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A proof of Reidemeister-Singer’s theorem by Cerf’s methods

François Laudenbach
November 29, 2013

Abstract. Heegaard splittings and Heegaard diagrams of a closed 3-manifold M are trans-
lated into the language of Morse functions with Morse-Smale pseudo-gradients defined on M .
We make use in a very simple setting of techniques which Jean Cerf developed for solving a
famous pseudo-isotopy problem. In passing, we show how to cancel the supernumerary local
extrema in a generic path of functions when dimM > 2. The main tool that we introduce is
an elementary swallow tail lemma which could be useful elsewhere.

1. Introduction

When speaking of Cerf’s methods we refer to Cerf’s work in [3] for the so-called pseudo-
isotopy problem. In a few words, the method consists of reducing some isotopy problem to
a problem about real functions. It was created in the setting of high dimensional manifolds.
However, some parts apply in dimension three as we are going to show. The purpose of this
note is to present a proof of Reidemeister-Singer’s theorem (as stated below) in this way. I
should say that Francis Bonahon, who like me was educated in the Orsay Topology group of
the seventies-eighties, wrote such a proof; but, his notes are lost. The recent developments
in Heegaard-Floer homology drove me to make this proof available. The concepts used in the
next statement will be explained in the course of this introduction. We always work in the C∞

category (also called the smooth category), for objects, maps and families of maps.

Theorem 1.1. (Reidemeister [16], Singer[18]) Let M be a closed connected 3-manifold.
1) Two Heegaard splittings become isotopic after suitable stabilizations.
2) More precisely, let D0, D1 be two Heegaard diagrams. Then there are stabilizations D′

0, D
′
1

by adding pairs of cancelling handles of index 1 and 2, such that one can pass from D′
0 to D′

1

by an ambient isotopy and a finite sequence of handle slides.

Strictly speaking, only the first item is the statement of the Reidemeister-Singer theorem. A
Heegaard splitting consists of a closed surface Σ of genus g, called Heegaard surface, dividing M
into two handlebodies H−, H+. A Heegaard diagram is defined by more precise data, namely,
a handle decomposition of M with:
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- one 0-handle B− and g handles of index 1 attached on the boundary ∂B−, whose union
forms H−;

- g handles of index 2 attached on ∂H− and one 3-cell B+, whose union forms H+.

On the common boundary Σ of H+ and H−, the Heegaard diagram specifies g simple curves
β1, ..., βg in Σ, mutually disjoint, which are the cores of the attaching domains of the 2-handles;
their complement in Σ is a 2-sphere with 2g holes. It also specifies g simple curves α1, ..., αg

which are the boundaries of the so-called transverse 2-cells1 of each 1-handle; the complement
in Σ of ∪jαj is also a 2-sphere with 2g holes. The other notions involved in Theorem 1.1 will
be only defined in the functional setting considered below.

The statement of Theorem 1.1 can be translated into the language of Morse functions as
follows. Recall that a Morse function f is a smooth function whose critical points are non-
degenerate; the famous Morse lemma states that each critical point p of f belongs to a chart
equipped with so-called Morse coordinates, meaning that f − f(p) reduces to a quadratic form.
Some non-classical facts concerning the choice of these coordinates will be detailed in Section
3.

A Morse function is said to be ordered if the order of the critical values is finer than the order
of their indices, namely f(p) < f(p′) whenever the index of the critical point p is less than the
index of p′. In dimension 3, an ordered Morse function gives rise to a Heegaard splitting by
considering a level set whose level separates the index 1 and index 2 critical values. Moreover,
every Heegaard splitting is obtained this way. Along a path of ordered Morse functions the
Heegaard surface moves by isotopy.

Stabilizing a Heegaard splitting consists of creating a pair of critical points of index 1 and 2
at a level keeping the ordering. Thus, item 1 of Theorem 1.1 is a consequence of Theorem 1.3,
for which it is necessary to speak of genericity.

1.2. Genericity I. Given two Morse functions f0, f1 : M → R, the following property is
generic (in Baire’s sense) for the paths of functions (ft)t∈[0,1] joining them:

- for all t ∈ [0, 1] apart from finitely many exceptional values tj, the function ft is Morse;
- for δ > 0 small enough, ftj+δ has one more or one less pair of critical points than ftj−δ;

in the first (resp. second) case, tj is called a birth time (resp. a cancellation time);
- the critical points of ftj are all non-degenerate except one whose Hessian has corank 1;

this point will be said a cubic critical point.

For short, when speaking of a generic path of functions, it will be understood a path as above.
In this note, all genericity argument follow from Thom’s transversality theorem in jet spaces

as it is in his article on singularities [20] (see also [7], or [9] where the generic paths of real func-
tions are explicitly considered). In Section 2, we shall specify which transversality is involved
in the above genericity of paths.

The next theorem is mainly due to Jean Cerf ([3], chap. V §I)2.

1They are also called compression discs.
2Strictly speaking, only the first sentence is stated in Cerf’s article. The complement follows from his lemma

about the uniqueness of births (valid in dimension greater than 1 only).
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Theorem 1.3. Let M be a closed connected manifold of any dimension n. Given two ordered
Morse functions f0, f1 on M , they are joined by a generic path of functions (ft)t∈[0,1] such

that, for every t ∈ [0, 1] outside of a finite set J = {t1, . . . , tq, tq+1, . . . , tq+q′}, ft is an ordered
Morse function. Moreover, t1, . . . , tq are birth times and lie in

(
0, 1

3

)
; and tq+1, . . . , tq+q′ are

cancellation (or death) times and lie in
(
2
3
, 1
)
.

In particular in dimension 3, a level set of f1/2 whose level separates the index 1 and index
2 critical values is a Heegaard splitting that is a common stabilization, up to isotopy, of those
associated with f0 and f1.

We now turn to the second part of Theorem 1.1. In order to speak of handle decomposition
and handle sliding, it is useful to consider a Morse function f equipped with a pseudo-gradient.

Definition 1.4. Given a Morse function f , a smooth vector field X on M is said to be a
(descending) pseudo-gradient for f if the two following conditions hold:

- the Lyapunov inequality3 X · f < 0 away from the critical locus;
- at each critical point p the Hessian of X · f is negative definite (notice that X · f ≤ 0

everywhere).

