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Chapter 1

Introduction

As a result of economical and social development the global demand for transport
has grown rapidly over the past few decades, and this trend is likely to continue in
the near future for many modes of transportation. Furthermore, due to increasing
environmental concerns, the reliance on low-pollution alternatives such as rail will
increase for both freight and passenger transport.

One of the major challenges posed by this development is that the growth
rate of demand exceeds the rate of expansion of infrastructure, as constructing
infrastructure is both enormously expensive and difficult to realize in urbanized
areas. Hence, governments and transport companies make an ever-increasing effort
to improve the utilization of existing infrastructure. The passenger railway sector,
which is the topic of this thesis, attempts to cope with the growing number of
passengers by increasing the number of trains moving over the existing railway
network.

This focus on better utilization of infrastructure leads to many challenging
optimization problems that can no longer be solved (efficiently) by hand. Passenger
railway operators have to create and operate denser timetables, and plan the
maintenance, movement and storage of more rolling stock.

Significant improvements have been made to the timetabling by the Oper-
ations Research community in the last few decades, enabling railway operators
nowadays to construct efficient timetables with the help of automated decision
support systems. In contrast to these advancements at the railway network level,
the fine-grained logistical problem of planning train movements and maintenance
at the major stations is still solved manually.

In this thesis, we aim to develop methods that support passenger railway op-
erators in the planning process at major stations and their nearby railway yards.
Especially the planning at so-called service yards, where trains are parked, cleaned
and maintained during the time that they do not need to drive, is very challeng-
ing. It consists of storing surplus trains at the yards, scheduling train maintenance,
planning the necessary train movements, and assigning personnel to all tasks. The
methods have to be able to construct feasible solutions for real-world planning

1



1.1. Passenger Railway Transportation 2

Figure 1.1: Examples of electrical multiple unit trains, both of the type ICM. The
sub-types ICM-3 and ICM-4 indicate the number of carriages in the train unit.

problems, and the solutions should be resilient to the day-to-day disturbances
that occur on the railway network.

In the rest of this chapter we start by providing a high-level overview of basic
concepts and the planning problems that typically arise in the passenger railway
sector. We continue with a more detailed description of the train shunting and
service scheduling problem in Section 1.2, which is the main focus of this thesis.
Literature related to this topic is discussed in Section 1.3. We conclude this chapter
with an overview of our contribution to the train shunting problem in Section 1.4
and the outline of the thesis in Section 1.5.

1.1 Passenger Railway Transportation

The goal of passenger railway operators is to efficiently transport passengers over
the railway network from their origin to their destination. The railway network
consists of train stations, which are the railway hubs of the network, and railway
tracks that form the edges of the network by connecting the stations. Passengers
are transported over the network by the rolling stock of the passenger railway
operators.

Modern rolling stock typically consists of electrical multiple unit (EMU) trains,
which are self-propelled, permanently coupled carriages with driver cabins on both
ends. One of the main advantages of electrical multiple units is that they can move
bidirectionally without the need for a dedicated locomotive. We refer to a single
electrical multiple unit as a train unit. The train units are classified by their train
type. Further classification into train sub-types can be done based on the number
of carriages in the train unit, as can be seen in Figure 1.1. Train units of the same
train type can be coupled to transport more passengers. A train is a group of one
or more train units that are coupled. One train driver needs to be located in the
front unit to operate a train.

Planning problems arise for railway operators both network-wide and inside the
individual railway hubs. In the literature the network planning process is usually
split into sequential phases:

1. line planning : determining the lines, i.e., paths over the railway network,
that the railway operator will service as well as the servicing frequencies of
those lines;

2. timetabling : deciding the arrival and departure time of all stops on the lines
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based on the servicing frequencies;

3. rolling stock scheduling : assigning (compositions of) train types available in
the pool of rolling stock to the trips in the timetable.

4. crew scheduling : assigning personnel to the trips in the timetable.

In order to solve the high-level network planning problems the logistical chal-
lenges within the railway hubs are usually simplified to flow balancing constraints
on the train sub-types and storage capacity constraints. The storage capacity pro-
vided by some of the hubs is necessary, since the number of trains active on the
railway network fluctuates over the day. The number of passengers on a railway
network will typically reach its peak in the morning and evening. During these
rush hours, most of the rolling stock on the network is used to accommodate the
flux of commuters. Outside the peak hours fewer trains are needed to serve all
passengers. The resulting surplus of rolling stock is parked off the main railway
network at the major stations. The problem of planning the train movements at
the railway hubs resulting from the network plan is solved for each of the hubs
individually.

1.2 Train Shunting and Service Scheduling

The hubs in the railway network are centered around the major stations and often
contain one or more railway yards, or shunting yards. These railway yards are a
collection of tracks, connected by switches, where the rolling stock of passenger
railway operators can be stored. In the railway sector, parking trains at the yards
is known as stabling, and shunting refers to moving trains that are not actively in
service on the main railway network. The tracks on the shunting yard are classified
into free tracks, which are accessible from both sides, and LIFO tracks that can
be accessed from only one direction.

Since the railway yards are located in urban areas, their size, and thus their
storage capacity, is very limited. Dense shunting yard layouts are used to exploit
the available space efficiently. With storage capacity utilization of up to 90%
on some of the yards, this results in highly constrained train movements on the
infrastructure.

The process of operating a shunting yard is called shunting and has the follow-
ing three components: matching, parking, and routing. In the matching part we
have to assign arriving train units to (positions in) departing trains such that the
required train composition — an ordered sequence of train sub-types — is satis-
fied. Train units of the same sub-type are interchangeable in the matching, with
the exception of units with scheduled large maintenance. The problem of finding
a feasible shunting plan for the combined parking, routing and matching problem,
in which every train departs on time from the shunting yard, is commonly known
as the Train Unit Shunting Problem (TUSP).

While solving the shunting problem is in itself already a considerable challenge
(Lentink et al. (2006)), it is even more difficult for shunting yards that provide
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additional services. To achieve high passenger satisfaction, regular maintenance
and cleaning of trains is crucial. However, due to the dense timetable and the
high utilization of both railway lines and rolling stock, passenger railway operators
cannot afford to take trains out of service frequently. Therefore smaller service
activities, such as cleaning the interior, washing, and maintenance inspections
are carried out during off-peak breaks of the trains. This is done at specialized
shunting yards, called service sites. The service activities are constrained by the
availability of resources such as maintenance crews or cleaning installations, and
have to be completed before the train departs from the service site. Moreover, they
have to take place at specific locations at the service site, which requires additional
shunting moves. Shunting plans for service sites have to include a feasible service
activity schedule, detailing for each service task when, and by which resource it
will be processed. We will refer to the resulting planning problem as the Train
Unit Shunting Problem with Service Scheduling (TUSPwSS).

Furthermore, the activities in the shunting plan have to be performed by skilled
staff members. Personnel is a scarce resource, and hence their availability has a
large impact on the feasibility of a shunting plan. Due to the sheer size of a shunting
yard, the number of tasks that an employee can perform is severely limited by the
walking distances between the locations of consecutive tasks.

The objective in the planning problem is to find a feasible solution, which is a
shunting and service schedule that can be executed as planned without violating
any physical or safety constraints on the railway yard. Constructing a conflict-
free shunting and service schedule by hand is a time-consuming task, even for
the experienced planners. Recall that many railway operators are increasing their
rolling stock, which makes this task even more complicated. Therefore, automated
decision support tools need to be developed to help the human planners cope with
the complex planning and scheduling problems at the service sites.

From a computational point of view, finding feasible solutions for the TUSP-
wSS is an extremely difficult problem. It combines several well-known NP-hard
problems. The service task scheduling can be viewed as an Open Shop Scheduling
Problem with machine flexibility (multiple identical resources), buffer and blocking
constraints (shunting), and release dates and deadlines (based on the timetable).
To determine whether all trains can be parked, a Bin Packing Problem has to
be solved. Furthermore, a parked train is allowed to be reallocated to a differ-
ent track if, for example, it is blocking another train’s movement. Hence, the
routing in the shunting plan strongly resembles sliding block puzzles such as the
Rush Hour Problem (see Flake et al. (2002)). Mathematical programming tech-
niques have been thoroughly investigated for the basic shunting problem (see e.g.
Lentink et al. (2006)) with varying success, but typically do not generalize well
to the resource-constrained scheduling problems that we have here because of the
planning of washing and cleaning; furthermore, these cannot deal with the addition
of relocating parked trains.

As challenging as these individual problems are, the algorithmic complexity of
constructing shunting and service plans arises mainly from the strong dependencies
between the components. The interaction between the different elements makes it
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practically impossible to effectively decompose the problem into multiple smaller,
largely independent problems.

Once the hurdle of constructing a feasible solution is crossed, new challenges
arise when implementing shunting plans in an uncertain real-world setting. Dis-
turbances occurring on the railway network result in delayed train arrivals at the
shunting yard, and durations of service tasks will inevitably deviate from their
norm durations. When these disruptions conflict with the current shunting plan,
railway yard operators have to make ad-hoc modifications to the plan. Since dis-
turbances occur frequently, railway yard operators should receive shunting plans
that are capable of absorbing most of the small, day-to-day disruptions. To achieve
this goal we first have to determine which solution components contribute to the
robustness of shunting plans. Then we have to adapt our planning methods with
these insights to find solutions that score highly on the robustness metrics.

1.3 Literature Overview

The Train Unit Shunting Problem (TUSP) was first introduced by Freling et al.
(2005) and consists of matching train units in arriving trains to positions in the
departing trains, and parking these train units on a track at the shunting yard. The
routing of the trains on the shunting yard is not taken into account. The authors
use a decomposition approach in which a train unit matching is constructed first.
In the matching problem, every train unit in each arriving train is assigned to
exactly one position in a departing train, such that the departing trains consist of
the correct train types, and the number of times arriving trains have to be split
into smaller trains is minimized. The authors formulate the matching problem
as a mixed integer linear program and solve it using the standard MIP solver
CPLEX. For the parking problem, the authors assume that the arriving trains
are split based on the matching on the arrival track and that departing trains
are combined on the departure track. Between arrival and departure, the trains
are parked on a track at the shunting yard. A column generation approach, with
sets of trains that can be parked on the same track as columns, is used to find a
feasible parking plan. The authors propose a dynamic programming algorithm to
solve the pricing problem. They generated a shunting plan for a typical weekday
at the shunting yard in Zwolle, consisting of eighty train units to be parked, in
roughly half an hour.

In Lentink et al. (2006), the train unit shunting problem is extended with the
subproblem of finding a route over the shunting yard for each train movement.
They propose a four-stage approach to construct solutions for this variant of the
TUSP. First a matching of train units is determined using the algorithm proposed
by Freling et al. (2005). Second they present a graph representation of the physical
layout of a shunting yard to estimate the duration of moving a train from its arrival
track to some parking track and from there to its departure track. In the third step
these estimates are included in the objective of the column generation approach
proposed by Freling et al. (2005) to prefer parking assignments with low travel
times. Finally, the actual routes are computed by a heuristic using the graph
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representation and the track occupation resulting from the previous step. The
authors have shown that the time needed to generate a feasible shunting plan,
including routing, for the shunting yard in Zwolle was around twenty minutes
with their approach.

Instead of solving all components of the TUSP sequentially, Kroon et al. (2006)
construct solutions for the matching and parking subproblem simultaneously. This
greatly increases the complexity of the problem, resulting in a mathematical for-
mulation for the integrated approach that contains a large number of train collision
constraints. Testing the model on a realistic case at the shunting yard in Zwolle
revealed that there were over 400.000 constraints, which was too much for the
CPLEX solver to find a feasible solution in a reasonable amount of time. To re-
duce the number of train collision constraints, the authors grouped these in clique
constraints. This allowed them to find feasible solutions for their test case. Unfor-
tunately, even with the reduction in constraints, the computation time increases
rapidly for larger problems, taking several hours to complete.

Several alternative solution methods to solve the TUSP have been proposed by
Haahr et al. (2015). They compared constraint programming, column generation
and two-staged MIP models with a greedy construction heuristic and a reference
MIP formulation on TUSP instances with LIFO tracks. Their results showed that
exact techniques are outperformed by the greedy and two-staged heuristics due to
excessive memory and computation time requirements.

In all these approaches, the flexibility of a shunting yard is not used to its full
extent: parked trains will remain on the same track for the entire duration of their
stay at the shunting yard. That is, a train is not allowed to be moved to another
location once it has been parked. In Chapter 2 we propose a heuristic that allows
trains to be relocated at a different track if that is beneficial to the shunting plan,
thus increasing the planning flexibility.

An integrated approach with parking reallocation has been studied by Van
den Akker et al. (2008) as well. They propose a greedy heuristic and a dynamic
programming algorithm to solve the combined matching and parking problem.
The heuristic uses track assignment and matching rules that select the locally best
action on arrival and departure such that train units are parked in the correct order
for the departing trains. The dynamic programming approach looks at all possible
shunting track or matching assignments at each event on the shunting yard, and
relies heavily on pruning nodes in the dynamic programming network that are
unlikely to lead to the optimal solution as a way to reduce its computation time.
In contrast to the model formulated by Kroon et al. (2006), arriving or departing
trains are allowed to wait at the platform to avoid conflicts at the shunting yard.
Furthermore, the dynamic programming algorithm is also capable of shunting a
parked train unit to a different track, resulting in much more flexibility in the
shunting plans. This property is difficult to include in the linear programming
approach proposed by Kroon et al. (2006), due to the exponential increase in
variables and constraints, even when allowing each parking interval to be split
only once. The greedy heuristic is quite fast, but it is not capable of finding
feasible solutions for complex problems. Even with the pruning rules, the exact
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algorithm requires more than ten minutes to find a plan for a dozen train units,
making it hard to use in practice.

In the work of Lentink (2006) a practical extension to the TUSP is studied.
Besides matching, parking and routing, the train units on a service site have to be
cleaned as well. The cleaning subproblem is a crew scheduling problem, in which
each train unit should be cleaned by a crew before it departs from the site. The
first three steps are solved using the methods proposed in Lentink et al. (2006).
The schedule for the cleaning crews is constructed last. The cleaning problem
is modeled as a single machine scheduling problem without preemption, where
each cleaning job needs to be finished in a time-window, and the speed of the
machine varies over time to reflect the size of the cleaning crew in each shift. A
mathematical model based on this formulation, in which the planning horizon is
discretized into one-minute-blocks, is solved using CPLEX. In this thesis we extend
the cleaning problem to the general problem of scheduling service tasks. Instead
of viewing the cleaning as a single machine scheduling problem, we formulate
it, together with additional service tasks, as a resource constrained scheduling
problem, where the resources are only accessible from a subset of the tracks. See
Chapter 2 for a formal description of the service scheduling sub-problem.

An integral approach is used by Jacobsen et al. (2011) to solve a train parking
and maintenance problem. Each train has to be maintained at one facility or
workshop located on the service site and parked before and after the service task.
Using three meta-heuristics, Guided Local Search, Guided Fast Local Search and
Simulated Annealing, the authors attempt to construct schedules such that no
trains are blocked by other trains, no departure delays occur and the makespan of
the service tasks is minimized. Their results show that the local search approaches
provide results close to shunting plans constructed by the MIP model, while taking
only seconds of computation time compared to the twelve hours needed by the MIP
solver. However, the largest instances contain no more than ten trains, with one
maintenance task per train, which is not representative of real-world scenarios.
The scope of their study is limited to task scheduling and parking. As such,
the absence of matching and routing makes it difficult to directly translate their
heuristics to the train unit scheduling problem with service scheduling.

