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Abstract
A protein domain (Toll and Interleukin-1 receptor [TIR]-like) with homology to animal TIRs mediates immune signaling in
prokaryotes and eukaryotes. Here, we present an overview of TIR evolution and the molecular versatility of TIR domains in
different protein architectures for host protection against microbial attack. Plant TIR-based signaling emerges as being cen-
tral to the potentiation and effectiveness of host defenses triggered by intracellular and cell-surface immune receptors.
Equally relevant for plant fitness are mechanisms that limit potent TIR signaling in healthy tissues but maintain prepared-
ness for infection. We propose that seed plants evolved a specialized protein module to selectively translate TIR enzymatic
activities to defense outputs, overlaying a more general function of TIRs.

Introduction
Eukaryotes and prokaryotes have evolved very different im-
mune systems to transmit the detection of invaders into ef-
fective defense responses. Nevertheless, the Toll and
interleukin-1 receptor-like (TIR) protein domain of �150
amino acids is a shared element of host immunity and cell
death programs across kingdoms. The broad taxonomic
span and functional significance of TIR sequence homology
were recognized at the beginning of the 1990s with the
cloning of Drosophila melanogaster Toll and tobacco
(Nicotiana tabacum) N receptors and in comparative studies
with the mouse (Mus musculus) Interleukin-1L receptor
(Sims et al., 1988; Whitham et al., 1994; Lemaitre et al.,
1996). TIR domains often exist as fusions with sensor
domains that recognize molecules produced by pathogens

or the host in response to infection. These molecules in-
clude lipopolysaccharides and other pathogen-associated
molecular patterns (PAMPs), host-derived interleukin-1 (IL-
1) and danger molecules, or variable virulence factors (effec-
tor proteins) delivered by pathogens. Most characterized
plant TIR-containing proteins are receptors for pathogen
effectors (O’Neill and Bowie, 2007; Kawasaki and Kawai,
2014; Morehouse et al., 2020; Tamborski and Krasileva,
2020). Analogous to PAMP-triggered inflammatory responses
activated by animal Toll-like receptors, pathogen effector
recognition drives plant cells into the transcriptional mobili-
zation of defense pathways, resulting in disease resistance
and an alerted state of neighboring cells to subsequent at-
tack (Cui et al., 2015; Betsuyaku et al., 2018).

We will attempt to put together an A to Z (still fragmen-
tary) picture of how plants activate and regulate TIR
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signaling activity and translate it into transcriptional reprog-
ramming and defense. Because of the remarkable synergy
between analyses of TIRs from different groups of organisms,
we show the extent and specifics of TIR distribution pat-
terns across the tree of life and bring in examples of non-
plant TIR proteins. We further incorporate evolutionary
insights that collectively show the extent of molecular inno-
vations in plant TIR signaling and suggest sub-
functionalization of TIRs in plants. We conclude that TIR en-
zymology in the context of TIR evolution and diversity in
plants will be crucial to our understanding of TIRs as regula-
tors of plant resilience to biotic and abiotic stress.

TIR is a versatile protein domain in
prokaryotes and eukaryotes

TIR domain homology is found in many kingdoms
of life
TIR domains (TIRs) are versatile modules that link up with
other protein domains in order to transmit signal informa-
tion. In Arabidopsis thaliana (Arabidopsis) alone, TIRs are
found in 53 distinct domain architectures (Van de Weyer
et al., 2019). However, three principal TIR domain groups
are evident across kingdoms: (1) short sequences primarily
composed of one or more TIRs, (2) TIRs fused to a repeat
or other sensor domain, and (3) TIRs connected to a
nucleotide-binding domain (NBD) and C-terminal repeats
(Figure 1A).

The first TIR domain protein architecture is present in
prokaryotes, oomycetes, plants, and animals. It includes TIR-
only proteins and TIR proteins with short additional
domains, such as transmembrane and protein–protein inter-
action regions. Within this group are the well-characterized
vertebrate adaptor proteins Myeloid differentiation primary
response 88 (Myd88) and MyD88 adaptor-like (Mal; O’Neill
and Bowie, 2007), a set of conserved angiosperm TIR-only
proteins, and Arabidopsis TIR-only RECOGNITION of
HopBA1 (RBA1; Meyers et al., 2002; Nishimura et al., 2017).
The TIR-only or TIR + short domain is the most common ar-
chitecture in plants (Meyers et al., 2002; Johanndrees et al.,
2021).

The second protein architecture has TIRs fused to the
stimulator of interferon genes (STINGs) domain (Morehouse
et al., 2020) or leucine-rich repeat (LRR), immunoglobulin
(Ig), and ankyrin repeat regions (Figure 1A). Archetypical
representatives of group II TIR proteins are animal LRR-
containing Toll-like receptors (TLRs), which detect PAMPs
(O’Neill and Bowie, 2007; Kawasaki and Kawai, 2014). Some
analyzed oomycetes share uncharacterized ankyrin repeat-
TIR proteins that would also fall into this group.

The third TIR protein architecture, found in plants and
bacteria, has TIRs attached N-terminally to NBD and LRR,
WD40, or tetratricopeptide repeat (TPR) domains
(Figure 1A; Sarris et al., 2016; Johanndrees et al., 2021). Plant
proteins from this group with the central Apaf1/R/CED4-like
NBD (TIR-NBARC-LRR, or TNLs) act as immune receptors
that bind pathogen effectors directly or detect their

manipulation of host physiology during infection (Monteiro
and Nishimura, 2018; Tamborski and Krasileva, 2020).
Truncated TIR-NBARCs are common in plants as well
(Meyers et al., 2002; Nandety et al., 2013; Johanndrees et al.,
2021). Interestingly, an N-terminal HET domain of fungal
proteins with central NBD and C-terminal TPR or WD40
repeats involved in incompatibility shares remote similarity
to TIRs, including conserved functionally important gluta-
mate (Dyrka et al., 2014; see below; Figure 1A). The broad
taxonomic distribution of TIRs and their integration into di-
verse protein domain architectures underscores the impor-
tance of this domain across organisms.

Similar patterns of TIR evolution in plants and
animals
Two contrasting trends in TIR evolution are evident in both
plants and animals. One involves high levels of TIR sequence
and copy number variation. Arabidopsis TIR regions gener-
ally show signatures of diversifying selection (Chae et al.,
2014; Van de Weyer et al., 2019), which is consistent with
engagement of some Arabidopsis TIRs in the detection of
variable pathogen effectors (Nishimura et al., 2017; Guo
et al., 2020). Intramolecular interaction of an N-terminal TIR
with a C-terminal effector-sensing domain in Arabidopsis
TNL receptor RESISTANT TO RALSTONIA SOLANACEARUM
1 (RRS1) is crucial for receptor activation by specific effec-
tors in response to bacterial attack (Guo et al., 2020). In the
bacterial Thoeris antiphage system, TIRs also likely contrib-
ute to the recognition specificity (Ofir et al., 2021). Across
plants and animals, genes encoding TIR-containing proteins
show high copy number variations among species. TLR
numbers can be high in invertebrates but are low in mam-
mals (Buckley and Rast, 2012; Tassia et al., 2017). Similarly,
multiple groups of dicots have expanded TNL repertoires
(http://compbio.nju.edu.cn/app/ANNA/). However, plants in
the order Caryophyllales have a reduced TNL set, magnoliids
encode zero to few TNLs, and monocots together with mul-
tiple aquatic flowering plant species have lost TNLs alto-
gether (Shao et al., 2016; Monteiro and Nishimura, 2018;
Lapin et al., 2019; Baggs et al., 2020; Tamborski and
Krasileva, 2020; Liu et al., 2021; Wu et al., 2021a; Figure 1B).