Local data of pseudo-gradients generate a global pseudo-gradient by using a partition of
unity. It is easily checked that the zeroes of X coincide with the critical points of f and are
hyperbolic4. Thus, according to the stable/unstable manifold theorem (see [2]), with each zero
p of X there are associated stable and unstable manifolds, also called invariant manifolds and
denoted respectively by W s(p,X) and W u(p,X). A point x ∈M belongs to W s(p,X) if X t(x)
tends to p as t tends to +∞; here, X t denotes the flow of X.

The unstable manifold is diffeomorphic to R
i, where i is the index of f at p, and the stable

manifold is diffeomorphic to R
n−i; moreover, p is a non-degenerate maximum (resp. minimum)

of the restriction of f to W u(p,X) (resp. W s(p,X)).
Given the Morse function f , Smale [19] proved that, generically, all invariant manifolds of

a pseudo-gradient of f are mutually transverse5. Today, such a pseudo-gradient is said to be
Morse-Smale.

According to Whitney [21], if p is a cubic critical point of f , there are coordinates (x, y) ∈
R× R

n−1, which we call Whitney coordinates, where f reads:

f(x, y) = f(p) + x3 + q(y).

Here, q is a non-degenerate quadratic form on R
n−1. For a reason which will be explained in

3.4, we require a pseudo-gradient X for f to coincide with −∇gf near the cubic critical point
p, where g is the Euclidean metric of one system of Whitney coordinates.

Given a generic path of functions (ft) , t ∈ [0, 1], it can be enriched with a smooth path of
vector fields (Xt), such that Xt is a pseudo-gradient of ft for all t ∈ [0, 1].

1.5. Genericity II. The following property is generic for the paths of pairs (ft, Xt)t∈[0,1]:

3This sign convention is used for instance by R. Bott p. 341 in [1].
4That is, if p is a zero of X the eigenvalues of the linearized vector field at p have a non-zero real part.
5An ordered Morse function f with a Morse-Smale pseudo-gradient X gives rise easily to a handle

decomposition.
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- the path of functions is generic in the sense of 1.2;
- for every t, there is no Xt-orbit from a critical point index j of ft to a critical point

index i if j < i (briefly said: no j/i connecting orbit if j < i);
- for every t outside of a finite set K = {t1, . . . , tr} ⊂ (0, 1) of Morse times6, there is no
i/i connecting orbit of Xt;

- for each tk ∈ K, exactly one orbit ℓk of Xtk connects two critical points p and p′ having
the same index; moreover, for each x ∈ ℓk, we have:

Txℓk = TxW
u(p,Xtk) ∩ TxW

s(p′, Xtk) ,

and t 7→ Xt crosses transversely at time tk the codimension-one stratum of the space of
pseudo-gradients having a connecting orbit between two critical points with the same
index.

For short, such a path (ft, Xt)t∈[0,1] is said to be generic. For tk ∈ K, one says that a handle
sliding happens at time tk. The effect of a handle sliding on the so-called Morse complex is
described by J. Milnor (see Theorem 7.6 in [12]).

The argument for genericity in 1.5 is elementary once the first item is assumed. It relies on
the classical transversality theorem applied to a (j − 1)-sphere moving with t with respect to a
fixed (n− i− 1)-sphere, j ≤ i, in an (n− 1)-dimensional manifold.

Now, the statement of item 2) in Theorem 1.1 can be translated into the next one. Following
M. Morse [14], a function with only two local extrema is be said to be polar.

Theorem 1.6. Let M be a closed connected manifold of dimension7 n > 2. Given two ordered
polar Morse functions f0, f1 equipped with respective Morse-Smale pseudo-gradients X0, X1,
there exists a generic path of pairs (ft, Xt)t∈[0,1], where the vector field Xt is a pseudo-gradient
for the function ft, so that the following holds: for every t ∈ [0, 1] outside of a finite set, ft is
an ordered polar Morse function and Xt has no i/i connecting orbit. The excluded values of t
are the times of birth first, then handle sliding and finally cancellation.

A direct proof of Theorem 1.3 is given in Section 2 without any reference to Cerf’s work. It
mainly follows from Lemma 2.1 which offers an efficient process for crossing critical values. The
proof of Theorem 1.6 will be given in Section 4 and uses a few technical lemmas, including the
elementary swallow tail lemma and the elementary lips lemma. Since they could be useful in
a more general setting, they are written with index assumptions which are more general than
necessary here. These lemmas are proved in Section 3.

2. Proof of Theorem 1.3

The main tool will be the next lemma.

Lemma 2.1. (Decrease of a critical value) Let f :M → R be a Morse function, let X be a
pseudo-gradient for f and let p be a critical point of index k. Assume that the unstable manifold
W u(p,X) contains a closed smooth k-disc D whose boundary lies in a level set f−1(a), a < f(p).
Then, for every ε > 0 with a + ε < f(p), there exists a path (ft)t∈[0,1] of Morse functions such
that f0 = f , f1(p) = a + ε and X is a pseudo-gradient of ft for every t ∈ [0, 1]. Moreover, the

6A cubic point of index i could be connected to a Morse point of index i at a lower level.
7The statement also holds in dimension 2 with a different proof (see [8], §8). It is obvious in dimension 1.
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support of the deformation may be contained in an arbitrarily small neighborhood W of D in
M .

Note that, when k = 0, W u(p,X) has an empty intersection with the open sub-level set
f−1

(
(−∞, f(p))

)
. So, the condition of the lemma is fulfilled and the conclusion allows us to

decrease arbitrarily the value of a local minimum.
The lemma above holds true, with the same proof, in a family whose data (f, p,D, a) depend

smoothly on a parameter s ∈ R
m and fulfill the same assumptions for every s. Moreover, f

only has to be a Morse function in a neighborhood of D. In particular, it applies to non-generic
functions or pseudo-gradients.

Proof. The case where p has index 0 is left to the reader. Hereafter, assume k > 0. Set
n = dimM and c = f(p). For η small enough, there exists a closed (n − k)-disc D′ in the
stable manifold W s(p,X), with D′ ⊂ W , whose boundary lies in f−1(c+η). Let U be a tubular
neighborhood of radius δ of ∂D in f−1(a). For δ small enough with respect to η, every half-orbit
of X ending in U is contained in D or crosses f−1(c + η). Define M as the union of D, D′

and all segments of X-orbits starting from points in f−1(c+ η) and ending in U ; for a small δ,
we have M ⊂ W . Its boundary is made of three parts, two horizontal parts M∩ f−1(a) and
M∩ f−1(c+ η), and the lateral boundary ∂ℓM which is tangent to X. There are two corners
in the boundary of M, each being diffeomorphic to a product of spheres Sk−1 ×Sn−k−1 (where
k = index(p)); one is the boundary of U , trivialized as the sphere normal bundle ∂U → ∂D;
the other corner is ∂ℓM∩ f−1(c+ η) and is diffeomorphic to the first one by the flow of X.

