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Abstract. Leveraging the resemblances between two areas explored so
far independently enables to provide a theoretical framework for dis-
tributed systems where global behaviors emerge from a set of local in-
teractions. The contribution of this paper arise from the observation
that population protocols and multi-agent systems (MAS) bear many
resemblances. Particularly, some subclasses of MAS seem to fit the same
computational power than population protocols. Population protocols
provide theoretical foundations for mobile tiny device networks. On the
other hand, from long-standing research study in distributed artificial in-
telligence, MAS forms an interesting model for society and owns a broad
spectrum of application field, from simple reactive system to social sci-
ences. Linking the both model should offers several extremely interesting
outcomes.

Keywords: Population Protocols, Multi-Agents System, Model Equiv-
alence.

1 Introduction

With the recent expansion of distributed system the two last decades, a bound-
less set of models has been developed to capture diversity and richness of these
systems. Among this set, some models, while proposed in different context, catch
the same range of computability. Some recent studies deal with the comparison
and equivalence between models [1,2,3,4,5]. In this paper, we investigate the
connections between two famous models: Population Protocols and Multi-Agent
Systems (MAS).

Population protocols [6] provide theoretical foundations for distributed sys-
tems in which global behavior emerges from a set of simple interactions be-
tween their agents. Originally developed in the context of mobile tiny devices,
typically sensors, in this model, agents are considered anonymous, and there-
fore, undistinguishable. Many variants of population protocols have been pro-
posed [7,8,9,10,11]. Among them, community protocols [12] augment the origi-
nal model by assigning agents a unique identifier and letting nodes remember
a limited number of other identifiers. This not only significantly increases the
computation power of the system but also provides a way to tolerate a bounded
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number of byzantine failures. In the sequel, the class of population protocols and
variants will be referred as population protocols, and the original model as basic
population protocol.

More specifically, the population protocol model consists in a finite space
of agent’s states, a finite set of inputs, a finite set of outputs and a transi-
tion function. The set of possible node’s interactions is represented by a graph.
When two agents are sufficiently close for a sufficiently long time, they interact
by exchanging their local information, and update their state according to the
transition function. For instance, if agents are small devices embedded on an-
imals, an interaction takes place each time two animals are in the same radio
range. The interaction patterns, orchestrated by a scheduler, are considered as
unpredictable. Yet, the scheduler is assumed to be fair i.e., it ensures that any
reachable global system state can be reached infinitely often. In the absence of
global knowledge, agents cannot usually verify that the protocol has terminated,
therefore the model considers convergence (of the distributed output) rather than
termination.

On the other hand, largely inspired by the social behavior analysis of insect
colony, Multi-Agent System model aims at studying the concept of collective
and/or distributed intelligence [13]. The former model and its several extensions
should be viewed as a crossroads in artificial intelligence (AI), distributed AI,
distributed systems, software engineering, and smart objects.

As proposed in [13] and enhanced in [14], a MAS is made up of an envi-
ronment, wherein a set of active objects, so called agents, interact with passive
objects. A set of relation links objects between them, according to their activity,
as a set of operations defines what is possible to apply to objects. Finally, some
operators are in charge to reflect the operation mapping on the environment
(usually denoted “universe laws”). It exists a specific case where the environ-
ment is empty and its does not exists passive object. This kind of system is called
purely communicating MAS, as the set of relations defines a network between
agents, for which actions are reduced to communication. This specific structure is
commonly used in distributed AI, mostly for collaboration between units design
for problem solving of expert systems.

Usually, MAS are studied owing to their noteworthy ability for self-organiza-
tion, and are sometimes surprisingly able to reproduce certain form of complex
social systems. MAS could be split in two main classes: Cognitive and Reactive
agents. These classes come from the design of the active agents, according to
their algorithmic ability. More precisely, the cognitive class is commonly used
for distributed AI as the reactive one permits to study virtual life [15]. In this
paper, we mostly consider the latter one that shares several similarities with the
Population Protocol model. Recent interest in the probabilistic convergence of
MAS raises [16,17]. A motivation of our work relies on the fact that the latter
convergence has been extensively studied in the Population Protocol model [7,8],
and results should be simply bring into some MAS models.