1.4 Our Contribution

Whereas the existing techniques from literature described above can often solve
sub-problems of the shunting problem reasonably well, constructing feasible solu-
tions for realistic instances of the complete shunting and servicing problem remains
difficult with these approaches. Exact models of the problem are challenging to
formulate and struggle with large computation times due to the tightly inter-
twined sub-problems. Furthermore, decomposition heuristics tailored to specific
sub-problems are difficult to generalize without a significant drop in performance
on the real-world problem instances, in which the railway yards operate close to
their maximum capacity.

The main scientific contribution of this thesis is that we present in Chapters 2
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and 5 the first algorithm capable of solving the complete Train Unit Shunting
Problem with Service Scheduling (TUSPwSS) for real-world instances. It is based
on a new partial ordering schedule of the shunting and service plan, as well as a
local search algorithm that exploits the partial ordering to find solutions for the
TUSPwSS efficiently.

A further contribution of this thesis is the identification of strong predictors
of the robustness of shunting plans to small disturbances. As we will discuss
in more detail in Chapter 3, the literature is divided over both the definition of
schedule robustness and the best metrics to quantify this robustness. We provide
theoretical and numerical insights in several existing and new robustness metrics in
the general context of scheduling with deadlines under uncertain release dates and
task durations, as well as the application to the specific domain of train shunting.

In addition to these scientific contributions, the research in this thesis makes
a significant and direct impact on development of automated decision support
systems for passenger railway yards in the Netherlands. Firstly, our local search
method is already in use by NS to more accurately estimate the logistic capacity
of shunting yards in order to support tactical decision making.

Secondly, in close cooperation with NS we have extended the scope of our
local search algorithm from single railway yards to major stations with multiple
nearby yards. Currently, NS is performing a pilot to evaluate the method on real-
life instances of the major station Eindhoven. As preliminary results of both the
technical performance and the acceptance by the planners are promising, the local
search approach is on track to be implemented on the railway hubs operated by
NS in the coming years.

Thirdly, our research on robustness in scheduling can smoothen the imple-
mentation of shunting plans at the railway yards by narrowing the gap between
“feasible according to the planner” and “feasible in practice”. The robustness
metrics help planners to evaluate the behavior of shunting plans in an uncertain
environment, and the increased robustness of solutions constructed by the local
search reduces the necessity of ad-hoc planning by the railway yard operators.

1.5 Thesis Outline

In Chapter 2, which is based on Van den Broek et al. (2021), we provide a formal
description of the TUSPwSS without personnel rostering and present an integrated
solution method for this planning problem. We describe a partial order schedule
representation that captures the full problem, and we present a local search algo-
rithm that utilizes the partial ordering. The proposed solution method is compared
to an existing Mixed Integer Linear Program in a computational study on realis-
tic instances provided by the Dutch passenger railway operator NS. We show that
our local search algorithm is the first method to solve real-world problem instances
of the shunting and scheduling problem. It even outperforms current algorithms
when the train unit shunting problem is considered in isolation, i.e. without service
tasks. Currently, a real-life pilot performed with planners of NS, and preliminary
results show that the planning process can be sped up significantly with the local
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search approach as decision support system.

To improve the resilience of the shunting and service plans to every-day dis-
turbances, we start in Chapter 3 with an overview of methods to estimate the
robustness of solutions to the general problem of scheduling activities subject to
temporal and resource constraints as well as deadlines. This problem emerges nat-
urally in numerous application domains such as project management, production
planning, and public transport. The schedules often have to be implemented in
an uncertain environment, where disturbances cause deviations in the duration,
release date or deadline of activities. Since these disruptions are not known in
the planning phase, we must have schedules that are robust, i.e., capable of ab-
sorbing the disturbances without large deteriorations of the solution quality. Due
to the complexity of defining and computing the robustness of a schedule, many
surrogate robustness measures have been proposed in literature. In this chapter,
we propose new robustness measures and study several properties of both the new
and existing measures.

We continue with the subject of robustness in Chapter 4, where we apply the
robustness measures to the field of shunting and service planning. Both existing
and the newly proposed robustness measures are compared with the results of a
stochastic discrete-event simulation study to determine which measures can be ap-
plied in practice to obtain good approximations of the true robustness of shunting
plans. The robustness measures that showed promising results are then included
in the objective function of the local search algorithm introduced in Chapter 2
to investigate their impact on the robustness of the generated solutions. A large
number of shunting plans are generated with the local search guided by the dif-
ferent robustness measures for real-world instances of a shunting yard operated
by NS, and the robustness of these plans is approximated using the discrete-event
simulation to identify which robustness measures guide the local search to highly
robust solutions. We show that the addition of a robustness measure based on esti-
mating the completion times significantly improves the robustness of the solutions
generated by the local search, outperforming typical minimum slack robustness
measures at the cost of computation time. Chapters 3 and 4 are based on the
papers Van den Broek et al. (2018) and Van den Broek et al. (2019).

In Chapter 5 we extend the problem in Chapter 2 with personnel rostering.
That is, we consider the integration of the staff scheduling into the planning of the
railway yards. As the yards often consist of several kilometers of railway track,
the main challenge in finding efficient staff schedules arises from the potentially
large walking distances between activities. We present two efficient heuristics for
staff assignment. These methods are integrated into a local search framework to
find feasible solutions to the Train Unit Shunting Problem with service scheduling
and staff requirements. To the best of our knowledge, this is the first algorithm
to solve the complete version of this problem. On a set of 300 instances of the
train unit shunting problem with staff scheduling on a real-world railway yard,
the best-performing heuristic integrated into the local search approach solves 97%
of the instances within three minutes on average. Furthermore, the integrated
approach is also part of the pilot conducted by NS to support their planners.
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To further investigate the quality of the solutions produced by the heuristics in
Chapter 5, we propose several mathematical formulations based on mixed integer
programming and the branch and price procedure in Chapter 6. The bounds
obtained by the exact methods for the personnel rostering problem are used to
evaluate the heuristic solutions. The two personnel rostering Chapters 5 and 6 are
extensions of the paper Van den Broek et al. (2020).

We conclude this thesis in Chapter 7 with an overview of the insights acquired
in the preceding chapters, as well as some open problems that can be explored to
improve our ability to solve real-world shunting problems.



Chapter 2

Train Unit Shunting with
Service Scheduling

2.1 Introduction

In this chapter we consider the Train Unit Shunting Problem with Service Schedul-
ing (TUSPwSS), which is the problem of finding feasible plans for the operation
of railway yards with service facilities. The problem originates from NS, the main
passenger railway operator in the Netherlands. As the amount of rolling stock is
being increased to match the passenger growth and options to expand their railway
yards are limited, NS is faced with the increasingly difficult challenge of parking
and maintaining their trains on the available shunting yards.

TUSPwSS consists of matching train units arriving on a shunting yard to de-
parting trains, scheduling service tasks such as cleaning and maintenance on the
available resources, and parking the trains on the available tracks such that the
railway yard can operate conflict-free. The restricted problem of only matching,
parking and routing the trains is known as the Train Unit Shunting Problem.
The integration of these different planning components, which are in themselves
NP-hard problems, leads to a computationally extremely difficult problem.

The goal of this chapter is to develop an algorithm for the construction of
conflict-free solutions covering all these aspects of the shunting and service pro-
cess, thereby supporting the planners of NS in their effort to utilize the existing
railway yards more efficiently. To this end we develop a local search algorithm that
operates on a partial order representation of solutions to the complete shunting
and service problem. Based on the computational study in this chapter we con-
clude that, as far as we know, this is the first method to solve real-world problem
instances of the complete train unit problem with service scheduling.

The remainder of this chapter is structured as follows. We start with a prob-
lem description of the Train Unit Shunting Problem with Service Scheduling in
Section 2.2. In Section 2.3 we outline our algorithm by formulating a partial or-
dering schedule of the shunting and service plan that captures the entire planning

11
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problem, and we propose local search neighborhoods that operate on this partial
ordering. In Section 2.4 the solution method is tested on realistic problem instances
based on the service sites operated by NS. We address several challenges that arise
when widening the scope of the problem from individual railway yards to major
station areas in Section 2.5. Finally, we present our conclusions in Section 2.6.

2.2 Problem Description

The Train Unit Shunting Problem with Service Scheduling (TUSPwSS) is an ex-
tension of the Train Unit Shunting Problem (TUSP) as formulated by Kroon et
al. (2006). The main input of the TUSP is a timetable detailing the arrivals and
departures of trains and a description of the infrastructural layout of the shunting
yard. To include the service scheduling component at the service sites, the input
of the TUSPwSS is supplemented with a set of resources as well as the service
activities of each train unit that need to be completed before it leaves the service
site.

All arrivals and departures of trains on the shunting yard are described by
the timetable, and the shunting yard is assumed to be empty before the first
arrival and after the last departure. Note that a surplus of rolling stock at the
start or end of the planning horizon can be modeled as early arrivals or late
departures, respectively. The entries in the timetable consist of the scheduled
time of the arrival or departure, the track by which the train will enter or exit the
shunting yard, and a specification of the train. The rolling stock of NS consists of
bi-directional and self-propelling railway vehicles that move without a dedicated
locomotive. Recall from Chapter 1 that train units are classified according to
train type and train sub-type. Train units of the same type can be coupled to form
longer combinations; a train is a coupled sequence of one or more train units. The
sub-type indicates the number of carriages — and thus the length — of the train
unit. In TUSPwSS, the level of detail of a train specification depends on whether
the entry corresponds to an arrival or a departure. The timetable specifies the
exact sequence of physical train units in an arrival, whereas for a departing train,
it only indicates the train composition, which is a sequence of train sub-types.
This provides the flexibility to the planners at the shunting yard to assign a train
unit to any position with a matching train sub-type in the departing compositions.
The scheduled arrival times in the timetable are assumed to be deterministic, i.e.
we assume that all trains will arrive on time.

The service sites operated by NS consist of a set of tracks connected by switches.
Tracks can either be dead-end (LIFO-tracks) or accessible from both sides (free
tracks). The length of each track indicates the maximum total length of trains that
can be parked simultaneously on that track. The duration of train movements is
a function of the paths taken by the trains over the shunting yard. This function
is part of the input as well. A service site also includes a set of resources, such
as cleaning equipment or maintenance crews. Each resource can only operate on
trains parked on specific tracks.

Each train unit t at the service site has a set of service activities that have
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Figure 2.1: The “Kleine Binckhorst” shunting yard is operated by NS. The yard
contains a washing installation at track 63, a cleaning platform between tracks 61
and 62, and an inspection pit at track 64. Tracks 52 to 59 are used to park trains.
The lengths of these parking tracks range from 202 to 480 meters, and each track
can contain multiple train units.
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to be completed before t leaves the site. Each service activity s for train t has
a given processing time ps,t and requires one resource of a specific type for its
entire duration. Preemption of activities is not allowed, and each resource can
only process a single activity at a time. Furthermore, different service activities
of the same train unit or different coupled train units cannot be performed simul-
taneously. We assume in this study that there are no predetermined precedence
relations between the service activities.

The objective of the TUSPwSS is to decide whether there exists a feasible
shunting and service plan. TUSPwSS consists of the five components below.

1. Matching: Arriving train units must be assigned to distinct positions in
departing trains such that the train unit type matches the required type in
the train composition. All departing trains should leave the shunting yard
on time; shunting plans with delayed departures are not feasible.

2. Combining and Splitting: As a result of the arrival-departure matching,
arriving trains might have to be split and reassembled to form the departure
composition. Splitting and combining train units takes time, up to several
minutes in practice.

3. Parking: During its stay on the shunting yard, whenever a train is not
moving, it is parked (or stabled) on some track on the shunting yard. The
length of a track should not be exceeded by the total length of trains that
are parked simultaneously on it. A train can only depart from the track it
is positioned on if it is not blocked by other trains on at least one accessible
side of the track. Trains are allowed to relocate during their stay at the
shunting yard. Relocating a train requires an additional train movement.

4. Routing: For each train movement, the shunting plan should contain a path
over the infrastructure. Following the notation of Gallo et al. (2001), a train
collision or crossing occurs whenever the movement of a train is obstructed
by another train. Shunting plans containing crossings are not feasible. The
duration of a train movement is determined by its path as well as the driving
characteristics of the shunting yard.

5. Service Scheduling: All service activities of the train units should be
scheduled such that they are completed before their corresponding train unit
departs from the service site, and each resource can only process one task at
the same time.

In this chapter we assume that sufficient staff members are available at the
yard to perform the activities. We relax this assumption in Chapters 5 and 6 by
introducing a sixth component to the shunting process, namely the Personnel
Scheduling sub-problem, and proposing solution methods for this rostering sub-
problem.
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Figure 2.2: An example of a service site. Trains enter and exit the site over track 0
and can only be parked on tracks 1 to 4. The tracks are connected by two switches.
The length of the parking tracks is displayed in meters. A cleaning platform allows
internal cleaning tasks to be performed on trains positioned on track 3.

Arriving Train Time
(1, 2) 12:00
(3) 12:45

Departing Train Time
(ICM-3) 13:00
(ICM-4, ICM-3) 14:00

Table 2.1: The arrivals and departures in the example scenario. The departure
trains specify the composition of sub-types instead of the train units, since the
assignment is part of the matching problem. The ordering of the train units or
sub-types indicates from left to right the order of the train units or sub-types in
the train on the service site.

2.2.1 An illustration of the TUSPwSS

To illustrate the complexity of the train unit shunting problem with service schedul-
ing, let us consider a simple scenario of three train units at the service site depicted
in Figure 2.2. There are two arriving and two departing trains in this example,
which are scheduled according to the timetable in Table 2.1. Note that that the
sequences of train units in this table are from left to right. When a train moves
to the left side of the shunting yard, the left-most train unit in the sequence is at
the head of the train.

The train units are of the ICM type, depicted in Figure 1.1 and described in
Table 2.2. Two train units are scheduled for internal cleaning, as can be seen
in Table 2.2. In this example, we assume that every train movement takes five
minutes. Furthermore, the combining and splitting of trains requires ten minutes.

Recall that to construct a shunting plan we have to decide on

� the assignment of incoming train units to positions in outgoing trains;

� how we are splitting and combining the trains;

� the order of service activities such as cleaning;

� which tracks to move the trains to;
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Train Units Type Service Tasks
1 ICM-3 (82m) cleaning (30 minutes)
2 ICM-3 (82m) cleaning (30 minutes)
3 ICM-4 (107m) none

Table 2.2: The train units in the example scenario.

� and the order of the train movements.

In our example, it follows from the timetable that the arriving train (1, 2) has
to be split into two parts, and that one of the two has to be coupled with train unit
3 to satisfy the requirements of the departing train compositions. Furthermore,
with only one cleaning platform, we have to decide on which order we will clean
train units 1 and 2.

Let us start the construction of a feasible shunting and service plan by matching
incoming to outgoing trains. We assign train unit 2 to the train departing at 13:00;
the other two train units will be part of the departing train at 14:00. As train unit
2 is the first to depart, we schedule it to be cleaned first as well, before train unit
1. The scheduled train activities in our shunting plan are listed in chronological
order in Table 2.3, and are illustrated in Figure 2.3. In this shunting and service
plan, train (1, 2) arrives at track 0 and moves to track 2 to be split. Then train
unit 2 heads to the cleaning platform for its service task, and train unit 1 is moved
to track 4 to clear track 2 for the arrival of the second train.

