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Abstract 

 

Motor learning studies have for a long time focus on performance variables (in terms of 

speed or accuracy) for assessing learning, transfer and retention of motor skills. We argue, 

however, that learning essentially lies on changes in coordination variables (in terms of 

qualitative organization of behavior) and that relevant test for assessing the effectiveness of 

learning and retention should consider these variables. The aim of this experiment was to test 

the retention of a complex motor skill, after a long term delay. 10 years ago, five participants 

were involved in an experiment during which they practiced for 39 sessions of ten 1-min trials 

on a ski-simulator. All participants volunteered for a retention test, ten years after, for one 

session of ten 1-min trials. Analyses focused on the oscillations of the platform of the 

simulator. Performance was assessed in terms of amplitude and frequency. Coordination was 

accounted for by an analysis of dynamical properties of the motion of the platform, and 

especially the nature of the damping function that was exploited for sustaining the limit cycle 

dynamics. Results showed a significant decrement in performance variables. In contrast, all 

participants adopted from the first trial the coordination mode they learned 10 years ago. 

These results confirm the strong persistence of coordination modes, once acquired and 

stabilized in the behavioral repertoire. They also support the importance of coordination 

variables, for a valid assessment of learning and retention.  

Key-words: Motor learning, retention, dynamical modeling 
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1. Introduction 

Motor learning is defined as a permanent change in behavior in a specific task, resulting 

from practice (Schmidt, 1982). This definition emphasizes the importance of retention tests 

for assessing learning: a change in behavior should be proven to present a certain stability 

over time, for being considered a valid indication of learning.  

Behavior changes, during learning, are not restricted to these long-term and permanent 

modifications. Changes occur at different levels and following diverse time scales. According 

to Newell, Liu, & Gottfried (2001), the evolution of behavior during learning is also affected 

by transitory changes, as, for example, the warm-up decrement, a systematic decrease in 

performance that occurs at the beginning of each practice session, with respect to the level of 

performance reached at the end of the previous session, the alterations of behavior that could 

occur during a session, due to fatigue and drop in attention, and finally to trial-to-trial 

fluctuations, generally interpreted as random variability.  

However, the nature of the changes observed during learning is dependent on the 

characteristics of task to be learned, and also on the variables that are used for describing 

behavior. It seems useful, at this level, to distinguish between two categories of variables, 

commonly used in motor learning experiments.  

Performance variables focus on the outcomes of behavior, with respect to the goal of the 

task, in terms of speed (reaction time, movement time) or accuracy (absolute and variable 

errors, etc.). In contrast, coordination variables aim at accounting for the functional 

organization of behavior. These variables generally describe the spatio-temporal relationships 

between body parts, or between the body and the environment, in terms of relative phase 

(Kelso, 1995), or by means of dynamical models capturing the essential features of oscillatory 

behaviours (Beek & Beek, 1988).  
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In most motor learning experiments, up to the 80s, learning was assessed through 

performance variables. The first reason was related to the fact that the dominant paradigm, 

considering motor learning as an optimization of information processing, was primarily 

interested in problems of speed and accuracy (Abernethy & Sparrow, 1992). Experimental 

tasks were generally quite simple (linear positioning, target reaching, etc.), involving a few 

number of degrees of freedom. More recently, the development of the dynamical systems 

approach and the focus on coordination, as a property emerging from a complex set of 

constraints during the performance of the task, have motivated the use of coordination 

variables (Beek, Peper, & Stegeman, 1995). Generally, these experiments analyzed learning 

in more complex tasks, requiring at least the coordination of two body segments (Zanone & 

Kelso, 1992; 1997), and often in gross motor skills involving a huge number of degrees of 

freedom (Vereijken, 1991, Delignières, Nourrit, Sioud, Leroyer, Zattara, & Micaleff, 1998; 

Nourrit, Delignières, Caillou, Deschamps, & Lauriot, 2003). 

These two contrasted approaches yielded different conclusions about changes during 

learning. Experiments focusing on performance variables in simple tasks generally considered 

learning as the progressive and continuous refinement of information processing. Performance 

variables were often showed to evolve, during the learning process, following a power law. 

According to Newell (1991), this power law that was for a long time considered a powerful 

and universal principle, could represent an artifact due to the simplicity of the tasks, and the 

nature of the variables used. The author showed that learning in more complex tasks, 

involving multiple degrees of freedom, presented in contrast a discontinuous character, 

marked by abrupt changes in behavior during the course of learning.  