As in [2] in which authors bridge the gap between population protocols and
gossip-based protocols, the aim of this paper is then to correlate the two afore-
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mentioned model: Population Protocols and Multi (reactive) Agents Systems,
and more specifically, the ones made up of eco-agents. They both rely on finite-
state agents. Both aim at achieving an emerging global behavior from a set of
local interactions in a fully decentralized manner. The main contribution of this
paper is to acknowledge these similarities and leverage them in both contexts.

This paper is organized as follow. In Section 2, we present a classification
of Multi-Agent Systems. Second, Section 3 provides some background on ba-
sic population and community protocols. Then, we prove their equivalence in
Section 4 and discuss some opportunities of leveraging it, before concluding in
Section 5.

2 Different Kinds of Agent

The Kenetic [13] claims to be the science and technics of artificial organizations.
Using MAS as a designing tool, this field of research possesses the global control
of all the experimental system parameters as an advantage. Yet, if the designer
is able to tune any possible parameters, she has no access to any determinism
aspect, regarding the system evolution. Quite the contrary, as changing configu-
ration in MAS are subject to chaotic phenomena. This implies that any variation
in initial parameter, or any adding of insignificant random variable, should lead
the same system to exactly opposite final state. In fact, these tiny changes are
dramatically magnified through interactions between agents, avoiding some pre-
cise system state prediction.

All the Kenetic problems are located at a meeting point of the notion of
agent and of society. In other words, it is at a crossroads in the relationship
between individual behavior and globally observed phenomena. In this context,
cooperation, conflict, collaboration and coordination of actions make sense. Let
us restrain the possible field by defining what we mean by agent and multi-agent
system.

2.1 MAS Model

MAS are not yet subject to any law. Any work in this model is located in
the center of a duality: Agent and Organization. Any organization comes from
agent’s interactions, but the local behavior of these agents should be modified
in return from the constraints imposed by the created organization structures.
Except predefined organizations by designers, task coordination, assignment and
distribution are resulted from agents themselves. Some emerging properties ap-
pear, without any initial programming. It is necessary to introduce two schools
of thought according to the model appliance, mainly relying on architectural
differences; these differences concern the algorithmic nature of used agents. One
school of thought is specialized in distributed AI, so called cognitive school, as
the other one, denoted reactive school, is more interested in virtual life. The one
considered in this paper corresponds to this reactive one.
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Cognitive agents Cognitive MAS design aims to reach communication and
cooperation in classical expert systems. In this case, the MAS will be made up
of a small number of “intelligent” agents. Each one owns a basic knowledge
that includes a set of mandatory information and technical know-how in order
to succeed in its task, and to manage interactions with its environment and
other agents. They are sometimes called intended, i.e., they own some goals,
and explicit plans permitting to reach them. In the context of cognition, mostly
planned, MAS leads to some group of individuals, govern by predefined social
rules (for instance, in case of conflict, agents should be forced to negotiate).
Researches in this field often rely on sociological studies about organization and
small groups. In this paper, we do not consider further this kind of MAS.

Reactive Agents The main class considered in this paper relies on the fact
that a globally intelligent system should not required individual intelligence of
its agents. Simple reaction mechanism to stimuli should resolve complex prob-
lem, without short-term plan, or explanation of aims and objectives. These MAS
permit to raise some self-organization, as the famous example of ant’s colony.
In the latter, as all ants are undistinguishable, and without any global author-
ity, coordination raised from agents’ action in order to develop and save the
colony. This collective entity is able to resolve complex issues as construct the
anthill, find food, take care of eggs and larva, etc. [18]. Emerging organization is
principally related to reactive MAS, as they are not characterized by predefined
structures (which is seldom, if ever, the case of cognitive MAS).

2.2 Formalism

Multi-Agent System We propose to model a MAS as proposed in [13].

Definition 1. A Multi-Agent System (MAS) is a system made up of:

– An environment E, i.e., generally a metric space;
– A set of objects O. These objects are usually located, i.e., at each time, it

is possible for any object to associate it with a position in E. Most of these
objects are passive, i.e., they can be sensed, created, removed or modified by
agents;

– A set of agents A such that A ⊆ O, which represent active entities of the
system;

– A set of relations R that links objects (and thus agents) between them.
– A set of operations Op that lets agents in A to perceive, produce, consume

transform and manipulate objects in O.
– Operators responsible for applying these operations and the world reaction to

this modification. We denote these reactions Universe Laws.

