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Abstract—Printed Circuit Board (PCB) traces play a role in the
immunity of electronic products. Contrary to Integrated Circuits
(ICs), the layout of PCB traces can be changed rather late in a
product’s design. Therefore, it is interesting to equip the PCB
designer with simple tools that predict the immunity of his PCB
traces.

In this article, we compare two simulations of field-to-long line
coupling based on Taylor’s model. Firstly, the line is meshed into
electrically short Taylor cells and numerically simulated using
Kron’s method. Secondly, we use one modified Taylor cell, which
does not need meshing and is a closed-form, analytical result.

The two simulations turn out to be equally precise on a straight
microstrip line, the meshed simulation being more flexible, the
simulation using a modified Taylor cell being faster.

Index Terms—PCB, EMC, field-to-line coupling, immunity,
microstrip, Kron, frequency-adaptive meshing, modified Taylor

I. INTRODUCTION

Electromagnetic compatibility (EMC) problems can often

be understood as a three-element chain: agressor-coupling

path-victim [1]. In the case of unshielded, wireless electronics,

the dominant coupling path can consist in the PCB traces.

Therefore, the routing of PCB traces may be decisive for

product compliance.

In contrast to integrated circuits (ICs), PCB layout may be

changed rather easily and in a late design stage. Field-to-line

coupling models could help the PCB designer to predict

and explain product immunity. The prediction helps the

designer to detect problems before fabricating the first

prototype, the explanation helps the designer to do something

about the detected problems. As electromagnetic coupling is

rarely easy to explain, even by humans, we do not believe

in automatic explanation of product immunity. Very fast

automatic prediction, however, would allow the designer to

freely play around with his design and develop intuition for

the coupling mechanisms. Note that this prediction need not

be very precise, as long as it faithfully reveals the influence of

the designable parameters. Therefore, the focus of this article

will be on fast, numerical prediction of field-to-trace coupling.

We will now define a rather simple case study to evaluate the

methods. However, we keep more realistic PCB traces in mind

when concluding on their performance.

We choose a microstrip, i.e. a trace above a ground plane,

because it is still widely used. Moreover, with respect to

coplanar waveguides (CPWs) and striplines, it is good antenna

and therefore prone to create immunity problems.

Operational and harmonic frequencies of electronics keep

rising, so the wavelengths keep falling. For example, the

Wireless Home Digital Interface (WHDI) uses a 5 GHz carrier,

or a 6 cm wavelength in free space. Back-up radars may use

ultra-wideband signals up to 24 GHz, or down to 1.25 cm.

PCBs still have sizes in that order of magnitude, so we may

expect long-line effects. Therefore, we choose to illuminate a

5 cm trace with a frequency up to 20 GHz.

In practice, traces are never characteristically terminated,

because the terminating ICs and passives have frequency

dependent impedances. Neither are real-world traces uniform,

because of width changes and unmitered bends. However,

we believe that there is already sufficient microwave theory

to incorporate these non-idealities in simulation. Here, we

would like to focus on modelling of field-to-trace coupling.

Therefore, we allowed ourselves to study a uniform 50 Ω

trace that is characteristically terminated. According to typical

technology, the εr = 4.6 substrate is 362 µm thick.

Finally, the most constraining simplification is that of graz-

ing incidence (cf. Figure 1). The vertically polarised plane

wave is not refracted by the air-substrate interface and the

incident wave is simply doubled by the ground plane. The

field strength in the dielectric substrate thus amounts to:

H = 2Hi (1)

E = 2Ei/εr. (2)

For low frequencies, grazing incidence constitutes the worst

case [2]. Also, it models Gigahertz Transverse ElectroMag-

netic cell (GTEM-cell) measurements, which integrate a PCB

in the waveguide wall. Otherwise, this is a serious limitation.