Another important point is that motor learning experiments could strongly differ, in terms 

of scientific aims and practical interests. At least two categories could be distinguished: in the 

first category experiments seek at understanding the process of acquisition of a novel motor 
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skill: participants are facing a completely novel task, and they have to build a new behavioral 

solution (e.g., Nourrit et al., 2003; Vereijken, 1991). In the second category the aim is to 

understand how a previously learned skill can efficiently adapt to changing environments. 

Most experiments dealing with questions relative to variability of practice fell in this second 

category (e.g., Catalano & Kleiner, 1984; Lai & Shea, 1998; Moxley, 1977). In that case, 

transfer tests are preferred to retention tests. In the first category, a change in coordination is 

obviously expected: during the first trials, participants exploit a „novice‟ coordination mode, 

and practice allows a transition towards a more efficient behavioral organization (Nourrit et 

al., 2003). This qualitative change in coordination is likely to be revealed in relevant 

coordination variables. In the second category, a qualitative change in coordination is not 

really expected. Participants have to adapt an available coordination mode (or a generalized 

motor program, in the cognitivist framework), and one expects, primarily, an improvement of 

performance variables (Schmidt, 1982).  

Moreover, performance and coordination variables present different dynamics during 

learning: Nourrit et al. (2003) showed in an experiment on a ski simulator that observed that 

performance variables (i.e. amplitude and frequency of oscillations) presented a very fast and 

precocious improvement during practice. In contrast, changes in coordination variables were 

delayed and occurred only after a prolonged practice time. This kind of result questions the 

true nature of learning and, obviously, the relevancy of the retention tests that are supposed to 

check the permanency of changes. In this kind of experiments, learning is conceived as the 

acquisition of a novel skill, and is essentially revealed by the dynamics of coordination 

variables. Performance variables are obviously linked to coordination variables (better 

coordination modes resulting in better performances), but the causal relationship is not 

equivocal. Performance variable are likely to be directly affected by factors such as 

motivation, boring, etc. In some tasks, high performance levels can be reached with poor 
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behavioral coordination solutions. Finally, a change in coordination can sometimes result in a 

transitory decrement in performance variables.  

Our interest in the present paper focuses on retention, and especially long-term retention. 

As previously evoked, retention represents one of the major tests for asserting that learning 

occurred. However, one could argue that retention tests should be performed on coordination 

variables, rather than on performance variables, of a valid assessment of learning (Nourrit et 

al., 2003).  

Another important point is the delay that could be thought as necessary for testing the 

permanent character of the changes that occurred during learning. Generally retention tests are 

conducted following retention intervals ranging from some minutes to some months. The 

information provided by retention tests differ in nature according to the delay after which they 

are conducted. When the delay is short, retention tests generally aim at controlling for the 

effects of experimental factors (augmented feedback, practice schedule, etc.). Longer delays 

aim a testing the persistence of learning in memory.  

Some experiments have tried to assess long-term retention in motor learning (Ammons, 

Farr, Bloch, Neumann, Mukul, Ralph & Ammons, 1958; Bell, 1950; Fleishman & Parker, 

1962; Koonce, Chamblis & Irion, 1964; Hill, 1934, 1957; Neumann & Ammons, 1957). In 

these studies, retention delays were generally comprised between 1 and 5 years. A notable 

exception concerns Hill‟s studies (Hill, 1934, 1957) where a participant was tested for 

retention 25 and 50 years, respectively, after learning in typewriting. The use of long-term 

delays opens different perspectives: after some months or even years, cognitive and physical 

capacities could obviously be modified (advancing age, weight gain, etc.). Moreover, life 

offers multiple occasions of learning experiences, of leisure or professional practices that 

could eventually interfere, positively or negatively, with previous learning. Such retention 
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tests aim at evaluating the strength of the traces of learning, and their resistance facing 

interferences and perturbations.  

Most often, these studies evidenced a decrement of performance, but also a quick regain, 

after some practice (Bell, 1950; Neumann & Ammons, 1957). The loss of proficiency was 

proven to depend on various factors, including the nature of the task, the length of the 

retention interval, the level of proficiency achieved, and the practice of interfering activities 

during the retention interval (Fleishman & Parker, 1962; Schendel, Shields, & Katz, 1978). 