Let N be a small collar neighborhood of ∂ℓM in M; it is diffeomorphic to a product

N ∼= Sk−1 × Sn−k−1 × [0, 1]× [a, c+ η].

If (x, y) are the coordinates of R := [0, 1] × [a, c + η], the product structure of N is chosen so
that the level sets of f in N are {y = const.} and the vertical lines directed by ∂y are tangent
to the orbits of X.

For constructing f1 we keep f1 = f outside of M and change the level set foliation as
said below. The level set foliation of f1 coincides with the one of f in the complement of
N in M. Inside N , it is obtained by replacing the horizontal foliation of N with a new one
which is still transverse to the vertical lines, is still horizontal near the boundary, and puts
f−1(a + ε) ∩ {x = 0} on the same leaf as f−1(c) ∩ {x = 1}. The new foliation in N is the
pullback of a foliation of R by the standard projection (see figure 1). The value of f1 is now
well-defined.

Figure 1A Figure 1B

Moreover, it is easy to interpolate this construction for t varying in [0, 1]. �
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Corollary 2.2. Let (f0, X) be a Morse function with a pseudo-gradient having no j/i connecting
orbit, j < i. Then there exists a path (ft)t∈[0,1] of Morse functions issued from f0 such that f1
is ordered and the same vector field X is a pseudo-gradient of ft for every t ∈ [0, 1].

Proof. If the function is not ordered, there is a pair of critical points (p, q) with index(p) <
index(q) and f(p) ≥ f(q). Choose such a pair so that f(p) is minimal among all similar un-
ordered pairs. By this choice every orbit of W u(p,X) crosses a level set below f(q); if not, one of
them ends at a critical point p′. By assumption on X we have index(p′) ≤ index(p) < index(q)
and f(p) > f(p′) ≥ f(q), contradicting the assumption on the pair (p, q). Then, lemma 2.1
applies and yields a new Morse function which has the same pseudo-gradient X and at least
one unordered pair less than f . Arguing this way recursively, the corollary is proved. �

Before proving Theorem 1.3, it is useful to specify which transversality is involved in a generic
path in the sense of 1.2 and what a birth path is. A path of functions (ft) may be thought of
as a smooth function F : [0, 1] ×M → R, (t, x) 7→ ft(x). We now consider the r-jet spaces
Jr([0, 1]×M,R) for r = 1, 2 and their submanifolds Σ1 and Σ1,1 defined as follows (here, we are
using the so-called Thom-Boardman notation). The first one, Σ1, is made of the 1-jets (a, j1g)
where a ∈ [0, 1]×M and g is a germ at a of function (t, x) 7→ g(t, x) such that ∂xg(a) = 0. The
second one, Σ1,1, is made of the 2-jets (a, j2g) such that:

- dgxg(a) = 0 and j1g meets Σ1 transversely;

- the (germ of) curve (j1g)
−1

(Σ1) passes through a and is tangent to the kernel of ∂xg(a),
which is the factor {t = t(a)}.

According to Thom [20], generically j1F is transverse to Σ1 and j2F is transverse to Σ1,1.

Thus, the critical locus of ft when t runs in [0, 1], which is (j1F )
−1

(Σ1), is a smooth curve; and

the isolated points (j2F )
−1

(Σ1,1) are the cubic critical points. By making a diffeomorphism
C∞-close to Id act on [0, 1] ×M , it is possible to move the cubic critical points so that their
t-coordinates are distinct. In particular, the properties in 1.2 hold true generically.

Moreover, if (t0, x0) is a cubic critical point, thanks to the information on the 3-jet8 of F at
(t0, x0), it is possible to write a normal form of F on a neighborhood of (t0, x0). This follows
easily from the normal form of cusps established by H. Whitney in [21] for generic maps from
plane to plane. Precisely, there are adapted coordinates (t, x) = (t, y, z), with y ∈ R

n−1, z ∈ R,
which we call Whitney coordinates, where F reads:

F (t, x) = F (t0, x0) + z3 ± (t− t0)z + q(y)

Here, q is a non-degenerate quadratic form on R
n−1, ± = − if t0 is a birth time and ± = + if

t0 is a cancellation time. If t0 is a birth time, we immediately derive from the model that, for
δ > 0 small enough, the given generic path of functions, restricted to [t0 − δ, t0 + δ], is a birth
path in the following sense.

Definition 2.3. A birth path is a generic path of functions (ft)t∈[t0−δ,t0+δ] such that there exists

a path of cylinders Bt
∼= Dn−1× [−1,+1] embedded in M with the following properties for every

t ∈ [t0 − δ, t0 + δ]:

- Dn−1 × {±1} (the top and bottom of Bt) lie in two level sets of ft;

8The transversality of j2F to Σ1,1 at (t0, x0) is an open condition on the 3-jet.
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- the restriction of ft to ∂Dn−1 × [−1,+1] has no critical points;
- ft|Bt is semi-conjugate to the function ctt0(y, z) := z3 − (t− t0)z + q(y).

Here, a semi-conjugation stands for an embedding ϕt : Bt → R
n, depending smoothly on t,

covering the origin of Rn and such that ctt0 ◦ ϕt = ft|Bt up to a rescaling of the values. The
index of q is called the index of the birth.

The function ft has no critical points in Bt when t0 − δ ≤ t < t0 whereas, for t0 < t ≤ t0 − δ,
ft has a pair of critical points in Bt of respective index i, i+ 1 if i is the index of the birth.

Remarks 2.4. 1) If f0 is a Morse function given with a cylinder B0 on which f0 induces the
height function, then f0 is the beginning of a birth path with t ∈ [0, 2δ] which is supported in
B0 in the sense that the path is stationary outside of B0. Indeed, f0|B0 is semi-conjugate to
any function without critical point, for instance (y, z) 7→ z3 + δz + q(y); thus, it is allowed to
plug the functions ctδ, t ∈ [0, 2δ], by taking a suitable semi-conjugation ϕt : B0 → R

n. This
birth path is said to be elementary (compare with a similar definition in Cerf [3] chap. III).

2) Any birth path issued from f0 associated with a path of cylinders (Bt)t∈[0,2δ] is homotopic
to an elementary birth path among the birth paths starting from f0. This is done by using an
extension of the isotopy B0 → Bt.