Certain TIR groups follow a different trend of sequence
evolution in which they exhibit a high degree of conserva-
tion and retention across species. For example, TIRs from
Myd88/Mal and the regulator of neuronal cell death Sterile
Alpha and TIR Motif Containing 1 (SARM1) have main-
tained sequence identity and low copy number from insects
to humans for over �800 million years (MY) (http://www.ti-
metree.org/; O’Neill and Bowie, 2007; Kumar et al., 2017;
Toshchakov and Neuwald, 2020). Land plants possess con-
served TIRs with a broad taxonomic distribution as well. As
a case point, TIR-NBARC-TPR (TNP) homologs (also known
as XTNX) are present in multiple land plants from bryo-
phytes to angiosperms, indicating they have been conserved
for over �500 MY (Meyers et al., 2002; Nandety et al., 2013;
Zhang et al., 2017b; Johanndrees et al., 2021; http://www.
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timetree.org/; Kumar et al., 2017, also see the GitHub reposi-
tory associated with this review: https://github.com/
rittersporn/Lapin-etal_PlantCell-review_2022). In some TNP-
like proteins, the TPR domain is not detected (Johanndrees
et al., 2021).

Another conserved group of TIR-only proteins is present
in numerous monocot and dicot plants (Meyers et al., 2002;
Nandety et al., 2013; Johanndrees et al., 2021). In this regard,
monocots have notably retained TNPs and conserved TIR-
only sequences but lost TNLs (Figure 1B; Meyers et al., 2002;
Nandety et al., 2013; Shao et al., 2016; Zhang et al., 2017b;
Johanndrees et al., 2021; Liu et al., 2021). The in vivo func-
tions of conserved plant TIR-containing proteins are so far
unknown. In animals, conserved TIR proteins do not sense
pathogen-derived molecules or cytokines directly. Instead,
human SARM1 cell death-promoting activity is regulated by

small endogenous metabolites that register cellular meta-
bolic status (Figley et al., 2021). Myd88 and Mal act as intra-
cellular adaptors in signal transduction from Toll-like and
Interleukin-1 receptors activated outside animal host cells
(O’Neill and Bowie, 2007).

Analyses of the amino acid sequence patterns of TIRs
revealed 430 subtypes across plants, animals, and prokar-
yotes, coinciding with functionally defined groups, for exam-
ple, Myd88 and TLR TIRs (Toshchakov and Neuwald, 2020).
This highlights the usefulness of grouping TIRs based on
their sequence similarity to predict functional types. Two
conserved plant TIR subtypes corresponding to TIRs in
TNPs and TIR-only proteins were detected by examining se-
quence similarity and performing phylogenetic analyses, sug-
gesting a degree of sub-functionalization in plant TIRs as
well (Meyers et al., 2002; Nandety et al., 2013; Zhang et al.,
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Figure 1 The TIR domain is shared by prokaryotes and eukaryotes. A, Selection of predominant domain architectures in predicted TIR-containing
proteins from the indicated taxonomic groups (EBI HMMER, Ensembl genomes with bacteria and archaea grouped together, release 104).
Abbreviations of domain names: Death, protein–protein interaction domain originally found in cell death-promoting receptors of tumor necrosis
factors (PF00531); SAM, sterile alpha motif, ank, ankyrin repeats; 1883, domain of unknown function DUF1883. Fungi have a TIR-like HET domain
in protein architectures with C-terminal WD40 or TPR repeats and a central NBD. B, Dicot and monocot plants differ in TIR protein repertoires; a
TNL (TIR-NBARC-LRR) architecture is absent from monocots, many magnoliids, and some groups of dicots. C, Structural alignment of TIRs from
RPP1 (PDB:7crc, chain C), Roq1 (7jlx, B), RUN1 (6o0w), RPV1 (5ku7, A), RPS4 (4c6t, B), L6 (3ozi, A), SNC1 (5tec, A), SARM1 (6o0q, A), Myd88
(7ber), and Mal (2ndh). Plant and animal TIRs are in shades of red and blue, respectively. Structural elements (a-helices and the BB-loop between
b-strand B and a-helix B) are indicated with letters according to nomenclature. Plant TIRs carry an extended aD helical region. D, Conserved TIR
amino acids (yellow spheres) mapped onto the RPP1 TIR tetramer (PDB:7crc, red cartoon). In TNL RPP1, the AE interface is formed by the aA and
aE surfaces of individual TIRs, and the BE interface involves the BB-loop of one TIR and the surface between the aD and aE of another. TIRs can
also use a DE interface formed by aD and aE surfaces and both TIRs. Conserved positions in TIRs map mainly to the domain core and to surfaces
around the catalytic site. Amino acid positions in the hidden Markov model of TIR (PF01582.22) were considered conserved if their information
content was �2 or higher (https://skylign.org/).
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2017b; Toshchakov and Neuwald, 2020; Johanndrees et al.,
2021).

Plant TIRs have an extended A-helical D region
Comparisons of plant, bacterial, and animal TIR structures
revealed that they share a flavodoxin-like A/b-fold in which a
central five-stranded b-sheet is surrounded by five A-helices
(Bayless and Nishimura, 2020; Nimma et al., 2021; Movie 1).
These structural elements are named alphabetically to allow
comparative studies (Figure 1C). The majority of amino acid
positions that are conserved in TIRs form the structural core,
which is probably essential for conformational stability
(Figure 1D). Despite an overall similarity to animal and bacte-
rial TIRs, structurally characterized plant TIRs have a promi-
nent extended A-helical D region (Bernoux et al., 2011;
Figure 1C). Mutations in this extended region compromise
the cell death-inducing activity of the L6 TIR, Arabidopsis
RBA1 and the TNL RESISTANT TO PSEUDOMONAS
SYRINGAE 4 (RPS4), indicating that this molecular innovation
has functional relevance (Bernoux et al., 2011; Sohn et al.,
2014; Yu et al., 2021). The recently released cryogenic elec-
tron microscopy (cryo-EM) structure of TIR from flax (Linum
usitatissimum) TNL L7 suggests that the A-helical D region
contributes to the diversification of TIR enzymatic activities
in plants (Yu et al., 2021; see section below).

Uncovering the roles of TIR signaling in
plants

Genes encoding TIR-containing proteins are tran-
scriptionally upregulated in response to PAMPs
The transcriptional activation of genes encoding TIR-
containing proteins is a conserved feature of immune
responses in flowering plants (Nandety et al., 2013;
Johanndrees et al., 2021; López-Márquez et al., 2021; Tian
et al., 2021). Indeed, in Arabidopsis, these genes are rapidly
induced in response to diverse PAMPs and following the
recognition of the pathogen effectors by NBARC and LRR-
containing receptors (NLRs; Figure 2A; Nandety et al., 2013;
Saile et al., 2020; Bjornson et al., 2021; López-Márquez et al.,
2021; Ngou et al., 2021; Tian et al., 2021; Yuan et al., 2021b).
Even monocots that do not have TNLs display pathogen-
triggered expression of conserved TIR-only genes (Figure 2B;
Nandety et al., 2013; Johanndrees et al., 2021), suggesting
that TIRs play a conserved role in bolstering the plant im-
mune response (Tian et al., 2021).