It exists a specific case of MAS where A = O (i.e., there is no passive objects)
and where E = ∅. This kind of system is call purely communicating MAS, as the
set of relations R defines a network between agents, for which actions are reduced
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to communication. This specific structure is commonly used in distributed AI,
mostly for collaboration between units and designed for problem solving of expert
system. This organization emulates the modus operandi of a social structure as
administration for instance.

Computational power of specific MAS relies on the potential of the environ-
ment [19]. The environment gives structure to the MAS, by providing a kind of
shared memory, or a physical/spatial structure. In this study, we mainly focus on
virtual environment using discrete representation. The environment could also
abstract the communication structure, which is composed by an infrastructure
for message passing, stigmergy or implicit communication. In cognitive MAS, it
should also provide some social structure, defining roles, groups and communi-
ties of agents. We introduced then the notion of autonomous environment. An
autonomous environment is defined as an environment with extended function-
ality compared with a simple spatial structure. The simplest way to model the
environment is to provide only a metric space in order to estimate the ability
of communication of any two agents, according to their distance between their
respective locations. Any enhanced environment will be denoted as autonomous
in the following.

Agent The core entity of MAS is the agent itself. Let us introduce a generic
definition:

Definition 2. An agent is a virtual or physical entity that:

– is able to act in an environment;
– is able to communicate directly toward other agents;
– is directed by a set of trends (as individual objectives or satisfaction function,

or even survival);
– owns proper resources;
– is able to perceive (in a limited manner) its environment;
– owns a partial representation of this environment (possibly empty);
– owns abilities and should offer services;
– can be able to reproduce;
– has a behavior striving for satisfying its aims, by tacking into account avail-

able resources and skills, according to its perceptions, representations and
communications.

As introduced in Section 2.1, agents should be cognitive or reactive. However,
this splitting is sometimes to simplistic. We need to enhance it according to two
axes, which are summarized in Table 1:

– Agent’s comportments are usually leaded by their teleonomic behavior1 in
contrast with the reflex infers by perception. The trends that govern agents
should come either from the environment, or explicitly expressed in agents.
We mention it as a reflex behavior in the first case, and a teleonomic one in
the second one.

1 “Teleonomy” represents the scientific concept of end in itself (purposefulness and
goal-directedness of structures and functions in living organisms).
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Behavior

Environment relation
Cognitive agents Reactive Agents

Teleonomic Intentional Agents Instinctual Agents

Reflex “Modules” Agents Tropic Agents
Table 1. Characterization of agents

– Agent’s relation with the environment raises the classical problem of sub-
ject/object. Is an agent have an explicit and symbolic representation of the
surrounding world, on which she is able to reason or this representation
is sub-symbolic, i.e., integrated in its sensorimotor intelligence. In the first
case, we mention cognitive agent, and in the second, reactive agents.

2.3 Eco Problem Solving

The Eco Problem Solving (EPS) is a decentralized approach of problem
solving, using emergence of interacting reactive agents [20]. A stable state is
then sought and considered as the solution of the problem.

Any eco-agent has only one purpose: to be satisfied. Its environment is com-
posed by the other neighboring agents. The latter agents should be in an ac-
quaintance or in a dependency network, interacting using perception of actions.
Two specific perceptions of eco-agent exist: being aggressed and being ham-
pered. Three different actions can then be chosen: reach satisfaction (carrying
the action that reach its objective), aggress another agent, or take flight. It can
be represented as a finite state automaton, with four-intern state: Satisfied (S),
Seeking satisfaction (SS – usually the entry state), Seeking to take flight (ST )
and Taking flight (TF ). A transition relation is then set between these states.

The actions made by an agent in its acquaintance or its dependency network
follow the rules hereafter:

– if an agent is satisfied, it informs his dependencies that they should be sat-
isfied also;

– if an agent cannot be satisfied yet, it seeks the hampering agents among its
acquaintance and aggresses them;

– if an agent seeks to take flight, it seeks the hampering agents among its
acquaintance and aggresses them.

EPS can be applied in very different context [20], from task scheduling (using
”task agents” and ”resources agents”), to production line optimization, includ-
ing simulation of emergent structural turbulence stability in fluid dynamics.
Depending on the applicative requirement, eco-agent should own an identifier or
not. The latter case infers a specific class of EPS so-called Anonymous EPS in
the rest of this paper.

However, the scope of possibilities of eco-agent is not restricted to problem
solving. It is especially adapted to evolving universe simulation. In fact, in an
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eco-agent system, an external stimuli is treated as any other entry of the problem.
Any agent acts locally in response of a perturbation. It is perfectly illustrated
by the Misachieving baby problem [21]. It introduces some malicious external
adversaries, which are very powerful and raise the difficulty of eco-resolution.

