giving rise

to (forward) orbits (x0, x1, x2, . . .). Understanding the infinitely complex structure of

orbits generated by very simple systems is the goal of the chaos theory.

The first evidence of chaotic behavior was found by Poincaré while partially solv-

ing seemingly simple three-body problem at the end of the 19th century: The two-body

problem, consisting of computing the trajectory of two masses following Newton’s

gravitational laws, is easily solved and fully understood. Poincaré proved that infinitely
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Fig. 1. The graph of the Dyadic map in thick black. Left: The orbit of x0 = 0.1 in gray. Right:

The orbit of x0 = 1

π
in gray.

complex trajectories arise when three bodies are considered, leading to the modern the-

ory of chaos. One main discovery of Poincaré was the critical importance of periodic

orbits in chaotic dynamical systems. Deep theoretical developments have followed dur-

ing the 20th century (Markov partitions and corresponding symbolic dynamics, measure

preserving maps and ergodicity, hyperbolicity, etc.) providing an increasingly accurate

understanding of chaotic systems. Starting from the middle of that century, extensive

simulations with computers (starting with Lorenz butterfly chaotic attractor) offered

many illustrations of those chaotic behaviors, allowing these ideas to be disseminated

toward the general public.

Formally defining a chaotic dynamical system is difficult: There exist several such

definitions (Li-York chaos, Devanay chaos, positive topological entropy, see [20,6,21]),

which are not equivalent and whose relationship is a current research topic. The com-

mon idea that chaos is the exponential sensitivity to initial conditions is wrong: Con-

sider, e.g., the dynamical system defined by X = R
d and f(x) = 2x. Therefore

xk = 2kx0, so two different initial conditions diverge exponentially fast3 while this

simple linear system is definitely not chaotic. However, enforcing some kind of expo-

nential divergence between the orbits of neighbor initial conditions within a bounded

state space X leads to very complex systems. Such systems need to be simultaneously

expanding (so as to show divergence) and contracting (since the state space is bounded).

This leads to hyperbolic dynamical systems, which are consistently contracting in some

directions and expanding in the other directions, the most well-understood chaotic be-

havior.

The Dyadic map is among the most simple systems showing hyperbolic chaos. It is

defined by X = [0, 1) and f(x) = 2x mod 1. Multiplying by two is expanding, while

taking modulo 1 enforces a contraction back to [0, 1). Its graph is shown in Fig. 1,

together with the orbit of x0 = 0.1 (respectively x0 = 1
π

) on the left (respectively

3 Indeed d(xk, yk) = d(2kx0, 2
ky0) = 2kd(x0, y0).



right) hand side graphic. Orbits of this map are easily visualized: An initial point x
is moved vertically toward the graph of f (the thick line in Fig. 1) in order to reach

f(x), and then horizontally toward the line x = y (the dashed line in Fig. 1) in order

to reach x = f(x); Repeating the process from the new point yields the orbit. On the

left hand side graphic, f(0.1) = 0.2, and the orbit of 0.2 is periodic with period 4 (i.e.,

f4(0.2) = f(f(f(f(0.2)))) = 0.2). This map has a striking interpretation when con-

sidering the binary representation of a real number x = 0.b1b2b3 · · · ∈ [0, 1), each bi
being a bit in {0, 1}: Indeed, multiplying x by two shifts left its binary representation

(yielding b1.b2b3 · · · ), and the modulo 1 then removes the first bit on the left (yielding

0.b2b3 · · · ). Hence the Dyadic map is in direct correspondence with the shift map on

one-sided infinite bit sequences. This is a simple example of the powerful tool sym-

bolic dynamics represents for investigating chaotic dynamical systems. It has several

important consequences here: First, it is well known that a real number is rational if

and only if the binary representation of its fractional part is periodic after a given bit

(the same actually holds in any base). For example, the binary representation of 0.1
is 0.00011001100110011 · · · . Hence any rational number will converge to a periodic

orbit after a finite number of applications of the Dyadic map; the period of this orbit

is equal to the period of the binary representation. It follows there are exactly 2n − 1
initial states4 yielding orbits of period n, called period-n orbits thereafter, and they are

equally distributed within [0, 1). On the contrary, irrational numbers are not periodic

(the right hand side graphic of Fig. 1 shows the first 200 iterates of the orbit of 1
π

,

which is seemingly random). Second, when computing an orbit using a computer, a fi-

nite binary representation has to be used. Therefore, any finite precision simulation has

to converge toward zero. The 200 iterates of the orbit of 1
π

shown in Fig. 1 have been

computed using a 200-bit precision arithmetic.