Plant TIR-domain proteins function as receptors of
pathogen effectors
Many characterized plant TIR-containing proteins function
as receptors for pathogen effectors to initiate effector-
triggered immunity (ETI; Figure 2C). Specific effector recogni-
tion is mediated by the TNL LRRs (Krasileva et al., 2010;
Steinbrenner et al., 2015; Tamborski and Krasileva, 2020),
but additional domains, collectively called integrated
domains (IDs), can assist NLR in direct sensing of effectors
(Kroj et al., 2016; Sarris et al., 2016). IDs resembling WRKY

transcription factors (TFs), zinc finger CCCH TFs, and pro-
tein kinases are widespread among TNLs (Figure 2C, section
labeled (i)). Functionally, the WRKY ID in Arabidopsis TNL
RRS1 enables interception of bacterial effectors as a decoy
for their WRKY TF virulence targets (Le Roux et al., 2015;
Sarris et al., 2015). The Cryo-EM structures of the effector-
activated TNLs RECOGNITION OF PERONOSPORA
PARASITICA 1 (RPP1WsB) and Recognition of XopQ 1 (Roq1)
reveal an additional C-terminal ID with a jelly-roll and IgG
fold (C-JID, PFAM: PF20160), which strengthens LRR-
selective effector binding (Krasileva et al., 2010; Steinbrenner
et al., 2015; Ma et al., 2020; Martin et al., 2020). C-JID
matches the postLRR sequence motifs found in multiple
eudicot TNLs (Dodds et al., 2001; Van Ghelder and
Esmenjaud, 2016). It is the most common TNL ID domain,
being present in �50% of TNLs in some plants (Dodds
et al., 2001; Van Ghelder and Esmenjaud, 2016; Ma et al.,
2020; Saucet et al., 2020; Maruta et al., 2022). Identifying IDs
like C-JID provides opportunities to potentially customize
TNL recognition specificity.

Effector-triggered TNLs bolster multiple defense
sectors
What then is the purpose of TNL ETI? First, TNL ETI pro-
tects and potentiates immunity signaling triggered by
PAMPs (PAMP-triggered immunity [PTI]; Figure 2C, ii–iv).
One mechanism involves boosting of a PAMP-triggered re-
active oxygen species (ROS) burst, as shown in studies with
the TNL receptor pair RRS1–RPS4 (Figure 2C, ii). Upon po-
tentiation by ETI, PAMP (flg22) recognition leads to sus-
tained apoplastic ROS accumulation to levels exceeding
those induced by PTI or ETI alone (Ngou et al., 2021; Yuan
et al., 2021b). Apoplastic ROS (such as H2O2) can crosslink
proteins and polysaccharides in the cell wall, likely to limit
pathogen spread (Smirnoff and Arnaud, 2019). A
membrane-localized NADPH/respiratory burst oxidase pro-
tein D (RBOHD) is the main enzyme for apoplastic ROS pro-
duction in ETI (Kadota et al., 2019; Ngou et al., 2021; Yuan
et al., 2021b). It is also critical for cell wall lignification (Lee
et al., 2013), which was found to limit the growth of
Pseudomonas syringae pv. tomato DC3000 (Pst) bacteria in
ETI mediated by coil-coiled (CC) NLR receptors (CNLs; Lee
et al., 2019). Hence, ROS-mediated cell wall fortification
might be a general feature of ETI (Lee et al., 2019).
Moreover, RRS1-RPS4 ETI transcriptionally induced receptor-
like kinases and receptor-like proteins in the absence of
PAMPs, providing another clue about how TNLs protect
and enhance PTI machineries (Figure 2C, iv; Ngou et al.,
2021; Yuan et al., 2021b). To sum up, TNL ETI boosts a
PAMP-triggered ROS burst and transcriptionally induces
PAMP receptors and immunity components to preserve and
amplify anti-pathogen resistance. This action is important
for reinstating PTI machineries that are compromised by ef-
fector manipulation (Yuan et al., 2021a).

Second, studies using Arabidopsis RRS1-RPS4 showed that
TNL ETI boosts signaling by the more ancient hormone
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salicylic acid (SA), which operates in the defense systems of
seed and nonseed land plants (Pieterse et al., 2012;
Gimenez-Ibanez et al., 2019; Peng et al., 2021; Figure 2C, v).
SA biosynthesis and signaling pathways are vulnerable to
manipulation by pathogen effectors (Tanaka et al., 2015).
RRS1-RPS4 ETI transcriptionally protects the plant immune
system against genetic or pathogenic interference with SA
defense (Zhang et al., 2003; Bartsch et al., 2006; Kim et al.,
2012; Cui et al., 2015; Mine et al., 2018; Bhandari et al., 2019;
Lapin et al., 2020). An important network-level function of
TNL ETI is to provide defense routes that do not rely on SA
(Cui et al., 2017). One such route involves the synthesis of
N-hydroxy-pipecolic acid (NHP), which drives local and sys-
temic immunity (Figure 2C, vi; Bartsch et al., 2006; Mishina
and Zeier, 2006; Chen et al., 2018; Hartmann et al., 2018).

Third, TNL ETI can help starve pathogens to restrict their
growth (Figure 2C, vii). The bacterial effector avrRps4 pro-
motes the accumulation of soluble iron (Fe) in the apoplast
of Arabidopsis leaves, which is otherwise nutrient-depleted
(Xing et al., 2021). As a countermeasure, avrRps4-activated
TNL RRS1-RPS4 signaling reduces apoplastic Fe availability
to Pst bacteria (Xing et al., 2021). The process of limiting Fe
access to Pst aligns with the earlier finding that the activa-
tion of Arabidopsis NLR immunity reduces the transcrip-
tional upregulation of a bacterial Fe acquisition pathway
(Nobori et al., 2018, 2020). RRS1-RPS4 ETI also leads to re-
duced photosynthetic and photosystem II (PSII) activity and
the dampening of photosynthesis-related gene expression
(Figure 2C, viii; Su et al., 2018; Saile et al., 2020; Griebel et al.,

2021). This physiological dampening helps Arabidopsis leaf
cells accumulate ROS in chloroplasts and execute cell death
(Su et al., 2018), which is a hallmark of NLR ETI (Cui et al.,
2015; Monteiro and Nishimura, 2018). Another possible con-
sequence of reduced PSII activity is the depletion of
nutrients available to microbes, which is consistent with a
plant strategy to starve invading bacteria, even during PTI
(Yamada et al., 2016).