Lemma 2.5. (Shift of birth)
1) Every generic path of functions on M is homotopic relative to its end points to a generic

path where the birth times appear before the cancellation times. More precisely, the following
holds.

2) Let (hs)s∈[0,1] be a generic path of functions which are Morse for all time except one

cancellation time. Let (β1
t )t∈[0,2δ] be a birth path starting from the Morse function h1 with

associated cylinders (B1
t )t∈[0,2δ]. Then there is a smooth family, parametrized by s ∈ [0, 1], of

birth paths (βs
t )t∈[0,2δ], starting from hs with associated cylinders (Bs

t )t∈[0,2δ] which coincide with
the given cylinders when s = 1.

Moreover, if dimM > 1, the same holds true for any generic path (hs)s∈[0,1]. Moreover, it is

possible to choose the cylinders B0
t as neighborhoods of any given regular point of h0.

Proof of 2)⇒1). The composed path (hs)s∈[0,1] ∗ (β1
t )t∈[0,2δ] is homotopic, relative to its

end points, to the composed path (β0
t )t∈[0,2δ] ∗ (β

s
2δ)s∈[0,1]. In general, this composition is only

piecewise smooth at the gluing point.But we are free to modify the parametrization of the
composed path; if the two paths entering the composition are stationary near their common
end point, then the composed path is smooth.

The new path from h0 to β1
2δ has one birth time appearing before one cancellation time. By

arguing this way recursively one proves 1).

Proof of 2). Given the cylinder B1
0 , one chooses a smooth family of cylinders (Bs

0)s∈[0,1] in M

ending to B1
0 and so that hs induces the standard horizontal foliation Dn−1 × {pt} of Bs

0 for
every s ∈ [0, 1]. This is possible in any positive dimension since we are free to move Bs

0 away
from the critical set of hs, even at the cancellation time. Thanks to an extension of isotopies,
we get a 2-parameter family of diffeomorphisms ψs

t : B
s
0 → B1

t , s ∈ [0, 1], t ∈ [0, 2δ], preserving
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the horizontal foliation near the boundary and such that ψ1
0 = Id. Then, define

βs
t =

{
hs outside of Bs

0

β1
t ◦ ψ

s
t in Bs

0, up to some rescaling.

The rescaling is needed for making the two definitions match along the boundary of Bs
0. When

t = 1, this is an elementary birth path issued from h1. According to Remark 2.4 2), it is
homotopic to (β1

t ) relative to h1. This proves the first part of 2). In case dimM > 1, the
critical locus is non-separating and the last statement of 2) follows. �

2.6. Proof of Theorem 1.3. The case dimM = 1 is left to the reader. Hereafter, dimM
is assumed to be greater than 1. Given two ordered Morse functions f0, f1, there exists a
generic path (ft)t∈[0,1] where ft is Morse for every t ∈ [0, 1] outside of a finite set J . Decompose
J = J+ ∪ J− where J± is the set of birth/cancellation times and apply Lemma 2.5. The birth
times J+ can be shifted to the left, say in [0, t0], and the cylinders of birth can be located at the
right level according to the index of the birth so that all Morse functions in [0, t0] are ordered.
Similarly, the cancellation times can be shifted to the right, say in [t1, 1], and the cancellation
cylinders can be chosen so that all Morse functions in [t1, 1] are ordered. Thus, ft is a Morse
function for every t ∈ [t0, t1] and is ordered for t = t0, t1.

Choose pseudo-gradients Xt for ft. We may assume (Xt)t∈[t0,t1] in the sense of 1.5. Thus, the
pseudo-gradient Xt has no j/i connecting orbit with j ≤ i for all t ∈ [t0, t1] outside of a finite
set K ⊂ (t0, t1) (times of i/i connecting orbits).

Apply corollary 2.2 to the functions ftk , tk ∈ K, and deform the path of functions accord-
ingly, that is: keep the same path (Xt) as path of pseudo-gradients and ask the deformation to
be stationary on the complement of small neighborhoods of the tk’s. After that deformation,
the functions ftk , tk ∈ K, are ordered and, for every t ∈ (tk, tk+1), the vector fields Xt is has no
j/i connecting orbit with j ≤ i. This also holds true on the intervals (t0, infK) and (supK, t1)
on the left and right of K. So, we are reduced to reorder a path of Morse functions equipped
with pseudo-gradients which have no j/i connecting orbits, j ≤ i, for every time. The reorder-
ing is then obtained by applying the one-parameter version of Lemma 2.1. This finishes the
proof of item 1) in Theorem 1.1. �

3. The elementary swallow tail lemma and similar results

Before proving Theorem 1.6 and, hence, item 2) in Theorem 1.1, we need to state some
lemmas: first, a very particular case of the swallow tail lemma ; next, a very particular case of
the lips lemma (or uniqueness of death according to [3]); finally, the cancellation theorem9 of
Morse [14] (see also J. Milnor [12], Section 5).

We state them by means of Cerf graphics. Recall that the Cerf graphic of a path of functions
(ft)t is the part of R2 whose intersection with {t} × R is the set of critical values of ft.

9Also referred simply as the cancellation lemma.



9

The three proofs are very similar, by reduction to the one-dimensional case where they
become easy. Only the proof of the elementary swallow tail lemma is detailed here since the
three proofs can be performed in the same way10.

We begin with useful conjugation lemmas. The first one is likely well-known, the next ones
could be less classical.

Lemma 3.1. Let V be a manifold and V ′ be a compact submanifold. Two germs of smooth
functions f and g along V ′ whose restrictions to V ′ coincide and have no critical points are
isotopic relative to V ′. Moreover, if f = g near a compact set K ⊂ V ′, the isotopy may be
stationary near K in V . This statement holds true with parameters in a compact set.

Proof. The path method of J. Moser [15] is available; it is explained below in our setting.
Look at the path of germs t ∈ [0, 1] 7→ ft := (1 − t)f + tg and search for an isotopy (ϕt)t∈[0,1]
of V , with ϕ0 = Id, satisfying the conjugation equation of germs along V ′:

(1)
ft ◦ ϕt = f,
ϕt(x) = x for every x ∈ V ′.

The infinitesimal generator Zt has to satisfy the derived equation:

(2)
dft(x) · Zt(x) + g(x)− f(x) = 0,
Zt(x) = 0 for every x ∈ V ′.

Conversely, if Zt is a time depending vector field which is a solution of (2) near V ′, its “flow” is
defined until t = 1 on a small neighborhood of V ′ and solves the conjugation problem.