Note, however, that these studies generally considered rather simple sensory-motor tasks 

(e.g., rotary pursuit task), and the assessment of retention was exclusively based on 

performance variables, as previously defined.  

In the present study, we analyze long-term retention in a complex motor task, performed on 

a ski simulator. This apparatus allows participants to perform slalom-like cyclical movements, 

and was used in a number of experiments, mainly devoted to the analysis of the evolution of 

motor coordination and performance with practice (Durand, Geoffroi, Varray & Prefaut, 

1994; Nourrit et al., 2003; Vereijken & Whiting, 1990; Vereijken, 1991; Vereijken et al., 

1997; Wulf, Höβ & Prinz, 1998; Wulf & Weigelt, 1997). We propose a follow-up study of a 

learning experiment on the ski simulator that was conducted in 2000 in the University of 

Montpellier (Nourrit et al., 2003). During this experiment five participants practiced on the 

ski simulator during 39 sessions of ten 1-min trials. The aim of this study was to examine the 

qualitative behavioral reorganizations that occurred during the acquisition of a complex motor 

skill. The essential results of this experiment can be summarized as follows. The authors tried 

to account for coordination through the analysis of the oscillations of the apparatus platform. 

Using the W-method proposed by Beek & Beek (1988), they derived from each trial a 

dynamical model, characterized by distinctive stiffness and damping functions. The results 

showed that learning could be described as the transition from a “novice behavior”, 
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characterized by a Rayleigh damping function, to a “skilled behavior”, characterized by a van 

der Pol damping function. More precisely, this experiment showed that learning could be 

described as the succession of three distinct stages, which were systematically observed for all 

participants. 

During the first stage, participants exploited and stabilized the novice behavior. This stage 

extended over a large number of trials (from 50 to 150 trials, according to participants). A 

second stage was characterized by frequent alternations between the novice and the skilled 

behaviors, from one trial to the next, and also within one trial from one cycle to the next. This 

second stage also extended over a large number of trials (from 50 to 150 trials, according to 

participants). Finally, the third stage was characterized by the exclusive exploitation and the 

stabilization of the skilled behavior.  

The authors concluded that the nature of the damping function represented a relevant 

coordination variable for revealing the evolution of behavior with learning.  

The analysis of performance variables (amplitude and frequency) revealed different 

dynamics: amplitude increased very early with practice and the highest amplitudes were 

reached during the initial stage. Further practice did not result in a significant increase in 

amplitude. Oscillation frequency increased suddenly at the beginning of the second stage, and 

remained then stable up to the end of the experiment.  

A first retention test was conducted 5 months after the end of the practice sessions 

(Deschamps, Nourrit, Caillou, & Delignières, 2004). Four participants of the initial study 

were available to participate. Results showed that participants adopted, spontaneously, the van 

der Pol damping behavior they learned 5 months before, and were able to reach similar 

amplitudes and frequencies than at the end of the learning sessions. In other words, after 5 

months, both performance and coordination variables remained stable, asserting for the 

persistent character of the changes that occurred during the learning sessions.  
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We report in the present paper the results of a second retention test, conducted 10 years after 

the completion of the initial experiment. The five participants were available and accepted to 

participate. We hypothesized to observe a significant decrement in performance variables, 

(i.e. amplitude and frequency). In contrast, we hypothesized that learning led to a deep and 

stable inscription of the learned coordination mode in the behavioral repertoire of the 

participants, and that coordination variables should exhibit persistent values, even after this 

very long delay.  

 

2. Method 

2.1. Participants  

The five participants involved in the learning experiment by Nourrit et al. (2003) 

volunteered to participate in this retention test (four males and one female, mean age: 39.2 

years ± 6.3, mean weight: 73.2 kg ± 8.46; mean height 179.6 cm ± 3.5). Four of them were 

occasional skiers (with on average four days of practice per year), but none had training on 

the ski-simulator since the first experiment. None of them reported serious injuries or diseases 

during the last decade. Their mean weight gain since the initial experiment was of about 1.6 

kg ± 8.46. Participants signed a consent form, and were not paid for their participation.  