Many TIRs exhibit tightly regulated NADase
activity

Molecular requirements for TIR NADase activity
A breakthrough in understanding TIR functions came with
the discovery that human (Homo sapiens) SARM1 exhibits
nicotinamide (NA) adenine dinucleotide (NAD + ) hydrolyz-
ing activity (Essuman et al., 2017), followed by similar find-
ings for prokaryotic and plant TIRs (Essuman et al., 2018;
Horsefield et al., 2019; Wan et al., 2019; Morehouse et al.,
2020; Eastman et al., 2021). This enzymatic activity appears
to be a common TIR feature, although it was not found in
the mammalian TLR2 or TIR adaptor proteins examined
(Horsefield et al., 2019; Bayless and Nishimura, 2020).
SARM1 TIR cleaves NAD + into NA and cyclic ADP-ribose
(cADPR) or ADPR (Essuman et al., 2017). NAD + hydrolysis
to cADPR or ADPR variants by plant TIRs was detected
both in vitro with purified proteins and in vivo, demonstrat-
ing that these TIR domains can operate as autonomous
enzymes (Horsefield et al., 2019; Wan et al., 2019; Duxbury
et al., 2020; Ma et al., 2020; Ofir et al., 2021; Figure 3).
However, the identity of physiological substrate(s) and prod-
uct(s) of TIR NADase enzymes remains an unresolved issue
in plant immunology.

Several reaction parameters influence TIR-mediated
NAD + hydrolysis (Figure 3A). First, TIR NADase activity
requires the proximity of at least two TIR domains
(Figure 3A, arrows pointing to each other). Experimentally,
proximity can be achieved by adding solution-crowding
agents such as polyethyleneglycol (Horsefield et al., 2019) or
by inducing oligomerization of a chimera between an animal
NLR and a plant TIR through binding of a PAMP (Duxbury
et al., 2020). In the case of a full-length TNL, TIRs are
brought together as two asymmetrically aligned TIR pairs via
effector-induced TNL tetramerization, as shown for TNLs
RPP1WsB and Roq1 (Ma et al., 2020; Martin et al., 2020;
Movie 1). Similarly, recognition of a cyclic dinucleotide by
the bacterial STING stimulates NAD + hydrolysis by adjacent
TIRs (Morehouse et al., 2020).

Second, upon activation, TIRs are relieved from molecular
inhibition by other domains in a full-length protein
(Figure 3B). For example, TIRs of human SARM1 are kept
apart in a homo-octameric complex in which the orienta-
tion of armadillo motif (ARM) oligomerization domains pre-
vents TIRs from interacting with each other (Sporny et al.,
2020; Figley et al., 2021; Shen et al., 2021). Peptide interfer-
ence with the ARM–TIR interaction renders SARM1 autoac-
tive (Shen et al., 2021). NA mononucleotide outcompetes

Movie 1. Structural elements important for the hydrolysis of NAD +

by TIRs in the RPP1 resistosome. Cryo-EM structures of activated TNLs
RPP1WsB and Roq1 show that their tetramerization allows TIRs to as-
semble dimers of dimers. The a-helices aA and aE of TIRs form the AE
dimerization interface, while BB-loop is important for forming the
other, BE, dimerization interface. The BE interface helps to create two
NAD + hydrolysis sites. Another structural arrangement found in L7
TIR likely allows a different, 20 ,30-cNMP synthetase activity in plant
TIRs. Source data and code to reproduce the results of homology-
based modeling of TNPs are available at https://github.com/ritter-
sporn/Lapin-etal_PlantCell-review_2022.

Plant TIR signaling from A to Z THE PLANT CELL 2022: 34; 1479–1496 | 1483

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/34/5/1479/6526406 by guest on 29 July 2022



NAD + in the ARMs of SARM1 and thereby likely triggers
conformational changes, allowing TIR–TIR interactions
(Sporny et al., 2020; Figley et al., 2021). In the Arabidopsis
TNL receptor complex RRS1–RPS4, bacterial effectors likely
disrupt a self-inhibited RRS1–RPS4 state (Guo et al., 2020)
and allow RPS4 TIRs to interact, leading to NAD + hydrolytic
activity (Williams et al., 2014; Wan et al., 2019; Duxbury
et al., 2020).

Third, TIRs engage in functional interactions via conserved
TIR structural elements (Figure 3A). In the TNLs RPP1WsB

and Roq1, the most prominent features are a BB-loop of
one protomer that fits under the surface formed by the aD
and aE of another TIR (“BE” interface) and the “AE” inter-
face formed by aA and aE (Horsefield et al., 2019; Wan
et al., 2019; Ma et al., 2020; Burdett et al., 2021; Nimma
et al., 2021; Figure 3A; Movie 1). The BE interface-mediated
interaction creates an active NADase site in TNL RPP1 and
other TIRs (Ma et al., 2020; Martin et al., 2020; Burdett et al.,
2021; Nimma et al., 2021).

Fourth, TIR NAD + hydrolytic activity requires a conserved
surface-exposed glutamate residue in a-helix C that forms
part of the catalytic site (Figure 3, A and C). Mutating this
glutamate abolished TIR NAD + hydrolysis and cell death-
promoting activity in plant transient expression assays
(Krasileva et al., 2010; Sohn et al., 2014; Essuman et al., 2017;
Horsefield et al., 2019; Wan et al., 2019; Ma et al., 2020;
Martin et al., 2020; Eastman et al., 2021).

Finally, as demonstrated in in vitro assays, the rate of
NAD + hydrolysis by plant TNL RPP1WsB is stimulated by
the bivalent cations Ca2 + and Mg2 + (Ma et al., 2020;
Figure 3A).

Emerging NADase-independent properties of TIR
cooperative assembly
Not all TIRs contain the conserved catalytic glutamate or ex-
hibit detectable NAD + hydrolysis (Horsefield et al., 2019;
Bayless and Nishimura, 2020). Nevertheless, TIR–TIR associa-
tion is still required for their functions. Mammalian Myd88
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and Mal adaptors can form large filaments in vitro via
homotypic and heterotypic interactions requiring the BB-
loop and other interfaces (Ve et al., 2017; Clabbers et al.,
2021; Nimma et al., 2021). Interaction of TLR4 with Mal cre-
ates a surface for association with Myd88 (Clabbers et al.,
2021), which can then activate IL-1 receptor-associated ki-
nase and the TF Nuclear Factor-jB (NF-jB), thereby driving
immune-related transcriptional reprogramming. Bacterial
and viral TIR effector proteins can interfere with the
TLR:Mal:Myd88 assemblies and thus disarm the immune sys-
tem (Nanson et al., 2020). The emerging properties of TIR–
TIR assemblies led to the model of signaling via cooperative
assembly formation (SCAF; Nanson et al., 2020; Nimma
et al., 2021). One likely outcome of SCAF is to concentrate
signaling molecules and biochemical processes in a subcellu-
lar compartment (Ve et al., 2017; Nanson et al., 2020;
Clabbers et al., 2021).