The topological entropy is a real number associated to a dynamical system, which

is meant to characterize the exponential divergence of orbits within a bounded state

space. Suppose one can distinguish two points only if their distance is greater than

ǫ > 0, and consider a set E ⊆ X ⊆ R
d such that one can distinguish all points,

so the mutual pairwise distance of the points in E is at least ǫ (such a set is called

ǫ-separated). In this case, non intersecting balls of radius ǫ
2 can be put around each

point of E, entailing the cardinality of E to be at most VX/V ǫ

2
, where VX and V ǫ

2

are respectively the volume of X and the volume5 of the ball of radius ǫ
2 . A map f can

improve the situation by separating initial points that were too close to be distinguished,

leading to the definition of (n, ǫ)-separated sets: A set E ⊆ X is (n, ǫ)-separated if two

different points in E yield orbits that are separated by at least ǫ within n iterations of

the map. Formally, for all x, y ∈ E with x 6= y, max0≤k≤n d(f
k(x), fk(y)) ≥ ǫ. The

maximal cardinality of (n, ǫ)-separated sets is denoted by s(n, ǫ). As mentioned above,

s(0, ǫ) ≤ VX/V ǫ

2
, while iterating the map can only help distinguishing more points, so

s(n, ǫ) is increasing with respect to n. The growth rate of s(n, ǫ) shows how quick the

map separates points. In particular, whenever the growth rate is exponential for some

ǫ > 0, i.e., s(n, ǫ) ≈ aebn for some non-negative real constants a and b, the topological

4 There are 2n binary representation of period n, but 0.1111 · · · is a periodic binary representa-

tion equal to 1 hence outside [0, 1).
5 Volumes are generalized by the Lebesgue measure in space of dimension greater than 3.



entropy of the map f is defined as hX(f) = b. More precisely,

hX(f) = lim sup
ǫ→0

lim sup
n→∞

log s(n, ǫ)

n
, (1)

where the first limit is used because s(n, ǫ) is non decreasing in ǫ, and supremum limits

are used in order to take into account irregular exponential growths. When the topolog-

ical entropy is strictly positive, the cardinality of maximal (n, ǫ)-separated sets grows

exponentially with n. Therefore, the minimal distance between points in a maximal

(n, ǫ)-separated set decreases exponentially with n, while the map f still allows sepa-

rating them by at least ǫ in at most n iterations. Hence the map induces an exponential

expansion in spite of the bounded state space. Having a strictly positive topological

entropy is the characterization of chaos that is most often used.

For the Dyadic map, one can easily see that the set of points that yield period-n
orbits is (n, 0.5)-separated: Indeed, two such points differ in (at least) one bit among

their n first bits, say the kth bit. Hence, iterating the map k − 1 times brings those two

different bits at the first (fractional) place, so the distance between their (k−1)th iterates

is at least 0.5. Now, since there are 2n−1 ≈ en log 2 such points yielding period-n orbits,

the topological entropy of the Dyadic map is at least log 2. As seen on this example, the

topological entropy is closely related to the exponential growth of the number Pn of

period-n orbits with respect to n. More generally, under the hypothesis that the system

satisfies the axiom A hypothesis [20] (roughly speaking, it is hyperbolic), its topological

entropy is equal to

hX(f) = lim sup
n→+∞

log(Pn)

n
. (2)

Numerous techniques have been developed to provide computer assisted proofs of

chaos related properties: E.g., the famous answer to Smale’s 14th problem [29], and

[1,19,3,30,27,13]. Proving that a dynamical system is chaotic is generally done by find-

ing out a subsystem with known topological entropy (often by identifying some specific

periodic orbits), leading to a certified lower bound on its topological entropy. Roughly

speaking, the system is proved to be as complex as a known chaotic dynamical system.

An upper bound on the topological entropy provides an estimate of the accuracy of

the certified lower bound, but such upper bounds are difficult to obtain: [27] provides

such an upper bound for one dimensional maps. On the other hand, [9,10,11] proposed

to compute all periodic orbits up to a given period with certified interval techniques,

hence inferring an approximation of the topological entropy using Eq. (2).