2.2. Experimental device  

The task was performed on a ski-simulator (Skier's Edge Co., Park City, UT) which 

consisted of a platform on wheels which moved back and forth on two bowed, parallel metal 

rails (Figure 1). We used the same modified version of the simulator that replaced the two 

independent feet supports of the original apparatus with a 30-cm wide board, in unstable 

balance over a sagittal rotation axis (for more details see Nourrit et al. 2003).  

Insert Figure 1 

2.3. Procedure  
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Participants were instructed to make cyclical sideways movements on the ski simulator, “as 

ample and frequent as possible”. They had to keep their hands behind their back at all times, 

and to fix their eyes on a point located on the floor, three meters in front of the apparatus. 

They performed a one session of ten 1-min trials with a 1-min break between trials.  

2.4. Data collection 

A passive marker was fixed in the front of the simulator platform. The displacement of this 

marker was recorded in three dimensions by a VICON motion analyzer (Biometrics) with 

seven cameras (100 Hz). Data were collected over 30 seconds, namely from the 15th to the 

45th second of each trial. Analyses focused on the series of positions of the platform, along 

the transverse axis, computed from the collected 3-D data.  

The position time series were filtered with a dual-pass Butterworth filter with a cut off 

frequency of 10 Hz. We first computed from these series two performance variables: 

Amplitude (in centimeters), defined as the mean of the maximal deviations of the platform 

from the central position, at the right and left reversal points of the cycle, and frequency (in 

Hertz), defined as the inverse of the average time between two successive right reversals.  

Each series was then summarized in a normalized average cycle (Mottet & Bootsma, 1999; 

Nourrit et al., 2003). First, each series was segmented into half-cycles representing the motion 

from a reversal point to the following. Each half-cycle was then normalized using 40 

equidistant points, by means of linear interpolation. These points were then rescaled within 

the interval [-1, +1]. The normalized half cycles beginning at the same reversal point were 

averaged point-by-point, and the normalized average cycle (80 points) was obtained by 

combining the back and forth normalized average half-cycles. The first and second derivatives 

were computed from the normalized average cycle, and then rescaled to the interval [-1, +1].  

The dynamical properties of the oscillations were assessed by means of W-method (Beek & 

Beek, 1988; Delignières et al., 1999; Mottet & Bootsma, 1999; Nourrit et al., 2003; 
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Deschamps et al., 2004). This procedure aims at deriving from experimental data a second-

order differential equation of the kind: 

 mẍ + g(x) + f(x,ẋ)ẋ = 0, (1) 

where x represents position. In this equation g(x) is the stiffness function and f(x,ẋ)ẋ the 

damping function. Beek and Beek (1988) showed that the stiffness and the damping functions 

were necessarily composed of terms x
p
ẋ 

q
 (p, q: 0, 1, 2, 3…), and that a limited catalogue of 

such terms represented viable transformations of the harmonic oscillator (ẍ + x = 0). More 

precisely, they showed that the stiffness function should be composed of terms from the 

Duffing series (x
1
, x

3
, x

5
,...), and the damping function of terms from the van der Pol series 

(x
0
ẋ, x

2
ẋ, x

4
ẋ,...) and/or from the Rayleigh series (ẋ

1
, ẋ

3
, ẋ

5
,...), separately or in combination.  

We used the simple graphical methods proposed by Beek & Beek (1988) to settle on the 

terms to include in the model. In a first step, the examination of Hooke‟s portraits 

(acceleration vs position) allowed a rather direct identification of the terms composing the 

stiffness function. In order to determine the non-linear damping terms, The authors proposed 

to perform a regression of - x  against all previously identified linear and non-linear stiffness 

terms, and linear damping (ẋ). The residual (RES) of this regression is assumed to reflect the 

contribution of non-linear damping terms on behavior. Then it is possible to seek for a van der 

Pol behavior by plotting RES/ẋ as a function of x (in this case a parabola is expected, 

revealing the presence of a x²ẋ term in the residuals), and for a Rayleigh behavior by plotting 

RES as a function of ẋ (expecting an N shape, evidencing the presence of a ẋ
3
 term in the 

residuals). This procedure allows providing a first minimal model. On that basis, the 

respective weights of each term can then be determined by a stepwise multiple regression 

procedure onto - x (see Nourrit et al., 2003 for details). 