Importantly, evidence for the SCAF model for plant
TIRs (Nishimura et al., 2017; Zhang et al., 2017a) was
found experimentally through cryo-EM analysis of L7 TIR
in complex with DNA (Yu et al., 2021; Figure 3D). A

structure-guided study revealed that plant TIRs can cleave
nucleic acids and synthesize 20,30-cyclic nucleotide mono-
phosphates (cNMPs) to promote cell death. TIR 20,30-
cNMP synthetase and NADase activities have different
requirements (Yu et al., 2021; Figure 3D). First, 20,30-cNMP
synthesis from DNA was detected in L7 TIR filaments us-
ing liquid chromatography coupled with mass spectrome-
try, but NAD + hydrolysis detected by liquid
chromatography was most prominent in lower molecular
weight L7 TIR fractions (Yu et al., 2021). Second, muta-
tions in a cysteine neighboring the catalytic glutamate
and the extended aD helix interfered primarily with 20,30-
cNMP synthetase activity (Figure 3, C and D). Third, TIR
oligomers that assemble via AE and BE interfaces in the
RPP1 and Roq1 resistosomes act as NADases. In contrast,
TIR oligomerization mediated by AE and DE interfaces is
critical for nucleic acid cleavage and 20,30-cNMP synthesis
(Ma et al., 2020; Martin et al., 2020; Yu et al., 2021).
Taken together, nucleic acid cleavage and 20,30-cNMP
synthetase activity are emerging properties of plant
TIR SCAF.
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Plant-specific protein modules translate TIR
activity to defense

Plant TIR immunity signaling branches
Immunity outputs from TNLs and TIRs in plants depend on
a small group of conserved NLRs that possess a phylogeneti-
cally distinct N-terminal CC domain. This domain was origi-
nally found in Arabidopsis membrane-associated protein
RESISTANCE TO POWDERY MILDEW 8 and is therefore
called CCR (Figure 4A; Xiao et al., 2001; Jubic et al., 2019;
Feehan et al., 2020). Because CCR NLRs (RNLs) function
downstream of pathogen detection, they are also referred to
as helper or signaling NLRs. RNLs are specific to seed plants
and have an NBARC domain that is phylogenetically differ-
ent from that of other NLRs (Shao et al., 2016). A role for
these NLRs in signal transduction is reflected in their conser-
vation across seed plants and low sequence variation within
Arabidopsis (Shao et al., 2016; Monteiro and Nishimura,
2018; Jubic et al., 2019; Van de Weyer et al., 2019). The RNL
family can be further divided into the related N
REQUIREMENT GENE 1 (NRG1) and ACTIVATED DISEASE
RESISTANCE 1 (ADR1) subgroups. While the NRG1 and
ADR1 subgroups can partially compensate for each other in
TNL-mediated transcriptional reprogramming and pathogen
resistance (Castel et al., 2019; Wu et al., 2019; Saile et al.,
2020; Sun et al., 2021), genetic and molecular evidence indi-
cates they are operationally distinct (Figure 4A). For exam-
ple, in RRS1–RPS4 ETI, NRG1s are required for host cell
death, whereas ADR1s function predominantly in transcrip-
tional reprogramming of defense genes and pathogen resis-
tance (Bonardi et al., 2011; Castel et al., 2019; Lapin et al.,
2019; Wu et al., 2019; Saile et al., 2020; Sun et al., 2021). In
Arabidopsis, NRG1s and ADR1s are engaged to different
extents downstream of TIRs or TNLs, while in tobacco spe-
cies N. tabacum and Nicotiana benthamiana, TIRs and TNLs
signal primarily through NRG1 (Peart et al., 2005; Qi et al.,
2018; Castel et al., 2019; Lapin et al., 2019, 2020; Wu et al.,
2019).

Plants have also evolved a small, conserved family of
lipase-like proteins for immunity signaling downstream of
TNLs and TIRs. These proteins, ENHANCED DISEASE
SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4
(PAD4), and SENESCENCE-ASSOCIATED GENE 101
(SAG101), are collectively referred to as the EDS1 family
(Figure 4A; Lapin et al., 2020). The EDS1 family possesses a
unique structure in which an N-terminal a/b hydrolase (li-
pase-like) domain is fused with a C-terminal a-helical bundle
“EP” domain (Wagner et al., 2013). PAD4 and SAG101 form
mutually exclusive heterodimers with EDS1, which appear to
be the minimal functional units for EDS1-dependent defense
against pathogens (Wagner et al., 2013; Voss et al., 2019;
Dongus and Parker, 2021).

Analyses of Arabidopsis combinatorial mutants have
helped to clarify functional relationships between RNLs and
EDS1 family members in TNL immunity (Sun et al., 2021;
Wu et al., 2021b). Mutants with combinations of defective
genes for EDS1 and RNL family members showed differences

in signaling outputs of the TNLs SUPPRESSOR OF
NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1-1,
CONSTITUTIVE 1 (SNC1) and RRS1-RPS4. These differences
are consistent with the co-functions of EDS1-SAG101 with
NRG1s and of EDS1-PAD4 with ADR1s in defense promo-
tion (Figure 4A). Importantly, elements of the two modules
are not functionally interchangeable (Sun et al., 2021; Wu
et al., 2021b), even in an SA-deficient background (Sun
et al., 2021). Tight genetic cooperation between EDS1-
SAG101 and NRG1 was also observed in TNL Roq1-triggered
pathogen resistance and host cell death in the wild tobacco
N. benthamiana (Qi et al., 2018; Gantner et al., 2019; Lapin
et al., 2019). Notably, cell death responses triggered by vari-
ous TNLs or TIRs transiently expressed in the tobacco sys-
tem recruited native or ectopically expressed Arabidopsis
EDS1 and SAG101 with NRG1, but not PAD4 or an ADR1
family member (Gantner et al., 2019; Lapin et al., 2019).
The co-occurrence of SAG101 with NRG1 and PAD4 with
ADR1 genes in seed plant genomes further supports co-
functions between specific helper NLR subgroups and
EDS1 dimers in TNL immunity (Collier et al., 2011; Lapin
et al., 2019, 2020; Baggs et al., 2020; Liu et al., 2021).
Molecularly, the functional cooperation appears to mani-
fest as specific complex formation between Arabidopsis
EDS1-SAG101 with NRG1s and EDS1-PAD4 with ADR1s in
Arabidopsis and wild tobacco TNL-activated leaf tissues
(Sun et al., 2021; Wu et al., 2021c) or upon transient ex-
pression of the Arabidopsis TIR-only protein RBA1 in wild
tobacco (Wu et al., 2021c).

What underlies the selectivity in complex formation be-
tween EDS1 family heterodimers and particular RNL sub-
groups has not been resolved, although distinctive sequence
features in the respective dimer EP domain cavities are
probably important determinants (Gantner et al., 2019;
Lapin et al., 2019; Sun et al., 2021). We speculate that this
pathway choice in TIR signaling provides resilience against
interference by effectors. Thus, TIR downstream signaling
involves induced complex formation between EDS1 dimers
and RNLs to mobilize host defense and cell death machiner-
ies when pathogen attack is registered. It remains unclear
why Arabidopsis utilizes both modules made of EDS1 dimers
and RNLs, whereas wild tobacco only uses EDS1-SAG101
with NRG1. One possible explanation is that the EDS1–
PAD4–ADR1s node has broader usage in mobilizing path-
ways initiated by NLRs and certain cell surface receptors, as
observed in Arabidopsis (Dongus and Parker, 2021; Pruitt
et al., 2021; Tian et al., 2021). It will be interesting to test
whether this idea is borne out in other seed plant lineages,
especially monocots, which retained EDS1, PAD4, and ADR1
genes but have lost TNLs, SAG101, and NRG1 (Baggs et al.,
2020; Lapin et al., 2020).