After its arrival on track 2, train unit 3 moves to track 1 to avoid blocking the
departure of train unit 2. Note that moving from track 0 to track 1 requires two
train movements, since the train has to reverse its movement direction on track
2. In practice train drivers have to be in the driver’s compartment facing the
movement direction during a train movement. Therefore, such a reversal, which is
also known as a saw movement or turnaround, requires the driver to walk to the
compartment at the other end of the train.

When train unit 2 has departed in our shunting plan, train unit 1 goes to the
cleaning platform. Both train units 3 and 1 move to track 2 to be combined.
Finally, the combination (3, 1) departs from the service site.

This example illustrates the main complexity of the Train Unit Shunting Prob-
lem with Service Scheduling. Although the individual shunting sub-problems —
matching, combining and splitting, servicing, parking and routing — are seemingly
easy to solve, the interaction between these components will make most shunting
plans infeasible. Although parking on track 2 is possible, it blocks virtually all
routes on the service site. Furthermore, poorly parked trains might require com-
plicated detours, which can easily cause departures to be delayed. The service task
schedule is determined entirely by the matching, as there is not enough time to
clean both train units of the first arriving train before one of them has to depart.
The matching is dependent on the parking and routing as well; switching the order
in which train units 1 and 2 depart will result in an infeasible solution due to the
small time-window between the first arrival and departure.
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Figure 2.3: An overview of the positions of trains over time in the shunting plan
listed in Table 2.3. Dotted lines represent train movements.



2.3. Local Search Heuristic 18

Start End Train Activity Tracks
12:00 12:05 (1,2) Arrival 0 → 2
12:05 12:15 (1,2) Splitting 2
12:15 12:20 (2) Movement 2 → 3
12:20 12:50 (2) Cleaning 3
12:20 12:25 (1) Movement 2 → 4
12:45 12:50 (3) Arrival 0 → 2
12:50 12:55 (3) Movement 2 → 1
12:55 13:00 (2) Departure 2 → 0
13:00 13:05 (1) Movement 4 → 2
13:05 13:10 (1) Movement 2 → 3
13:10 13:40 (1) Cleaning 3
13:10 13:15 (3) Movement 1 → 2
13:40 13:45 (1) Movement 3 → 2
13:45 13:55 (3) Combining 2
13:55 14:00 (3,1) Departure 2 → 0

Table 2.3: The train activities in a shunting plan for the example scenario provided
in Tables 2.1 and 2.2.

2.3 Local Search Heuristic

To find feasible solutions for the Train Unit Shunting Problem with Service Schedul-
ing, we propose a local search approach that includes the full problem, i.e. it
integrates the matching, combining and splitting, parking, service scheduling and
train movement components of the planning into a single model. Local search
algorithms gradually improve some candidate solution, a shunting service plan in
case of the TUSPwSS, by making small changes to it, and have been applied in the
field of Operations Research with great success. Methods to create these changes
are called (local search) operators, and the set of solutions attainable from the
current solution by the same operator is known as the neighborhood.

Essential to any local search algorithm is a solution representation that prop-
erly captures all important aspects of the solution, while simultaneously allowing
for easy modification through the local search operators and efficient evaluation
of the objective. This is especially important as well as challenging for the TUS-
PwSS, because of the complex structure of its solutions and its tightly intertwined
subproblems. We will model each activity in the shunting plan as a node in a
precedence graph. We will refer to the resulting directed acyclic graph as the
activity graph, which is a partial order schedule of the activities. The main chal-
lenge is that the graph should be updated efficiently and must remain acyclic after
applying an operator.

When solving TUSPwSS, we are facing the decision problem of finding feasible
shunting and service plans, where feasibility is difficult to achieve because of the
high utilization factor of the yard. To alleviate this difficulty, we transform the
decision problem of finding feasible shunting and service plans into an optimization
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problem by relaxing some of the feasibility constraints and apply local search on
the resulting problem. Instead of enforcing that these relaxed constraints are
respected in all solutions explored by the local search, we penalize violations of
the constraints in the objective function. A shunting and service plan constructed
by the local search is then feasible if and only if none of the relaxed problem
constraints are violated.

We have based our algorithm on the Simulated Annealing framework by Kirk-
patrick et al. (1983) and Černỳ (1985), which is a stochastic local search technique
that has seen many successful applications to other combinatorial optimization
problems. A simulated annealing algorithm randomly selects a neighbor and ac-
cepts it immediately as the candidate solution for the next iteration if it is an
improvement over the current solution. If the selected solution is worse, it is ac-
cepted with a certain probability depending on the difference in solution quality
and the state of the search process. Let b be the selected neighbor of the current
solution a, and suppose we are minimizing an objective function f . If f(b) > f(a),
then the probability of acceptance P is

P = e
f(a)−f(b)

T , (2.1)

where T is a control parameter that will be decreased during the search to ac-
cept less deterioration in solution quality later on in the process. See Section 2.4
for an overview of other parameters of the simulated annealing relevant to the
computational experiments.

In the following we will present the objective function and the distinction be-
tween hard and soft constraints that we apply to find a feasible solution. Then
we explain the representation of the solution by an activity graph and after that
we discuss the local search operators. Finally, we describe the construction of an
initial solution.

2.3.1 Objective Function and Constraints

Recall that we transform the decision problem of finding feasible shunting and
service plans into an optimization problem by relaxing some of the constraints and
penalizing violations of these constraints in the objective function. The relaxation
of constraints is a trade-off between the size of the solution space and the ease of
exploration of the solutions in the local search. Therefore, the decision on which
constraints to relax largely defines the structure of the solution space that the local
search will explore. In the remainder of this subsection, we start by providing a
summary of the problem constraints. Then we motivate the relaxation choices
that we make in our proposed method, and we conclude with an overview of the
objective function.

We categorize the constraints of the shunting and service problem in four
groups, namely

� matching: assign incoming train units to outgoing trains, splitting and
combining the trains if necessary;
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� sequencing: find an order for the activities that share the same service
resource or movement infrastructure;

� temporal: ensure that trains can enter the yard directly upon arrival and
depart on time;

� parking: park the trains without exceeding the track capacity or blocking
train movements.

Constructing an assignment of arriving train units to departing trains that
satisfies the matching constraints is not a difficult problem in itself. Moreover,
any mutation of the matching — regardless of the feasibility of the resulting as-
signment — will likely have a large impact on the entire shunting and service plan,
as it affects the parking, movement and maybe also servicing components of the
solution. Therefore, we keep the matching constraints strict, guaranteeing that
any solution will have a feasible matching.

Imposing both the sequencing constraints of the service tasks and the tem-
poral constraints on the train departures as hard constraints makes it difficult
to find a feasible schedule for the service tasks. This implies that this combina-
tion of constraints severely restricts the number of candidate solutions that can
be reached efficiently during the search and hence relaxing some of the constraints
will be beneficial to the search process. In our approach we maintain the sequenc-
ing constraints as hard constraints, and relax the temporal constraints. That
is, we allow the local search to construct shunting plans with delayed trains as
intermediate solutions at the cost of a penalty.

Similarly, imposing the combination of sequencing and parking constraints
on the train movements creates a subproblem similar to computationally difficult
sliding block problems such as RushHour. Furthermore, the parking constraints
on the track capacity imply that a Bin Packing problem has to be solved in each
iteration, which becomes difficult in instances with a large degree of utilization of
the shunting yard.

Violations of the relaxed temporal and parking constraints are penalized in
the objective function. For a shunting and service plan p, define Delay(p) as the
number of delayed entering and departing trains, Crossing(p) as the number of
crossings (i.e. collisions), and TrackCapacity(p) as the number of occasions in
which the combined train length of trains parked on a track τ exceed the capacity
lτ . An arrival delay will occur when an arriving train cannot move immediately
from the arrival track to its parking location due to a movement of another train.
These characteristics are used to quantify the weighted number of constraint vio-
lations, denoted by violations(p), of the shunting and service plan as

violations(p) = wdelay ·Delay(p) + wcrossing · Crossings(p)+

wtrack · TrackCapacity(p),
(2.2)

where each type of violation is multiplied by its corresponding weight w > 0, and
p is feasible only if violations(p) = 0.
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Notation Description
A Set of train activities in a shunting plan

POS Partial order schedule
M Set of movement activities, M ⊆ A
ta Train associated with activity a ∈ A
oa Start location of activity a ∈ A
da Final location of activity a ∈ A
ra Resource required by activity a ∈ A

Table 2.4: Overview of the notation used to describe the shunting plans.

Although the expression above can be used directly as the objective of the local
search, we extend the objective function with several additional terms to guide the
local search to more promising regions in the solution space. The cost function
minimized in the objective of our approach is

cost(p) = violations(p) + wtime · TotalDelayTime(p)+

wmovement ·NumberOfMovements(p),
(2.3)

which penalizes the severity of a delay in addition to the occurrence of violations.
Furthermore, shunting plans with fewer movements are both preferred by the
planners at NS and easier to improve by the local search. Therefore, we include
the number of movements in the objective with weight wmovement, which is chosen
small enough to never prefer a reduction in the number of movements over the
resolution of a conflict.

2.3.2 Solution Representation and Evaluation

Our representation of a shunting plan in the local search procedure consists of
a set A of train activities and a set POS of precedence relations that defines a
partial order schedule on the train activities. See Table 2.4 for an overview of the
notation used in this section.

The activity set consists of four types of activities: arrival, departure, service,
and movement. The precedence relations arise from the sequencing constraints.
These constraints enforce that activities of the same train or on the same ser-
vice resource do not overlap. Moreover, they forbid conflicts between two moving
trains. Making sure that a solution satisfies these constraints boils down to se-
quencing activities, i.e. imposing precedence relations. Now we obtain the activity
graph, which is a directed graph whose nodes are the activities and arcs are the
precedence relations.

Each activity a ∈ A is associated to a train ta, which is an ordered list of
train units. We will refer to the set of all train movement, arrival and departure
activities as the movement activity set M ⊆ A, with for each a ∈ M an origin oa
and a destination da. Note that an arrival or departure activity represents a train
movement from or to the main railway network, respectively. Each service activity
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s is associated with a resource rs; its location is the destination da of its predecessor
movement. The splitting and combining of trains is modeled implicitly in the data
structure by a difference in the train compositions of the trains associated with
subsequent activities. The representation of the example shunting plan described
in Section 2.2.1 is shown in Figure 2.4.

In the activity graph, the paths taken by the train movements and the start
time of the activities are not included explicitly. To keep the routing computation
tractable, the local search generates activity graphs with a total ordering on the
activities in the movement activity set M, such that never two movements over-
lap in time. Consequently, we can compute routing and time assignment in two
steps, respectively. In the first step we strictly enforce the total ordering of the
movements. We relax this restriction in the second step to allow trains to move
simultaneously as long as this does not result in conflicts.

In the first step of a solution evaluation, we compute a path for each move-
ment activity separately and determine the number of crossings and track capacity
violations. To achieve this, we iterate over the movement activities according to
the total order in the activity graph. For each movement activity a, we compute
the minimum cost path of train ta from oa to destination da. Note that, due to
the restriction of the movement ordering in the partial order schedule to a total
ordering, all movements occur sequentially. Therefore, we can formulate the rout-
ing problem of a single train movement as a single-source shortest path problem
in a graph representation of the shunting yard similar to the approach taken by
Lentink (2006). The cost of a path in this graph is equal to the time it takes for
train ta to move over the path, plus the number of crossings — i.e., collisions with
parked trains — that occur along the path times a weight λ, where λ is sufficiently
large to ensure that the number of crossings is minimized. To find shortest paths
we apply the A∗ algorithm (Hart et al. (1968)), where we use the path durations
in the static case without parked trains as the lower-bound heuristic on the true
path cost. After computing the path of the movement, we add train ta to the
destination track da and update the track capacity violation count if necessary.

In the second step, we assign start times to all activities in the activity set.
Due to our restriction on the partial order schedules described earlier, all train
movements would be scheduled sequentially, which could result in many delayed
departures in the shunting plan. To decrease unnecessary delays, we relax the
precedence relations between pairs of train movements. Then, for each activity
a ∈ A, we compute its start time as the maximum over its release date (if it is
an arrival) and the completion time of all its direct predecessors in the activity
graph. More specific, when we consider movement activity a, we compute the
earliest possible starting time of a such that

� a starts after the completion times of all scheduled activities, i.e. activities
that have already been assigned a time-stamp, that have a train unit in
common with train ta;

� the path of a does not intersect with the path of any scheduled movement
a′ that happens at the same time;
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Figure 2.4: The partial order schedule of the shunting plan described in Sec-
tion 2.2.1. The nodes represent train activities, with the corresponding train
between parentheses, and the arcs indicate precedence relations of activities that
require the same train unit (solid arcs), service resource (dotted), or movement
infrastructure (dashed). The i → j notation below a node indicates a movement
from track i to track j.

� a does not cause additional collisions or track capacity violations.

The last constraint is necessary to prevent a deterioration in solution quality due
to the relaxation of the total ordering on the movements.

Many shortest path problems have to be solved in each candidate solution
evaluated by the local search, as even small, local changes to the shunting plan
can affect multiple train movements. In our approach, we only recomputed the
paths of movements that might have been affected by the application of an operator
in the iteration.

2.3.3 Search Neighborhoods

In the local search framework, new candidate solutions are selected from search
neighborhoods centered around the current solution. To address the different
aspects of the train unit shunting problem with service scheduling, we propose
several search neighborhoods that are tailored to the different components of the
planning. The corresponding operators either change the location of a train in the
plan, or alter the activity graph directly by adding and removing vertices or arcs.

To avoid deadlocks, the application of an operator to the current solution
must preserve the acyclicity of the partial order schedule. As a result of the
dependencies between the problem components, this means that when we change
the shunting and service plan in one dimension, we also need to modify the plan in
other dimensions. For example, if we change the service schedule, then the train
movements have to be adapted accordingly.

We will now provide an overview of the proposed local search neighborhoods for
the parking, routing, service scheduling and matching components. The splitting
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Figure 2.5: Overview of neighborhoods in the proposed local search method. ti
denotes train i, τj → τk indicates a train movement from track τj to track τk.



25 Chapter 2. Train Unit Shunting with Service Scheduling

and combining activities follow implicitly from the other activities, and therefore
have no dedicated local search neighborhoods. For each of the proposed neighbor-
hoods that might contain solutions with cyclic precedence relations, we will show
the methods implemented to restrict the neighborhood to acyclic solutions. An
overview of the neighborhoods is shown in Figure 2.5.

Parking

Conflicts in the shunting plan such as crossings and track capacity violations can
often be solved through changes in the parking location of trains. The track
assignment neighborhood consists of all shunting plans that can be constructed
by changing the track on which a train is parked. To change the location of a
train, we select two consecutive movements m1 and m2 of the train, and assign
both the destination of m1 and the origin of m2 to a different track, as shown in
Figure 2.5a. If the train is split into several smaller trains after m1, then the next
train movements of all the parts have to be updated. Similarly, if m2 is preceded
by a combine activity, then all predecessor train movements of the different train
parts need to be updated as well.

Train Movement

The paths taken by the trains are recomputed whenever the track occupancy
changes, and as such, no local search operator is needed for the path-finding com-
ponent of the routing problem. However, as we maintain a linear ordering of the
movements in the partial order schedule, we can attempt to improve a shunting
plan by reordering the movements. Suppose that train a is parked on a LIFO-track.
If train b arrives on the same track just before train a departs, a crossing will occur.
In this case, it is beneficial to let a depart before b arrives. The search neighbor-
hood of rearranging movements is denoted as the shift movement neighborhood.
The corresponding local search operation, depicted in Figure 2.5b, consists of se-
lecting a movement activity and shifting it earlier or later in the linear ordering
imposed on the train movements. To ensure that the resulting shunting plan is
valid, only shifts that preserve the acyclic property of the partial ordering are
included in the search neighborhood.