Here is a solution of Equation (2) by using an auxiliary Riemannian metric:

Zt = (f − g)
∇ft
|∇ft|2

.

The same proof holds for the relative statement and with parameters. �

Lemma 3.2. (The MJ
2 lemma.)11 Let F be the ring of germs of smooth functions at 0 ∈ R

n

and let M be its unique maximal ideal of germs vanishing at 0. Given f ∈ M, its Jacobian
ideal is the ideal J = J(f) generated by the first partial derivatives of f . Consider a germ h in
the product ideal MJ

2. Then there is a C∞ diffeomorphism ϕ such that (f + h) ◦ ϕ = f .

For instance, take a germ f of Morse function with f(0) = 0; it reads f = q + r where q is a
non-degenerate quadratic form and r belongs to M3. Since J(q) = M, the lemma implies that
f is conjugate to q, which is exactly the statement of Morse’s lemma.

Sketch of proof.12 As in Lemma 3.1, we use the path method. Setting ft = f + th, one
searches for a family of local diffeomorphisms ϕt, t ∈ [0, 1], such that ft ◦ϕt = f . This amounts
to find local vector fields Zt vanishing at the origin such that dft(x) · Zt(x) + h(x) = 0; this
consists of decomposing h in the Jacobian ideal Jt of ft with coefficients in M. The main point

10Such a proof of Morse’s cancellation theorem is now available in [11].
11We learnt this proof of Morse’s lemma from J. Mather on the occasion of a lecture in Thom’s seminar at

IHÉS (Bures-sur-Yvette), Dec. 1969.
12A detailed proof may be found in [10].
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is that Jt = J0 for all t. Indeed,
(

∂ft
∂xi

)
= At

(
∂f0
∂xj

)
where the matrix At equals the Identity

matrix modulo M. Thus, At is invertible, and a decomposition of h in J0 with coefficients in
M yields the wanted decomposition. �

The same proof works with parameters s ∈ R
m and in a relative form: Let (f s)s∈Dm be a

family, parametrized by the m-ball, of germs of Morse functions (Rn, 0) → R whose Hessians
at 0 are denoted by qs. Assume f s = qs for every s ∈ ∂Dm. Then there is a family of local
diffeomorphisms ϕs such that f s ◦ ϕs = qs and ϕs = Id when s ∈ ∂Dm.

In the same setting, if f is given a local unstable manifold W := W u(0, X), a system of Morse
coordinates x = (y, z) are said to be adapted to (f,W ) if f(x) = −|y|2+ |z|2 and W = {z = 0}.

Corollary 3.3. Given such data f and W the following holds.
1) There exist Morse coordinates adapted to (f,W ). (This claim also holds with parameters.)
2) Two such systems of Morse coordinates can be joined, up to a permutation of the coordi-

nates by a one-parameter family of adapted Morse coordinates13.

Proof. 1) The restriction of f to W has a non-degenerate maximum. By Morse’s lemma we
have Morse coordinates y of W so that f(x) = −|y|2 if x ∈ W . Complete the coordinates y to
local coordinates (y, z′) of (Rn, 0) so that W = {z′ = 0} and the z′-space is the orthogonal of
the y-space with respect to d2f(0). Let (f y) be the family of the restrictions of f to the slice
{y = cst}. For y = 0, the function f 0 is Morse and its critical point is z′ = 0. By the implicit
function theorem, there is a smooth map y 7→ z′ = k(y) such that f y is Morse with critical
point at k(y) (for every y close to 0). Apply the change of variables (y, z) = (y, z′ − k(y)) so
that the critical point of f y becomes z = 0 for every y. By a linear transformation in each slice,
we may assume the Hessian of f y to be constantly equal to |z|2. The wanted Morse coordinates
are now given by applying Morse’s lemma with parameters to the family (f y).

2) We first connect the two given Morse coordinates by a path of coordinates which are only
adapted to W . Then, this path is modified by applying Morse’s lemma with parameters in the
relative form.

3.4. Pseudo-gradients for birth path. To avoid raising some problems in bifurcation theory
of vector fields we adopt a still more restrictive definition of pseudo-gradients14 than in 1.4. This
is allowed since we are free to choose our pseudo-gradients.

Recall from 2.3 (with slightly different notation) that a birth path at time t0 consists of a
generic path of functions (ft)t∈(t0−δ,t0+δ), a cubic critical point p of index i of ft0 and cylinders

(Bt) which are neighborhoods of p. They are endowed with Whitney coordinates (x, y, z) ∈
R× R

i × R
n−i−1 so that ft|Bt reads:

ft|Bt = x3 − (t− t0)x− |y|2 + |z|2 + cst.

If (Xt)t∈(t0−δ,t0+δ) is a path of pseudo-gradients in the sense of 1.4, Xt|Bt is required to be the
descending gradient of ft with respect to the Euclidean metric of the Whitney coordinates for
every t ∈ (t0 − δ, t0 + δ) (not only for t = t0).

13We are hiding some acyclicity here (compare [4]); but, the space of Morse coordinates is not acyclic, due
to the isometry group O(i, n− i).

14We could ask the path (Xt) to present a bifurcation of type saddle-node along a birth/cancellation path.
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The stable/unstable manifold W u/s(p,Xt0) is described now. One checks that the x-axis is
the kernel of the Hessian of ft0 . The half space {(x, y, z) | x ≤ 0, z = 0} is the (local) unstable
manifold W u(p); its boundary is the so-called strong-unstable manifold. Similarly, the half space
{(x, y, z) | x ≥ 0, y = 0} is the (local) stable manifold and its boundary is the strong-stable
manifold.

Generically, Xt0 has no j/i connections where j ≤ i, except for possible i/i connections from
p to a critical point of index i at a lower level and these connections do not belong to the
strong-unstable manifold of p. Moreover, the i+1/i connections are transverse; so, this will be
the case for every t ∈ (t0 − δ, t0 + δ) if δ is small enough.

Moreover, if δ is small with respect to the “horizontal” size of the cylinders, the cubic crit-
ical point p gives rise to a pair of Morse critical points (pt, qt) ∈ Bt for every t ∈ (0, δ): the

point pt has index i + 1 and coordinates
(
−
√

t−t0
3
, 0, 0

)
; the point qt has index i and coordi-

nates
(√

t−t0
3
, 0, 0

)
. The closure of W u(pt, Xt) ∩ Bt reads {x ≤ x(qt), z = 0}. The closure of

W s(qt, Xt)∩Bt reads {x ≥ x(pt), y = 0}. One sees a unique connecting orbit from pt to qt and
all other orbits in W u(pt) (resp. W s(qt)) intersect the bottom (resp. the top) of Bt, which lies
in a level set of ft according to Definition 2.3.