For the numerical calculation, the field generated by a

standard GTEM cell will be entered: 1 V at a 50 Ω septum,

separated by 42 mm from the PCB. Hence, the terminal

voltage in dBV is numerically equal to the S 21 coefficient

that would be measured between GTEM input and trace

terminal.
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Figure 1. Grazing incidence: the incident far-field wave vector ki = !/c0 is
tangential to the substrate.

In section II, we will briefly review existing field-to-trace

coupling models and pick Taylor’s model to continue with. We

will implement this model using frequency-adaptive meshing

and Kron’s method simulation in section III. Alternatively, we

will explain and apply the modified Taylor’s cell in section IV.

Both simulations will be compared, conclusions drawn and

suggestions for future research given in section VI.

II. STATE OF THE ART

Field-to-line coupling is complicated, like almost any real-

life electromagnetic problem. Let us therefore start by review-

ing four common simplifications.

If wavelengths are great with respect to the studied geom-

etry, the quasi-static approximation may be used. The field

then still changes with time, but propagates instantaneously

everywhere. In that case, the illumination field is uniform.

This approximation yields low-frequency asymptotes, useful

for checking our model. However, as we specifically chose an

electrically long line, we will not use this approximation.

In reality, everything interacts bilaterally. Indeed, the field

emitted by an aggressor will couple to a guided wave in the

victim line. However, this guided wave will also affect the

aggressor. This, in turn, will affect the victim again, and so on.

To predict what will happen, knowledge about the aggressor is

needed. Because we suspect that there be only weak coupling

and would like to avoid incorporating knowledge about the

aggressor, we will only consider the unilateral interaction from

field to line.

As long as the cross section of the microstrip transmission

line remains small with respect to the wavelength, there is only

one dominant mode: the differential Transversal ElectroMag-

netic (TEM) mode. Because this assumption only gradually

breaks down at several GHz for modern electronics [3], we

choose to adopt this approximation. This allows us to use

transmission line theory to describe the trace.

Finally, we will suppose traces to be lossless. Consequently,

immunity predictions will be pessimistic with respect to

reality, but only slightly [3].

There are three equivalent, weakly coupled, transmission line-

based field-to-line coupling models [4]: that of Taylor et al.

[5], of Agrawal et al. [6] and of Rachidi [7]. They all model

the coupling of an illuminating field by means of current

and/or voltage sources, distributed along the line. Agrawal and

Rachidi also need sources at both terminals.

All of these models basically represent a uniform trans-

mission line. Consequently, when modeling a piecewise non-

R
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(a) Line geometry: the indices n, t and p indicate vector components normal
to the plane of the wires, transversal to the line and parallel with the wires,
respectively. Rne and Rfe are the near-end and far-end resistive terminations.
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(b) Taylor cell: a current source models the electrostatic force (capacitive
coupling) and a voltage source the electromotive force (emf or inductive
coupling) in each line segment ∆ℓ. c denotes the per-unit-length p.u.l.) capacity
of the line.

Figure 2. Taylor’s field to line coupling model for a bifilar transmission line.

uniform line using Agrawal or Rachidi, sources appear at the

transitions. Using Taylor’s model, on the other hand, only the

distributed sources along the line change value, generally. That

way, it is even possible to model continuously non-uniform

lines. In view of the long-term goal to model non-uniform

lines, we prefer the simplicity of Taylor’s model and will

continue with that model only.

The specialisation of Taylor’s model for a two-wire trans-

mission line in vacuum is shown in Figure 2. In each trans-

mission line slice dℓ, the magnetic field normal to the plane

of the wires Hn induces a voltage and the electric field in the

plane and transversal to the wires Et induces a current.

III. MESHED TAYLOR SIMULATION USING KRON

The most obvious application of Taylor’s model for a non-

uniform incident field, is to mesh (segment) the line in short

enough cells, in order for the field to become approximately

uniform to each cell. The passive transmission line itself must

also be modeled, for example as an rglc telegrapher’s cell.

