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DENSE MOTION ESTIMATION BETWEEN DISTANT FRAMES: COMBINATO  RIAL
MULTI-STEP INTEGRATION AND STATISTICAL SELECTION

Pierre-Henri Conzé& Tomas Crivellir Philippe Robert Luce Morin

*Technicolor
fINSA Rennes, IETR/UMR 6164, UEB

ABSTRACT matching and temporal integration. Following a similar ap-
proach to that presented in [10], one can select for each pixe

Accurate estimation of dense point correspondences betwegne optimal motion vector among a set of candidate motion
two distant frames of a video sequence is a challenging taskelds based on intrinsic motion field quality and spatiakreg
To address this problem, we present a combinatorial multiglarization. A more sophisticated processing, described i
step integration procedure which allows one to obtain alarg[11, 12], consists in sequentially merging a set of concate-
set of candidate motion fields between the two distant framq“i?ated mu|ti-5tep motion fields at intermediate frames up to
by considering multiple motion paths across the video sethe target frame. However, in either case, the optimal motio
quence. Given this large candidate set, we propose to perforyector selection strongly depends on the same optical flow
the optimal motion vector selection by combining a global op assumptions that frequently fail between distant framésgs T
timization stage with a new statistical processing. It issue could be partially compensated by complexifying the
Considering a selection only based on intrinsic motion ﬁd(h]atching criteriaad-infinitum but an uncertainty Component
quality and spatial regularization, the statistical pssteg s always present. This argues in favor of a statistical pro-
exploits the spatial distribution of candidates and intrgs  cessing which takes into account the random nature of these
an intra-candidate quality based on forward-backwardisens perturbations among a large set of dense motion fields.
tency. Experiments evaluate the effectiveness of our ngetho | this direction, we propose two main contributions to
for distant motion estimation in the context of video editin  address the dense matching problem between distant frames.

Index Terms— motion estimation, statistical analysis, Firstly, we present a combinatorial multi-step integratio

dense point matching, distant frames method which allows one to get a large set of motion fields
between two distant frames by considering multiple motion
1. INTRODUCTION pathsacross the sequence. Secondly, once this motion candi-

date construction is performed, we apply a new approach to
Despite rapid and significant progress since early formulaselect the optimal motion field based on statistics and alpati
tions [1, 2], optical flow estimation still remains an opesuis  regularization. Results for motion estimation betweetedis
with crucial implications in computer vision. State-oktart frames in the context of video editing are presented.
methods [3, 4, 5, 6, 7, 8, 9] have shown to be highly accu-
rate for estimating dense motion fields between consecutive 2. MOTION CANDIDATE CONSTRUCTION
frames of a video sequence. However, they show limitations , )
when applied to distant frames. The classical optical flow as-€tUs consider a sequence/ofi-1 RGBimages I}, vy
sumptions are not verified in this case, especially for diffic and 1€tZ, and1, be two distant frames of this sequence with
situations such as illumination changes, large motionter? < @ < b < N. In this paper, we focus on the frame pair

poral occlusions, zooming, non-rigid deformations, lowoco {I., I} and our goal is to accurately estimate a dense motion
contrast and transparency. field between these two frames. In this section, we aim at

Direct matching between distant frames can be thus se/d€nerating multiple motion maps betwegrand/,.

§itive to ambiguous corresponqlences. An alternative tNSI 5 1 precy matching with multiple optical flow estimators

in computing the long-range displacement through concate-

nation of elementary optical flow fields. This can be done byA first approach for building multiple motion candidates €on

temporal integration, similarly to dense point trackingal sists in considering a direct motion estimation using déffe

rithms [7]. However, even small errors in the input fields carnoptical flow methods [10]. Even if the considered estimators

lead to large drifts in the final motion field. may fail in some regions, the idea is to pool the strengths of
A first step towards accurate long-range dense correzach one. Furthermore, the same estimator can be used sev-

spondences is to combine numerous estimations from direeral times by modifying its parameter settings. In addition
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Fig. 2. Generation of multi-step motigmaths For each pixel
Fig. 1. Generation ofstep sequencedGoing from the root x, of I, this gives a set of candidate positiongin

node to leaf nodes of this tree structure gi¥&s,, the set of

possiblestep sequencdsom I, to I,,. motionpathscan be constructed througkt-orderEulerinte-

