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DENSE MOTION ESTIMATION BETWEEN DISTANT FRAMES: COMBINATO RIAL
MULTI-STEP INTEGRATION AND STATISTICAL SELECTION

Pierre-Henri Conze⋆† Toḿas Crivelli⋆ Philippe Robert⋆ Luce Morin†

⋆Technicolor
†INSA Rennes, IETR/UMR 6164, UEB

ABSTRACT

Accurate estimation of dense point correspondences between
two distant frames of a video sequence is a challenging task.
To address this problem, we present a combinatorial multi-
step integration procedure which allows one to obtain a large
set of candidate motion fields between the two distant frames
by considering multiple motion paths across the video se-
quence. Given this large candidate set, we propose to perform
the optimal motion vector selection by combining a global op-
timization stage with a new statistical processing. Instead of
considering a selection only based on intrinsic motion field
quality and spatial regularization, the statistical processing
exploits the spatial distribution of candidates and introduces
an intra-candidate quality based on forward-backward consis-
tency. Experiments evaluate the effectiveness of our method
for distant motion estimation in the context of video editing.

Index Terms— motion estimation, statistical analysis,
dense point matching, distant frames

1. INTRODUCTION

Despite rapid and significant progress since early formula-
tions [1, 2], optical flow estimation still remains an open issue
with crucial implications in computer vision. State-of-the-art
methods [3, 4, 5, 6, 7, 8, 9] have shown to be highly accu-
rate for estimating dense motion fields between consecutive
frames of a video sequence. However, they show limitations
when applied to distant frames. The classical optical flow as-
sumptions are not verified in this case, especially for difficult
situations such as illumination changes, large motion, tem-
poral occlusions, zooming, non-rigid deformations, low color
contrast and transparency.

Direct matching between distant frames can be thus sen-
sitive to ambiguous correspondences. An alternative consists
in computing the long-range displacement through concate-
nation of elementary optical flow fields. This can be done by
temporal integration, similarly to dense point tracking algo-
rithms [7]. However, even small errors in the input fields can
lead to large drifts in the final motion field.

A first step towards accurate long-range dense corre-
spondences is to combine numerous estimations from direct

matching and temporal integration. Following a similar ap-
proach to that presented in [10], one can select for each pixel
the optimal motion vector among a set of candidate motion
fields based on intrinsic motion field quality and spatial reg-
ularization. A more sophisticated processing, described in
[11, 12], consists in sequentially merging a set of concate-
nated multi-step motion fields at intermediate frames up to
the target frame. However, in either case, the optimal motion
vector selection strongly depends on the same optical flow
assumptions that frequently fail between distant frames. This
issue could be partially compensated by complexifying the
matching criteriaad-infinitum, but an uncertainty component
is always present. This argues in favor of a statistical pro-
cessing which takes into account the random nature of these
perturbations among a large set of dense motion fields.

In this direction, we propose two main contributions to
address the dense matching problem between distant frames.
Firstly, we present a combinatorial multi-step integration
method which allows one to get a large set of motion fields
between two distant frames by considering multiple motion
pathsacross the sequence. Secondly, once this motion candi-
date construction is performed, we apply a new approach to
select the optimal motion field based on statistics and spatial
regularization. Results for motion estimation between distant
frames in the context of video editing are presented.

2. MOTION CANDIDATE CONSTRUCTION

Let us consider a sequence ofN+1RGB images{In}n∈[[0,...,N ]]

and letIa andIb be two distant frames of this sequence with
0 ≤ a < b ≤ N . In this paper, we focus on the frame pair
{Ia, Ib} and our goal is to accurately estimate a dense motion
field between these two frames. In this section, we aim at
generating multiple motion maps betweenIa andIb.

2.1. Direct matching with multiple optical flow estimators

A first approach for building multiple motion candidates con-
sists in considering a direct motion estimation using different
optical flow methods [10]. Even if the considered estimators
may fail in some regions, the idea is to pool the strengths of
each one. Furthermore, the same estimator can be used sev-
eral times by modifying its parameter settings. In addition,



Fig. 1: Generation ofstep sequences. Going from the root
node to leaf nodes of this tree structure givesΓa,b, the set of
possiblestep sequencesfrom Ia to Ib.

we can derive from each version a parametric motion field for
which motion is constrained by a global transformation [13].
Direct matching is more ambiguous as the distance between
Ia andIb increases. Due to a large motion range, the mo-
tion of periodic color patterns or uniform areas may not be
correctly estimated. This supports a motion field construction
stage using concatenation of various optical flow fields.