12 

 
  

Nourrit et al. (2003) showed that the initial behavior adopted by beginners participants on 

the ski simulator could be modeled by a strongly nonlinear stiffness function including cubic 

and quintic Duffing terms, and a Rayleigh damping function:  

ẍ + c
10

x + c
30

x
3
 + c

50
x

5
 + c

01ẋ + c
03ẋ

3
 = 0 (2) 

Note that according to the W-method notation, c
ij
 denote the coefficient associated with the 

term x
i
ẋ 

j
.  

In contrast, the skilled behavior, stabilized by a large amount of practice (39 sessions of ten 

1-min trials), included a van der Pol damping function with a nonlinear damping term x
²
ẋ 

ẍ + c
10

x + c
30

x
3
 + c

50
x

5
 + c

01ẋ + c
21

 x
2
ẋ = 0  (3) 

Note that the viability of these models imposes specific sign constraints, which represent a 

final test for their relevancy: in all cases the linear damping term c
01 

must be negative and the 

nonlinear damping term (c
03 

or c21) positive, for the limit cycle dynamics sustainability.  

3. Results 

For all variables we presented the values obtained for each participant and each trial. For a 

comparison with the previous experiment (Nourrit et al., 2003), we also reported the 

corresponding values for the 21th, 100
th

, and 395
th

 trials of the practice sessions. At this point, 

it is important to remind that we did not consider the estimates obtained during the two first 

practice sessions (trials 1 to 20), characterized by a particularly erratic and irregular behavior. 

Thus the 21
th 

trial was considered as a relevant example of the stabilization of the novice 

behavior during the initial learning stage. The 100
th

 trial was selected because it corresponded 

for all participants to the transition stage. Finally, the 385
th

 trial was typical of final 

stabilization of the skilled behavior observed in the last practice session.  

3.1. Amplitude 

Insert Figure 2 
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During the first trial of the retention test, participants reached a mean amplitude of 25.22 cm 

(SD = 6.41), revealing a decrement of 32.0 % with respect of the amplitudes reached during 

the last trials of the initial experiment. Amplitude tended to increase slightly over the 10 trials, 

up to a mean value of 30.87 cm (SD = 2.82) for the last trial. As explained in the introduction, 

amplitude increased very early during the initial experiment, and the mean amplitude during 

the 21th trial was already about 30.09 cm (SD = 6.07). As a reference, during the very first 

trial participants reached a mean amplitude of 9.92 cm (SD = 8.83).  

3.2. Frequency 

Insert Figure 3 

During the first trial of the retention test, mean frequency was of 1.14 Hz (SD = 0.16), 

corresponding to a decrease of 20.4 % with respect of the mean frequency observed at the end 

of the previous experiment. Mean frequency increased slightly over the ten trials, up to 1.26 

Hz (SD = 0.14) during the last trial. At the end of the retention test, mean frequency remained 

below that observed during the transition stage of the initial experiment (e.g., 100
th

 trial, 

1.29 Hz, SD = 0.15).  

3.3. Limit cycle modeling 

We used the graphical tools proposed by Beek & Beek (1988) for determining the terms to 

include in a minimal model accounting for our data. We first analyzed the Hooke‟s portraits 

(acceleration vs position), in order to settle on the terms to include in the stiffness function. 

We present in Figure 4 an illustrative example of the individual Hooke‟s portraits. With 

respect to the theoretical harmonic trend (ẍ = x), one can observe a typical slowing down 

when x is moved from the resting position, and a restoration of stiffness when approaching the 

reversal points of the movement. The first phenomenon can be accounted for by a negative 

cubic Duffing term -x
3
( Mottet & Botsma, 1999), and the second by a positive quintic term x

5
, 

(Nourrit et al., 2003).  
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Insert Figure 4 

In accordance with our hypotheses, we sought for the presence of van der Pol damping in our 

series. Applying the method proposed by Beek & Beek (1988), we computed for each trial the 

residuals (RES) of the regression of the identified stiffness terms (x, x
3
, and x

5
), and the linear 

damping term (ẋ) onto -ẍ. Then we plotted RES/ẋ against x, seeking for a parabola revealing 

the presence of a two-order van der Pol term (x
2
ẋ) in the damping function. We present in 

Figure 5 example plots (Participant 2, trials 1, 5 and 10): in all cases we observed the 

expected U-shape. We also plotted RES against ẋ for checking for the presence of a Rayleigh 

behavior, but we never found any trace of the expected N-shape.  