Studies suggest a degree of selectivity in translating TIR
enzymatic activity to defense promotion at the level of the
EDS1 family. The TIR of the bacterial disease-promoting ef-
fector HopAM1 produces a variant of cADPR, but its cell
death activity in wild tobacco is independent of EDS1
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(Eastman et al., 2021). Similarly, cell death triggered by hu-
man SARM1 TIR and even a maize TNP is EDS1-indepen-
dent (Horsefield et al., 2019; Johanndrees et al., 2021). It is
significant that the Arabidopsis phosphodiesterase enzyme
NUDIX HYDROLASE HOMOLOG 7 (NUDT7) can cleave
20,30-cAMP and 20,30-cGMP, suppressing RBA1-mediated cell
death in wild tobacco (Yu et al., 2021). Moreover, an
Arabidopsis nudt7 mutation leads to spontaneous EDS1-de-
pendent cell death (Bartsch et al., 2006; Straus et al., 2010).
Hence, it is likely that an EDS1 dimer–RNL module becomes
activated by 20,30-cAMP and 20,30-cGMP or products derived
by their processing during defense amplification, although

contributions from other TIR-generated molecules cannot
be ruled out (Figure 4A).

Autoactive NRG1 forms a putative membrane
cation channel
Cryo-EM structure-guided studies of CNL HopZ-
ACTIVATED RESISTANCE 1 (ZAR1) established that the
effector-activated receptor forms a pentameric wheel in
which five ZAR1 CC domains become exposed to create a
membrane-localized Ca2 + -permeable channel (Wang et al.,
2019; Bi et al., 2021). ZAR1 channel activity requires
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conserved negatively charged amino acids on the inner side
of a CC a-helical funnel (Wang et al., 2019; Bi et al., 2021).
ZAR1 structure-guided and sequence-based alignments
showed that the N-terminal CCR domains of ADR1 and
NRG1 have a-helical amino acid coordinates for a similar
oligomer pore or channel (Jubic et al., 2019; Bi et al., 2021;
Jacob et al., 2021; Sun et al., 2021). Indeed, mutations in glu-
tamic acid residues Glu14 and Glu27 at the predicted a-heli-
cal inner pore of Arabidopsis NRG1.1 disabled Roq1-
mediated cell death and resistance in wild tobacco (Sun
et al., 2021). A �1 MDa Arabidopsis autoactive NRG1.1
complex localized to the plasma membrane when expressed
in wild tobacco and caused Ca2 + influx in human HeLa cells
in the absence of other plant proteins, suggesting that
NRG1 exhibits autonomous ion channel activity or that
NRG1 perturbs the membrane, leading to Ca2 + influx
(Jacob et al., 2021). Ca2 + influx was also detected for ADR1
and was suppressed by mutating the negatively charged
amino acids in its N-terminal CCR domain (Jacob et al.,
2021). Hence, CNL and TNL signaling might share the prop-
erty of increasing Ca2 + levels in the cytoplasm (Figure 4A).
Such a scheme is supported by the finding that the cell
death-inducing activities of CNLs, TNLs, and RNLs were sup-
pressed by treatment with the Ca2 + channel blockers LaCl3
and GdCl3 (Grant et al., 2000; Ma et al., 2008; Jacob et al.,
2021). Since a TNL-induced interaction between NRG1 and
EDS1-SAG101 was not affected by the CCR funnel muta-
tions, NRG1 Ca2 + channel activity promoting TNL immu-
nity and host cell death was placed downstream of the
association of NRG1 with EDS1-SAG101 (Jacob et al., 2021;
Sun et al., 2021).

Taken together, the above studies suggest a model in which
an effector-activated TNL resistosome or self-associating TIRs
produce one or more small molecules that promote associa-
tions between specific RNLs and EDS1 family heterodimers.
The formation of an EDS1 dimer–RNL complex must permit
the RNL to function either as an oligomeric pore or Ca2 + in-
flux channel or in some other capacity to amplify Ca2 + de-
pendent cascades driving transcriptional defense (Figure 4A).
As in vitro NADase RPP1WsB activity is enhanced by Ca2 +

and Mg2 + (Figure 3A; Ma et al., 2020), Ca2 + influx might in
principle further amplify TNL activity in a feed-forward loop.

Transcriptional activation of plant defense during
ETI
A number of Ca2 + -dependent protein kinases (CPKs) and
Ca2 + /calmodulin (CaM)-regulated TFs contribute to nuclear
transcriptional changes during ETI (Tsuda and Somssich,
2015). Several Arabidopsis CPKs, most prominently CPK5
and CPK6, contribute to ETI mediated by the TNL pair
RRS1–RPS4 and two CNLs. The phosphorylation of WRKY48
by CPK5 enhances both the DNA binding strength of this
TF and the expression of ROS-producing RBOHD (Figure 4B;
Gao et al., 2013).

Operating in parallel to CPKs, mitogen-activated protein
kinase (MAPK) cascades also transduce signals during ETI

(Figure 4B; Tsuda and Somssich, 2015). MAPKs MPK3 and 6
are required for full resistance mediated by the TNLs RRS1-
RPS4 in Arabidopsis and N in tobacco (Jin et al., 2003;
Adachi et al., 2015; Su et al., 2018). The activation of NLRs is
accompanied by the sustained phosphorylation of MPK3
and 6 (Tsuda et al., 2013; Cui et al., 2015, 2017; Su et al.,
2018), a process likely related to increased phosphorylation
of coreceptors for PAMP sensing receptors (Ngou et al.,
2021; Yuan et al., 2021b). The phosphorylation of WRKYs by
MPK3/6 induces RBOHD expression, an ensuing ROS burst,
and host cell death in wild tobacco (Ishihama et al., 2011;
Adachi et al., 2015). From the existing data, it seems likely
that activated TNLs signal through both CPK and MAPK
cascades to increase the expression of immunity executors
(e.g. RBOHD) via phosphorylation of WRKY TFs (Tsuda and
Somssich, 2015; Figure 4B).

Researchers have identified another branch of transcrip-
tional control of TNL ETI involving CaM and CaM-related
proteins (Figure 4B). CaMs are conserved Ca2 + receptors
that interact with proteins after a Ca2 + /CaM-controlled al-
losteric change (Kang et al., 2006). The TF CaM-BINDING
PROTEIN 60-Like G (CBP60g; Wang et al., 2009) and its ho-
molog SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1
(SARD1), which lacks a CaM-binding domain (Wang et al.,
2011), are prominent regulators of local and systemic resis-
tance in Arabidopsis (Zhang et al., 2010; Wang et al., 2011).
CBP60g and SARD1 bind to promoters and induce the ex-
pression of defense-related genes encoding the EDS1 family,
RNLs, and components of SA and NHP biosynthesis (Zhang
et al., 2010; Wang et al., 2011; Sun et al., 2015; Ding et al.,
2020). Similarly, SARD1 and CBP60g binding is enriched at
genes induced during TNL RRS1-RPS4 transcriptional reprog-
ramming (Figure 4C; Sun et al., 2015; Saile et al., 2020;
Griebel et al., 2021). Thus, Ca2 + influx during ETI (RRS1-
RPS4) is likely transduced by CPKs and CaM into transcrip-
tional defense responses (Figure 4B). The large number of
CaM and CaM-like proteins in plant genomes leaves open
the question of how Ca2 + influx is interpreted by cells dur-
ing TNL ETI.