In some cases, we want to move a train temporarily to a different track. For
example, if train a has to move over track τ while train b is parked there, then
one approach to resolve the planning conflict is to move train b to a different
track just before the movement of a. In the partial order schedule this operation
corresponds to inserting an additional movement activity for train b, visualized
in Figure 2.5c. The insert movement neighborhood consists of all solutions
obtainable by adding a movement activity.

Conversely, it can also be beneficial to remove redundant train movements.
Suppose that a train in the shunting plan has a service activity on track τ1, then
moves to track τ2 for parking, before continuing to track τ3 for another service ac-
tivity. If we could skip the parking and move straight from track τ1 to τ3 without
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conflicts, then we have eliminated a movement activity, resulting in more tempo-
ral flexibility for other train movements. Solutions in the remove movement
neighborhood are constructed by removing a train movement from the solution,
see Figure 2.5d.

Service Scheduling

The local search operators that adjust the resource assignment and order of the
service tasks are based on operators proposed in the literature on similar problems
such as the Job Shop Problem (Dell’Amico et al. (1993)), the Open Shop Problem
(Liaw (1999)) and their generalized counterparts (Bürgy et al. (2011)). All valid
solutions that can be constructed by swapping the order of two consecutive service
tasks, that are either assigned to the same resource or involve the same train, are
part of the service order swap neighborhood, see Figure 2.5e. Furthermore,
the resource assignment neighborhood contains the solutions obtained by as-
signing a single service activity to a valid position in the activity schedule of a
different suitable resource. Observe that rescheduling service activities often re-
quires adjusting the precedence relations of movements from and to these service
activities.

Matching

The matching swap operator, shown in Figure 2.5f, changes the matching of
incoming trains to outgoing departure compositions. It selects two trains t1 and
t2 in the shunting plan of identical train composition and swaps their assignment
to the departing trains.

2.3.4 Initial Solution

To construct a starting point for the local search, we propose a simple sequential
algorithm for the TUSPwSS. We start with the matching subproblem. A perfect
matching between the incoming and outgoing train units is constructed such that
no arriving unit is matched to a position on a train that departs before all service
tasks of the unit can be finished. Note that we can immediately abort the search
for a feasible shunting plan if no perfect matching is found, as the existence of
such a matching is a necessary condition for plan feasibility.

From the train unit matching we can derive the minimum number of splits
and combines that have to be performed to transform the incoming trains into the
desired departure compositions. Train units coupled on arrival can only remain
together if

1. all units are assigned in the same order to consecutive positions on a depart-
ing train,

2. their arrival time plus the sum of the durations of their service tasks is no
more than the departure time, and
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3. for each service task there is a track adjacent to the required facility that is
long enough to harbor all train units at once.

Based on this information, we initialize the partial order schedule:

1. The arrival and departure nodes are added to the solution;

2. For each arrival activity, we add a movement to the graph and connect it
to the corresponding arrival node. Similarly, movements are added to each
departure node;

3. The movements from arrivals and to departures are connected by arcs to
reflect the matching, splitting and combining computed above.

In the next step, we construct a service schedule. The service activities of a
train will be scheduled after it has been split, and before it will be combined in
the current plan. The service tasks are scheduled by a list-scheduling strategy.
Trains are sorted on increasing departure time. Service tasks of the same train are
assigned to the resource that becomes available at the earliest time. If a task can
be assigned to multiple resources, the resource with the currently smallest total
workload is selected. Ties in the train task order are broken randomly. The service
activities are then inserted into the partial order schedule and connected with arcs
based on the precedence relations in the service schedule.

Next, we add movement activities to and from each service activity to the
graph, as trains have to be able to reach the service facilities. The linear order of
movement activities is constructed by sorting the movements by earliest starting
time, based on the service task schedule.

Finally, the parking locations of the trains are assigned. For every train, we
select a random track long enough to store the train for each parking time-window
between consecutive movements, without taking the track occupation into ac-
count.

2.4 Computational Results

In this section we study the performance of the proposed local search approach on
generated test cases as well as a real-world problem instance. These instances are
based on two shunting yards that are considered difficult by the planners of NS
due to the high degree of utilization of the yards in practice.

Preliminary tests were conducted to obtain good parameters for our local
search. In all experiments we have conducted, the local search continued searching
until either a feasible solution was found, or a maximum computation time of five
minutes was reached. The maximum computation time is based on preferences of
NS. The control parameter T of the simulated annealing decreased exponentially
in those five minutes, starting at 1 and dropping to 0.01 after 300 seconds. The
weights of the objective function used in the experiments are summarized in Ta-
ble 2.5. Delays are penalized more than the other conflicts, as these were observed
to be more difficult to resolve by the local search. Furthermore, the weight of
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train movements is small with respect to the weights of the conflicts to ensure
that conflict resolution is prioritized over the reduction of the number of train
movements. Table 2.9 shows some results of experiments with different parame-
ter values. The local search procedure randomly selects a candidate solution in
a neighborhood and either accepts or rejects it based on its acceptance criterion.
The computations were performed on a computer with an Intel Xeon E5 3.0 GHz
processor.

We will compare our simulated annealing approach with a mixed integer pro-
gramming heuristic developed by NS for the TUSP, i.e., only the matching, park-
ing and routing sub-problems. This tool, called OPG, first computes the routing
duration of shunting from one track to another, similar to the approach taken by
Lentink et al. (2006). Secondly, the matching and parking sub-problems are solved
simultaneously, using the cost estimates of the routes to find track assignments
that simplify the subsequent routing problem. To find a matching and a parking
assignment, a problem formulation based on the mathematical model introduced
by Kroon et al. (2006) is solved in CPLEX. In the final step of OPG a MIP model
is solved to assign starting times to all train movements. The mathematical models
in OPG lack the flexibility of the local search algorithm to schedule service tasks
or insert additional parking activities. That is, OPG keeps a train at the same
location during the entire interval between the arrival and departure of the train.
As with the solution method proposed in this chapter, we limit the maximum
computation time of OPG to five minutes. Since OPG is not capable of solving
the service scheduling sub-problem, we compare the two approaches on instances
without service tasks. OPG finished its computations within the maximum time
for almost all tested instances.

Weight wdelay wcrossing wtrack wtime wmovement

Value 2 1 1 0.00025 0.01

Table 2.5: The weights of the components of the objective function in Equa-
tion (2.3) used in our experiments.

2.4.1 Real-world Scenario

We have tested our solution method on one of the real-world instances currently
planned manually at NS. The test scenario is a normal week day of twenty-four
hours at the “Kleine Binckhorst”, shown earlier in Figure 2.1. The Kleine Binck-
horst is a medium-sized service site situated near The Hague Central Station, and
consists mostly of tracks accessible from both sides. Tracks 906a and 104a connect
the Kleine Binckhorst to the main railway network; parking, reversing, splitting
and combining on these tracks are not allowed due to safety regulations. Tracks
52 to 63, with lengths in the range of 192 to 473 meters, are available for parking.
There are two dedicated service facilities: a washing machine on track 63, and a
platform for internal cleaning between tracks 61 and 62. Only a single train can be
cleaned externally at the washing machine at the same time. There are two crews
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Train type Reversal base duration Reversal duration per carriage

SLT 2 1
3

VIRM 4 1
2

DDZ 4 1
2

Table 2.6: The reversal duration of the train types in minutes. The duration
consists of a base time required to transfer control and additional walking time
per carriage.

Sub-type length Cleaning Washing Maintenance check

SLT-4 70 15 23 23

SLT-6 101 20 24 27

VIRM-4 109 37 24 11

VIRM-6 162 56 26 14

DDZ-6 154 56 26 18

Table 2.7: The train length in meters and the service task duration in minutes for
each train sub-type.

at the cleaning platform, allowing a train to be cleaned at each track adjacent to
the platform. The maintenance checks that are carried out by service crews at
Kleine Binckhorst can take place on any track that is not part of some facility.
The reversal duration of trains and the average service task duration are listed in
Tables 2.6 and 2.7. The duration of a movement is computed using the following
Equation (2.4)

ddriving = Ntracks +
1

2
Nswitches, (2.4)

where Ntracks and Nswitches are the number of tracks and the number of switches
on the path of the movement, respectively.

The instance that we considered consists of 32 train units, arriving and depart-
ing in 23 and 21 trains, respectively. Due to the timetable, the maximum number
of train units simultaneously present on the service site is 25; these train units
occupy 77 percent of the total track length available for parking. There are 59 ser-
vice tasks that must be completed: 27 internal cleanings, 25 maintenance checks
and 7 train washes. Constructing a shunting and service plan for this instance by
hand usually takes more than an hour, even for an experienced planner.

We have used the simulated annealing approach described above to search for a
feasible plan for the test case, which was found after four minutes of computation
time. In this solution, the 23 arriving trains are split into 27 trains. The shunting
plan contains 88 shunting movements, of which 32 contain a reversal. The large
number of reversals results in an average movement duration of 10 minutes. This
means that almost 15 hours of train movements are needed in this 24-hour shunting
plan. In 14 cases a parked train is shunted to a different track to make room for
another train.
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Sub-type Arrival Cleaning Washing Maintenance check

SLT-4 0.28 1.00 0.16 1.0

SLT-6 0.17 1.00 0.16 1.0

VIRM-4 0.41 1.00 0.16 0.58

VIRM-6 0.10 1.00 0.16 0.58

DDZ-6 0.04 1.00 0.16 0.58

Table 2.8: The Arrival column shows the distribution of the train sub-types over
the arriving trains. The probability that a task has to be performed on a certain
train unit is shown in the last three columns.

The shunting and service plans constructed by the algorithm differ significantly
from the manually created plan. The solution of the planners clearly shows a high-
level strategy of first doing the maintenance checks on tracks 56 to 59, followed by
internal cleaning and washing, before parking the trains on tracks 52 to 55 until
their departure. In contrast, the plan produced by the simulated annealing utilizes
the tracks and resources of the service more evenly.

2.4.2 Generated Instances

To evaluate the performance of the proposed solution method more thoroughly, we
generated problem instances for two service sites operated by NS. These instances
vary in the number of train units that arrive, but resemble real-world scenarios
at the service sites in all other aspects. For example, the train compositions and
timetable of arrivals and departures, as well as the required service activities of
train units are drawn from distributions fitted to historical data of the two service
sites. The planning interval of the instances is limited to the night shift, from 6
p.m. to 8 a.m., as most activities at a service site take place during the night.
Furthermore, all nightly arrivals occur before the first departure in the morning,
which means that the maximum number of train units simultaneously present at
the service site in a problem instance is precisely the total number of arriving train
units. The train type and service task distributions used to generate the instances
are shown in Table 2.8. The train lengths and the service durations are as in
Table 2.7. The maximum length of composite trains in our test cases is three train
units, and approximately half the arriving and departing trains are composed of
two or more train units.

One of the two tested service sites is the Kleine Binckhorst. For every k ∈
{4, 6, . . . , 32}, we generated 50 instances for the Kleine Binckhorst with k train
units. These instances are not necessarily all feasible, particularly the instances
with many train units are likely to be impossible to solve. When all train units
have to be cleaned internally, the planners at NS estimate the capacity of Kleine
Binckhorst at roughly twenty train units during the night shift.

Since we want to compare to OPG, which does not contain parking relocation,
we investigate the impact of the parking relocation neighborhood on the perfor-
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Figure 2.6: The number of feasible shunting plans found for each set of fifty
night-shift instances of the Kleine Binckhorst. The results of both the simulated
annealing with the relocation operator (LS ) and without (LS without relocation)
are shown.

mance of the local search approach. We ran the simulated annealing algorithm
with and without the parking relocation neighborhood on all instances. Both vari-
ants of the local search method were run with the settings described in Table 2.5.

The results of the experiments are shown in Figures 2.6 and 2.7. The local
search method is able to plan up to 18 train units reliably, and fails to solve
instances with more than 22 train units. Removing the parking relocation operator
from the local search does not result in significant deterioration of the performance.
Both simulated annealing approaches show a gradual rise in computation time,
requiring less than half the allotted time of five minutes to solve instances with at
most 20 train units.

The similarity of the performances of the two local search variants is likely
caused by the number of service activities, as these activities force the trains to
move to or from service facilities, allowing the local search to solve conflicts in
the parking component by changing the service schedule. To test this hypothesis,
we generated similar instances without service tasks. Since only the matching,
combining and splitting, parking and routing problem components remain, these
instances are essentially TUSP instances. We performed the same experiments
with the two simulated annealing variants as above; the results can be found in
Figure 2.8.

In a pure TUSP instance the simulated annealing variant without the park-
ing relocation neighborhood performs significantly worse. Without the additional
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Figure 2.7: The average computation time in seconds of solved night-shift instances
of the Kleine Binckhorst. The results of both the simulated annealing with the
relocation operator (LS ) and without (LS without relocation) are shown.
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Figure 2.8: The number of feasible shunting plans found for each set of fifty night-
shift instances of the Kleine Binckhorst without service tasks. The results of both
the local search algorithm with the relocation operator (LS ) and without (LS
without relocation) are shown.
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movements needed to reach the service facilities, trains will be parked on a single
track for their entire stay at the shunting yard, making it difficult to resolve some
conflicts. For example, suppose we have an arriving train with two coupled train
units (a, b) of different train types, and a required departure composition (b, a).
To reverse the composition of train (a, b) we have to split the train, move one of
the two train units to the opposite side, and combine them into a single train. As
splitting or combining is not allowed on the arrival track of the Kleine Binckhorst,
some of the matching sub-problems can only be solved by scheduling additional
train movements. In instances with a sufficient number of train units of each type,
this type of conflict is often easily resolved by changing the matching. However,
smaller instances are more likely to be impossible to solve without the parking
relocation neighborhood, as can be seen in Figure 2.8.

In general, by removing the service tasks — using the service site only as
a shunting yard — the proposed solution method is capable of finding feasible
shunting plans for more train units, reaching an 85% utilization of the parking
capacity of the service site in some cases. This suggests that service scheduling
and the train movements to and from the facilities are a major bottleneck in the
earlier experiments.

Another set of instances for the Kleine Binckhorst was generated to compare
the local search algorithm with OPG, the ILP-tool developed by NS. Similar to
the previous experiment, the instances do not contain service activities. However,
instead of only modeling the night shift, the instances in this set span an entire day,
where trains arrive in the evening and at the end of the morning, and departures
occur mostly before the morning and evening rush hours. The performance of the
solution methods are shown in Figure 2.9.

The differences between the two local search variants are similar to the results
shown in Figure 2.8. OPG shows results resembling those of the local search
without the parking relocation neighborhood, and is outperformed by the local
search with relocation. So our algorithm outperforms OPG for TUSP on this type
of railway yards. The similarity between the results of OPG and the local search
without relocation can be explained by the mathematical model in OPG, which
does not have the flexibility provided by the parking relocation neighborhood.

To test the proposed solution method for other service site layouts, we con-
ducted similar experiments with instances generated for service site OZ, located
near Utrecht Central Station. In contrast to the Kleine Binckhorst, most parking
tracks of OZ are last-in-first-out tracks, see Figure 2.10. Trains will arrive and
depart via track 117. The connection of track 117 to the main railway network
prohibits parking, reversing, splitting and combining of trains on it. Parking is
possible on all other tracks visible in Figure 2.10. The cleaning platform is acces-
sible from tracks 104 and 105b. Instances for the night shift are generated using
the same parameters as for the Kleine Binckhorst, with the number of train units
ranging from 4 to 22. The same service tasks are assigned to the train units,
with the exception of washing activities due to the absence of a washing instal-
lation. The results, shown in Figure 2.11, confirm those of the experiments with
the Kleine Binckhorst, as for TUSPwSS the local search with relocation performs
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Figure 2.9: The number of feasible shunting plans found for each set of full-
day instances without service tasks of the Kleine Binckhorst. The results of the
simulated annealing variants with the relocation operator (LS ), without relocation
(LS without relocation) and the ILP-based OPG are shown.