Insert Figure 5 

Thus we performed a multiple regression for estimating the coefficients of the resulting 

Duffing-van der Pol model (Eq. 3). As an example, we present in Table 1 the estimates 

obtained for each participant, for the sixth trial. In all cases the models satisfied signs 

requirements, c01 being negative and c21 positive, with r
2 

ranging from 0.89 to 0.97. Similar 

results were obtained for all trials. We present in Figure 6 the c01 coefficients (linear 

damping), which were negative in all cases. These results clearly showed that all participants 

adopted, during the 10 trials of the retention test, a damping behavior similar to that observed 

at the end of the initial experiment.  

Insert Table 1 

3.4. Evolution of the stiffness function 

We present in Figure 6 the evolution of the nonlinear stiffness coefficient c30. We limited 

our analyses to c30 because the coefficients of the stiffness function tend to strongly covary in 

absolute values, c10 and c50 being positive and c30 negative. The linearization of the stiffness 

function is revealed by c30 values close to zero.  
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During the first trials of the initial experiment, the nonlinear stiffness coefficient c30 was 

very low indicating strong nonlinearities in the stiffness function. These nonlinearities tended 

to disappear from the beginning of the transition stage, as revealed by the values reported for 

the 100
th

 and the 385
th

 trials. With respect to the values observed at the end of the practice 

sessions, which were centered around zero, the nonlinear stiffness coefficient c30 was mainly 

negative during this current retention test, indicating a resurgence of nonlinearities in the 

stiffness function. During the 2
nd

 trial, the mean value was -1.55 (SD = 1.15), c30 then tended 

to progressively increase over trials, and finally the mean value was -0.29 (SD = 0.81) at the 

end of the retention test, evidencing a progressive linearization of the stiffness function over 

the 10 trials. 

Insert Figure 6 

3.5. Evolution of the damping function 

In order to account for the dynamics of learning through a unique metrics, despite the 

presence of qualitative transition from a Rayleigh to a van der Pol damping behavior, Nourrit 

et al. (2003) proposed to force the Duffing + Rayleigh model (Eq. 2) to all series. They 

showed that the obtained linear damping coefficient c01(Rayleigh) took on negative values when 

the limit cycle was supported by a Rayleigh damping behavior, and conversely positive values 

when the limit cycle was supported by a van der Pol damping function. In this second case, 

the forced linear damping coefficient c01(Rayleigh) was roughly proportional, in absolute value, 

to the c01 coefficient computed with the Duffing + van der Pol model (Eq. 3). As such, the 

transition from the novice to the skilled behavior can be described as an evolution of 

c01(Rayleigh) from negative to positive values (Nourrit et al., 2003). In order to compare the 

results of this retention test with those of the initial experiment, we computed this forced 

c01(Rayleigh) for each trial (Figure 7).  
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As expected, the c01(Rayleigh) presented positive values, for all participants and all retention 

trials. This result clearly indicates that all participants, right from the first trial, adopted the 

van der Pol damping behavior then learned and highly stabilized 10 years ago. Moreover, this 

forced linear damping coefficient c01(Rayleigh) tended to increase over the ten trials, from a 

mean value of 0.52 (SD = 0.40) for the first trial, to a mean value of 1.00 (SD = 0.26) for the 

last trial. These last values are slightly higher than those reported at the end of the previous 

experiment, suggesting the strong stability of the van der Pol damping behavior, despite the 

very long no-practice period.  

Insert Figure 7 

4. Discussion 

The main result of the present experiment is the persistence of the acquired coordination 

mode, ten years after the learning sessions. Ten years ago, the five participants practiced for a 

long time for overcoming their initial behavior on the task, and for adopting and stabilizing 

the skilled behavior characterized by a van der Pol form of damping in the oscillations of the 

ski simulator. Ten years after, all participants spontaneously adopted from the first trial this 

skilled behavior (see figure 6). This behavior is conceived as the signature of “expert” 

(skilled) coordination mode (Nourrit et al., 2003), and its exploitation confirms that motor 

learning is characterized by persistent changes in behavior over time (Newell et al., 2001). 

The continuous motor skill (as oscillations in ski-simulator) is generally conceived more 

persistent than discrete procedural response for example and the relearning after a retention 

interval is more rapid than the previous learning (Schendel et al., 1978). Some general 

principles in long-term retention are known since a long time, but this topic of long-term 

motor retention is few investigate and suggests a few productive ideas (Adams, 1987). 