3 About Population Protocols

In this section, we briefly present the basic population protocol model and the
community protocol variant, which relaxes the assumption on the anonymity of
agents.

3.1 Basic population protocol

The basic population protocol model, initially introduced in [6], is composed
of a collection of agents, interacting pairwise in an order determined by a fair
scheduler. Each agent has an input value and is represented by a finite state
machine. This agent can only update its state through an interaction. Updates
are defined by a transition function that describes the function f computed by
the system. At each interaction, the agents compute an output value from their
current state and converge eventually to the correct output value, depending to
the inputs initially spread to the agents.

More formally, a population protocol is composed of:

– a complete interaction graph Λ linking a set of n ≥ 2 agents;
– a finite input alphabet Σ;
– a finite output alphabet Y ;
– a finite set of possible agent’s states Q;
– an input function ι : Σ → Q mapping inputs to states;
– an output function ω : Q → Y mapping states to outputs;
– a transition relation δ : Q×Q → Q×Q on pairs of states.

In the sequel, we call (p, q) 7→ (p′, q′) or (p, q, p′, q′) a transition if (p, q, p′, q′) ∈
δ. A transition can occur between two agents’ states only if these two agents have
an interaction. The protocol is deterministic if δ is a function (i.e., at most one
possible transition for each pair in Q2).

A configuration of the system corresponds to an unordered multi-set, con-
taining states of all agents. We denote C → C ′ the fact that a configuration
C ′ can be obtained from C in one step (i.e., with only one transition for one
existing interaction). An execution of the protocol is a finite or infinite sequence
of population configurations C0, C1, C2, . . . such that ∀i, Ci → Ci+1.

As introduced above, the order of the interactions is unpredictable, and is
decided by the scheduler. The scheduler is assumed to be fair, i.e a feasible
configuration cannot be endlessly ignored. In other words, if a configuration C

appears an infinite number of times during an execution, and there exists a
possible step C → C ′, then C ′ must also appear an infinite number of times
in the execution. This ensures that any attainable configuration is eventually
reached.
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3.2 Community protocols

Many variants of the last model exist. In this paper, we focus on the specific
extension so-called community protocol [12], which significantly increases the
computational power of the basic population protocol. This model augments the
basic population protocol model by assigning unique identifiers to agents. All
possible identifiers and a special symbol ⊥ are grouped in an infinite set U . The
difference between basic population protocols and community protocols is the
definition of the set of states: Q = B × Ud where B is the initial definition of
the population protocol’s set of states collapsed to a memory of d identifiers.
As in population protocols, algorithms cannot use any bound on the number of
agents and moreover, U is infinite. In order to maintain the population protocol
spirit in this extended model, some constraints are added: only existing agent
identifiers can be stored in the d slots intended for identifiers of an agent’s state
and no other structural information about identifiers can be used by algorithms.
We consider, for q ∈ Q and id ∈ U , that id ∈ q means that q stores id in one of
its d identifier slots. Thus, community protocols have to verify the two following
formal constraints:

∀(q1, q2, q
′

1, q
′

2) ∈ δ, id ∈ q′1 ∨ id ∈ q′2 ⇒ id ∈ q1 ∨ id ∈ q2. (1)

Consider π a permutation of U with π(⊥) = ⊥. For q = 〈b, u1, u2, . . . , ud〉 ∈ Q,
let π̂(q) = 〈b, π(u1), π(u2), . . . , π(ud)〉 We assume that:

∀(q1, q2, q
′

1, q
′

2) ∈ δ : (π̂(q1), π̂(q2), π̂(q
′

1), π̂(q
′

2)) ∈ δ. (2)

In short, the first assumption ensures that no transition introduce new iden-
tifiers and the second one that identifiers can only be stored or compared for
equality, but not manipulated in any other way. Any population protocol can be
viewed as a community protocol with d = 0.

Finally, a population or community protocol stably computes a function f :
Σ+ → Y if ∀n ∈ N, ∀σ ∈ Σn, every fair execution with n agents initialized with
the elements of σ, eventually stabilizes to output f(σ). That means that the
output value of every agent eventually stabilizes to f(σ).