Figure 2.10: The service site “OZ” operated by NS.



35 Chapter 2. Train Unit Shunting with Service Scheduling

● ● ● ● ● ●

●

●

●

5 10 15 20

0
10

20
30

40
50

Number of Train Units

S
ol

ve
d 

In
st

an
ce

s

● ● ● ● ● ●

●

●
●

LS
LS without relocation

Figure 2.11: The number of feasible shunting plans found for each set of fifty
instances of service site OZ. The results of both the simulated annealing with the
relocation operator (SA) and without (SA without relocation) are shown.

slightly better than without the relocation operator.

In addition to the relocation neighborhood experiments we investigated the
impact of the weights of the penalties listed in Table 2.5. We ran the local seach
with seven different parameter settings on a subset of the instances used in the
experiments in Figure 2.6. The results are listed in Table 2.9. Parameter setting
1 describes the parameter values used in the other experiments in this section.

The experiments show that penalizing the movements is necessary to solve the
majority of the instances, as the parameter settings without movement penalties
(settings 2 and 4) perform significantly worse than the other settings. Furthermore,
a small incentive to prefer the resolution of delays over other conflicts increases
the likelihood that the local search finds a feasible solution.

2.5 Integrated Station and Yard Planning

Recently, NS conducted a pilot study to construct the daily shunting plans a few
days to a few hours in advance, instead of several weeks. The main benefit of
planning closer to the day of implementation is that the data available to the
planners is more accurate. To ensure that the shunting plans are constructed
before going into operations, NS is evaluating a decision support system based on
the local search algorithm developed in this thesis to help the human planners.

Two railway hubs — Heerlen and Eindhoven — were selected by NS as test
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parameter settings results

wdelay wcrossing wtrack wtime wmove solved (%) time (s)

1. 2 1 1 .00025 0.01 92 94

2. 2 1 1 .00025 0 36 182

3. 2 1 1 .00025 0.1 84 69

4. 1 1 1 0 0 40 109

5. 1 1 1 0 0.01 54 165

6. 1 1 1 .00025 0.01 48 160

7. 3 1 1 .001 0.01 66 98

Table 2.9: The percentage of solved instances and average computation time for
seven sets of parameter values of the local search algorithm.

Figure 2.12: Railway hub Eindhoven. The station area is highlighted in blue, and
the two orange rectangles indicate the locations of the two shunting yards.

locations for the pilot. A railway hub encompasses a major train station and
one or more nearby shunting yards. Heerlen is a small hub with only a single
railway yard, whereas the larger Eindhoven hub, shown in Figure 2.12, contains two
yards. The goal of the decision support system in the pilot is to create integrated
shunting plans for the complete hubs. The widening of the scope of the planning
problem from a single shunting yard, which is the primary focus of this thesis,
to a train station with multiple yards poses several new challenges to our local
search algorithm. In this section we discuss some of these challenges and describe
the modifications made in cooperation with NS to the local search for their pilot
study. We conclude this section with an overview of the results of the pilot.

2.5.1 Network Train Movements and Out of Service Infras-
tructure

In contrast to shunting yards, where all train movements are scheduled by the
yard planners, most of the railway traffic at train stations is predetermined by the
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timetable. The network trains are trains that move through the station without
going to a railway yard, and have a fixed path, start time and duration. The
movements of these network trains do not have to be planned by the local search
algorithm. However, trains moving from the station to the shunting yard and
vice versa do require scheduling, and these movements must not conflict with the
network trains.

As a result of the movements of network trains, parts of the railway hub infras-
tructure are temporarily unavailable for the planning of train movements. Railway
infrastructure such as tracks or switches can also be out of service to allow main-
tenance.

We model both the movements of network trains and the out of service in-
frastructure as dummy movement activities in our partial order schedule. These
dummy movements have a fixed release date and deadline, and the routes of the
movements represent the infrastructure that is unavailable for other train move-
ments. The dummy movements are mostly treated by the local search algorithm as
any other movement activity, i.e., precedence relations between train movements
and dummy movements can be added and removed. The main differences are
that the route of a dummy movement is fixed, and dummy movements cannot be
removed from the shunting plan. Dummy movements in intermediate solutions of
the local search might be delayed due to the precedence relations in the partial
order schedule. However, these delays are penalized in the objective function and a
shunting plan is only feasible when all dummy movements start at their scheduled
time in the timetable.

2.5.2 Minimum Headway Times

Based on the safety regulations at shunting yards we constrained the scheduling
of train movements with intersecting routes to disjoint time intervals. However,
at the railway hub level these constraints are too restrictive, as movements from
the train station to the shunting yard would block a significant part of the railway
infrastructure for a long time. Instead, the safety regulations specify minimum
headway times between trains moving over the same track or switch. For example,
when two trains move over the same track, then the second train cannot enter the
track until two minutes after the first train has left the track. The minimum head-
way times depend on the movement directions of the trains. While trains moving
in the same direction have to keep a distance of two minutes, train movements in
opposite directions can have a minimum headway time of three minutes.

For the no-overlap constraints at shunting yards it was sufficient to keep track
of the route and duration of each train movement. However, to satisfy the min-
imum headway constraints at every track or switch, we need to store for train
movements at which time the train reaches each part of the railway infrastructure
along its path. Furthermore, we modify the train movement start time assignment
procedure described in Section 2.3.2. Instead of simply adding a precedence rela-
tion between train movements with intersecting routes, we compute the minimum
difference in the start times of the movements based on the minimum headway
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time on each track or switch in the intersection of the routes.

2.5.3 Day Transitions

For the sake of simplicity we assumed that shunting yards are empty at the start
and the end of the planning horizon. While this assumption rarely holds in prac-
tice, we can easily model trains parked on the yard at the beginning of the planning
horizon by introducing dummy arrival activities before the start of day for these
trains. The trains arrive at the tracks on which they were parked during the pre-
vious day. Similarly, trains that remain on the yard at the end of the day have
a dummy departure activity that can take place on any track where trains are
allowed to be parked.

2.5.4 Current Results

The pilot study of NS showed promising results. The local search algorithm solves
instances of regular week days at the Heerlen railway hub within 30 minutes. In
these instances 70 train units would enter the station during the day, and 14 of
these required maintenance of approximately two hours at the shunting yard.

The Eindhoven railway hub receives significantly more traffic than Heerlen.
On a regular day the shunting plan contains 130 train units, of which 40 have
to be cleaned or maintained. Furthermore, 480 movements of network trains are
scheduled in the timetable. Feasible solutions could be constructed by the local
search for most of the instances, and on average 230 train movements to and
from the shunting yards were scheduled in the shunting plans. The computation
time ranged from 30 minutes to several hours, and for some instances no feasible
solution could be constructed after ten hours of computation time. These infeasible
shunting plans contained only a few conflicts, and all of the conflicts could be
resolved by human planners. The most challenging instance was the weekend
instance, which starts at Friday evening and ends on Monday morning. With
more than 3000 movements of network trains, this instance remained unsolved
after 16 hours of computation time by the local search. The primary bottleneck
for the local search algorithm in this instance appears to be the long planning
horizon, as the number of local search iterations per time unit is significantly less
for the weekend instance than with the single-day instances.

Nevertheless, even with the manual resolution of the remaining conflicts the
decision support system resulted in a significant reduction of the time needed
to create shunting plans for the railway hubs. Additionally, we can easily add
planner preferences to the local search algorithm by adding new components to
the objective functions. For example, the preference that trains of some train type
are parked on a specific part of the shunting yard can be modeled by introducing
small parking weights for the desired train type-track combinations. Due to the
success of the pilot at the two railway hubs, NS is now starting the process of a
nation-wide implementation of a decision support system based on the methods
developed in this chapter.
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2.6 Conclusions

In this chapter we have studied the problem of planning the parking and servic-
ing train units at service sites operated by NS. The research is conducted with
two purposes, firstly to support human planners with the construction of feasible
shunting plans for the service sites, and secondly to improve the capacity estimates
by the management of NS.

We have introduced the Train Unit Shunting Problem with Service scheduling
(TUSPwSS). Although the Train Unit Shunting Problem has been studied, there
are no practical algorithms that include the resource-constrained scheduling of
service tasks.

We have presented a local search approach to find feasible plans for TUSPwSS.
This is the first algorithm capable of constructing feasible plans for real-world in-
stances of the full shunting and service scheduling problem. The solution method
consists of a plan representation that models the precedence relations between the
scheduled activities, as well as local search neighborhoods exploiting the partial
ordering. We have benchmarked our approach on both generated and real-world
instances of service sites operated by NS. The experiments showed that our solu-
tion method is capable of solving shunting problems on service sites with varying
infrastructural layouts within a few minutes.

Moreover, we compared our algorithm to OPG, a decision support tool based
on state-of-the-art mathematical programming models that has been developed by
NS. In the solutions of OPG trains are parked at a fixed place during their stay
at the yard. OPG does not include service scheduling. Therefore, we included
instances without service scheduling in our experiments.

Comparison with OPG showed that our local search algorithm is capable of
solving harder instances than the ILP-based OPG. Since an important difference is
the possibility for relocation, we decided to investigate this aspect further by also
running our algorithm without relocation. These experiments demonstrated that
the flexibility to move a train to a different track during parking is essential to find
feasible plans. Note that in TUSPwSS the possibility for relocation is obtained
partly from the service schedule, which forces trains to move to service facilities.

The real-world scenario illustrated that the local search approach is a valuable
tool in the planning process at NS by providing human planners with feasible so-
lutions, drastically reducing the time needed to construct good plans for service
sites. The local search method is currently being used by NS to obtain a good
estimate of the capacity of their service sites by generating realistic problem in-
stances for varying numbers of train units, and checking for which number the
local search algorithm can still consistently find feasible solutions.

Preliminary results from a pilot study started by NS show that in most cases we
are able to find feasible shunting plans for real-world problem instances of railway
nodes, which consist of a major station and one or more shunting yards. Even
when the local search fails to find a feasible solution, the number of conflicts in
the final solution is reduced to such an extent that human planners can resolve
remaining conflicts within an hour, which is a fraction of the time that it would
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take them to construct a shunting plan from scratch. The pilot shows that the
main strength of our local search approach lies in its flexibility, as it is easily
adaptable to the often complex constraints that arise in real-world problem. This
is especially appreciated by the practitioners at NS, as we are able to incorporate
many of their planning preferences into our model.



Chapter 3

Surrogate Robustness
Measures

3.1 Introduction

Small disruptions such as train delays occur frequently at railway yards. As these
disturbances are rarely known at the time of planning, ad-hoc modifications have
to be made to the shunting plans during execution. With only a few minutes to
decide on a course of action, railway yard operators cannot feasibly determine the
full impact of every change to the shunting plan. Consequently, the yard operator
might perform a recourse action in response to a small disruption that causes
major problems later in time.

A shunting plan can be described by the assignment of resources and start
times to the activities on the yard. The ordering of activities assigned to the same
resource is induced by the start time assignment.

To reduce the impact of small disturbances on the operational performance of
the railway yards, we should construct shunting plans that are robust. We define
the robustness of a plan as its capability of absorbing the consequences of dis-
ruptions without significant adjustments to the plan. Although during operation
we do not want major adjustments, we allow a predetermined rescheduling policy
that makes small plan changes.

In this chapter and Chapter 4 we assume that the rescheduling policy is a
right-shift policy. In this policy the assignment of activities to resources as well as
the ordering of activities on those resources is considered fixed during operations.
The recourse actions of the yard operators are limited to reassigning the start
times of activities. Yard operators might have to delay activities in response to
disturbances, and the delays propagate to successor activities in the partial order
schedule. The partial order schedule itself cannot be modified during operations
in this rescheduling policy.

In this chapter we look at the field of stochastic scheduling problems for in-
spiration, since scheduling is the basis of planning at railway yard and robustness

41
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has been extensively studied in this area. In Chapter 4 we will apply the ideas on
robustness obtained from the stochastic scheduling problems to the specific case
of constructing robust shunting plans.

Scheduling is concerned with the allocation of tasks to scarce resources over
time. The general objective of scheduling problems is to schedule tasks on re-
sources such that some function of the completion times or resource assignment of
the tasks is optimized. In deterministic scheduling problems the processing time
of a task is known in advance, whereas in stochastic scheduling problems the pro-
cessing times of tasks are modeled by stochastic variables. Stochastic scheduling
can be viewed as a model for scheduling problems with disturbances. Distur-
bances in deterministic scheduling problems can be viewed as realizations in the
corresponding stochastic problem, i.e., the scheduling problem where the expected
processing times are the processing times from the deterministic problem and the
probability distribution of the processing times models the assumed behavior of
disturbances. We call a schedule robust with respect to an objective function when
the degradation of that objective function caused by rescheduling in response to
the stochastic disturbances is deemed acceptable. The initial schedule is called the
baseline schedule. We usually measure degradation with respect to this baseline
schedule.

In stochastic scheduling literature many characterizations of robustness have
been proposed and studied. These characterizations are often categorized based
on the type of properties of the schedule that should withstand disruptions. A
schedule is quality robust if it prevents severe degradation of scheduling objectives
such as makespan or lateness. Note that these objective values are random vari-
ables in stochastic scheduling problems due to the stochastic processing times of
the tasks. Examples of quality robust schedules are schedules that minimize the
average makespan.

When disturbances occur, a solution robust schedule minimizes the variance
of some properties of the schedule with respect to the baseline schedule. For
example, in timetabling problems the objective is to publish a timetable, which
is an assignment of start times to activities, such that disturbances do not cause
large deviations from the published start times.

Other differences in robustness characterizations stem from the assumptions on
the type and severity of the disturbances. Schedules might be robust to small de-
viations in the processing times of tasks, yet deteriorate strongly when unplanned
tasks have to be inserted in the existing schedule.

After settling on a specific characterization of robustness, the practical ques-
tion of “how to quantify the robustness of a schedule?” remains. Exact analytical
expressions of most robustness characterizations can be computationally hard to
evaluate in solutions to stochastic scheduling problems, due to the interdependen-
cies of the stochastic variables.

An approach often used to estimate robustness is to simulate the schedule in
many possible scenarios sampled from the (assumed) distributions of the uncer-
tainty. Simulation is a powerful and versatile tool that gives an accurate estimate
of a robustness characterization if a sufficient number of samples is used, but it



43 Chapter 3. Surrogate Robustness Measures

tends to be a computationally expensive technique. Hence, simulation is very
useful to compute the robustness of a given schedule, but it is hard to include
when searching for a highly robust solution. As solution methods for scheduling
problems typically evaluate a large number of schedules to find a (near-)optimal
solution, using simulation as a subroutine in a solution method might not be fea-
sible.

An alternative method to estimate the robustness of a schedule is to look at the
characteristics of the schedule in a simplified stochastic model. These character-
istics are known as (surrogate) robustness measures. Due to their computational
efficiency many robustness measures have been proposed in literature. However,
the efficacy of these surrogate robustness measures as predictors of robustness
strongly depends on the specific characterization of the robustness as well as the
characteristics of the scheduling problem.