W u(pt) ∩ {f ≥ f(qt)− ε}

W s(qt) ∩ {f ≤ f(pt) + ε}

Figure 2: After a birth

Lemma 3.5. (Elementary swallow tail lemma15). Let γ := (ft)t∈[0,1] be a generic path of

functions on M . Assume that its restriction to t ∈ [t0, t1] has a Cerf graphic showing a swallow
tail as in figure 3A: there are three critical points, pt, p

′
t of index i + 1 and qt of index i, such

that the pair (pt, qt) is created at time t0 and the pair (p′t, qt) is cancelled at time t1; at some
τ ∈ (t0, t1) the critical values are equal: fτ (pτ ) = fτ (p

′
τ ). Moreover, it is given a generic family

of pseudo-gradients Xt for ft satisfying the next conditions for every t ∈ [t0, t1]:

- W u(pt) (resp. W u(p′t)) intersects W s(qt) transversely along a single orbit ℓt (resp. ℓ′t);
- every other orbit in W u(pt) and W u(p′t) crosses the level set at := ft(qt) − ε, for some
ε > 0.

15In Cerf [3] the swallow tail lemma requires no assumption about pseudo-gradient lines but there are some
topological assumptions.
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Then, given δ > 0, the path γ can be deformed to a path γ′ whose Cerf graphic is trivial over
[t0, t1] as in figure 3B, the deformation being stationary on [0, t0 − δ] ∪ [t1 + δ, 1].

Figure 3A Figure 3B

Proof. There are three parts.
A) General setup. First, we choose birth cylinders Bt, t ∈ (t0 − δ′, t0 + δ′) as in 3.4, the δ′

being provisional. Without loss of generality, we may assume ft|Bt = x3− (t− t0)x−|y|2+ |z|2

(no additive constant). And similarly for the cancellation time t1. Take ε as in the above
statement and truncate the birth cylinders at level ±2ε; from now on, Bt will denote the
truncated cylinder.

Set δ = δ(ε), so that, for t = t0 + δ, the two critical points of ft in Bt have value ±ε.
Decreasing ε if necessary, we get δ < δ′. Moreover, except the connecting orbit, every Xt-orbit
in the invariant manifolds of pt and qt exits Bt through the top or the bottom of Bt. And
similarly for the pair (p′t, qt) when t ∈ [t1 − δ, t1].

Since ft(pt) − ft(qt) is increasing when t is close to t0, by taking ε small enough we have
ft(pt)−ft(qt) > 2ε for every t ∈ (t0+δ, t1]. Similarly, ft(p

′
t)−ft(qt) > 2ε for every t ∈ [t0, t1−δ).

For t ∈ [t0 + δ, t1 − δ], we are going to choose Morse models M(qt),M(pt),M(p′t) with coor-
dinates (x, y, z) ∈ R× R

i × R
n−1−i so that:

ft|M(qt) = +x2 − |y|2 + |z|2 + ft(qt), M(qt) ⊂ f−1
t ([ft(qt)− ε, ft(qt) + ε])

ft|M(pt) = −x2 − |y|2 + |z|2 + ft(pt), M(pt) ⊂ f−1
t ([ft(pt)− ε, ft(pt) + ε])

ft|M(p′t) = −x2 − |y|2 + |z|2 + ft(p
′
t), M(qt) ⊂ f−1

t ([ft(p
′
t)− ε, ft(p

′
t) + ε]) .

The pseudo-gradient Xt will be tangent to the lateral boundary of these models without spec-
ifying more. Observe that M(qt) and M(pt) are disjoint for every t > t0 + δ; and similarly for
M(qt) and M(p′t) when t < t1 − δ.

We begin by fixing M(pt) and M(qt) when t = t0+δ. We choose their (y, z)-coordinates to be
those of Bt; only the x coordinate has to be changed to have Morse coordinates. And similarly
for M(p′t) and M(qt) when t = t1 − δ.

Then, we refer to Corollary 3.3 for extending the choice of Morse coordinates about pt to
t > t0 + δ so that they are adapted to (ft,W

u(pt)) for every t. The same is done for M(p′t),
t < t1 − δ. For M(qt), t ∈ [t0 + δ, t1 − δ], we do almost the same except for two differences:

(1) The Morse coordinates are chosen to be adapted to the stable manifold W s(qt).
(2) Since the coordinates are already fixed for t = t0 + δ and t = t1 − δ, item 2 of Corollary

3.3 has to be used.

Once this choice is made, nothing prevents us from modifying Xt in each considered Morse
model, so that it becomes tangent to the x-axis, the y-space and the z-space respectively, as it
is the case in Bt when t ∈ [t0, t0+ δ] and t ∈ [t1− δ, t1]. The unstable manifolds of pt and p′t are
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kept unchanged and also the stable manifold of qt; but the unstable manifold of qt now satisfies

(A1) W u(qt) ∩M(qt) = {x = 0, z = 0}.

We now recall the cut-and-paste construction for vector fields, which is abundantly used in
[12] without using this name. Given a Morse function f and a pseudo-gradient X, the change
of X by cut-and-paste along a regular level set {f = c} consists of the following: cut M at this
level, make an isotopy of the upper part (ψs) so that (ψ1)∗X has the same germ as X along the
cut, and finally glue (ψ1)∗X in the upper part to X in the lower part. The assumption for the
germs guaranties the smoothness of the resulting vector field. The same construction works in
a family.

By hypothesis of Lemma 3.5, the trace of W u(p′t) in the top of Bt, t ∈ [t0, t0 + δ], intersects

transversely the trace of W s(qt) in a single point mt. The latter trace is a closed disc bounded
by the trace of W s(pt). Moreover, by the genericity assumption in 3.4 the point mt lies in the
interior of that disc. So, we may apply cut-and-paste in the top of Bt to make the part of
W u(p′t)∩Bt lying close to {y = 0} to be contained in {z = 0, x > x(qt)} for every t ∈ [t0, t0+δ];
this construction extends easily to t ∈ (t0 − δ, t0 + δ]. And similarly for W u(pt) in Bt for
t ∈ [t1 − δ, t1 + δ).