Interestingly, this persistence of coordination mode is consistent with the conceptions 

developed by the proponents of the dynamical systems approach, considering the acquisition 
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of a new skill as stabilizing a new attractor in the repertoire of the organism (Zanone & Kelso, 

1992; 1997): any transformation in the attractors landscape is “catastrophic” in the sense of 

Thom (1983), and the phase space is modified in an irreversible way. Importantly, the 

C01(Rayleigh) parameter tended to progressively increase along the ten trials of the retention test, 

suggesting a fast enhancement of the stability of the van der Pol damping behavior, just after 

some minutes of practice. So we can confirm that the persistent change arises from stability of 

attractor landscape (Newell et al., 2001; Newell, Mayer-Kress, Hong, & Liu, 2009). 

Concerning amplitude and frequency, in contrast, we observed a clear performance 

decrement, with respect to the values reported at the end of the initial experiment. Amplitude 

decreased by about 18%, and frequency by about 13%. During the ten trials of the retention 

test, a slight increase in amplitude and frequency was observed, on average, but participants 

never reached amplitudes or frequency values similar to those reported at the end of the initial 

experiment. This result is interesting, because a number of previous experiments on long-term 

retention also described a decrement in performance during the first trials, but a fast regain, at 

least when compared with the time it took for reaching, during the initial learning, the skilled 

level of performance. Typically, subjects show a reduction in performance of just 20 % and 

regain rapidly their previous skill after few practice trials (Bell, 1950; Neumann & Ammons, 

1957, Willingham & Dumas, 1997).  

We don‟t observe, in the present experiment, any evidence for a fast reimprovement in 

performance: despite a cumulative practice of ten minutes, an increase in amplitude was 

moderate, especially beyond the fourth trial, and frequency remained stable over the ten trials. 

One have to keep in mind that in contrast with most tasks previously tested for long-term 

retention, the ski-simulator is physically highly demanding (Durand, Geoffroy, Varray & 

Préfaut, 1994; Teulier, Nourrit & Delignières, 2006). Oscillating at large amplitude and high 

frequency requires an important energy expenditure. Ten years ago, four of the participants 
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were student in the Faculty of Sport Sciences of Montpellier, and were obviously in good 

physical condition. Ten years after, they were less physically active, and even if their mean 

weight gain was negligible, their physical capacities were lower than during the initial 

experiment.  

The low oscillation frequencies observed in the present experiment raise an interesting 

question. During the initial experiment, a sudden increase in frequency was observed in all 

participants, from about 1 Hz to 1.4 Hz, and this abrupt change in frequency was concomitant, 

individually, with the beginning of the transition stage, during which participants used the 

novice and skilled coordination modes in alternation. According to Nourrit et al. (2003), 

frequency could be considered a control parameter, favoring beyond a given threshold the 

availability of the skilled coordination mode. Interestingly, during the present experiment 

participants exploited spontaneously the skilled coordination mode, while oscillating at 

frequencies clearly below the threshold that was supposed to favor the availability of the van 

der Pol damping. This showed that the increase in frequency, during learning, was necessary 

for exploring the workspace and discovering the skilled coordination mode. However, once 

learned the skilled coordination mode appears independent on frequency and could be 

exploited even with slow oscillations. In this regard, the question of control parameter 

identification for this skill is raised again. 

The evolution of the stiffness function gave more ambiguous results. We only reported 

results for the cubic Duffing term C30, but these results gave a good image of the nonlinearity 

of stiffness. During the previous experiment, the initial stage was characterized by a strongly 

nonlinear stiffness function. Nourrit et al. (2003) suggested that this nonlinear function , and 

essentially the cubic Duffing term, provided participants with a kind of local dwelling time, 

allowing to manage more easily the reversal points of the oscillations of the platform (for 

similar arguments see Mottet & Bootsma, 1999). The present results showed that, at least 
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during the first trials of the retention test, participants tended to exploit such nonlinearities. 

Most of them, however, recovered from the fifth trial the values reported at the end of the 

initial experiment. These results indicate a loss of behavior stability when the subjects retake 

the practice: behavior is persistent but just instable. This confirms that the observed changes 

exhibit both persistent and transitory properties (Newell et al., 2001) and depend on studied 

time scales. Even if the skilled behaviour is long-lasting, a period of rest makes this behavior 

less stable. 