2.2. Combinatorial multi-step integration

Let us describe the concept of motionpath as an alterna-
tive to direct matching for obtaining a displacement map
betweenIa andIb. A motion path is obtained through con-
catenation of elementary optical flow fields across the video
sequence. It links each pixelxa of Ia to a corresponding
position in Ib. Elementary optical flow fields can be com-
puted between consecutive frames or with different frame
steps[11, 12], i.e. with larger inter-frame distances. Let
Sn = {s1, s2, . . . , sQn

} ⊂ {1, . . . , N − n} be the set ofQn

possiblestepsat instantn. This means that the set of optical
flow fields{vn,n+s1 , vn,n+s2 , . . . , vn,n+sQn

} is available.
Our objective is to produce a large set of motion maps

betweenIa andIb as to form a significative set of samples
upon which a statistical processing would be meaningful and
advantageous. Given this objective, we propose to initially
generate all the possiblestep sequences(i.e. combinations of
steps) in order to joinIb fromIa. Eachstep sequencedefines a
motionpath. LetΓa,b = {γ0,γ1, . . . ,γK−1} be the set ofK
possiblestep sequencesγi betweenIa andIb. Γa,b is com-
puted by building a tree structure (Fig. 1) where each node
corresponds to a motion field assigned to a given frame for
a givenstepvalue (node value). In pratice, the construction
of the tree is done recursively starting fromIa: we create for
each node as many children as the number ofstepsavailable
at the current instant. A child node is not generated whenIb
has already been reached (therefore, the current node is con-
sidered as a leaf) or ifIb is passed given the consideredstep.
Finally, once the tree has been built, going from the root node
to leaf nodes givesΓa,b, the set ofstep sequences. For illus-
tration, the tree in Fig.1 indicates the fourstep sequencesthat
can be generated going fromI0 to I3 with steps1, 2 and3:
Γ0,3 = {{1, 1, 1}, {1, 2}, {2, 1}, {3}}.

Once all the possiblestep sequencesγi ∀i ∈ [[0, . . . ,K−
1]] betweenIa andIb have been generated, the corresponding

Fig. 2: Generation of multi-step motionpaths. For each pixel
x0 of I0, this gives a set of candidate positions inI3.

motionpathscan be constructed through1st-orderEuler inte-
gration. Starting from each pixelxa of Ia and for eachstep se-
quence, this integration performs the accumulation of optical
flow fields following thestepswhich form the currentstep se-
quence. Thus, withsteps1, 2 and3, Fig.2 illustrates the con-
struction of the four possible motionpaths(one for eachstep
sequenceof Γ0,3) betweenI0 andI3. Let f i

j = a+
∑j

k=0 s
i
k

be the current frame number during the construction of mo-
tion path i from Ia wherej is thestepindex within thestep
sequenceγi. For eachγi ∈ Γa,b and for eachstepsij ∈ γi,
we start fromxa in order to iteratively compute:

xfi
j
= xfi

j−1
+ vfi

j−1,f
i
j
(xfi

j−1
) (1)

Once all thestepssij ∈ γi have been run through, we ob-
tain xi

b, the corresponding position inIb of xa of Ia obtained
with step sequenceγi. By considering all thestep sequences,
we finally get a large set of candidate positions inIb and this
for each pixelxa of Ia. Note that the occlusion maps attached
to input motion fields are used to possibly stop the motion
pathconstruction. Considering an intermediate pointxfi

j
dur-

ing the construction, astepcan be added only if the closest
pixel to xfi

j
is considered as un-occluded for thisstep. Other-

wise, the motionpath is removed. In the following, the large
set of candidate positions inIb is defined asTa,b(xa) = {xib}
∀i ∈ [[0, . . . ,Kxa − 1]] whereKxa is the cardinal ofTa,b(xa).

Up to now, we have considered an exhaustive generation
of step sequencesfor clarity. However, for very distant frames
and for a large set ofsteps, it is not possible to consider all
possiblestep sequences(computational and memory issues).
For instance, for a distance of30 frames and withsteps1, 2,
5 and10, the number of possible motionpathsis 5877241.
Therefore, the procedure described above is performed on a
reasonable number ofstep sequencesand not for all as pre-
viouly assumed. Firstly, we limit the number of elementary
vectors composing the motionpathsby providing a maximum
number of concatenationsNc. Indeed, the concatenation of
numerous vectors may lead to an important drift. Secondly,
we randomly selectNs motion pathsamong the remaining
motionpaths(Ns determined by storage capacity). This se-
lection is guided by the fact that the candidate vectors should
not be highly correlated. The frequency of appearance of a
given stepat a given frame must be uniform among all the
possiblestepsarising from this frame in order to avoid a sys-
tematic bias towards the more populated branches of the tree.



(a) I25 (b) I40 (c) I55 (d) I46 (e)SP (f) GO (g) SP+GO

Fig. 3: Source frames of theMPI S1sequence [14] and reconstruction of the kiosk ofI46 from I25 with: 1) the statistical
processing (SP), 2) the global optimization (GO) method solved byfusion moves[15], 3) both combined (SP+GO).