In the same way, when t ∈ [t0 + δ, t1 − δ], cut-and-paste applied in the top of M(qt) makes
the part of (W u(pt) ∪W

u(p′t)) ∩ M(qt) lying near {y = 0} to be contained in {z = 0}. So,
the connecting orbits cover the x-axis of M(qt). As the support of the isotopy is located near
the stable manifold of qt, the orbits in the unstable manifolds of pt and p′t, apart from the
connecting orbits, descend to the level at = ft(qt)− ε.

Claim 1. There exists an arc At in M passing through (pt, qt, p
′
t) (or only one of them when a

pair of critical points has disappeared), depending smoothly on t ∈ (t0 − δ, t1 + δ) such that the
Cerf graphic of t 7→ ft|At shows a one-variable swallow tail.

Proof. Starting from the above situation of invariant manifolds, a new cut-and-paste makes ℓt
(resp. ℓ′t) coincide with the x-axis near the bottom of M(pt) (resp. M(p′t)) when t ∈ [t0+δ, t1−δ].

When t ∈ (t0 − δ, t0 + δ], At is made of the x-axis of Bt, a piece of ℓ′t from Bt to M(p′t), the
x-axis of M(p′t) and a path descending transversely to the level sets from the latter to the level
ft(qt)− ε. A similar construction is performed on the other intervals of t. �

B) Proof of the swallow tail lemma in case i = 0. This is the only case needed for
proving Theorem 1.6.

Claim 2. Set ht := ft|At. There are coordinates (x, z) ∈ R × R
n−1 on a neighborhood Nt of

At, depending smoothly on t ∈ (t0 − δ, t1 + δ), such that

(i) At = {z = 0}
(ii) ft(x, z) = ht(x) + |z|2.

Proof. Indeed, it is true on a neighborhood Ut of the set of critical points {pt, p
′
t, qt} by the

choice we made of the Morse models in A). First, extend this coordinates arbitrarily so that (i)
holds. As ht restricted to AtrUt has no critical points, Lemma 3.1 applies with one parameter
t ∈ (t0−δ, t1+δ) and the following correspondence of notation: V =M , V ′ = AtrUt, K = ∂V ′,
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f = ft, g = ht + | · |2. �

Now, choose a function h1t coinciding with ht near the boundary of At with a single critical
point, indeed a maximum, and satisfying h1t (x) ≤ ht(x) for every x ∈ At. For s ∈ [0, 1], set
kst (x) = s (h1t (x)− ht(x)) and consider the deformation of path of functions s 7→ (hst)t given by

(∗) hst(x) = ht(x) + kst (x).

Note that the path (h1t ) has a “trivial” Cerf graphic. So, the formula (∗) solves the one-
dimensional elementary swallow tail lemma.

Using the coordinates given by Claim 2, the deformation extends to the neighborhoods Nt

thanks to the formula

s 7→ ht(x) + ω(|z|)kst (x) + |z|2,

where ω is a bump function with a small support, centered at 0. The z-derivative vanishes
at z = 0 only and the critical points are those of the one-dimensional case. Moreover,
the deformation is stationary on the boundary of Nt and, hence, extends to M as a family
s 7→ (f s

t )t∈(t0−δ,t1+δ). When s = 1, the Cerf graphic of (f s
t )t∈[t0−δ,t1+δ] is trivial and the swallow

tail lemma is proved when i = 0. �

C) Proof of Lemma of the swallow tail lemma when i > 0. We continue with the
birth cylinders and the Morse models we introduced in part A).

Claim 3. There exists a smooth one-parameter family (Wt)t∈(t0−δ,t1+δ) of smooth compact

(i+ 1)-submanifolds, such that:

- At ⊂ Wt,
- ∂Wt lies at level at of the end points of At,
- the only critical points of ft|Wt are pt, qt, p

′
t and are non-degenerate except for the cubic

points when t equals t0 or t1.

Proof. As a consequence of the cut-and-paste we have made, the closure of W u(pt) in the
upper level set {ft ≥ at} and the one of W u(p′t) intersect precisely the part of W u(qt) lying in
that upper level set. Moreover, both match smoothly along this common part of their boundary.
This is given for free by the last choice of pseudo-gradients (see Formula (A1)). So, we set

Wt = [W u(pt) ∪W
u(qt) ∪W

u(p′t)] ∩ {ft ≥ at}.

�

Claim 4. There are coordinates (x, y, z) ∈ R × R
i × R

n−i−1 on a neighborhood Nt of At,
depending smoothly on t ∈ (t0 − δ, t1 + δ), such that

(i) At = {y = 0, z = 0} and Wt = {z = 0},
(ii) ft(x, y, z) = ht(x)− |y|2 + |z|2.
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Proof. This is similar to Claim 2, except that here Lemma 3.1 has to be applied twice: firstly
in a neighborhood Vt of At in Wt and secondly in a neighborhood of Vt in M . �

The radial vector field Yt :=
∑i

1 yj∂yj in Nt is transverse to the level sets of ft in (Nt rAt)∩
{z = 0}. Keeping its notation, it extends to Wt as a Lyapunov vector field (meaning that the
Lyapunov inequality holds) for ft|(Wt r At) since ft has no critical points on Wt r At . So, by
following the trajectories of −Yt we get a fibration of Wt over At in i-discs, pinched at the end
points of At (the diameter of the fibre vanishes there). The fibre Dx over x ∈ At is equipped
with a Morse function, namely gt,x := ft|Dx, which has one critical point, a maximum indeed,
at x ∈ At.

Extend Yt to some neighborhood Ñt of Wt in M as a Lyapunov vector field Ỹt of ft|(ÑtrAt).

Choosing Ñt to be invariant by the positive semi-flow of Ỹt gives Ñt a structure of bundle over

At whose fibre D̃x, x ∈ At, is diffeomorphic to Dx × Dn−i−1. The restriction g̃t,x of ft to the

fibre D̃x, x ∈ At, is a Morse function with the single critical point x ∈ At. It is equipped with

the pseudo-gradient Ỹt, whose unstable manifold is Dx.
We apply Lemma 2.1 to the function g̃t,x, where (t, x) is a parameter. This lemma allows

us to decrease the critical value ft(x) as we want, without introducing new critical points, as
long as this value remains greater than ft(∂Wt) = at. This process yields a deformation of (ft)
which extends the solution (∗) of the one-dimensional swallow tail lemma without introducing
new critical points, and solves the general case. �

Lemma 3.6. (Elementary lips lemma). Let γ := (ft)t∈[0,1] be a generic path of functions

on the manifold M . Assume that its restriction to t ∈ [t0, t1] has a Cerf graphic as in figure 4
(lips): for t ∈ (t0, t1), there are two critical points pt, qt of respective indices i + 1 and i such
that the pair (pt, qt) is created at time t0 and is cancelled at time t1. Moreover, a smooth family
of pseudo-gradients Xt for ft is given satisfying the next conditions for all t ∈ [t0, t1]:

- W u(pt) intersects W s(qt) transversely along a single orbit ℓt;
- all the other orbits in W u(pt) cross the level set f(qt)− ε, for some ε > 0.