As we are considering a lossless line, we omit the dissipative

elements r and g. The resulting model of a line for the case

of three cells is depicted in Figure 3.

With increasing frequency, wavelength decreases and gener-

ally, the field becomes less uniform along the line. Therefore,

a large number of cells may be needed to accurately model the

line. In the perspective of a simple tool, we avoid manually

entering this multitude of cells, because it is error-prone and

time-consuming. We chose to analyse this problem in terms

of Gabriel Kron’s formalism [8], because of its promise to

handle complex electromagnetic systems [9].

We will now first describe the basic approach of the problem

in Kron’s formalism. Then, we will describe the practical
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Figure 3. Lossless transmission line meshed in three cells (∆ℓ = 1
3
ℓ). The

passive transmission line is modeled with l and c being the per-unit-length
inductance and capacity, respectively.
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Figure 4. Simplified Kirchhoff branch. The difference of potential v across
the branch and the current i through the branch are defined such, that when
iv is positive, net power is dissipated in the branch (passive sign convention).

implementation, including performance optimisation.

A. Basic Approach

Generally, solving a problem in Kron’s formalism consists

of eight steps: stating the problem, drawing the associated

graph, define the topological base, entering the sources, trans-

forming, solving in mesh space, deducing the differences of

potentials and deducing other required quantities [10].

Let us draw the graph corresponding to the problem of

Figure 3. In this graph, we identify meshes (or loops) and

nodes (or junctions). Meshes consist of branches (or vertices)

that each connect two nodes. We will here use simplified

Kirchhoff branches, which generally consist of an impedance

Z and a voltage source e as defined in Figure 4. The resulting

graph is depicted in Figure 5.

Let i, v and e be column vectors in the branch space,

that is: containing currents and voltages for every branch.

The (arbitrary) branch numbers of Figure 5 define which

vector component represents which voltage and current: we

just defined the topological base. Ohm’s and Kirchoff’s laws

then hold as in v+ e = Zi. In our case, the impedance matrix

1 2 3 4

1

2 4 6

83 5 7

Figure 5. Graph representation of a three-cell transmission line model. Please
verify that there are 4 meshes (dashed loops, numbered), 8 branches (with
arrows, numbered) and 5 nodes (dots, not numbered).

Z only has entries on its main diagonal:

diag(Z) =

[

Rne, j!l∆ℓ,
1

j!c∆ℓ
,

j!l∆ℓ,
1

j!c∆ℓ
, j!l∆ℓ,

1

j!c∆ℓ
, Rfe

]

.

(3)

To incorporate the current sources in the simplified Kirch-

hoff branch, we need to use their Thévenin equivalents Eth.

The source vector e stemming from the illumination electro-

magnetic field thus becomes:

e =

























0 0

Hn(0) 0

0 Et(0)
Hn(∆ℓ) 0

0 Et(∆ℓ)
Hn(2∆ℓ) 0

0 Et(2∆ℓ)
0 0

























[

j!µ0 h∆ℓ

h

]

. (4)

To solve for the mesh currents, we need to transform our

equations to another topological base: that of the mesh space.

At the same time, we will connect the branches together. This

is done by means of the connectivity matrix L, which links the

branches (rows) with the meshes (columns). In our example,

L =

























1 0 0 0

1 0 0 0

1 −1 0 0

0 1 0 0

0 1 −1 0

0 0 1 0

0 0 1 −1

0 0 0 1

























. (5)

Note that a minus signs signifies a branch going against the

mesh direction. We will denote tensors in mesh space with a

hat, e.g.:

ê = L−1e i = Lı̂ v̂ = L−1v ≡ 0,

where the last vector (voltage around every mesh) is zero by

Kirchhoff’s mesh rule. The inverse of L can be found by its

transpose, because L always is a Hadamard matrix. We can

transform Kirchoff’s laws to mesh space as follows:

✟
✟✟L−1v+L−1e = L−1Zi = L−1ZL ı̂ (6)

ê = Ẑ ı̂. (7)

Notice that by transforming to the lower-dimensional mesh

space, we connected the branches together.