2.3. Joint forward and backward processing

Motion estimation can be enhanced by considering bothfor-
ward andbackwardmotion fields. Similarly to theforward
direction, the set ofbackwardmotion fields from each pixelxb

of Ib to Ia can be computed by considering multi-stepback-
ward motionpaths. Thesebackwardmotion fields can be in-
versed intoforward motion fields in order to enrichTa,b(xa).
Thus, backwardmotion vectors from pixels ofIb are pro-
jected intoIa. For each one, we identify the nearest pixel of
the arrival position. The corresponding vector fromIb to Ia
is reversed and started from the previously identified nearest
pixel which gives a new candidate forTa,b(xa). Candidates
of Ta,b(xa) which have been obtained through this procedure
are defined asreverse. Otherwise, we call themdirect.

3. MOTION VECTOR SELECTION ON LARGE SETS

3.1. Statistical processing for motion vector selection

GivenTa,b(xa) = {xib}i∈[[0,...,Kxa−1]], the set of candidate po-
sitions inIb obtained for each pixelxa of Ia from the motion
field construction stage described above, the objective is to se-
lect the optimal candidate positionx∗b ∈ Ta,b(xa) by exploit-
ing the statistical information on the point distribution and the
quality of each candidate. The idea is to assume aGaussian
model for the distribution ofTa,b(xa) and try to find its central
value,x∗b . Using themaximum likelihoodestimator (MLE)
and imposing the selection among elements ofTa,b(xa), the
choice of the optimal candidate positionx∗b is defined by:

x∗b = argmin
xi
b

Kxa−1
∑

j=0
j 6=i

∥

∥

∥
xj
b − xi

b

∥

∥

∥

2

2
(2)

The assumption ofGaussianitycan be largely perturbed
by outliers. Consequently, a robust estimation of the distribu-
tion central value is necessary:

x∗b = argmin
xi
b

medj 6=i

∥

∥

∥
xjb − xib

∥

∥

∥

2

2
(3)

Finally, each candidate positionxib receives a correspond-
ing quality scoreQ(xi

b) computed using the inconsistency val-
uesInc(xi

b). Inc(xi
b) corresponds to theEuclideandistance

to the nearestreverse(resp.direct) candidate among the dis-
tribution if xi

b is direct (resp. reverse). We aim at assign-
ing high quality to candidates for which the corresponding
motion field betweenIa andIb is consistent with a motion

Frame pairs {25,45} {25,46} {25,47} {25,48} {25,49} {25,50}

SP 12.72 15.27 21.7 25.33 24.48 24.7

GO 11.19 14 11.14 13.7 21.7 22.22

SP+GO 12.84 16.11 24.75 25.55 24 24.79

Table 1: Comparison through registration and PSNR assess-
ment between:1) the statistical processing (SP), 2) the global
optimization (GO), 3) SP+GO. PSNR scores are computed
on the kiosk ofMPI S1(Fig. 3). Low PSNR for first pairs are
due to the foreground object which degrades the estimation.

field betweenIb andIa. Quality scoresQ(xib) are computed
as follows: the maximum and minimum values ofInc(xi

b)
among all candidates are mapped from0 to a predefined inte-
gerQmax. Intermediate inconsistency values are mapped to
the line defined by these two values and the result is rounded
to the nearest integer:Q(xib) ∈ [[0, . . . , Qmax]]. The higher
Q(xib), the smallerInc(xi

b). We aim at promoting candidates
in the neighborhood of high quality candidates. In practice,
Q(xib) is used as a voting mechanism [16]: while computing
the medians in Equation (3), each samplexj

b is considered

Q(xjb) times to set the occurrence of elements
∥

∥

∥

xj
b − xi

b

∥

∥

∥

2

2
which enforces theforward-backwardmotion consistency.

The statistical processing being applied for each pixel in-
dependently, we describe in what follows a global optimiza-
tion method which includes regularization.

3.2. Global optimization for motion vector selection

We perform a global optimization stage that fuses for each
pixel motion candidates into a single optimal motion field,
following the approach of [10]. We introduceL = {lxa} as
a labeling of pixelsxa of Ia where each label indicates one
of the candidates ofTa,b(xa). Let dlxa

a,b be the corresponding
motion vectors of candidates ofTa,b(xa). We define the fol-
lowing energy and minimize it withfusion moves[10, 15].