3.3 Computational power

In order to characterize computable functions of population protocols, Angluin
et al. study a set of decidable predicate restriction. In fact, the basic population
protocol model characterization is precisely identical than the set of semi-linear
predicate [6,22]. A set of semi-linear is a subset of Nd made up of finite union

of linear set such that {
−→
b + k1

−→a1 + k2
−→a2 + · · · + km

−→am}, where
−→
b is the d-

dimension reference vector, −→a1 to −→am are basis vectors, and k1 to km are non-
negative coefficients. A semi-linear predicate on an entry set corresponds to a
predicate that is validated exactly on a semi-linear set.

In [6], Angluin et al. prove that basic population protocols are able to com-
pute any predicate define using Presburger’s arithmetic, which precisely match
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Multi-Agent SystemMulti-Agent Systems

Reactive MAS
Population Protocols

R-MAS-AE

R-MAS-NAE

Anonymous Eco 
Problem Solving

Eco Problem 
Solving

≅

≺≺

Community 
Protocol

Basic Population 
Protocol

≺

≺ ≺

≺

Fig. 1. Relationship between Multi-Agent Systems and Population Protocols

with the set of all the semi-linear predicates. Presburger’s arithmetic is a first-
order theory of the natural number, in the Peano’s arithmetic language without
the multiplication operation (i.e., with only the addition operation, eventually
ordered, besides zero and successor operator). Moreover, any semi-linear predi-
cate should be compute using a population protocol [22].

Guerraoui and Ruppert provide a proof that their extended model drastically
increases the latter power [12]. Indeed, CPs are equivalent to the class of the
symmetric functions in NSPACE(n log n); i.e., any language decided using a
non-deterministic Turing machine using O(S logS) slots, with respect to the
following condition. Consider a function f : Σ+ → Y . f is symmetric if, for
all string y obtained by swapping character from another string x, we have
f(x) = f(y). In other words, ∀x ∈ Σ+, ∀π permutation of x,

f(x) = f(π(x)) ⇔ f is symmetric.

4 Population vs. Reactive Agents

Recently, the probabilistic convergence of MAS has been studied apart [16,17].
A motivation of our work relies on the fact that the latter convergence has yet
been extensively studied in the Population Protocol model [7,8], and these results
should be simply bring from one model to another.

In this section, we prove the classification and the relations between all the
considered models that are summarized in Figure 1 where R-MAS-AE (resp. R-
MAS-NAE) means Reactive MAS with Autonomous Environment (resp. without
Autonomous Environment). This provides a refined classification of MAS and
population protocols. Let us split the proof in three main theorems.
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First of all, the two left horizontal relations of Figure 1 are straightforward
by extension of [2], as they are based on the fact that increasing the model with
unique agent identifier allows to extend the computational power of the former
model. Thus, we obtain that Anonymous-EPS ≺ EPS and PP ≺ CP. On the
other hand, the rightest vertical relation between R-MASs is also straightforward
as an autonomous environment can obviously simulated a non-autonomous envi-
ronment, using a restriction on the environment of the R-MAS-AE. The reverse
side is impossible as agents in R-MAS-NAE are not able to deterministically
compute the unique evolution of their environment. Thus, we trivially obtain
that R-MAS-NAE ≺ R-MAS-AE. In the following sections, we provide proofs of
remaining relations illustrated on Figure 1.

4.1 Anonymous EPS weaker than Basic Population Protocol

We show there that there exists a population protocol P able to simulate any
execution of eco-resolution.

Theorem 1. If f is computable by a protocol from Anonymous EPS, then there
exists a basic population protocol which can compute f .

Proof. Let E an EPS using eco-agents that computes a specific function f . As
presented above, a finite-state machine models eco-agents.

Mapping the domain of the transition function: The domain of any
relation in R or operation in Op is finite (and corresponds to some Cartesian
products of O, the set of objects, with DS the set of possible states of an object
in the environment). Moreover, as elements in R∪Op are functions, theirs ranges
are also finite by definition. Based on these sets, we define DE(g) a specific subset
of the Cartesian product between the domain and the codomain of g ∈ R ∪ Op

(i.e., DE(g) contains each ordered pair such that the first entry is in the domain
of g and the second entry is the mapped element of this first entry by g). Thus,
for any g ∈ R ∪ Op, DE(g) is finite and contains all the possible transitions of
object states, based on the knowledge of a surrounding object sub-state in the
environment.