The goal of this chapter is to provide an overview of robustness measures
for stochastic scheduling problems and to study the interaction of the surrogate
robustness measures with several characteristics of robustness. In Section 3.2 we
discuss several characterizations of robustness. We continue in Section 3.3 with
an overview of literature on robustness measures, and describe several of these
robustness measures in more detail in Section 3.4. We conclude this chapter with
several example schedules to illustrate the properties of the robustness measures
in Section 3.5.

3.2 Preliminaries of Stochastic Scheduling

In the deterministic problem of parallel machine scheduling we are given a set of
n tasks (activities) and m identical machines (resources) to process these tasks.
Each task has to be processed by one of the machines. The processing time of
task i is denoted as pi. Each machine can only process a single task at a time,
and once a machine starts processing a task it must completely process that task
before it can start with a different task.

A solution to the parallel machine scheduling problem, which we will refer to
as a schedule, is a feasible assignment of machines and start times to the tasks.
The standard objective of parallel machine scheduling is to find a schedule that
minimizes the makespan, which is the maximum completion time over all tasks.

In machine scheduling problems the feasible starting times of a task i are often
constrained by a release date ri, which is a lower bound on the starting time,
and/or a deadline d̄i, which is an upper bound on the maximum completion time
of the task. Furthermore, precedence constraints on the tasks impose a partial
ordering of those tasks in time. That is, a precedence constraint i ≺ j indicates
that task i must be completed before the start time of task j.

We can generalize the parallel machine scheduling problem to a resource-
constrained project scheduling problem. Here we have multiple types of resources
to execute the tasks. Each task requires a given amount of certain resources, where
a task may require different resources in parallel. For example, the repair of a car
may take 2 hours of a repairman and need a lift bridge and assistance of another
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repairman during the first hour. In the remainder of this section we assume that
each task requires a single type of resource and that each resource can process one
task at a time. Furthermore, resources of the same type are identical. This boils
down to introducing multiple types of parallel machines and adding to each task
the constraint that it is processed by a machine of a specific type.

Solving a resource-constrained scheduling problem consists of three elements,
namely

1. assigning the tasks to the resources;

2. ordering tasks assigned to a resource;

3. assigning start times to the tasks.

A partial order schedule (POS) is a set of precedence relations of the tasks that
solves these first two elements. The precedence relations in POS either constrain
the processing order of tasks assigned to the same resource or enforce the prece-
dence constraints in the scheduling problem. The partial order schedule does not
explicitly assign the tasks to the resources. However, assigning tasks that require
the same resource type and are ordered in the partial order schedule to the same
resources constructs a valid task-resource assignment.

We can extend a partial order schedule to a schedule that covers all three
elements of a resource-constrained scheduling problem by assigning start times to
the tasks such that the start time of each task is at least the maximum completion
time of its predecessors in the partial ordering. Note that a partial order schedule
can be extended to many start time assignments. From the POS we can compute
for each task i the time window in which it has to be processed.

The earliest start time esti is the earliest possible time at which all predecessor
tasks of i can be finished. The earliest completion time ecti is obtained by adding
the processing time pi to the earliest start time of i. The maximum earliest
completion time over all tasks is the makespan of the schedule, and is denoted as
Cmax. A critical path is a sequence of tasks in the partial ordering that cannot be
completed before Cmax.

The end of the time window in which task i has to be processed is denoted by
lcti, which is the latest completion time of i. The latest completion time is equal to
the latest possible completion time of task i such that the schedule remains feasible
with respect to the deadline constraints. In the absence of deadline constraints we
assume a global deadline for all tasks that is equal to the makespan Cmax of the
schedule. The latest start time lsti is the latest completion time subtracted by the
processing time of task i.

The robustness of a schedule is strongly related to the amount of time by
which we can delay the start of a job without suffering serious consequences. In
the literature such a delay is commonly referred to as slack. Many types of slack
have been considered.

We define the total slack tsi of task i in the partial ordering as the maximum
amount of time by which we can delay the task such that no deadlines are exceeded
in the schedule. Equivalently, the slack is the difference between the earliest and
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latest start time of the task, tsi = lsti− esti. Note that in the absence of deadline
constraints the total slack of tasks on a critical path of the schedule is equal to 0.

A different type of slack is the free slack fsi, which is the maximum amount
of time that task i can be delayed without affecting any other task. That is, we
define the free slack as

fsi = min
j∈succ(i)

{estj} − ecti, (3.1)

where succ(i) are the successor tasks of i in the schedule. The free slack of a task
i is never larger than the total slack of i.

Since the input of a stochastic scheduling problem contains random variables,
most properties of a solution to the problem will be stochastic as well. In par-
ticular, an objective function such as the makespan of the schedule can no longer
be expressed as a single deterministic value. To compare solutions in stochastic
scheduling problems a common approach is to restrict the objective functions to
deterministic properties of the random variables. Examples of such objectives are
minimization of the expected value or the variance of the schedules.

In stochastic scheduling problems with deadline constraints the feasibility of
a schedule cannot be guaranteed in most cases, since the completion times of the
tasks are random variables. Instead of determining the absolute feasibility of a
solution, we can compute the likelihood that the deadlines are not exceeded. In
many real-life scheduling problems the likelihood of feasibility of a schedule is
either maximized in the objective function or constrained by a lower bound to
ensure that the schedules can be applied in practice.

3.3 Literature Overview

Most of the robustness measures proposed in literature are for resource-constrained
project scheduling problems, where the standard objective is to minimize the
makespan of the schedule. These measures are mainly based on the concepts
of total slack and free slack.

A simple slack-based robustness estimation, proposed by Jorge Leon et al.
(1994), is to compute the average of the total slacks of all activities. By simulating
many realizations of job shop schedules, Jorge Leon et al. (1994) showed that a
large percentage of the variation in the realized makespan was explained by the
average slack of the schedule. Similarly, Al-Fawzan et al. (2005) proposed the sum
of free slacks as a robustness measure.

Based on the observation that, in addition to the total amount of slack, the
distribution of the slack over the schedule affects the robustness as well, Chtourou
et al. (2008) proposed several variants of the sum of free slacks. These robustness
measures weigh the free slack by the number of successors, or substitute the free
slack with a binary slack indicator function or an upper bound on the slack based
on the activity duration.

The relation of a number of existing and newly proposed robustness measures to
the fraction of feasible schedule realizations in a Monte Carlo simulation has been
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investigated by Hazır et al. (2010). For instances of the discrete time/cost trade-off
problem, they reported high values (> 0.91) of the coefficient of determination for
the sum of total slacks measure and successor-weighted variants of it.

A similar comparison of robustness metrics in a Monte Carlo simulation was
performed by Canon et al. (2010). In contrast to the work of Hazır et al. (2010),
their results showed that summing the unweighted slack of the activities has at
best a weak correlation with the expected makespan of the schedule.

When scheduling activities subject to deadlines, the primary objective is to
find a feasible schedule. However, the concepts of free and total slack do not fully
capture the slack of a schedule with respect to its deadline. To quantify this type of
slack, we can view a schedule with deadlines as a special case of a Simple Temporal
Network (STN), which is a directed graph with both minimum and maximum time
lags on the arcs that was introduced by Dechter et al. (1991). Similarly to the
slack for schedules, several flexibility metrics have been proposed for this type
of graph, which aggregate the slack with respect to all the temporal constraints,
including the deadlines. The naive flexibility of an STN is the sum of the difference
between the latest and earliest start time of each activity, i.e., the total slack
relative to the deadline instead of the makespan of the schedule. Analog to the
free slack of an activity, Wilson et al. (2014) proposed the concurrent flexibility
metric, which is based on interval schedules. An interval schedule specifies for
each activity an interval such that every activity can start at any time within its
interval independently of the other events, and without exceeding the deadline of
the schedule. The concurrent flexibility of an STN is defined as the maximal sum
of the interval lengths over all possible interval schedules. A linear programming
formulation was proposed by the authors to compute the concurrent flexibility. It
was shown in Wilson (2016) that a schedule with a high flexibility is not always
robust to disruptions.

The limitations of the sum of free slacks metric were discussed by Kobylański et
al. (2007), and they proposed to use the minimum free slack over all activities as a
robustness measure for schedules with a deadline, and provided an algorithm that
maximizes the minimum free slack by distributing the free slack evenly over the
schedule. Their approach is essentially the concurrent flexibility metric, proposed
by Wilson et al. (2014), with the objective to maximize the minimum interval
length instead of the sum of the intervals.

An extensive comparison of robustness measures can be found in the paper of
Khemakhem et al. (2013). They investigated the correlation between the surrogate
robustness measures and the probability that the completion time of a schedule
exceeds its nominal makespan, which was approximated using a Monte Carlo sim-
ulation. Their results showed that the strongest correlation (R2 > 0.64) with the
robustness performance metric in the simulation was achieved with a robustness
measure that computes the slack sufficiency, which is based on the ratio between
the free slack and the processing time of an activity.

Despite the many surrogate robustness measures in literature, there is no con-
sensus on which of these provides a good approximation of the true robustness
of a schedule. In the simulation studies of Jorge Leon et al. (1994), Hazır et al.
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(2010), Canon et al. (2010) and Khemakhem et al. (2013), only schedules without
deadlines are considered, focusing mainly on the expected makespan and related
performance metrics. However, a good expected makespan of a schedule con-
strained by a deadline does not necessarily imply that the schedule will respect
its deadline. Therefore, we verify their results for schedules with deadlines in
Chapters 3 and 4.

3.4 Robustness Measures

Surrogate robustness measures that assume that the exact probability distribu-
tion of the uncertain data is known might produce accurate predictions of the
robustness, but their applicability to real-world scheduling problems is limited,
since quantitative data of the uncertainty are often scarce in practice. Therefore,
robustness measures with a low dependency on the available knowledge of the
uncertainty are preferred.

Robustness measures are usually created with the assumption that the mean
processing times of the activity are known. If a robustness measure does not rely
on any other information about the uncertainty, the robustness is solely estimated
from the structure of the partial order schedule σ. The two robustness measures
applied most often in literature, namely the sum of total slacks (Jorge Leon et al.
(1994)),

RM1(σ) =
∑
i

tsσi , (3.2)

and the sum of free slacks (Al-Fawzan et al. (2005)),

RM2(σ) =
∑
i

fsσi , (3.3)

are examples of measures that depend only on the mean activity durations. When
all activities are subject to deadlines, then the minimum total slack,

RM3(σ) = min
i

tsσi , (3.4)

reflects the slack between the completion time of a critical path and its deadline.
In that case, the minimum total slack can be viewed as a robustness measure as
well. Recall that in a minimum makespan schedule the minimum total slack equals
zero by definition.

Another robustness measure of this type that was shown by Khemakhem et al.
(2013) to provide good estimations of the robustness of a schedule was based on
slack sufficiency, which compares the free slack of an activity to a fraction of the
duration of that activity or one of its predecessors in the schedule. In the work of
Khemakhem et al. (2013), this robustness measure is defined as

RM4(σ, λ) =
∑
i

|{j | j ∈ precσ(i) ∪ {i}, fsi ≥ λpj}| (3.5)
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where precσ(i) are the predecessors of activity i in the schedule and 0 < λ < 1.
The authors suggested that λ should be set to the expected deviation from the
nominal processing times of the activities due to disruptions.

A more complex robustness measure depending only on the expected activity
durations is the interval schedule based approach of Wilson et al. (2014). Given
a partial ordering of the activities and for each activity i an interval (esti, lsti)
in which i must start, the approach finds a maximal assignment of intervals to
activities such that each activity i can be scheduled within its interval (ei, li)
independently of the other activities. To achieve this, the intervals are computed
with the linear program

RM5(σ) =max
∑
i

(li − ei)

subject to

estσi ≤ ei ≤ li ≤ lstσi ∀i
li + pi ≤ ej ∀i ≺ j ∈ POSσ.

(3.6)

As an alternative to solving this linear program, Mountakis et al. (2015) formulated
a matching problem based on the dual problem.

Analog to the work of Kobylański et al. (2007), we can change the objective
of the linear program of Wilson et al. (2014) to maximize the minimum interval,
which will result in a more evenly distributed interval schedule. The linear program
then becomes

RM6(σ) =maxmin
i

(li − ei)

subject to

estσi ≤ ei ≤ li ≤ lstσi ∀i
li + pi ≤ ej ∀i ≺ j ∈ POSσ.

(3.7)

In contrast to the previous surrogate robustness measures, the measures RM5

and RM6 focus on the entire graph structure instead of just the slack of the
individual activities. However, an optimal solution to either of the linear programs
is an interval schedule that assigns large intervals to concurrent activities, and,
consequently, only small intervals to sequential activities, thus overemphasizing
parallel activities.

A compromise between activity-based and schedule-based measures is to pre-
dict the robustness of a schedule from the paths in the partial ordering. We define
the slack of a path of tasks π = (π1, . . . , πl) in the schedule σ as

sσπ = lctσπl
− estσπ1

−
∑
i∈π

pi.

Without any knowledge of the uncertainty, it is reasonable to assume that the
likelihood of a disruption on a path increases with the number of activities of the
path. Therefore, we propose to use the minimum over all paths of the path slack
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divided by the number of activities on the path as a robustness measure,

RM7(σ) = min
π

{
sσπ
|π|

}
. (3.8)

Although the number of paths can be exponentially large, we can evaluate this
robustness measure efficiently by computing for each k = 1 to n + 2 the shortest
path lengths in the schedule with exactly k activities.

In many cases, a reasonable estimate of the variance of the uncertainty can be
made as well, even if the exact distribution of the uncertainty is unknown. We can
exploit this additional information by making the assumption that the duration of
each activity is normally distributed, as normal distributions can be characterized
solely by their mean and variance. Although this assumption might be wrong for
the distribution of the duration of a single activity, if follows from the central limit
theorem that the sum of activity durations does resemble a normal distribution.
Therefore, we can approximate the uncertainty in the duration of a path in the
schedule.

We can utilize this approximation as the basis for several robustness measures.
Firstly, we propose another path-based robustness measure. Analog to the mini-
mum weighted path slack in RM7, we use the minimum probability that a path
can be completed within the deadline, computed over all the possible paths in the
graph. That is, we compute for each path π the normal distribution approximation
Xπ of the duration of the path by summing the processing time distributions of
activities on that path, and report the minimum probability of completion before
the deadline T :

RM8(σ) = min
π

{P (Xπ ≤ T )} (3.9)

Although the paths in the schedule are connected by precedence relations, they
are assumed to be independent by this robustness measure.

In contrast to RM7, we might have to evaluate all the paths in the schedule to
compute the distribution-based robustness measure RM8, since the usual graph-
theoretical properties of paths, such as the property that any sub-path of a shortest
path is again a shortest path, do not hold in this case. To keep the computation
tractable, we construct in topological order for each activity i the set of paths in
schedule σ ending at i, from the paths ending at the immediate predecessors of i:

Πi =
{
(π1, . . . , πk, i) | ∃ j ≺ i ∈ POSσ : (π1, . . . , πk) ∈ Πj

}
. (3.10)

Furthermore, we compute the distribution Xπ of the duration of each π ∈ Πi

by summing the normal distributions of the activities on the path. We can then
reformulate RM8 to

RM8(σ) = min
π∈Πn+1

P (Xπ ≤ T ) . (3.11)

To avoid the exponential growth of Πi, we repeatedly remove the path π from Πi

with the smallest probability of exceeding any other path in Πi, until the set of
paths is at most size K. Ties are broken randomly in this pruning procedure, and
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a maximum size of K = 8 was shown to be sufficiently large to achieve a good
robustness estimation in preliminary experiments.