Ea,b(L) =
∑

xa

ρd(C(xa, d
lxa
a,b(xa)) + Inc(xa + d

lxa
a,b(xa)))

+
∑

<xa,ya>

αxa,ya .ρr(
∥

∥

∥
d
lxa
a,b(xa)− d

lya
a,b(ya)

∥

∥

∥

1
) (4)

The data term involves the matching costC(xa, d
lxa
a,b) and

the inconsistency valueInc(xa + d
lxa
a,b) which is introduced

to make it more robust. The regularization term involves mo-
tion similarities with neighboring positions.αxa,ya

accounts
for local color similarities in frameIa. Functionsρd andρr



(a) Original imageI5036 (b) Logo insertion inI5036 (c) Propagation toI5054, GO (d) Propagation toI5054, SP+GO

(e) Original imageI230 (f) Logo insertion inI230 (g) Propagation toI160, GO (h) Propagation toI160, SP+GO

Fig. 4: a-d) Logo insertion inI5036 and propagation toI5054 (Hope). e-h) Logo insertion inI230 and propagation toI160
(Newspaper). We compare the global optimization (GO) method with the statistical processing (SP) combined toGO(SP+GO).

Frame pairs {160,190} {160,200} {160,210} {160,220} {160,230}

GO 21.11 19.33 18.11 17.06 16.29

SP+GO 21.42 19.53 18.3 17.74 17.09

MSF [12] 20.5 18.22 17.8 16.95 16.6

Table 2: Registration and PSNR assessment with: the combi-
natorial integration followed by the global optimization (GO);
by the statistical processing combined toGO (SP+GO); the
multi-step fusion (MSF) method [12]. PSNR scores are com-
puted on the whole images ofNewspaper(Fig. 4).

are described in [10].Fusion movesalgorithm fuses candi-
dates pair by pair up to getting an optimal fieldd∗a,b but its
application to a large set is limited by the computational load.

3.3. Motion vector selection framework

We propose to combine statistical processing and the above
global optimization stage to combine simultaneously infor-
mation about the point distribution, a robust selection based
on the intrinsic motion field quality and a spatial regulariza-
tion. For eachxa ∈ Ia, the statistical processing is applied
to the whole setTa,b(xa). Then, we select theNopt best can-
didates of the distribution with the criterion of median mini-
mization of (3). Finally,fusion movesalgorithm fuses by pairs
theseNopt candidates up to obtaining the best one.

4. RESULTS

Our experiments focus on frame pairs taken from three se-
quences:MPI S1[14], HopeandNewspaper. For the selected
pairs, the combinatorial multi-step integration has been per-
formed taking input elementary flow fields estimated with a
2D version of the disparity estimator of [17]. For all the ex-
periments, the parameters are :Nc = 7, Ns = 100, Qmax =
2, Nopt = 3. Steps1, 2, 3, 4, 5, 15 and30 have been used.

After this motion field construction stage, we have com-
pared three selection procedures:1) the statistical processing
(SP), 2) the global optimization (GO) method solved byfu-

sion moves[15], 3) the statistical processing combined with
the global optimization (SP+GO). Firstly, the final fields of
each method have been compared through registration and
PSNR assessment. For a given pair{Ia, Ib}, the final fields
are used to reconstructIa from Ib through motion compen-
sation and color PSNR scores are computed betweenIa and
the registred frame for non-occluded pixels. Tables 1 and 2
show quantitative comparisons through PSNR computed for
various distances betweenIa andIb respectively on the kiosk
of MPI S1and on whole images ofNewspaper. An exam-
ple of registration of the kiosk for a distance of21 frames is
provided Fig. 3. Results show thatSP is better thanGO for
all pairs. The low diversity of candidates at the output ofSP
limits the effect of regularization and explains the slightim-
provement betweenSPandSP+GO. The example of Fig. 3 is
interesting due to the temporary occlusion of the kiosk which
is jumped by multi-step motionpaths. For this complex sit-
uation,SP+GO is more adapted thanGO. Secondly, in the
context of video editing, we evaluate the accuracy ofSP+GO
and GO by motion compensating inIb logos manually in-
serted inIa. Fig. 4 presents results forHopeandNewspaper
with a distance of18 and70 frames respectively. For both
cases,SP+GOshows a clear improvement compared toGO.

The proposed combinatorial integration combined to
SP+GO gives better performance compared to the multi-
step fusion (MSF) method [12] according to PSNR scores of
Table 2. TheMSF method itself has been shown in [12] to
outperform state-of-the-art methods such as [3, 6, 7].

5. CONCLUSION

We perform long-term dense matching by considering mul-
tiple multi-step motionpathsalong the sequence. Given the
resulting large set of motion candidates, we apply a selection
procedure where the global optimization stage is preceded by
a new statistical processing which exploits the spatial distri-
bution and the intrinsic quality of candidates. It leads to better
results compared to state-of-the-art methods.
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[17] P. Robert, C. Thébault, V. Drazic, and P.-H. Conze,
“Disparity-compensated view synthesis for s3d content
correction,” inSPIE IS&T Electronic Imaging Stereo-
scopic Displays and Applications, 2012.