Design of the basic population protocol for the purpose of simu-
lation: Consider the following basic population protocol P, represented by the
7-uplet (Λ,Σ, Y,Q, ι, ω, δ). Consider a complete interaction graph Λ. Let the set
of agent states in P be identical to the set of object states, i.e., Q = DS . Con-
sider that Σ and Y are the same as the input and output sets of E , if they exist.
In this case, ι and ω are the same functions than the ones which respectively
associate the input set of E to DS , and DS to the output set of E . Conversely, if
no specific input and output sets are defined in E , then Σ = Y = DS and ι ≡ ω

corresponds to the identity function. Finally, the transition function δ is defined
as follows.

∀g ∈ R ∪Op, ∀(sl, sr, s
′

l) ∈ DE(g), ∃(sr, sl, s
′

r) ∈ DE(g) s.t. (sl, sr, s
′

l, s
′

r) ∈ δ.

On the environment and the fair scheduler: Communication exchange
between agents is an inherent characteristic of EPS. However, in this class, the



Nothing can compare with a population, besides agents 11

environment is only used to model the ability for two agents, or an agent and
an object, to pairwise interact. Therefore, as the scheduler of P is mandatory
fair, any possible interaction eventually happens and makes sufficient condition
to obtain a correct execution of E , using the aforementioned P.

Thus, there exists a basic population protocol P, which simulates the con-
sidered EPS E and computes the function f . Then, for any function computable
by an EPS, there exists a basic population protocol, which stably computes this
function. ⊓⊔

On the other hand, the reverse of Theorem 1 is not valid. In fact, there exists
some functions that are computable by a population protocol, but no anonymous
EPS is able to compute the same function. This is mainly due to the global
fairness property associated to the Population Protocol model. In some EPS,
it is possible to construct a loop-based infinite execution that endlessly avoid a
given reachable system state, belying the aforementioned fairness property.

4.2 EPS weaker than Community Protocol

Along the same lines, we prove here the following theorem in order to prove that
it is possible to simulate any EPS using a community protocol.

Theorem 2. If f is computable by a protocol from EPS, then there exists a
community protocol which can compute f .

Proof. Let E an EPS using eco-agents that computes a specific function f . Thus,
each eco-agent in the system is aware of its unique identifier. Consider the fol-
lowing community protocol C.

Preliminary assumptions on C: We assume that, in the community pro-
tocol used on C, agents are uniquely identified, and a unique agent is assigned a
specific identifier idL. This agent is considered as the leader by all other agents.
In this specific community protocol, we assume that this leader is aware of the
size of the system2 (denoted n in the sequel).

Design of the community protocol for the purpose of simulation:
The only difference between a basic population protocol and a community pro-
tocol consists in the definition of the set of states (i.e., Q = B×Ud) and the two
constraints on the state’s identifier part (i.e., the part belonging to Ud cannot
be used freely). Similarly, the only difference between Anonymous-EPS and EPS
remains on the use of identifiers.

Then, due to the proof of Theorem 1, the community protocol C has to be
designed to simulate a given EPS E . Then, we can still consider the fair scheduler
as the environment. In order to do that, the state of an agent in C is the same than
for the eco-resolution one, enriched by its own coordinate in the environment.

2 This assumption is only expected for the synchronization barrier. It can be relaxed
using the probabilistic clock phase mechanism proposed for population protocols
in [7].



12 Yann Busnel

Dealing with the environment simulation in C: For each interaction,
δ is applied on involved agents if and only if these two agents are in adjacent
coordinates. Moreover, some specific state required surrounding environment
knowledge. For instance, to simulate the Taking Flight state, the corresponding
agent must check if there is any space in front of it. In order to verify such
property, C uses a synchronization barrier to check it as follows.

Consider an agent id that fall into ST state. In this state, it only waits
until it encounters the agent idL. During its next interaction with idL, id sets
its state to wait and idL store the current coordinates of id in its own state.
For all futher interaction between idL and others agents, idL store the position
of this object/agent and the latter also sets its state to wait. Thus, all agents
eventually stabilize to the wait state, and the number of coordinated stored on
idL eventually converges to n (the number of agents in the population). At this
point, all agents have reached the synchronization barrier.

After the barrier, idL enables all agents to resume their own execution by
release their wait state as described in [2], and gradually remove stored coor-
dinates after these interactions. The set of these stored coordinated eventually
becomes empty and all agents eventually leave the wait state of the last barrier,
and are ready for their next action. In the meanwhile, idL waits to first interact
with id before starting this releasing phase. This ensure that id will be aware
of the position of all the objects in the environment and is then able to check if
there is an empty space in front of it.