The main message of the present study is the very different image of retention that provide 

performance and coordination variables. On the basis of the former, one could conclude on a 

very poor retention over time. The latter in contrast revealed the strong persistence of 

acquired coordination modes. The concept of coordination variable is close to that of essential 

variable introduced by Gel‟fand & Tsetlin (1962, see also Vereijken, 1991). Essential 

variables reflect the behavioral structure of coordination modes, in terms of topological 

quality. In contrast, inessential variables (or nonessential variables for Vereijken, 1991) 

inform about scaling changes within a given coordination mode, providing the system with 

flexibility. From this point of view, the essential variable, in the present context, is the nature 

of the dynamical model that provides the best account for the dynamics of the motion of the 

platform, i.e. the Duffing + Rayleigh model (Eq. 2), or the Duffing + van der Pol model (Eq. 

3), considering that these models differs only by the presence of a nonlinear damping term ẋ3 

in the first case, and x
2
ẋ in the second. The coefficient C01(Rayleigh) is a statistical tool that 

allows to distinguish these two qualitatively distinct models by means a similar metrics. Note 

that this coefficient can be considered both an essential and an inessential variable. The 

essential variable is the sign of this coefficient: negative and positive values are associated 

with qualitatively distinct coordination modes, novice and skilled, respectively. The absolute 

value of C01(Rayleigh), is an inessential variable, that gives information about the stability of the 
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coordination mode. As well, the values of the coefficients of stiffness function are inessential 

variables  

According to the definition proposed by Gel‟fand &Tsetlin (1962), performance variables 

appear a neither essential, nor inessential: they just describe the outcomes of behavior, and the 

present results showed that distinct coordination modes could yield similar performance 

levels.  

5. Conclusion 

It seems clear that the choice of relevant variables is essential for providing efficient tests 

for learning and retention. With this regard, performance variables, frequently used in 

learning experiments, represent rather poor indicators. Performance is known to be affected 

by a number of factors, beyond skill level, including motivation, self-confidence, 

expectancies, and physical condition. This experiment suggests that these factors could 

sometimes be dominant in the determination of performance, and completely hide the effects 

of learning. Coordination variables offer a valuable alternative, and the present results show 

that acquired coordination modes persist still for a long time after learning, supporting the 

popular motto: “Once one learns how to ride a bicycle, one never forgets how to do so”.   
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Figure Captions 

 

Figure 1: The ski simulator 

Figure 2: Evolution of the individual mean amplitude, for three selected trials of the 2000‟s 

experiment, and for the 10 trials of the retention test.   

Figure 3: Evolution of the individual mean frequency, for three selected trials of the 2000‟s 

experiment, and for the 10 trials of the retention test.  

Figure 4: Representative Hooke‟s portrait (acceleration vs position, participant 2, trial 10) 

Figure 5: Representative plots of RES/ ẋ vs x (participant 2, left panel: trial 1, middle panel: 

trial 5, right panel: trial 10) 

Table 1: Estimates of the coefficients of the Duffing + van der Pol model (ẍ + c
10

x + c
30

x
3
 + 

c
50

x
5
 + c

01ẋ + c
21

 x
2
ẋ = 0), for the sixth trial.  

Figure 6: c10 coefficients (linear damping), for each participant and each trial of the retention 

test.  

Figure 7: Evolution of the individual nonlinear stiffness coefficient c30, for three selected 

trials of the 2000‟s experiment, and for the 10 trials of the retention test.   

Figure 8: Evolution of the individual nonlinear damping coefficient C01(Rayleigh), for three 

selected trials of the 2000‟s experiment, and for the 10 trials of the current retention test. 
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Figure 2  
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Figure 3 
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Figure 5 
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 C10 C30 C50 C01 C21 r
2
 

Participant 1 0.96 -1.13 1.14 -0.23 0.32 0.89 

Participant 2 1.00 -0.70 0.65 -0.30 0.43 0.94 

Participant 3 1.19 -0.87 0.67 -0.17 0.24 0.94 

Participant 4 1.49 -2.50 1.96 -0.19 0.28 0.83 

Participant 5 0.58 -0.03 0.42 -0.27 0.37 0.97 

 

Table 1 
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Figure 6  
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Figure 7 
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Figure 8 
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