Then γ can be deformed to a path γ′ so that the corresponding lips are removed from the Cerf
graphic, the deformation being stationary on [0, t0 − δ] ∪ [t1 + δ, 1] for any δ > 0.

Figure 4A Figure 4B

Lemma 3.7. (Morse’s cancellation theorem). Let f : M → R be a Morse function
equipped with a pseudo-gradient X. Let (p, q) be a pair of critical points of consecutive indices
whose invariant manifolds satisfy the next conditions:
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- W u(p) intersects W s(q) transversely and along a single orbit ;
- all the other orbits in W u(p) cross the level set f(q)− ε for some ε > 0.

Then, for every small neighborhood U of the closure of the intersection W u(p)∩{f ≥ f(q)− ε} ,
there is a Morse function which has no critical points in U and coincides with f away from U .

4. Path of polar functions

4.1. Proof of Theorem 1.6. According to Theorem 1.3, there is a path γ := (ft) fulfilling all
requirements of Theorem 1.6 (birth times before cancellation times and order of critical values)
except the one min/one max condition. So, the matter is to kill the appearance of extra local
minima or maxima. We are looking at the local minima only.

First, we make the assumption (H) that one can follow continuously a minimum mt of ft
from t = 0 to t = 1. By permuting the birth times if necessary (since dimM > 1, the last claim
of Lemma 2.5 applies) and cancelling by pairs the crossings of index 0 critical values (Lemma
2.1), we may assume that the index 0 part of the Cerf graphic shows no crossings (see figure
5A).

Let µ be the maximal number of extra minima along γ; we are going to decrease µ by 1.
Denote (t′0, t

′
1) the interval where ft has µ extra minima. For t ∈ (t′0, t

′
1), denote the upper local

minimum of ft by m′
t.

Without loss of generality we may assume that 3/2 separates the index 1 critical values from
those of index 2; the same is true for the value 3/2−η, if η > 0 is small. Set Lt := f−1

t (3/2−η).
Since M is connected and Lt lies above all the critical points of index 1, Lt is connected.

If Xt is a pseudo-gradient of ft, we see in Lt the trace St of the stable manifold W s(mt, Xt)
and, when t ∈ (t′0, t

′
1), the trace S ′

t of the stable manifold W s(m′
t, Xt). Both are changing when

handle slides of index 1 happen. But, due to n ≥ 3, they remain connected; indeed, each one
is always an (n− 1)-sphere with holes.

Figure 5A Figure 5B

So, choose smoothly points xt ∈ St and x′t ∈ S ′
t linked by a simple arc αt in Lt. We introduce

a cancelling pair of critical points (st, rt) of respective index (2, 1) in a collar neigborhood above
Lt; the birth time is chosen less than t′0, the cancellation time greater than t′1 (compare figure
5B), and the base of the birth cylinder is a (n−1)-disc in Lt centered at xt. Denote by γ′ := (f ′

t)
this new path from f0 to f1. After choosing a suitable pseudo-gradient X ′

t, we have for every
t ∈ [t′0 + ε, t′1 − ε]:

W u(rt, X
′

t) ∩ Lt = {xt, x
′

t}, W
u(st, X

′

t) ∩ Lt = αt .

In particular, there are no X ′
t-connecting orbits form rt to another critical point of index 1.

Therefore, Lemma 2.1 applies and a new deformation of the path γ′ puts the critical value of rt
below the other critical values of index 1 when t ∈ [t′0 + 2ε, t′1 − 2ε] (compare the Cerf graphic
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in figure 6A). By the choice of x′t, there is exactly one connecting orbit from rt to m′
t for every

t ∈ [t′0 + 2ε, t′1 − 2ε]. One makes cancellations at times t′0 + 2ε and t′1 − 2ε. These cancellations
may be viewed as a new deformation of the path γ′; the final Cerf graphic looks like figure 6B,
with two swallow tails separated by lips. Lemma 3.5 and 3.6 apply and yield some deformation
of the path of functions so that the swallow tails and lips vanish. The final path of this last
deformation has µ− 1 extra minima. This finishes the proof in case of (H).

Figure 6A Figure 6B

I am indebted to the anonymous referee who made me observe that the general case easily
reduces to assumption (H). Indeed, a suitable isotopy of M makes the minima (resp. maxima)
of f0 and f1 coincide. Since the germ of smooth function is unique at a non-degenerate ex-
tremum, up to isotopy and rescaling, we may assume that f0 and f1 coincide on small discs
d and d′ about these extrema. Then, by connecting f0 to f1 in the space of smooth functions
having a given restriction to d and d′, (H) is fulfilled. �

4.2. Final comments.
1) The Reidemeister-Singer theorem, that is, item 1 in Theorem 1.1, is also proved by R. Craggs
in the piecewise linear category (see [6]). His proof relies of previous results on collapsings, due
to Chillingworth [5]. But the original proof was revisited and explained by L. Siebenmann in
[17].
2) It is worth noticing that both parts of Theorem 1.1 are consequence of two statements
(Theorems 1.3 and 1.6) about functions which hold true in any dimension. These two theorems
should be known to specialists. Maybe, the proof of Theorem 1.3 that is given here is almost
the simplest one. I did not find any written proof of Theorem 1.6.
3) The proof of the latter theorem is not very elementary, due to the use of the swallow tail
lemma. So, the classical 3-dimensional proof of item 2 in Theorem 1.1 remains competitive.
The statement reads as this: Let H be a 3-dimensional handlebody of genus g, and let D,D′ be
two minimal systems of g compression discs of H whose complement is a 3- ball. Then, one
can pass from D to D′ by finitely many handle slides. This can be proved by a very standard
cut-and-past technique.

I am grateful to Francis Bonahon, Jean Cerf, Alexis Marin and Patrick Massot for comments
on first versions of this note. I am indebted to the referee who suggested me several improve-
ments. Carlos Moraga Ferrándiz [13] is the first who used of the techniques introduced in this
note; I thank him for valuable suggestions. I am also grateful to Marc Chaperon for discussions
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about the saddle-node bifurcation.
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