_ ) _ o gration. Starting from each pixg}, of I, and for eaclstep se-
we can derive from each version a parametric motion field fohuencethis integration performs the accumulation of optical
which motion is constrained by a global transformation [13] fow fields following thestepswhich form the currenstep se-
Direct matching is more ambiguous as the distance betwegjyence Thus, withstepsl, 2 and3, Fig.2 illustrates the con-
I, and1, increases. Due to a large motion range, the Mosyction of the four possible motigraths(one for eactstep
tion of periodic color patterns or uniform areas may not be&sequencef T, 5) betweenl, and /. Let fi = a + S st
correctly estimated. This supports a motion field consioact g the current frame number during the construction of mo-
stage using concatenation of various optical flow fields. tion pathi from I, wherej is thestepindex within thestep
2.2. Combinatorial multi-step integration sequencey;. For eachy, € T',; and for eactsteps’ € =,

) ) we start fromz,, in order to iteratively compute:
Let us describe the concept of motipath as an alterna-

tive to direct matching for obtaining a displacement map Xpi =Xpi_ Vi g (ij@fl) (1)
betweenl, and,. A motion pathis obtained through con- ;
catenation of elementary optical flow fields across the video ©ONce all thestepss; € ~; have been run through, we ob-
sequence. It links each pixel, of I, to a corresponding t@inx;, the corresponding position i of x, of I, obtained
position inI,. Elementary optical flow fields can be com- With step sequence;. By considering all thstep sequences

puted between consecutive frames or with different framave finally get a large set of candidate positiondjrand this
steps[11, 12], i.e. with larger inter-frame distances. Let for each pixek, of I,. Note that the occlusion maps attached

Sp = {s1,52,-..,50,} C {1,...,N —n} be the setofy, !0 input motion fields are used to possibly stop the motion
possiblestepsat instants. This means that the set of optical Pathconstruction. Considering an intermediate peiptdur-
flow fields {Vy 1451, Vinntsas - - - Vinntsg, + IS @vailable. ing the construction, atepcan be added only if the closest

Our objective is to produce a large set of motion mapspixe| to X is considered as un-occluded for teiep Other-
betweenl, and I, as to form a significative set of samples wise, the motiorpathis removed. In the following, the large
upon which a statistical processing would be meaningful andet of candidate positions i is defined ag, »(X,) = {x;}
advantageous. Given this objective, we propose to injtiall Vi € [0, ..., Kx, — 1] whereKy_ is the cardinal off, ;(X,)-

generate all the possibi&ep sequencgse. combinations of Up to now, we have considered an exhaustive generation
step$in orderto joinl, from I,. Eachstep sequenaiefinesa  of step sequencéar clarity. However, for very distant frames
motionpath LetT', , = {vo,v1,---»Yi_1} Dethesetof and for a large set ddteps it is not possible to consider all

possiblestep sequencesg; between/, andl,. I',; is com-  possiblestep sequencgsomputational and memory issues).
puted by building a tree structure (Fig. 1) where each nod&or instance, for a distance 86 frames and wittstepsl, 2,
corresponds to a motion field assigned to a given frame fos and 10, the number of possible motiqrathsis 5877241.
a givenstepvalue (node value). In pratice, the constructionTherefore, the procedure described above is performed on a
of the tree is done recursively starting fraijt we create for reasonable number step sequenceand not for all as pre-
each node as many children as the numbestgpsavailable  viouly assumed. Firstly, we limit the number of elementary
at the current instant. A child node is not generated when vectors composing the motigrathsby providing a maximum
has already been reached (therefore, the current node-is carumber of concatenations.. Indeed, the concatenation of
sidered as a leaf) or if, is passed given the considerggp  numerous vectors may lead to an important drift. Secondly,
Finally, once the tree has been built, going from the rooenodwe randomly selecfV; motion pathsamong the remaining
to leaf nodes give§', ;, the set ofstep sequencesor illus-  motion paths(N, determined by storage capacity). This se-
tration, the tree in Fig.1 indicates the faiep sequencdbat  lection is guided by the fact that the candidate vectorsishou
can be generated going frofg to I3 with stepsl, 2 and3:  not be highly correlated. The frequency of appearance of a
Tos={{1,1,1},{1,2},{2,1}, {3} }. given stepat a given frame must be uniform among all the
Once all the possiblstep sequenceg, Vi € [0,..., K —  possiblestepsarising from this frame in order to avoid a sys-
1] betweenl,, andI, have been generated, the correspondingematic bias towards the more populated branches of the tree



(a) Ios (b) Ta0 (C) Is5 (d) 146 (e) SP (f) GO (g) SP+GO
Fig. 3: Source frames of thmMPl S1sequence [14] and reconstruction of the kioskigf from Io5 with: 1) the statistical
processing$P), 2) the global optimization@&O) method solved bjusion move§l5], 3) both combined$P+GO).