We show here that using CP for rigorously computing periodic orbits is a convenient

and efficient approach: By benefiting of constraint propagation and symmetry breaking,

a simple model can be used, while avoiding heavy preprocessing (Section 2). Further-

more, the CP framework allows tuning the propagation strength and the search strat-

egy (Section 3) so as to achieve more efficient resolution (experiments on well-known

chaotic systems are reported in Section 5). We show in particular that the solving pro-

cess can be tuned for small periods, impacting the resolution for higher periods.



2 Modeling the problem

After briefly recalling the basics of numerical constraint modeling, we introduce NCSPs

whose solutions provide the periodic orbits of discrete time dynamical systems. Two

standard models described in [9] are discussed with respect to numerical constraint

solving. The flexibility of CP modeling allows considering alternative models.

2.1 NCSPs and interval arithmetic

Numerical constraint satisfaction problems (NCSPs) have variables representing real

quantities, whose domains are thus subsets of R. Their constraints are typically equa-

tions and inequalities on these quantities. For practical reasons, the domains are handled

as intervals and the assignments are not enumerated. Instead, domains are split and fil-

tered until a prescribed precision is reached. Interval arithmetic [24] allows enclosing

the results of set-wise operations, and accounts for floating-point computational errors.

In this paper we denote x = (x1, . . . , xn) the variables, considered to be a n-

dimensional vector for convenience. We also denote x a real assignment of the variables,

i.e., a point (x1, . . . , xn) ∈ R
n. Intervals are denoted using bold-faced letters. Hence,

the domains of x are denoted x = (x1, . . . ,xn), considered as a n-dimensional vector

of intervals, also called a box. We denote f an interval extension of a function f , i.e., a

function which computes an interval f(x) enclosing all the possible values of f(x) for

any real x ∈ x. This definition naturally extends to function vectors f .

Interval arithmetic suffers from two problems: The dependency problem by which

multiple occurrences of the same sub-expression are considered independent (e.g., x−x
evaluates to 0 for any real in x ∈ [0, 1], but its interval evaluation at x = [0, 1] is

[−1, 1]); And the wrapping effect by which the exact evaluation of an expression on

an interval is in general poorly approximated using a single interval (e.g., 1
x

evaluated

at any x ∈ [−1, 1] yields a real in (−∞,−1] ∪ [1,+∞) but its interval evaluation

at x = [−1, 1] results in (−∞,+∞)). In addition, the practical use of floating-point

computations induces the necessity of rigorous encapsulation of rounding-errors. These

issues lead to potentially large over-approximations and must be carefully handled.

2.2 Folded models of periodic orbits

Given a map f on a state space X ⊆ R
d, we can characterize a period-n orbit with the

fixed-point relation

x = f ◦ f ◦ . . . ◦ f
︸ ︷︷ ︸

n times

(x) = fn(x). (3)

Imposing it as a constraint on variables x with domains6 X results in the NCSP folded

model whose solutions are the initial states x ∈ X of period-n orbits.

6 In theory X may not be representable as a box, and the domains should be set to the smallest

enclosing box. In practice however, the state spaces of classical chaotic maps are boxes.



Example 1. The famous Logistic map [23] is defined as f(x) = rx(1 − x) on X =
[0, 1]. It models the evolution of a population (x is the ratio to a maximum population)

depending on a parameter r ∈ R
+ representing a combined rate of reproduction and

starvation. Despite its very simple formulation, this map has a chaotic behavior for

some values of its parameter, e.g., r := 4. The folded model for period-2 orbits with

this setting has a single variable x and a single constraint x = f(f(x)) = −256x4 +
512x3−320x2+64x. Its four solutions are 0, 3

4 and (5±
√
5)/8, the two first ones being

in fact fixed-points (period-1 orbits), the others constituting the only period-2 orbit.

Folded models present two major drawbacks when addressed with interval-based

constraint solving methods. First, as soon as the map function contains more than one

occurrence of a variable, the numbers of operations and occurrences of this variable

in the constraint grow exponentially with the period. Though the factorized expression

can still be compactly represented with a DAG, this cripples its interval evaluation by

exacerbating both the dependency problem and the wrapping effect. This is even worse

for the evaluation of the derivatives of the constraint, required to use interval Newton

operators for proving the existence of real periodic orbits within boxes. Second, their

solutions are the initial states of periodic orbits, but any point in a periodic orbit is an

initial state for this orbit. Hence, as exemplified above, they have n solutions for each

period-n orbit.