Another approach is to estimate the distribution of makespan of the schedule.
Many approximation algorithms have been proposed in literature, see Ludwig et
al. (2001) for a comparison of several techniques. An efficient method to construct
an approximation of the makespan distribution is to evaluate the activities in
topological order, computing the makespan distribution Yi up to each activity i as
the distribution of the maximum over the makespan distributions of the immediate
predecessors of i

Yi = max
j≺i∈POSσ

{Yj}+Di, (3.12)

where Di is the normal approximation of the activity duration of i, and the maxi-
mum over the predecessor distributions is approximated with a normal distribution
as proposed by Nadarajah et al. (2008). The robustness measure, which is pro-
posed in the work of Passage et al. (2016), is then

RM9(σ) = P (Yn+1 ≤ T ) . (3.13)

3.5 Examples

Although the goal is finding robust shunting plans, we will look at four small ex-
amples of parallel machine schedules with deadlines and stochastic programming
times to illustrate the behavior of the robustness measures. In each of the sched-
ules we have 16 tasks that are assigned to 4 parallel machines, with 4 tasks per
machines. Figure 3.1 shows the four schedules.

In a simulation study we evaluated the performance of the schedules with
different processing time distributions and deadlines. The processing times of the
tasks are sampled from either a normal distribution, a log-normal distribution
or exponential distribution. The mean processing time of each task is 10. The
standard deviation σ of the normal and log-normal distributions is set to 3, and
the σ of an exponential distribution is equal to its mean.

The deterministic makespan of the schedules is 40. We apply a global deadline
constraint to each schedule of either 50 or 60 time units.

The performances of the schedules for the different parameter settings are
presented in Table 3.1. The results show that the additional precedence constraints
cause more delays in the schedules, especially when the standard deviation of the
processing times is high.

We compare the simulation results with some of the robustness measures dis-
cussed in this chapter. The values of the robustness measures are listed in Ta-
ble 3.2. Although the slack-based robustness measures do show the effect of ex-
tending the deadline, most of them fail to capture the impact of the additional
precedence constraints. Furthermore, the slack-based measure cannot differen-
tiate between the processing time distributions, as they only use knowledge on
the mean processing time. In contrast, the values of the normal approximation
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(a) (b)

(c) (d)

Figure 3.1: The four tasks in each row of a schedule are assigned in order to the
same machine. The arcs indicate the precedence constraints in the schedule.

average Cmax fraction within deadline

schedule deadline normal log-normal exponential normal log-normal exponential

3.1a 50 46.4 46.5 62.0 0.82 0.78 0.29

3.1a 60 46.4 46.5 62.0 0.99 0.99 0.50

3.1b 50 49.9 50.2 73.6 0.52 0.52 0.11

3.1b 60 49.9 50.2 73.6 0.99 0.96 0.48

3.1c 50 50.8 51.3 77.3 0.44 0.43 0.09

3.1c 60 50.8 51.3 77.3 0.98 0.94 0.24

3.1d 50 52.5 53.2 83.6 0.27 0.29 0.05

3.1d 60 52.5 53.2 83.6 0.96 0.89 0.16

Table 3.1: The average performances of the schedules in simulations with 1000
samples.
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schedule sd deadline RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9

3.1a 3 50 160 40 10 16 40 2.5 2.5 0.95 0.83

3.1a 3 60 320 80 20 16 80 5 5 0.99 0.99

3.1a 10 50 160 40 10 16 40 2.5 2.5 0.69 0.11

3.1a 10 60 320 80 20 16 80 5 5 0.84 0.40

3.1b 3 50 160 40 10 40 40 2.5 2.5 0.95 0.35

3.1b 3 60 320 80 20 40 80 5 5 0.99 0.99

3.1b 10 50 160 40 10 40 40 2.5 2.5 0.69 0.01

3.1b 10 60 320 80 20 40 80 5 5 0.84 0.03

3.1c 3 50 160 40 10 46 40 2.5 2.5 0.95 0.16

3.1c 3 60 320 80 20 46 80 5 5 0.99 0.99

3.1c 10 50 160 40 10 46 40 2.5 2.5 0.69 0.00

3.1c 10 60 320 80 20 46 80 5 5 0.84 0.01

3.1d 3 50 160 40 10 52 40 2.5 2.5 0.95 0.03

3.1d 3 60 320 80 20 52 80 5 5 0.99 0.96

3.1d 10 50 160 40 10 52 40 2.5 2.5 0.69 0.00

3.1d 10 60 320 80 20 52 80 5 5 0.84 0.01

Table 3.2: The estimates of the robustness measures of the different schedules and
parameter settings. sd is the standard deviation of the processing time distribu-
tion.

method RM9 reflect the precedence constraints in the schedules and deadlines and
standard deviations parameters of the scheduling problem.

In the next chapter we will study the robustness measures in the context of the
train unit shunting problem with the aim of constructing more robust shunting
plans.



Chapter 4

Application of Robustness
Measures to Shunting

4.1 Introduction

In Chapter 3 we have discussed the theoretical aspects of robustness measures.
In this chapter we return to our practical problem of finding shunting plans that
are robust to small disturbances in real-life railway yard operations. There are
multiple sources of uncertainty that contribute to these disturbances. Disruptions
on the main railway network can result in delayed or unscheduled train arrivals
at the yard. Furthermore, service tasks and train movements often have slight
deviations in their processing times. In this chapter we focus on mitigating the
small disturbances that occur frequently during the execution of a shunting plan.
Therefore, we limit the uncertainty to stochastic train arrivals and processing times
of tasks.

The goal of this chapter is constructing robust shunting plans for the Train Unit
Shunting Problem. We define the robustness of a shunting plan as the likelihood
that all trains depart at their scheduled times in the time table. I.e., a robust
shunting plan has a high probability that it can be implemented in practice without
conflicts or delayed train departures. Shunting plans are adapted to disturbances
by applying the right-shift rescheduling policy described in Chapter 3. The partial
order schedule of a shunting plan is assumed to be fixed during operations to
prevent conflicts in the assignment of the activities to the resources.

In order to achieve the goal of this chapter we first identify a set of robustness
measures that correlate strongly to the robustness of shunting plans in a simulation
study in Section 4.2. Then, we investigate in Section 4.3 whether these robustness
measure can be used to guide the local search described in Chapter 2 to robust
solutions. We conclude this chapter with directions of further research on reactive
scheduling in Section 4.4.
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4.2 Identifying Predictive Robustness Measures

The main application of the robustness measures described in Chapter 3 is in the
comparison of schedules, since these measures can often be computed far more
efficiently than other approaches such as simulation. However, we need to inves-
tigate whether the estimations correctly reflect the relative ordering of schedules
according to their robustness to verify that the robustness estimators are actually
suitable for this purpose. To accomplish this, we construct empirical makespan
distributions of a set of realistic schedules in a simulation study, and search for
robustness measures that show a strong correlation with the empirical results.

We have selected two real-world instances of the train unit shunting problem as
the basis of our simulation study. The first one originates from “Kleine Binkchorst
(KBH)”, which is a shunting yard near the central station of The Hague. It consists
of a single night during which 19 train units arrive at the yard. These train units
need to receive internal cleaning and a maintenance inspection; three of them need
to be washed as well. Due to all necessary train movements, shunting plans of this
problem instance typically have close to 160 activities, with 250 to 300 precedence
relations. The other instance is obtained from a shunting yard near Utrecht, named
“OZ”, which contains, contrary to the KBH, many dead-end tracks. As a result,
the main difficulty in the scheduling problem is the parking order of the trains.
This instance has 16 train units and a total of 27 service activities. The number
of activities in the corresponding shunting plans ranges from 140 to 160 activities,
and roughly 300 precedence relations.

For each of these two scheduling problems, we generated 500 feasible shunting
plans with the local search method described in Chapter 2. The main components
of the uncertainty in the execution of a shunting plan are the arrival times of
trains and the durations of service activities and train movements. Disturbances
in the arrival time of a train are modeled with a uniform distribution with the
mean equal to the scheduled arrival time, and an interval size of 10 minutes. The
service activities and train movements always have a nonnegative duration, and
the sizes of the disruptions are usually proportional to the duration of the activ-
ities. Therefore, we model the uncertainty in these activities with a log-normal
distribution with the nominal duration as the mean, and a standard deviation
equal to 0.1 times the nominal duration. Robustness measures RM1 to RM7 use
only the nominal durations in their computations, while RM8 and RM9 require
the standard deviation of the distributions as well. Although for RM4, the slack
sufficiency measure, we can pick any value between zero and one for the fraction
λ, we set it equal to the standard deviation of the uncertainty of the service and
movement activities, i.e., λ = 0.1, as is suggested in Khemakhem et al. (2013).

The schedules are then evaluated by each of the robustness measures listed
in Section 3.4 to generate their predictions of the robustness of the schedules.
The predictions are compared with an estimate of the robustness computed using
Monte Carlo simulation, which is a technique that repeatedly draws samples from
the distribution of the uncertainty to simulate different realizations of the schedul-
ing problem. To obtain an accurate estimate of the robustness, we collect 20000



55 Chapter 4. Application of Robustness Measures to Shunting

Fraction delayed Average delay Computation

ρ r ρ r Time (ms)

RM1 -0.840 -0.663 -0.840 -0.828 0.01

RM2 0.456 0.357 0.470 0.491 0.02

RM3 -0.955 -0.838 -0.972 -0.990 0.01

RM4 0.457 0.290 0.479 0.507 0.54

RM5 -0.298 -0.293 -0.321 -0.326 3.95

RM6 -0.964 -0.718 -0.955 -0.889 6.64

RM7 -0.963 -0.719 -0.953 -0.887 0.87

RM8 -0.982 -0.969 -0.972 -0.835 0.57

RM9 -0.981 -0.971 -0.971 -0.846 0.23

Table 4.1: The Spearman (ρ) and Pearson (r) correlation coefficients, as well as
the average computation time, for the KBH instances. Coefficients close to −1
indicate that the robustness measure is a good approximation of the schedule
robustness.

samples per schedule.

We use two different estimates of the robustness. Since the objective of the
railway yard planners is to find feasible shunting plans that minimize the proba-
bility of delayed departures, we use the fraction of samples in which the schedule
realization resulted in one or more delayed train departures as a performance met-
ric. Additionally, we compute the average train departure delay to get a better
understanding of the problem structure.

The correlation between the performance metrics and the robustness measures
is investigated by computing both the Pearson correlation coefficient (r), and
Spearman’s rank correlation coefficient (ρ). If the robustness of a schedule can be
approximated by a robustness measure, then a high value of the measure should
indicate a low delayed fraction and average departure delay, and we expect that
the robustness measure will have a correlation coefficient close to −1 with either
of the performance metrics. A coefficient of −1 for the Pearson correlation means
that there is a perfect linear relation between the robustness measure and the
performance metric, and a robustness measure with a Spearman correlation of
−1 will rank the schedules perfectly according to the performance metric. The
Spearman correlation coefficient is particularly suitable for our experiments, since
the purpose of the robustness measures is to compare schedules efficiently.

In addition to the two robustness performance metrics, we record the time
required by each robustness measure to evaluate the schedules to compare the
computational efficiency of the measures. To obtain reliable estimates of these
computation times, we evaluated each of the 500 schedules 100 times with every
robustness measure, and compute the average computation time per evaluation.

The relations between the robustness measures and the fraction of samples in
which trains departed with a delay in the simulation study are shown in Figure 4.1
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Figure 4.1: Scatter plots for the 9 robustness measures, showing the computed
value of the measure (vertical axis) and the fraction of delayed samples (horizontal
axis) of the KBH instances.

Fraction delayed Average delay Computation

ρ r ρ r Time (ms)

RM1 -0.933 -0.831 -0.943 -0.962 0.01

RM2 0.544 0.510 0.542 0.606 0.01

RM3 -0.975 -0.876 -0.980 -0.989 0.01

RM4 0.156 0.132 0.161 0.270 0.53

RM5 -0.118 -0.117 -0.127 -0.151 3.81

RM6 -0.969 -0.840 -0.976 -0.972 6.28

RM7 -0.968 -0.841 -0.975 -0.972 0.83

RM8 -0.977 -0.959 -0.971 -0.818 0.60

RM9 -0.972 -0.910 -0.960 -0.896 0.25

Table 4.2: The Spearman (ρ) and Pearson (r) correlation coefficients, as well as the
average computation time, for the OZ instances. Coefficients close to −1 indicate
that the robustness measure is a good approximation of the schedule robustness.
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Figure 4.2: Scatter plots for the 9 robustness measures, showing the computed
value of the measure (vertical axis) and the average departure delay over the
samples (horizontal axis) of the KBH instances.
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for the Kleine Binckhorst test set. Figure 4.2 shows the results for the average
departure delay performance metric for the same instances. Tables 4.1 and 4.2 list
the correlation coefficients of the robustness measures and the two performance
metrics, as well as the average computation time, of the KBH and OZ instances.

The two robustness measures based on normal approximations, RM8 and RM9,
appear to have the strongest rank correlation with both the performance metrics,
clearly showing the advantage of exploiting the additional information of the vari-
ance of the uncertainty. Furthermore, both measures show a high Pearson corre-
lation coefficient with the delayed fraction metric, as can be seen in Figure 4.1. If
we take the computation time into account as well, then the approximation of the
completion time distribution, RM9, would be the preferred robustness measure in
a practical application.

When knowledge of the variance is not available, robustness measures that
rely only on the nominal processing time of activities have to be used. Of those
measures, RM3, RM6 and RM7 are good choices in practice due to their high cor-
relation with both performance metrics. In particular, the minimum total slack
RM3 shows a strong Spearman correlation with the robustness performance met-
rics, and the correlation appears to be linear with the average departure delay
metric. Given that the slack measures can be computed more efficiently than
the normal approximation methods, this robustness measure will most likely be
sufficient to obtain robust solutions to scheduling problems with deadlines.

Contrary to the result of Khemakhem et al. (2013), the robustness measure
RM2, RM4 and RM5, which are based on maximizing the sum of the free slacks,
correlate poorly to either of the performance metrics. This result is supported
by the random scattering of the three measures in Figures 4.1 and 4.2. In the
case of RM2 and RM4, the probability of delays in the schedule actually increases
with the total amount of free slack in the schedule. Although the cause of this
relation remains to be investigated, one possible explanation might be that free
slack in these shunting plans mostly arises when a train is scheduled to wait until
a route or a resource is available for its movement or service activity. Therefore, if
a shunting plan contains many waiting trains, then the infrastructure or resources
at the shunting yard are not used effectively.

4.3 Constructing Robust Shunting Plans

The objective function of the local search proposed in Chapter 2 focuses on the
conflicts in the shunting plan; the goal is to minimize the penalties incurred due to
violations of the hard constraints. Since the objective is limited to the feasibility
of the shunting plan, it will likely lead to solutions that handle disruptions poorly.
One approach to steer the local search towards more robust solutions is to include
a robustness measure in the objective function.

Based on the results in the previous section, we have selected three robustness
measures that approximate the delay likelihood well to investigate whether they
can effectively guide scheduling algorithms to robust shunting plans. The robust-
ness measures are the minimum total slack (RM3), the minimum free slack (RM6)
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Objective average st. dev. p = 0.05 p = 0.1 p = 0.2

Feasibility 0.19 0.25 6.4 2.2 1.8

Feasibility + RM3 0.06 0.14 3.1 1.4 1.2

Feasibility + RM6 0.08 0.17 4.2 1.5 1.3

Feasibility + RM9 0.02 0.04 2.5 1.5 1.2

Table 4.3: The probability of delays of the solutions per objective function for the
Kleine Binckhorst instance.

and the normal approximation (RM9).