2.3. Jointforward and backward processing Frame pairs| {2545 | {2546} | {2547 | {2548 | {2549 | {25,50
sP 1272 | 1527 | 217 | 2533 | 2448 | 247

GO 11.19 14 11.14 13.7 21.7 22.22
SP+GO 1284 | 1611 | 2475 | 2555 24 24.79

Motion estimation can be enhanced by considering foth
ward andbackwardmotion fields. Similarly to thdorward
direction, the set dbackwardmotion fields from each pixed,

of J, to I, can be computed by considering multi-stegck-  Table 1: Comparison through registration and PSNR assess-
ward motionpaths Thesebackwardmotion fields can be in- ment betweenl) the statistical processingP), 2) the global
versed intdorward motion fields in order to enriclfi, ,(X.).  optimization GO), 3) SP+GO. PSNR scores are computed
Thus, backwardmotion vectors from pixels of, are pro-  on the kiosk oMPI S1(Fig. 3). Low PSNR for first pairs are

jected intol,. For each one, we identify the nearest pixel ofdue to the foreground object which degrades the estimation.
the arrival position. The corresponding vector frdgnto I,

is reversed and started from the previously identified ratarefield betweenl, and/,. Quality scores)(x;) are computed
pixel which gives a new candidate @, ,(x,). Candidates &S follows: the maximum and minimum values bfc(x;)
of T, ,(X4) Which have been obtained through this procedur@mong all candidates are mapped fromo a predefined inte-
are defined asverse Otherwise, we call therdirect gerQmaqz- INtermediate inconsistency values are mapped to
the line defined by these two values and the result is rounded
3. MOTION VECTOR SELECTION ON LARGE SETS to the nearest integeQ(x;) € [0, ..., Qmax]. The higher
Q(x}), the smallednc(x; ). We aim at promoting candidates
3.1. Statistical processing for motion vector selection in the neighborhood of high quality candidates. In pragctice
Q(x}) is used as a voting mechanism [16]: while computing

GivenT, ;(Xa) = {X} }icqo,....k,, —1] the set of candidate po- . . . - _
sitions inI, obtained for each pixed, of I, from the motion the medians in Equation (3), each sampﬂas con5|der§d

field construction stage described above, the objectivesst Q(x{;) times to set the occurrence of elemeﬁté —x!
2

lect the optimal candidate positiotj € 7., 5(Xa) by exploit-  \yhich enforces théorward-backwardmotion consistency.

ing the statistical infqrmation on _the p_oint distributimdat_he The statistical processing being applied for each pixel in-
quality of each candidate. The idea is to assun@aassian  gependently, we describe in what follows a global optimiza-
model for the distribution of , ,(x,) and try to find its central  tjon method which includes regularization.

value,x;. Using themaximum likelihoodestimator (MLE) o ) )

and imposing the selection among elementdpf(x,), the 3.2. Global optimization for motion vector selection

choice of the optimal candidate positigpis defined by: We perform a global optimization stage that fuses for each
Kea—1 2 pixel motion candidates into a single optimal motion field,
Xj = arg min Z X) — X, (2) following the approach of [10]. We introdude = {Ix, } as
% =0 2 a labeling of pixelsx, of I, where each label indicates one

J#i
The assumption oGaussianitycan be largely perturbed
by outliers. Consequently, a robust estimation of the ithistr
tion central value is necessary:

of the candidates df}, 5(X,). Let df;j) be the corresponding
motion vectors of candidates @, ;(x,). We define the fol-
lowing energy and minimize it witfusion move§10, 15].

4 2 E,»(L) = Z pa(C (Xq, df:“b(xa)) + Inc(Xq + df:“b(xa)))
Xp = argminmed,z;||X] — X, , 3) . ' '
Xy
Ix ly,
. . _ . Pr ¢ (Xq) —d) 4
Finally, each candidate positios) receives a correspond- + <Xzy: - Oy Pr d“vb(x ) d“vb(y“) 1) @)
ing quality score)(x}) computed using the inconsistency val- o i I
uesInc(x}). Inc(x}) corresponds to thEuclideandistance The data term involves the matching c68.,, d,,) and

Ix,

to the neareseverse(resp. direct) candidate among the dis- the inconsistency valuénc(x, + d,%) which is introduced
tribution if x} is direct (resp. reversg. We aim at assign- to make it more robust. The regularization term involves mo-
ing high quality to candidates for which the correspondingion similarities with neighboring positionsy,,, ,,, accounts
motion field betweerl, and I, is consistent with a motion for local color similarities in framd,. Functionsp, and p,.