It is worth noting that the constraint can sometimes be simplified. For instance, that

of the Dyadic map (see Section 1) can be rewritten x = 2nx mod 1, and the Logistic

map function can be reformulated as f(x) = r
4 − r(x− 1

2 )
2. Such simplifications may

reduce the over-approximations of interval arithmetic. Still, the intrinsic complexity

of the model remains as an initial box forcibly grows exponentially in size with the

iterations of the map due to its chaotic nature.

2.3 Unfolded models of periodic orbits

The NCSP unfolded model aims at finding complete periodic orbits at once. Its vari-

ables (x0, . . . , xn−1) represent the consecutive n states in an period-n orbit, each xk

being itself a vector of d variables with domains X . The constraints establish the links

between consecutive points

x(k+1)modn = f(xk) k ∈ {0, . . . , n− 1}. (4)

Example 2. The unfolded model for the period-2 orbits of the Logistic map with r := 4
is composed of the variables (x0, x1) and the constraints x1 = 4x0(1 − x0) and x0 =

4x1(1 − x1). Its four solutions are (0, 0), ( 34 ,
3
4 ), (

5−
√
5

8 , 5+
√
5

8 ) and ( 5+
√
5

8 , 5−
√
5

8 ). It

is now obvious the first ones are fixed points, and the others represent the same orbit.

This model has the strong advantage that constraint expressions remain identically

complex (as many operators and variable occurrences) when n grows, making it much

more appropriate for constraint methods. However, it has n × d variables instead of

d variables in the folded model, and its search space thus grows exponentially with

the period n. This drawback must be balanced with the fact having the n states as

variables allows connecting the states in the same orbit, defining more freely strong



pruning operators involving several states, and splitting at any state during the search,

definite advantages when taking into account the explosive nature of chaotic maps.

2.4 Other models of periodic orbits

The flexibility of the CP framework makes it possible to consider alternative models to

the two classical ones presented above. For instance, both folded and unfolded models

naturally have a functional form, but it is sometimes interesting, e.g., in order to reduce

variable occurrences, to manipulate symbolically each constraint as a relation. This can

yield relational unfolded models of the form

F (x(k+1)modn, xk) = 0 k ∈ {0, . . . , n− 1} (5)

whose interest will be illustrated in Section 5. It is also possible to reduce the search

space by considering as variables only a fraction of the states in a periodic orbit, yielding

semi-unfolded models. This could allow experimentally seeking an efficient trade-off

between the folded and unfolded models, though in this paper we will focus only on

those extremes in order to clearly illustrate their strengths and weaknesses.

2.5 Taking into account additional properties

A nice feature of CP is its ability to include additional knowledge on the considered

problem as constraints or within initial domains, yielding a variety of complemented

models whose efficacy can then be tested.

Periodic orbits have an inherent cyclic state symmetry. It is difficult to handle it in

folded models, but it naturally boils down to a cyclic variable symmetry in unfolded

models, and can then be (partially) broken using the lex-leader constraints relaxation

proposed in [14]:

x0,0 ≤ xk,0 k ∈ {1, . . . , n− 1}, (6)

where xk,0 represents the first coordinate of state k. Note that the symmetry could be

broken using any other coordinate. Though inducing only a partial symmetry breaking,

these additional constraints reduce optimally the search space.

Example 3. The additional partial symmetry breaking constraint for the unfolded model

whose solutions are the period-2 orbits of the Logistic map is x0 ≤ x1. It allows dis-

carding the fourth solution, ( 5+
√
5

8 , 5−
√
5

8 ), as it is symmetric to the third one. It also

halves the search space which is computationally very interesting.

Another property of the considered problem is that period-m orbits for any factor

m of n are solutions of any NCSP model for period-n orbits. E.g., the two fixed-points

of the Logistic map are solutions of models for any period n. In theory, additional

constraints of the form xi 6= xj for all 0 ≤ i < j < n would discard these factor

orbits, but such constraints cannot be filtered with interval solving methods and are

thus useless.

Many chaotic maps have been extensively studied and a lot of knowledge has been

accumulated about them. For instance, the trapping region of a map f on X , i.e., the



state subspace X ′ ⊆ X whose image through the map f(X ′) is strictly enclosed in X ′,

may be known to be enclosed within an ellipsoid or a polytope. Since periodic orbits

starting within a trapping region must belong entirely to this trapping region, we can

restrict the search to the enclosing shape using some additional inequality constraints.