How plants keep TNLs in check
The mis-activation or ectopic expression of TIR-containing
proteins is linked to stunting, macroscopic cell death, and
sensitivity to low temperatures and osmotic stress (Palma
et al., 2007; Gloggnitzer et al., 2014; van Wersch et al., 2016;
Ariga et al., 2017). It is thought that TNL and TIR expression
levels need to be sufficient for a timely immune response
against pathogens but low enough to avoid growth penalties
in unchallenged plants. Below, we review mechanisms impli-
cated in the control of TNL expression at the chromatin
and posttranscriptional levels in plants (mainly Arabidopsis).

Four pathways keep basal TNL transcript levels low
One pathway to control basal TNL gene expression in
Arabidopsis involves DNA methylation via the RNA-directed
DNA methylation (RdDM) pathway (Figure 5A, I; Table 1).
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In the TNL gene RESISTANCE METHYLATED GENE 1
(RMG1), this is facilitated by a transposable element-like se-
quence residing in the promoter (Yu et al., 2013; Halter
et al., 2021). It is likely that RdDM-mediated suppression of
TNL promoter activity is further supported by the chroma-
tin remodeling protein BAF60/SWP73A: this protein sup-
presses TNL gene expression and can bind the histone mark

H3K9me2 (histone H3 dimethylated at Lys9; Huang et al.,
2021), which is known to enforce RdDM (Du et al., 2014;
Johnson et al., 2014; Li et al., 2018; Figure 5A, i).

Another route to prevent TNL misexpression involves the
removal of H3K9ac (transcription-permissive acetylation of
H3 at Lys9) at TNL loci in healthy tissues (Figure 5A, ii;
Table 1). In Arabidopsis, HISTONE DEACETYLASE 9 (HDA9)

Table 1 Pathways limiting basal expression of genes encoding TIR-containing proteins in Arabidopsis

Name of mechanism Brief description References

RNA-directed DNA methylation Plant-specific DNA methylation system where
CHG and CHH DNA methyltransferases are
recruited to chromatin via small and long non-
coding RNAs.

Dowen et al. (2012); Yu et al. (2013); Halter
et al. (2021); Huang et al. (2021)

Regulation of histone H3 acetylation at Lys9
(H3K9ac)

The histone modification H3K9ac correlates with
active transcription at the locus.

Yang et al. (2020)

NMD Eukaryotic system that degrades transcripts with
a premature stop codon, although other types
of targets are known.

Gloggnitzer et al. (2014); Jung et al. (2020);
Raxwal et al. (2020)

Interference via small RNAs The mechanism of interference involves the
binding of small RNAs to transcripts, initiating
their degradation. In the nucleus, small RNAs
are also involved in regulating RdDM.

Shivaprasad et al. (2012); Boccara et al. (2014);
Zhang et al. (2016); Cai et al. (2018); López-
Márquez et al. (2021)

UPS Eukaryotic protein degradation system linking
ubiquitination of a protein substrate to the
26S proteasome. The E3 ubiquitin ligases
largely determine substrate specificity.

Cheng et al. (2011); Gou et al. (2012); Dong
et al. (2018); Copeland and Li (2019); Zhang
et al. (2019); Wu et al. (2020)
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Figure 5 Mechanisms to avoid aberrant TIR/TNL activity in Arabidopsis. A, In the absence of pathogen attack, TIR/TNL-encoding genes are sup-
pressed by (i) the RdDM and (ii) via removal of the transcription-permissive acetylation mark on histone H3 at Lys9 (H3K9ac). (iii) NMD depletes
aberrant TIR/TNL transcripts produced as a result of poly(A) site selection. (iv) Small RNAs (microRNA and phasiRNA) also help reduce TNL tran-
script abundance (iv). B, At the posttranslational level, steady-state TNL abundance is regulated by the UPS. Three E3 ligases target TNLs for degra-
dation, with conserved SNIPER1/2 having a broad NLR target range. C, Upon PAMP recognition, the inhibition of NMD and small RNA pathways
promotes TIR/TNL expression. Increased expression of TIR/TNL genes is partially dependent on the cation channels. Reduced efficiency of NMD
might also help unmask TNL cryptic variation (v) via translation of TIR-only and truncated TNL forms. In (A) and (B), chromatin accessibility pro-
files are shown for the TNL gene AT4G11170 (Ding et al., 2021; Tian et al., 2021).
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and the WD40 repeat protein HIGH EXPRESSION OF
OSMOTICALLY RESPONSIVE GENES 15 (HOS15) bind to
the promoters of the RNL gene ADR1-L2 and selected TNL
genes and help to deplete H3K9ac at NLR loci (Yang et al.,
2020). Accordingly, Arabidopsis hda19 and hos15 mutants
exhibited transcriptional upregulation of approximately one-
third of the NLR gene repertoire, including TNLs and RNLs
(Yang et al., 2020).

The third mechanism to control TNL transcript abun-
dance is nonsense-mediated mRNA decay (NMD), which
removes aberrant TNL transcripts with premature stop
codons (Table 1). NMD keeps basal TNL gene expression
levels low and prevents TNL and EDS1-dependent growth
penalties in Arabidopsis (Gloggnitzer et al., 2014; Jung et al.,
2020; Raxwal et al., 2020). One source of premature stop
codons is the selection of alternative polyadenylation sites in
genes. Mass spectrometry and long-read mRNA sequencing
identified the RNA-binding protein FPA as a regulator of
proximal poly(A) site selection in Arabidopsis, with NLR
transcripts being the primary targets (Parker et al., 2021).
While these events mostly result in TNL transcripts lacking
stop codons, truncated TNL transcripts with premature stop
codons and putative TIR-only transcripts predicted to be
NMD-targeted have also been detected (Parker et al., 2021).

A fourth mechanism to reduce the abundance of TNL
transcripts involves small RNAs (Table 1). Small RNAs in a
range of plant species show a remarkable match of 22 nucle-
otide (nt) microRNAs and 21-nt phased secondary small in-
terfering RNAs (phasiRNAs) to NLR gene family members,
including TNLs (Zhang et al., 2016; López-Márquez et al.,
2021). Most small RNAs correspond to conserved and func-
tionally important amino acid motifs: the P-loop in NBARC
and the a-helix in TIR domains (Zhang et al., 2016; López-
Márquez et al., 2021; Figure 1C). In Arabidopsis, the TNL
gene MICRORNA-SILENCED TNL1 is targeted by miR825-5p
to produce phasiRNAs, triggering the cleavage of numerous
other TNL transcripts (López-Márquez et al., 2021).
Therefore, small RNAs provide an effective posttranscrip-
tional mechanism for limiting basal TIR/TNL gene expression
(Figure 5A, iv).