(c) Propagation tdsos4, GO  (d) Propagation tdsos4, SP+GO

al '
(e) Original imagel2so (f) Logo insertion inl230 (9) Propagation tdi60, GO  (h) Propagation tdi0, SP+GO

Fig. 4: a-d) Logo insertion inf5p3¢ and propagation tdsos4 (Hopg. e-h) Logo insertion infy3p and propagation tdgo
(Newspapeéex. We compare the global optimizatio® Q) method with the statistical processirf8H combined taGO (SP+GO).

Frame pairs| {160,19G | {160,20¢ | {160,21G | {160,22¢ | {160,23¢ sion moveg15], 3) the statistical processing combined with
GO 21.11 19.33 18.11 17.06 16.29 the global optimization§P+GO). Firstly, the final fields of
SP+GO 21.42 19.53 18.3 17.74 17.09 each method have been compared through registration and
MSF[12] 20.5 18.22 17.8 16.95 16.6 PSNR assessment. For a given pdi, I, }, the final fields

] ] ] are used to reconstruét from I, through motion compen-
Table 2 Registration and PSNR assessment with: the combisation and color PSNR scores are computed betwgemd

natorial integration followed by the global optimizatidd®); e registred frame for non-occluded pixels. Tables 1 and 2
by the statistical processing combinedG® (SP+GO); the  ghow quantitative comparisons through PSNR computed for
multi-step fusion K1SF) method [12]. PSNR scores are com- 4rigus distances betwedpandl, respectively on the kiosk
puted on the whole images biewspape(Fig. 4). of MPI S1and on whole images dflewspaper An exam-

are described in [10]Fusion moveslgorithm fuses candi- Ple of registration of the kiosk for a distance ff frames is
dates pair by pair up to get“ng an Opt|ma| f|ej§,b but its pI’OVIded F|g 3. Results show th&@Pis better tharGO for

application to a large set is limited by the computationatlo @l pairs. The low diversity of candidates at the outpuSéf
limits the effect of regularization and explains the slight

3.3. Motion vector selection framework provement betweeBPandSP+GO. The example of Fig. 3 is

We propose to combine statistical processing and the abovateresting due to the temporary occlusion of the kiosk Wwhic

global optimization stage to combine simultaneously infor IS Jumped by multi-step motiopaths For this complex sit-
mation about the point distribution, a robust selectioreblas Uation, SP+GO is more adapted thaBO. Secondly, in the

on the intrinsic motion field quality and a spatial regulariz CONtext of video editing, we evaluate the accuracgBt GO
tion. For eachx, € I, the statistical processing is applied @1d GO by motion compensating i, logos manually in-
to the whole sef}, ;(x,). Then, we select tha/,,; best can- se_rted m[a. Fig. 4 presents results fda’ropeandNewspaper
didates of the distribution with the criterion of median iin With @ distance ofl§ and 70 frames respectively. For both
mization of (3). Finallyfusion movealgorithm fuses by pairs €25€SSP+GO shows a clear improvement compared0.

theseN,,,, candidates up to obtaining the best one. The proposed combinatorial integration combined to
SP+GO gives better performance compared to the multi-
4. RESULTS step fusion MSF) method [12] according to PSNR scores of

Table 2. TheMSF method itself has been shown in [12] to
Our experiments focus on frame pairs taken from three sesutperform state-of-the-art methods such as [3, 6, 7].
qu_encesMPI Sl_[14], HopeaanNews_paperF_or the selected 5 CONCLUSION
pairs, the combinatorial multi-step integration has been p
formed taking input elementary flow fields estimated with aWe perform long-term dense matching by considering mul-
2D version of the disparity estimator of [17]. For all the ex- tiple multi-step motiorpathsalong the sequence. Given the
periments, the parameters ard; = 7, Ny = 100, Q.0 =  resulting large set of motion candidates, we apply a selecti
2, Nopt = 3. Stepsl, 2, 3, 4, 5, 15 and30 have been used. procedure where the global optimization stage is preceged b

After this motion field construction stage, we have com-a new statistical processing which exploits the spatiatielis

pared three selection procedurépthe statistical processing bution and the intrinsic quality of candidates. It leadsetiér
(SP), 2) the global optimization@O) method solved byu-  results compared to state-of-the-art methods.
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