Another example is the non-wandering part (NWP) of a map f on X , i.e., the set

of points x ∈ X such that any neighborhood U of x verifies fn(U) ∩ U 6= ∅ for some

n > 0. This set comprises all periodic orbits and can be approximated using a simple

subdivision algorithm: Consider the directed graph whose vertices are the boxes in a

regular ǫ-precise subdivision of X and whose arcs x → x′ verify f(x) ∩ x′ 6= ∅;

Removing iteratively sinks and sources in this graph yields an ǫ-precise approximation

of the NWP of f . This paving can be used to setup the domain of the initial state of

an orbit, as proposed in [9]. Its size however grows quickly with ǫ and it is difficult to

predict the appropriate precision without a dedicated study of the considered map.

3 Solving the problem

The standard complete constraint solving method is the branch&prune algorithm. It

iteratively selects a box, prunes it using local consistency enforcing operators and in-

terval methods (jointly designated as contractors in the following), checks if it contains

a single solution and, otherwise, splits it into sub-boxes to be further processed. In this

section we discuss the appropriate components of a branch&prune algorithm for solving

NCSP models of periodic orbits of chaotic maps.

3.1 Pruning periodic orbits domains

The basic pruning algorithm for NCSPs is an AC3-like fixed-point loop over simple, and

inexpensive, contractors like, e.g., BC3-revise [5], HC4-revise [4] or MOHC-revise [2].

It is however sometimes needed to resort to stronger contractors in order to avoid too

much splitting, on trade-off with more demanding computations at each node of the

search-tree. This can be achieved using for instance a fixed-point of 3B (or more gener-

ally kB) [22] or CID [28] operators. Finally, it is essential in this work that the returned

solutions are proven to enclose a unique periodic orbit of the considered map, otherwise

no valid reasoning on the map (e.g., its topological entropy) could be derived. For this

purpose, it is typical to use an interval Newton operator [25], providing in addition a

more global consistency.

In this paper we consider essentially two pruning procedures: BC5, a fixed-point of

HC4-revise and BC3-revise7 contractors followed by an interval Newton application;

and BC5+CID(k), i.e., BC5 involving in addition CID(k) contractors8 during the fixed-

point phase.

7 Typically generated for variables with multiple occurrences only.
8 One CID(k) contractor for a variable x slices the domain of x into k parts, computes a fixed-

point of HC4-revise contractors for all constraints and variables on each slice, and eventually

takes the hull of all the pruned slices.



3.2 Splitting periodic orbits domains

The standard splitting strategy for NCSPs is round-robin with bisection, which selects

each time the next variable and splits its domain interval at its midpoint. Another typical

strategy is maxdom which selects the variable with the largest domain.

The unfolded model for periodic orbits has a specific structure since variables are

grouped into state coordinates and correspond to consecutive points in the orbit. We

can thus consider dedicated splitting techniques, e.g., initial-state which splits only the

coordinates of the initial state x0 in the orbit, counting on pruning operators to reduce

the domains of the other states. This idea was advanced in [9] as a mean of reducing the

dimension of the search space.

Due to the explosive nature of chaotic maps, we think however that splitting all the

states domains should pay-off. This will be confirmed in section 5 where we compare

classical splitting strategies (round-robin and maxdom) on all variables to the dedicated

initial-state splitting strategy.

3.3 Post-processing solution boxes

The branch&prune algorithm we have described outputs two types of boxes: Safe boxes

which have been successfully certified to enclose a unique periodic orbit, and unsafe

boxes which are not certified but have reached the prescribed maximum precision for

the computation. When the partial symmetry breaking constraints (6) are used, boxes for

which the corresponding strict inequalities are not certainly satisfied are also considered

unsafe. Indeed such boxes may each contain a representative of the same periodic orbit.

Note however that this never happened in the experiments reported in Section 5.

Unsafe boxes must be properly handled so as to allow rigorously counting the num-

ber of real periodic orbits. For this purpose, we apply a post-process that tries to certify

them using a specific version of the interval-based Newton operator with inflation [18].

This operator acts like an interval local search algorithm, iteratively shifting and in-

flating slightly an initial box x so as to find a close box x′ that can be certified. If it

succeeds, x′ replaces x in the solution set, after checking it does not enclose a peri-

odic orbit already found in another safe solution box. Possibly symmetric boxes must

be merged before applying this post-process. In case unsafe boxes remain after this

process, only a lower bound on the number of real periodic orbits is obtained.