Permissive TNL promoter activity contributes to
TNL-mediated resistance
Evidence suggests that maintaining basal transcription-
permissive chromatin environment is crucial for TNL-
mediated resistance. A forward genetic screen for suppres-
sors of snc1-associated dwarfism in Arabidopsis identified a
plant-specific protein with no known domains: MODIFIER
OF SNC1, 9 (MOS9). MOS9 associates with the H3K4 meth-
yltransferase TRITHORAX-RELATED 7 and helps maintain a
transcription-correlated H3 Lys4 trimethylation mark at the
promoters of TNL-encoding RPP4 and SNC1 and a basal
level of their transcription (Xia et al., 2013; Leng et al., 2020).
Since the mos9 mutant is defective in RPP4 resistance (Xia
et al., 2013), balancing transcription-permissiveness at TNL

chromatin likely enables plants to respond in a timely man-
ner to pathogen infection.

E3 ligases limit TNL protein accumulation
Studies of autoimmunity of the TNL mutant snc1 revealed
that the conserved eukaryotic ubiquitin-proteasome system
(UPS) regulates TNL protein homeostasis (Copeland and Li,
2019; Table 1). UPS specificity is controlled by E3 ligases that
attach ubiquitin to protein targets. Three E3 ligase groups
are known to regulate TNL protein levels (Figure 5B). The
first two are exemplified by the SKP1-cullin1-F-box (SCF) E3
ligase complex with the subunit CONSTITUTIVE EXPRESSER
OF PATHOGENESIS-RELATED GENES 1 (CPR1), RING-type E3
ligases Mutant snc1-enhancing 1 and 2, and Ubiquitin
Protein Ligase E3 Component N-Recognin 7. These E3 ubiq-
uitin ligases appear to have a narrow range of TNL targets
(Cheng et al., 2011; Gou et al., 2012; Dong et al., 2018;
Zhang et al., 2019). Interestingly, the E3 ligase SCFCPR1

requires proteins with the conserved domain Tumor necro-
sis factor Receptor (TNFR)-Associated Factor (TRAF) to re-
move excess TNL SNC1 protein (Huang et al., 2016). In
animals, TRAF proteins serve as scaffolds or E3 ligases in TLR
and TNFR signaling (Yang and Sun, 2015; Park, 2018). A
component of the general chaperone machinery, heat shock
protein HSP90.3, also participates in the assembly and func-
tioning of E3 ubiquitin ligase complexes that control the
steady-state levels of some TNLs (Copeland and Li, 2019;
Liang et al., 2020). The third E3 ligase group includes
Arabidopsis RING class proteins snc1-influencing plant E3 li-
gase reverse 1 (SNIPER1) and SNIPER2, which control the
turnover of multiple TNL and CNL proteins (Wu et al., 2020;
Figure 5B). In contrast to most E3 ligases, SNIPERs are con-
served in dicot plants, suggesting they play a role in regulat-
ing NLR accumulation across species (Wu et al., 2020). Since
the SNIPER1 gene is bound by SARD1 and is induced during
PTI and ETI, SNIPER1 and probably other E3 ligases are
thought to help deactivate immune responses and reduce
the physiological costs of defense (Wu et al., 2020).

PAMP perception removes the brakes on TNL
gene expression
How TIR/TNL gene expression is turned up during infection
is poorly understood mechanistically, but PAMP perception
plays an important role in this process. This induction is
probably facilitated by active cation channels (Bjornson
et al., 2021; Ngou et al., 2021; Tian et al., 2021; Yuan et al.,
2021b) and is associated with a more open chromatin state
at promoter regions (Ding et al., 2021) (Figures 2A and 5C).
Here, we provide examples of how the regulation of DNA
methylation, small RNAs, and NMD helps activate TIR/TNL
gene expression in response to PAMPs.

Following flg22 application, the 5-methylcytosine DNA gly-
cosylase/lyase REPRESSOR OF SILENCING 1 erases DNA
methylation from the promoters of genes (such as the TNL
gene RMG1), likely rendering the promoter region more ac-
cessible to TF binding (Yu et al., 2013; Halter et al., 2021).
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DNA demethylation, particularly at the RdDM-associated
CHG/CHH sequence patterns (Du et al., 2014; Johnson et al.,
2014; Li et al., 2018), also occurs during SA-triggered immu-
nity and CNL ETI (Dowen et al., 2012; Yu et al., 2013).

The grip of small RNAs on Arabidopsis TNL transcript ac-
cumulation (Figure 5, A and C) weakens in response to
PAMPs (flg22) due to reduced miR825 expression (López-
Márquez et al., 2021). This is in line with the established
roles of conserved miRNAs miR482, miR472, and miR2118 in
limiting NLR gene expression (Shivaprasad et al., 2012;
Boccara et al., 2014). In another study, the autoimmunity of
the TNL mutant snc1 was associated with reduced small
RNA biogenesis, leading to the widespread upregulation of
NLR gene expression (Cai et al., 2018). Hence, the regulation
of TNL transcript abundance likely follows a model with a
feed-forward loop that is kept in check by miRNAs and re-
leased by PAMP (e.g. flg22) perception.

Similarly, PAMP (flg22) perception promotes the proteaso-
mal degradation of NMD components, allowing for rapid
TNL gene upregulation (Jung et al., 2020; Raxwal et al.,
2020). The suppression of NMD is predicted to expose cryp-
tic (i.e. not expressed under normal conditions) forms of
truncated TIR-containing proteins (Figure 5, A and C). Such
forms have been proposed to be translated from TNL tran-
scripts with premature stop codons that would normally be
eliminated via NMD (Parker et al., 2021).

Taken together, these recent findings highlight PAMP
(flg22) perception as a kick-start to the removal of multiple
brakes on TNL/TIR gene expression to enable the rapid en-
gagement of this immunity barrier (Figures 2A and 5C).

Concluding remarks
We have attempted to provide an integrated view of molec-
ular events in plant TIR immunity signaling, from its initia-
tion to defense execution and pathogen resistance.
Emerging themes are the biochemical versatility of TIR
domains and the potential for self-amplification of TIR sig-
naling once its components are released by PAMP and/or
effector perception. Another emerging insight is the myriad
of transcriptional and posttranscriptional mechanisms used
to constrain this essential but ultimately dangerous process
to avoid physiological fitness costs. An unresolved question
is at what level TIR/TNL signaling and TIR-generated mole-
cules play roles in balancing plant responses to biotic and
abiotic stresses encountered in the terrestrial environment.
Increased knowledge of how plants fine-tune their stress
pathways in nature is of fundamental interest and impor-
tant for the biotechnological improvement of crop
performance.

One of the major challenges in developing a coherent
model of plant TIR signaling is to align the newly character-
ized enzymology with the domain arrangements of
full-length proteins and TIR subtypes conferring potentially
different stress-triggered outcomes. While EDS1–RNL com-
plexes are central mediators of TNL receptor and TIR
protein-triggered host defense and cell death in seed plants,

it remains unclear whether these modules are activated di-
rectly by specific TIR-generated small molecules. The ob-
served EDS1-independence of certain TIR-induced cell death
responses in plants suggests that TIRs might either simply
deplete NAD + or collectively produce a cocktail of small
molecules, perhaps only some of which are perceived as sig-
nals by EDS1 family–RNL modules for mobilizing Ca2 + -
based immunity cascades. This notion is supported by the
fact that nonseed plants have multiple TIR-containing pro-
teins but no EDS1 family members. Further study of the oc-
currence and activities of immunity modules during plant
evolution should provide a clearer picture of how plant de-
fense network architectures are built and elaborated on in
response to pathogen attack.
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