To solve the system, we use the pseudoinverse (denoted +):

ı̂= Ẑ+ê, (8)

because only the sources e are given.

We are interested in the near-end and far-end voltages,

which can now be found by means of the terminal impedances:

Vne =−ı̂1Rne (9)

Vfe = ı̂8Rfe. (10)



As we are interested in the frequency-domain response, we

need to perform this calculation for each frequency sample.

B. Implementation

In view of a simple tool, we want the user to describe the

essential: the geometry of the trace and the illumination. The

meshing is a repetitive task, which is a tedious and error-prone

task if performed by humans. Therefore, we chose to automate

it.

In order for the simulator to be easily incorporated in a PCB

design tool, we preferred a scripting language that can provide

an object-oriented (OO) application programming interface

(API). In order to perform reproducible computational

research [11], we preferred a free-to-use language. Therefore,

we implemented the simulator in Python and published the

code that produces the figures of this article on Github [12].

In order to mesh the transmission line, we need to decide upon

the number of cells to use. For the field to be approximately

uniform to each cell, we decide to take 50 cells per illumina-

tion wavelength for the highest frequency of interest. In our

case study (5 cm until 20 GHz), this means 167 cells. With

301 frequency points from 20 MHz to 20 GHz, the calculation

takes 24.2 s on an Intel 2.53 GHz Core 2 Duo processor.

To numerically solve (8), we use the Moore-Penrose pseu-

doinverse implementation of NumPy, which uses singular

value decomposition (SVD). About half of the total execution

time is spent on this call. This and other matrix manipulations

depend heavily on the matrix size.

We recognise that for low-frequencies, we do not need a

great number of cells. Therefore, we decide to re-mesh the

transmission line for each frequency with a certain number

of cells per wavelength. For example, with 50 cells per

wavelength, the simulation now only takes 1.8 s on the same

platform.

How many cells per wavelength does one need? We used

the first simulation (50 cells per wavelength, non-adaptive)

as reference, and calculate the error of subsequent adaptive

simulations while varying the number of cells per wavelength.

Then, we calculated the log-frequency weighted average error.

Finally, we calculated the log-frequency average absolute

deviation from this average error. Both error measures are

shown in Figure 6. In our case study, a 20 cells per wavelength

resolution yields an acceptable error (< 1dB).

The simulation was run with 20 cells per wavelength

adaptive meshing, which took 0.45 s. The result is displayed

in Figure 9.

IV. MODIFIED TAYLOR CELL

Alternatively, we can elaborate Taylor’s model analytically

for the case of a grazing incident wave [3]. The result turns

out to be a slightly modified Taylor cell, without the need

for meshing. In the present article, the model is presented

in an intuitive manner (similar to [13]); for a more rigorous

underpinning of the model, please refer to [3].
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Figure 6. Sensibility of the adaptively-meshed simulation result for number
of cells per wavelength.

We start with the low-frequency case, where a single Taylor

cell suffices. Then we will try to imagine what happens

with rising frequency. Finally, we will postulate an analytical

modification on the low-frequency case to take into account

high-frequency effects.

A. Low-frequency Case

Let us consider the low-frequency case using the quasi-static

approximation. Because the illumination wavelength is long

with respect to the line length, the field can be considered

uniform along the line, and we can lump the line as a single

cell (∆ℓ= ℓ). Because the wavelength in the transmission line

is long with respect to the line length, we can ignore the

phase shift introduced by the transmission line. In our case

of characteristic loads (Rne = Rfe = Zc) we can find the either-

end terminal voltages by inspecting Figure 2b [1]:

VLF =−
1

2
j! cEtZc hℓ ∓

1

2
j! µ0Hn hℓ, (11)

where c is the per-unit-length (p.u.l.) capacitance of the line.