4 Related work

In [9,10,11], an interval-based method dedicated to computing periodic orbits of chaotic

maps is proposed. It amounts to a bisection algorithm which splits the domains of the

orbit, using interval forward evaluation of the map along the orbit to discard boxes that

provably do not contain any periodic solution, and applying an interval Newton operator

to certify that a box contains a single solution. When the map is symbolically invertible,

it uses both forward and backward interval evaluation along the orbit in a fixed-point

manner. Several key ingredients are identified in [9] as essential to the efficiency of this

method: The usage of the unfolded model and of the map symbolic inverse, the initial-

state splitting strategy, and some preprocessing using the non-wandering part and some



trapping region enclosure. Most of them are made unnecessary or even counterproduc-

tive by the CP framework, as illustrated by the experiments reported in the next section.

Non rigorous local methods for computing periodic orbits have also been investi-

gated (see e.g., [8,26,7,12] and references therein). They usually work on the unfolded

model, in a similar way as multiple shooting method for boundary value problems. Be-

ing incomplete, they are not used for estimating the topological entropy, although being

useful for other purposes like computing a sample of longer periodic orbits.

5 Experiments

Constraint programming is implemented to handle several classical maps having differ-

ent characteristics. Several issues are analyzed. What is the best way to model orbits?

What are the good pruning and splitting techniques? Is it possible to take advantage of

dedicated methods in the CP framework?

More precisely, we aim at comparing unfolded models with folded models, and

the Cartesian form with the polar form of complex maps. Several splitting techniques

(maxdom, round-robin, initial-state) are investigated. Different local consistency tech-

niques are studied, in particular BC5 and BC5+CID(k). To this end, four standard maps

are considered, namely Dyadic, Logistic, Hénon, and Ikeda. All techniques have been

implemented in Realpaver [15] using default parameter settings. All experiments have

been conducted on an Intel Core i7-620M 2.66GHz measured at 1666 MIPS by the

Whetstone test.

We have implemented the previously introduced dedicated methods in our branch&

prune algorithm, namely the non wandering part pre-paving, and trapping region con-

straints. In fact, we have observed that these methods do not change significantly the

overall performances of the solving process. For instance, the solving time varies in

proportion to ±10% (tested for Hénon and Ikeda) when the non wandering part is taken

as input. It appears that propagation and split are together able to eliminate inconsistent

regions of the search space without resorting to such methods.

For each problem, we found the theoretical number Pn of periodic orbits of the uni-

dimensional maps, or the same number of periodic orbits as [9] for the Hénon and Ikeda

maps. This number grows exponentially with n, i.e., Pn ≈ aebn where b approximates

the topological entropy. As a consequence, the solving time t of the branch&prune al-

gorithm must also grow exponentially with n. In fact, we aim at observing for a given

map and a given strategy that t ≈ cedn, where d ≥ b must hold since the solving pro-

cess is complete. Therefore the difference (d − b) quantifies the overall quality of this

strategy. In the following, we will use a logarithmic scale on t and Pn to plot the results,

the growth constants b and d corresponding to the slopes of the curves.

Remark: The experiments are carried out only for orbits of prime periods. Hence, pos-

sible issues of factor orbits and symmetry breaking are discarded, thus simplifying the

post-processing phase and the interpretation of results. Following this approach still

permits to compare the different techniques and to calculate accurate approximations

of the topological entropy.
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Pn ≈ O(e0.69n)

t�(n) ≈ O(e0.74n)

t△(n) ≈ O(e0.73n)

tN(n) ≈ O(e0.76n)

t•(n) ≈ O(e0.72n)

Fig. 2. Finding orbits of Dyadic and Logistic using BC5 with maxdom. Left: ◦ is the number

of solutions Pn; the other curves represent the solving times of Dyadic’s unfolded model and

Logistic’s unfolded model using the factorized expression (�), Dyadic’s folded model (△), Lo-

gistic’s folded model using the factorized expression (N), and Logistic’s unfolded model using

the original expression (•). Right: Empirical asymptotic laws of these different techniques.

5.1 Unidimensional maps

The two aforementionned unidimensional maps (Dyadic and Logistic) are interesting

to illustrate the impact of modeling on the solving performance. Their folded models

are simple enough, their number of operations growing linearly with n. The expression

of Logistic can be factorized (the factorized form is used to generate the folded model).