In conclusion, if E computes the function f , then the community protocol C
simulates the behavior of E and also computes the function f . ⊓⊔

Again, the opposite of Theorem 2 cannot be verified, due to the same argu-
ment about to the fairness property (see Section 4.1).

4.3 R-MAS-NAE is equivalent to Community Protocol

Finally, we prove here the following theorem in order to prove the equivalence
between community protocols and R-MAS-NAE.

Theorem 3. A predicate is computable by a community protocol if and only if
it can be computed by a Reactive MAS without Autonomous Environment (R-
MAS-NAE).

Proof. The proof of Theorem 3 is directly inferred from the statements of Lem-
mata 1 and 2, which show respectively both implications of this equivalence. ⊓⊔

Consider the first implication of this theorem. Based on the usage of the
environment as the scheduler, the following lemma is almost straightforward.

Lemma 1. For each f computable by a community protocol, there exists a R-
MAS-NAE which compute f .
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Proof. Let C the community protocol computing f and defined by the 7-tuples
(Λ,Σ, Y,Q, ι, ω, δ). Consider the R-MAS-NAE M described below. We have to
show that M simulates C. First of all, each agent in Λ is hosted by a specific
agent of M. Input, output and state sets are the same in M than in C. A fortiori,
both map function ι and ω remain identical in M.

Dealing with the transition function: The M’s relations R and opera-
tions Op are defined from δ: the universe laws is only composed of the possible
transition extracted from δ. Moreover, we consider a purely communication MAS
(see Section 2.2) where R is restricted to pairwise communication (i.e., each time
agents interact with others, they could only operate a pairwise transformation
state that exists in δ). Thus, the sequence of population configurations is valid
and represents the community protocol C, as it only stems from the transition
function δ using pairwise interactions.

On the fairness assumption: The last assumption to verify is the fair-
ness condition. In R-MAS-NAE, the scheduler is fully defined by the (non-
autonomous) environment evolution, which, as we mentioned before, potentially
leads to any possible communication according to the current distance between
each agent. In that context, every possible finite scheduling has a non-null prob-
ability to happen. Thus, every possible transitions between two system configu-
rations C → C ′ has a non-null probability to happen. The fairness assumption
is then verified.

We are then able to conclude that M simulates the community protocol C,
which computes the function f . ⊓⊔

Finally, let now show the opposite of Lemma 1, corresponding to the second
part of Theorem 3.

Lemma 2. For each f computable by a R-MAS-NAE, there exists a community
protocol which computes f .

Proof. Let M the given R-MAS-NAE and consider the following community
protocol C.

Summary of agent state requirement: Due to space constraints, we do
not present the formal mapping between possible agent states and the transition
function, which are trivially extended from the proof of Theorem 2.

Dealing with the environment simulation in C: Consider a specific
agent in C that store the whole state of the environment of M, which has a finish
state (as the set of object is finished). Following the outline of the rendez-vous
mechanism presented in the proof of Theorem 2 (and in more details in [2]) with
the environment agent as the leader, it becomes simple to simulated M with C.
Indeed, as the environment is not autonomous, there is no change in the latter
one without direct interaction with an object of M. Thus, each action of any
agent of M should infer a synchronization barrier, an update of the environment
(on the aforementioned dedicated agent), and finally, a global release that lets
the other agent opportunity to also interact with the environment.

In conclusion, if M computes f , then the community protocol C simulates
the behavior of M and also computes the function f . ⊓⊔
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We then have proved all the claims presented in Figure 1.

5 Conclusion and future works

The main contribution of this paper is to establish a correlation between Pop-
ulation Protocols and Multi (reactive) Agents Systems. Both aim at achieving
an emerging global behavior from a set of local interactions in a fully decentral-
ized manner. This parallel between two worlds, explored so far independently,
offers several extremely interesting outcomes, acknowledge these similarities and
leverage them in both contexts. These results can be leveraged for existing re-
sults as well as results to come in both areas. For instance, the intensive re-
search around structured language for MAS (as KQML[23] or FIPA ACL[24]
for instance) should be mapped to the population theory. That should lead to a
standardization of high-level communication between agents. From the inverse,
the theoretical analysis of Population Protocols models could resolve the issue
of a lack of computational power analysis with different MAS models.
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