Unless otherwise noted, we simultaneously present the near-

end and far-end results; ∓ means minus for the near end and

plus for the far end.

B. Thought experiment

Let us perform a thought experiment on the lossless, char-

acteristically terminated line of Figure 2a, illuminated from

the near-end side (kp = +‖k‖). The illuminating field has a

normalised amplitude i which is just a phase lag:

i(z) = e−jkpz; kp =
!

c0
, (12)

where z is the coordinate along the line. Let us look at the

far-end induced voltage, caused by a forward traveling wave

on the line: the forward eigenwave. Its normalised amplitude

w also is a phase lag:

w(z) = e−jβz; β=
!

v
, (13)

where v is the phase speed of a wave on the transmission line.

We start at an illumination frequency where the error of a

single Taylor cell is negligible, and let the frequency increase

little by little. Using Figure 7, we try to imagine what happens.
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Figure 7. Phase along the transmission line of the line’s eigenwave ∠w (solid
line) and illuminating plane wave ∠i (dashed line), for increasing frequency.

For low frequencies (Figure 7a), the incident field remains

the same along the line, so modelling the line as one Taylor

cell is legitimate.

As the frequency increases, the wavelength decreases (Fig-

ure 7b). When the wavelength is in the order of the line length,

we see a propagating wave, both in free space and in the

transmission line. Yet, this does not immediately invalidate

the model. Indeed, the field is no longer uniform along the

line, but the forward eigenwave of the line and the free space

plane wave travel in the same direction. That means that, for

every line slice, the free space wave and the eigenwave have

approximately the same phase. Therefore, it is still reasonable

to model the line as one cell.

Let the frequency increase further (Figure 7c). Now the

phase difference between the forward eigenwave and the inci-

dent plane wave becomes significant; in the example shown,

the phase difference goes from 0 at z = 0 to π at z = ℓ. On

average, both waves are still cross-correlated, but less so than

for low frequencies.

In an extreme case (Figure 7d), the phase difference goes

all the way from 0 at z = 0 to 2π at z = ℓ. On average, the

two waves are no longer cross-correlated and we expect no

coupling.

C. Modification

So, the low frequency coupling (as predicted by a single

Taylor cell) must be corrected by a measure for the length-

average cross-correlation between the line’s eigenwave and

the incident wave. This measure should be unity for low

frequencies, as not to modify the low frequency coupling.

This measure should amount to zero when the phase difference

along the line goes all the way from 0 to 2π. Let us call this

unitless measure K.

The cross-correlation of the incident field and the line’s

eigenwave amplitudes is given by the complex conjugated
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Figure 8. Modified Taylor cell, taking into account long-line effects. Note
that K must be selected to predict the coupling to either the forward- or the
backward travelling eigenwave.

product iw∗. K is then found by averaging along the line [3]:

K =
1

ℓ

∫ ℓ

0
i(z) ·w∗(z) dz =

1

j(kp ∓β)ℓ

(

1− ej(kp∓β)ℓ
)

. (14)

To calculate the near-end induced voltage, the backward trav-

elling eigenwave w = e+jβz was used. The resulting, modified

Taylor cell is depicted in Figure 8.

This closed-form analytical solution was evaluated using a

Python script [12] in 0.7 ms.

V. RESULTS

The numerical results of both simulations are compared in

Figure 9. The meshed results differ by −0.4 dB on average

from the modified Taylor cell, with an average absolute

deviation of 1.0 dB from this error. The two can be made to

approach slightly, by more cells in meshed simulation, at the

expense of greater execution time (cf. Table I).
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Figure 9. Simulation of the coupling from a GTEM cell input to the
far end of a 5 cm microstrip trace. On the one hand the modified Taylor
cell: the analytical solution of Figure 8 and (14). On the other hand a
meshed Taylor cell, solved using Kron: the transmission line was meshed
adaptively in 20 cells per free-space-wavelength (the 50- and 100-cell curves
are indistinguishable).