Dyadic is discontinuous due the modulo operation.

The topological entropy of these maps is equal to log 2 since they have respectively

2n (Logistic) and 2n − 1 (Dyadic) solutions. Their orbits are easily calculated by BC5

with maxdom, the number of splitting steps matching the number of solutions.

The results are depicted in Fig. 2. The topological entropy is the slope of the dashed

line Pn. One can remark that the other curves corresponding to different models tend to

become parallel to Pn, showing that the cost of calculating one solution is constant for

all of them. Strikingly, the branch&prune algorithm behaves similarly when processing

the folded models (curves △ and N) and the unfolded models (curve �). In fact, the

unfolded models exploit symmetry breaking constraints that reduce Pn by a factor n.

However, pruning the folded models is easier since only one BC3-revise operator is

applied at each node of the search tree, while pruning the unfolded models calculates a

fixed-point of n HC4-revise operators (one per constraint) followed by an application

of the interval Newton operator. Logistic’s original unfolded model is worse (curve •),

since it requires applying BC3-revise operators due to the multiple variable occurrences.

Discontinuous or non differentiable functions, involving e.g., the modulo operation,

are seemingly taken into account with no additional cost. However, they possibly inter-

fere with the certification procedure. For instance, solving Dyadic’s unfolded model

produces two non certified boxes. The first box encloses the fixed-point (0, . . . , 0),
which is located on the domain boundary. The second box ([1 − ǫ, 1], . . . , [1 − ǫ, 1])
contains no solution but it cannot be discarded by interval methods.
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Fig. 3. Hénon map. Left: ◦ is the number of solutions Pn; • is the solving time t of BC5 with

maxdom; △ differs from • in the use of the round-robin strategy; N differs from • in the splitting

of the initial state alone; � differs from • in the use of CID(3) operators; + differs from • in the

use of the folded model. Right: Period-23 orbits, which clearly shows the well known strange

attractor of the Hénon map.

5.2 Hénon map

The Hénon map [16] is defined as f(x, y) = (y+ 1− ax2, bx), the standard parameter

values a := 1.4 and b := 0.3 leading to a chaotic behavior. Given xk, yk ∈ [−2, 3],
0 ≤ k ≤ n− 1, the unfolded model is as follows:

{
x(k+1)modn = yk + 1− ax2

k

y(k+1)modn = bxk
(7)

The results are depicted in Fig. 3. The number of solutions Pn (dashed curve) gives

an approximation of the topological entropy as log(Pn)/n ≈ 0.46. As expected, the

folded model (curve +) is not tractable since its size grows exponentially with n. The

other techniques are all able to isolate and certify all the solutions in reasonable time

for the considered periods, corroborating the results in [9]. The best splitting technique

is maxdom (curve •), compared to round-robin and initial-state (curves △ and N). En-

forcing BC5+CID(3) (curve �) seems to slow-down the solving phase but the growth

constant is decreased from 0.55 to 0.51, demonstrating a better asymptotic behavior. In

other words, we have t•(n) ≈ O(e0.55n) and t�(n) ≈ O(e0.51n).
We have also extracted from [9] the growth constant of the solving time tG ob-

tained from the best implemented method, which is approximatively equal to 0.58, i.e.,

tG(n) ≈ O(e0.58n). Hence, on this problem the CP approach compares favorably in

terms of complexity to the dedicated approach of [9].

5.3 Ikeda map

The Ikeda map [17] is defined as

f(z) = a+ b exp

(

iκ− iα

1 + |z|2
)

z (8)

where z is a complex number. The classical setting a := 1, b := 0.9, α := 6 and

κ := 0.4 yields a chaotic behavior. This map can be transformed into a two-dimensional

unfolded model9 over the real numbers in two ways: The Cartesian form z = x + iy

9 The folded model of this map is far too complex to be tractable by interval solving methods.
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Fig. 4. Ikeda map. Left: ◦ is the number of solutions Pn; N is the solving time t of BC5 with max-

dom applied to the Cartesian model; • differs from N in the use of the polar model; � improves

• with CID(3) operators; � improves • with CID(9) operators; + differs from � by initial-state.