Table I
CORRELATION OF MESHED AND MODIFIED TAYLOR CELL SIMULATIONS

#Cells/
wave-
length

Adaptive Meshed
Execution
Time

Average
Meshed –
Modified

Deviation
Meshed –
Modified

20 Yes 0.5 s −0.4 dB 1.0 dB

50 Yes 1.8 s −0.4 dB 0.7 dB

100 Yes 9.9 s −0.3 dB 0.6 dB

100 No 91.1 s −0.3 dB 0.7 dB

VI. CONCLUSIONS AND RECOMMENDATIONS

This paper presented two simulations of the coupling of a

grazing-incident, vertically polarized plane wave to a charac-

teristically terminated microstrip PCB trace. Both simulations

are based on Taylor’s model, which uses distributed voltage

and current sources along the line. The first simulation au-

tomatically meshes the line in 20 cells per wavelength and

solves the resulting circuit using Kron’s formalism. The second

simulation uses one modified Taylor cell, that does not need

to be meshed to predict long-line effects.

The first simulation executes in 0.5 s on an 2.53 GHz

Intel Core 2 Duo processor. Potentially, real world non-

idealities, like non-characteristic, frequency-dependent termi-

nation impedances and excess capacitances along the line,

could easily be added to the circuit. The second method

executes in 0.7 ms on the same platform. The difference

between the first and the second method amounts −0.4 dB

on average, which can be slightly improved by increasing the

number of cells.

To sum up: both simulations yield the same results, while

a meshed Taylor cell is more flexible and a modified Taylor’s

cell is faster.

Future work on both methods seems interesting. As for the

meshed Taylor cell: originally, we would have liked to use

Branin’s cells to represent the transmission line. However, it

seemed that an otherwise uniform transmission line cannot be

meshed with impunity into Branin’s cells. Apparently, a cut

in the model must correspond to some non-uniformity in the

modeled line. This suggestion led Casagrande and Maurice to

discover the modified Branin cell.

We here elaborated the matrices and vectors for our particu-

lar problem. Translating a circuit to a representation in Kron’s

formalism is a recurring and error-prone task that could be

automated. One could imagine an open-source library that al-

lows connecting circuit elements together in an object-oriented

fashion. Using open libraries for symbolic calculation like

sympy, symbolic simulation results may be given to the user.

Apart from standard elements like resistances and capacities,

there may also be circuit elements that are adaptively meshed

‘under the hood’ (hidden for the user).

As for the modified Taylor’s cell: there is first some analyti-

cal work to be done, to take into account non-grazing incidence

angles. Worst-case analysis must probably be employed to

keep the solution closed-form. Moreover, it should be joined

to existing microwave theory, to allow for arbitrary terminal

impedances and trace discontinuities.

The speed of the closed-form calculation opens up practical

possibilities. For example, the angle of incidence could be

swept to produce an antenna diagram within a second. A

designer could click on a PCB trace or net and almost

immediately see its associated antenna diagram, instead of

performing this simulation in an external full-wave solver.

By reciprocity, the far field emissions can be calculated too,

if the signal levels are known by the PCB design tool.
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B. Nauwelaers, “Comparison of field-to-line coupling models: Coupled
transmission lines model versus single-cell corrected Taylor model,”
in Electromagnetic Compatibility (EMC EUROPE), 2013 International

Symposium on, sep 2013, pp. 276–281.

http://hal.archives-ouvertes.fr/hal-00166215
http://olivier.maurice.pagesperso-orange.fr/topologieAppliquee/ExTAN_for_Students_bat.pdf
http://olivier.maurice.pagesperso-orange.fr/topologieAppliquee/ExTAN_for_Students_bat.pdf
https://github.com/eseo-emc/field2line