Right: Period-17 orbits, which clearly shows the well known strange attractor of the Ikeda map,

although in polar coordinates here.

yields






x(k+1)modn = a+ b(xk cosuk − yk sinuk)
y(k+1)modn = b(xk sinuk + yk cosuk)
uk = κ− α/(1 + x2 + y2)

(9)

for k = 0, . . . , n− 1 and the polar form z = ρeiθ leads to the relational model







ρ(k+1)modn cos(θ(k+1)modn) = a+ b(ρk cos(uk))
ρ(k+1)modn sin(θ(k+1)modn) = b(ρk sin(uk))
uk = θk + κ− α/(1 + ρ2k).

(10)

The domains can be defined as xk, yk ∈ [−10, 10], ρk ∈ [0, 10
√
2] and θk ∈ [−π, π] for

every k. In both models, new variables uk ∈ (−∞,+∞) are added to share projections

on common sub-expressions appearing in the constraints, hence augmenting the con-

traction power of interval constraint propagation. These variable domains are however

never split, thus not increasing the size of the search space.

The results are depicted in Fig. 4. The number of solutions Pn (dashed curve) gives

an approximation of the topological entropy as log(Pn)/n ≈ 0.60. We first compare

the Cartesian model (curve N) with the polar model (curve •) both handled by BC5

with maxdom. The growth constants for these models are respectively equal to 1.83 and

1.46, i.e. tN(n) ≈ O(e1.83n) and t•(n) ≈ O(e1.46n), promoting the use of the polar

model. However, even using the polar model, the solving strategy BC5 with maxdom

remains very inefficient with respect to the approximate topological entropy. This led us

to enforce stronger consistency techniques in order to decrease the number of splitting

steps by an exponential factor.

The solving time is much improved by means of BC5+CID(3) (curve � with growth

constant 0.85) and especially BC5+CID(9) (curve � with growth constant 0.66, i.e.

t�(n) ≈ O(e0.66n)), considering the polar model. Finally, as observed for the Hénon

map, the other tested splitting strategies are counterproductive. In particular, this phe-

nomenon is illustrated by replacing maxdom with initial-state and solving the polar



model with BC5+CID(9) (curve + with growth constant 0.81, i.e. t+(n) ≈ O(e0.81n),
to be compared to �).

6 Discussion

Compared to the dedicated method proposed in [9,10,11], the CP framework offers a

much more flexible, easy to deploy and to use environment. However, this high flexi-

bility entails choosing the best combination of model and solving strategy. The results

reported in Section 5 suggest that this choice can be performed as follows: The differ-

ent combinations can be implemented to calculate period-n orbits for small values of n
(e.g., with a timeout of a few minutes). On the basis of these results, the law t ≈ cedn

can be approximated for each combination, by estimating the constants c and d, and the

best combination can be used to solve the problem with greater periods.

A quantitative comparison of the respective efficiencies of the CP framework and

the method of [9] is difficult to assess, since [9] does not focus on this aspect. Nev-

ertheless, the asymptotic complexity, which does not depend on the computer, can be

extracted from the results reported in [9] for the Hénon map: The time needed to com-

pute all n-periodic orbits follows tG(n) ≈ O(e0.58n). Our experiments on the Hénon

map have shown an asymptotic time t�(n) ≈ O(e0.51n). This is a significant improve-

ment with respect to the lower bound complexity Pn ≈ O(e0.46n).
On a qualitative perspective, the experiments reported in Section 5 allow arguing

about several claims of [9]: First, the usage of local consistencies removes the necessity

of symbolically inverting the map, which is critical for the efficiency of [9] but not al-

ways possible. Second, initial-state splitting strategy is not anymore a key ingredient for

the efficiency, not even the best strategy in the CP framework. Finally, additional prop-

erties like the pre-computation of the non wandering part or some trapping region are

not essential anymore: Local consistencies are able to efficiently remove boxes incon-

sistent with these additional properties using only the constraints x(k+1)modn = f(xk).
In addition, the cost of their treatment may turn out to penalize the overall algorithm

efficiency.

Future work shall tackle additional maps, including higher dimensional discrete

time dynamical systems and ODE driven continuous time dynamical systems. One

weakness of the approach, which is also pointed out in [9], is that the topological en-

tropy approximation by counting the number of periodic orbits holds only for dynamical

systems that satisfy the axiom A (although some exponential growth of the number of

periodic orbits is a very strong hint of the presence of hyperbolic chaos in general).

We shall investigate the possibility of providing some computer assisted proof of this

property.
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