Since the goal of the local search is to minimize the objective function, we
add the value computed by a robustness measure multiplied by a weight wRM <
0 to the objective. The negative weight ensures that the local search prefers
higher robustness measure values. We have chosen the robustness measure weight
sufficiently small to prefer conflict resolution over robustness, as the main objective
of the local search is to find conflict-free solutions.

We have tested the performance of the local search with the different robust-
ness objectives on two real-world instances of the shunting problem. The first
instance consists of 19 trains arriving at the “Kleine Binckhorst” location. We
simulate disturbances in this deterministic instance in the Monte Carlo simula-
tion by sampling the durations of movement and service tasks from a log-normal
distribution with the nominal duration of the tasks as the mean, and a standard
deviation of 10% of the mean. The standard deviation is provided to the normal
approximation robustness measure RM9.

In the second instance, we have 24 trains that need to be parked and serviced
on the larger shunting yard “Grote Binckhorst”. The disruptions in this instance
are sampled from log-normal distributions for the duration of the movement and
service activities with a standard deviation of 20% of the mean duration.

To study the effect of the robustness measures, we generated solutions using
our local search by minimizing either only the conflict and movement penalties
(Feasibility), or the base objective extended with one of the three robustness mea-
sures, resulting in 100 feasible shunting plans for each of the four configurations.
The robustness of each of the plans — the probability of a delayed train departure
— was estimated by sampling 10000 plan realizations in a Monte Carlo simulation.

Tables 4.3 and 4.4 summarize the results of the simulations. The columns
average and standard deviation show statistics on the probability of delay in
the solutions generated per objective function. The last three columns show the
expected number of runs of the local search needed until a feasible solution with
a delay probability less than p is found.

The results for both instances indicate that the probability of finding a robust
solution can be improved significantly by adding any of the three robustness mea-
sures to the objective function. Although the normal estimation method takes
slightly more time to evaluate than the two slack-based approaches, resulting in
fewer iterations of the local search per time unit, the final solutions obtained by
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Objective average st. dev. p = 0.05 p = 0.1 p = 0.2

Feasibility 0.49 0.22 50.0 16.7 6.7

Feasibility + RM3 0.26 0.16 33.3 7.1 2.5

Feasibility + RM6 0.26 0.18 50.0 7.7 2.4

Feasibility + RM9 0.15 0.12 20.0 3.1 1.2

Table 4.4: The probability of delays of the solutions per objective function for the
Grote Binckhorst instance.

including the normal estimation into the objective are far more robust than those
produced with the total and free slack robustness measures. In particular for the
Grote Binckhorst instance, Table 4.4 shows that, on average, we will find a shunt-
ing plan with a delay probability of at most 10% after three runs of the local search
algorithm with the normal estimation method in the objective, whereas more than
seven runs are required with any of the other three objective functions.

4.4 Conclusion

In this chapter we have evaluated the performance of the robustness measures
introduced in Chapter 3 in the setting of train unit shunting at railway yards. We
compared the robustness measures with the results of a simulation study on shunt-
ing plans for two real-world shunting problems of NS. The experiments showed that
approximating the makespan of the shunting plans with normal distributions is
the strongest predictor of the robustness of shunting plans. The minimum slack
robustness measures are good alternatives to the normal approximation approach
when data of the variance of the uncertainty is unavailable.

Furthermore, we have compared several search objectives that incorporate
these robustness measures with a basic, non-robust objective in a simulation of
solutions generated with the local search described in Chapter 2. We have shown
that the addition of a robustness measure based on estimating the completion
times significantly improves the robustness of the solutions generated by the local
search, outperforming minimum slack robustness measures.

A major topic for further research is extending the uncertainty in the scheduling
problem to different types of disturbances. Examples of disturbances are train
arrival sequences that deviate from the timetable or trains arriving in unexpected
compositions. These types of disturbances occur frequently and often cannot be
mitigated by delay propagation. Therefore, rescheduling algorithms have to be
developed to cope with disruptions that cannot be absorbed by a shunting plan.
We have started research on this topic in Onomiwo et al. (2020), where we propose
local search methods that resolve conflicts in a shunting plan caused by disruptions
without deviating far from the original schedule. The proposed algorithms often
converge to feasible solutions within seconds, which is crucial in a real-world setting
where rescheduling decisions have to be made as soon as possible. The schedules
of the staff members in the modified shunting plans are highly similar to those in
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the origin solutions, thus increasing the acceptance of the rescheduling method by
the personnel at the railway yards.
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Chapter 5

Extending the Train Unit
Shunting Problem with Staff
Assignment

5.1 Introduction

In Chapter 2 we use a local search approach to generate solutions for the Train
Unit Shunting Problem with Service Scheduling. In these solutions we do not
explicitly roster the staff needed for the train activities. In particular, we assume
that the number of train drivers or train engineers available on the shunting yard
is sufficient to perform all train movements in the shunting plan. However, in
practice personnel is a scarce resource, and hence their availability has a large
impact on the feasibility of a shunting plan. Therefore, in this chapter we consider
the integration of the staff scheduling into our yard planning approach.

The staff at the shunting yard, which consists of train drivers, mechanics and
cleaning crews, typically works in eight-hour shifts. The availability of personnel
within a single shift is constant, but the number of staff varies over the shifts.
Additionally, half-way into their shift the personnel is entitled to a half-hour break.

Due to the sheer size of a shunting yard, the number of tasks that an employee
can perform is severely limited by the walking distance between the locations of
consecutive tasks. For example, if a driver is assigned to two train movements,
and the destination of the first movement is far away from the start of the second
movement, then the walking time between these two locations can easily be more
than the total driving time of the two train movements combined. Even in the
case that a train has two consecutive movements in opposite directions, and the
driver continues to operate the same train, then the driver still has to walk from
the driver’s compartment at one end of the train to the other to have a clear view
in the driving direction. As a result, reversing the direction of movement of a train
with a single train driver can take up to 15 minutes for long train compositions.
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As service and movement tasks take place at many locations on the railway
yard, walking is often unavoidable. With some railway yard layouts the staff
members, in particular the train drivers, might spend the majority of their shifts
on walking between tasks. On such a yard a good staff assignment, in which the
distance between tasks performed consecutively by the same staff member is small,
is instrumental in performing all service and movement tasks in the shunting plan
in a timely manner.

In practice the planners first construct a shunting plan and then try to find
a feasible staff assignment. However, the staff assignment problem for the con-
structed shunting plan might be infeasible, in which case the shunting plan must
be revised. In this chapter we focus on integrating the staff assignment problem
with the shunting problem discussed in Chapter 2. By constructing a shunting
plan in tandem with its staff assignment we can take the staff availability and
walking durations into account when ordering the service and movement tasks to
reduce the total walking time.

In this chapter we first give a formal introduction to the staff assignment prob-
lem in Section 5.2. We then propose two solution methods for the staff assignment,
a list scheduling procedure and a decomposition approach, in Section 5.3 and dis-
cuss the embedding of the two staff assignment algorithms in the local search
method presented in Chapter 2. We compare the two methods in Section 5.4 in
an experimental study. We give some concluding remarks in Section 5.5.

5.2 Problem Description

Recall that the shunting problem at railway yards consists of six components:

1. matching incoming train units to outgoing train units;

2. (de-)coupling trains to form the correct train compositions for departure;

3. scheduling all required service activities such that they are completed before
the trains depart;

4. parking the trains on the yard;

5. finding conflict-free paths for all train movements;

6. assigning staff to all the train activities.

In Chapter 2 we have discussed the first five problem components. A solution to
these problem components — the shunting plan — consists of a set of activities A,
a partial order schedule POS imposing precedence constraints on A, and the start
time of every activity. As we did not consider the staff scheduling sub-problem in
the previous chapter, we computed the start times of the activities based solely
on the POS.

However, in this chapter we assume that the activities in A require one or
more skilled staff members. Since the staff assignment might impose additional
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precedence constraints on the activities, we now consider the problem of assigning
both staff members and a start time to each of the activities, given the partial
order schedule obtained from solving the first five shunting sub-problems.

The staff members are grouped by their skill set, i.e., the activity types that
they are qualified to perform. Each activity a ∈ A has

� a train ta,

� a duration da,

� a track τ inita on which the activity is initiated,

� a track τfinala where the activity ends,

� a staffing requirement of rTa staff members of type T .

Note that τ inita ̸= τfinala if and only if the activity is a train movement. We have
to assign to each activity a a sufficient number of staff members of the required
type, as well as a feasible start time sta and completion time cta = sta + da.

For all available staff members in the planning horizon, we are given

� the start and end of their shift,

� the duration of their mandatory break,

� the interval in which the break has to take place, and

� their skill set type T ∈ T . The skill sets are typically disjoint sets, i.e., train
drivers may only move trains, cleaners clean the trains and mechanics are
limited to repairing and inspecting the trains.

Furthermore, for each pair (τi, τj) of tracks we have the walking duration ωτi,τj ,
which is the time required by a staff member to walk from track τi to track τj .
Note that a more detailed model of the walking durations can be used if the exact
locations of the train activities on the tracks (e.g. in meters) are known.

The staff assignment sub-problem is now to assign staff members and a start
time to each of the activities in the shunting plan such that

� sufficient staff members with the correct skills are assigned to each activity;

� all activities of a staff member are scheduled within his or her shift and do
not overlap;

� the start times of the activities satisfy the precedence constraints in the
POS;

� the time between activities in the schedule of a staff member is at least equal
to the necessary walking duration;

� the break of each staff member is scheduled within the break interval, without
overlap with other activities and without preemption.
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For train drivers there are additional constraints associated with the scheduling
of train movements. If a train driver is assigned to two consecutive movements
of a train t in opposite directions, then the driver has to walk to the driver’s
compartment at the other end of the train to reverse the movement direction of
the train. This reversal occurs after the completion of the first movement and
before the start of the second movement. The duration of the reversal, dtreversal,
depends linearly on the length of the train t.

Although a train movement only requires a single train driver, additional train
drivers are allowed to travel along. Train drivers can travel with the train move-
ments performed by other drivers to reach the locations of their next tasks faster.
For example, suppose that the next task of a train driver is far from his current
location. Instead of walking several kilometers, the driver might travel with an-
other train movement that starts on a track near the driver’s current location to
get closer to his next task. Making a detour or stopping for (dis)embarking is not
allowed during a train movement.

The objective of the train unit shunting problem — and therefore the staff
scheduling sub-problem — is primarily to find a feasible shunting plan. However,
the objective can be extended to include robustness metrics and staff preferences.

5.3 Solution Methods

To find shunting and service plans that satisfy the additional staff scheduling
constraints introduced in the previous section, we propose two methods that can be
integrated as sub-routines in the existing local search framework. These methods
use the information in the partial order schedules generated by the local search to
assign the train activities to their required resources, which includes the personnel.

The first method is a list scheduling policy that extends the movement schedul-
ing heuristic in the local search described in Chapter 2. In this approach we main-
tain a sequence (or ordered list) of activities, which defines the order in which we
evaluate the activities during the staff and start time assignment. For each activity
in order, we compute the earliest start time based on the constraints in the partial
order schedule, and the earliest time that a sufficient number of staff members is
available to perform the activity given the starting times of the activities that are
assigned earlier in the evaluation sequence.

In the second method, we decompose the problem into the sub-problems of as-
signing activities to the staff, and assigning start times to the activities. First, the
staff assignment sub-problem, modeled as a maximum weighted matching problem,
is solved. The solution to this sub-problem provides additional time lag constraints
between the activities. These are then combined with the precedence constraints
in the partial order schedule to compute the start times of the activities. If the
start times assigned in the second step result in delayed train departures, we up-
date the weights in the staff assignment problem and solve the two sub-problems
again. This process is repeated, without modifying the solution to the first five
problem components, until we find a good solution.
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In the remainder of this section we will describe the two proposed methods in
more detail.

5.3.1 List Scheduling Policy

In the list scheduling policy we use an ordered list L of the activities in the shunting
plan. L is a linearization of the partial order schedule, i.e., a total ordering of the
activities. The list L defines the order in which we will evaluate the activities to
assign start times and staff members to them.

When we evaluate activity ai in L = (a1, . . . , an), activities aj with j < i
have already been assigned a start time and staff member by the procedure. To
compute the start time of ai, we have to determine the availability of

� the train tai ;

� infrastructure: cleaning platforms, train movement tracks, and switches;

� staff: train drivers, mechanics, and cleaners.

In the list scheduling approach we consider all the above as resources on which the
activity has to be scheduled.

For each resource R required by ai, we compute the set of feasible time windows
TR in which ai can start on R given the duration of ai and the activities aj with
j < i that are already scheduled on R. For resources with a capacity larger than
one, e.g. multiple train drivers or cleaning crews, the set of feasible start time
windows consists of all time windows in which there is sufficient capacity available
of the resource to process the activity.

The construction procedure of the set of feasible time windows depends on the
type of resource. For the train of ai, the feasible set consists only of a single time
interval that starts after the maximum completion time of all predecessor activities
of the train. For personnel required for ai, we have to insert the activity in the
schedule of a staff member such that sufficient time between activities is reserved
for walking. The feasible time windows for the infrastructure are discussed in
Section 2.3 in the time assignment of movement activities.

Once we have the set of feasible start times of each resource, we compute the
start time of ai as the earliest time that is feasible for all resources. Note that list L
only indicates the priority of the activities, and not their actual order. Therefore,
ai can start before activity aj with j < i if the required resources and the partial
order schedule allow this. We assign staff to activity ai by retracing the staff
members that contributed to the feasible time window at the computed start time
of ai.

Recall that the walking time of a train driver can be decreased by riding along
with another train movement. To add this feature to the list scheduling policy, we
take the scheduled train movements into account when computing the minimum
time lag between two train movements assigned to the same driver.

Let ai be the movement activity that we are currently scheduling in our list
scheduling policy, and let train driver δ be available on time tδ at track τδ. Then
the train driver can
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� either walk directly from track τδ to the initial track τ initi of ai, which takes
ωτ init

i ,τδ time;

� or use one or more of the scheduled train movements to get to track τ initi .

For the latter case we evaluate all train movements that driver δ could use to take
to reach the starting location of train movement ai.

Let (a′1, . . . , a
′
k) be the sequence of all train movements, ordered by starting

time, that start after time tδ and are scheduled prior to train movement ai by the
list scheduling policy. Note that the last condition is equivalent to (a′1, . . . , a

′
k) ∈

{a1, . . . , ai−1}.
We determine the earliest time that train driver δ can start train movement ai

using a dynamic programming approach. We denote by Dj
τ the earliest time that

the driver reaches track τ with the possibility of traveling with the train movements
from (a′1, . . . , a

′
j), with j ∈ {1, . . . , k}. Additionally, we define D0

τ = ωτδ,τ , which
is the walking take from track τδ to track τ .

Then we can compute Dj
τ for all j ∈ {1, . . . , k} and all tracks τ as

Dj
τ =

Dj−1
τ if Dj−1

τ init
j

> stj

min
{
ctj + ωτfinal

j ,τ , D
j−1
τ

}
otherwise.

(5.1)

In the first case, train movement a′j starts before the driver can reach the initial

track τ initj of a′j , hence the driver cannot use movement a′j to get faster to track τ .
In the latter case, the driver has the possibility to board train movement a′j and

walk from the destination track τfinalj of a′j to track τ .

The earliest time that driver δ can start movement activity ai is then Dk
τ init
ai

,

i.e., the earliest time that the driver can reach the initial track of ai via any feasible
combination of train movements.

5.3.2 Decomposition Heuristic

With the decomposition heuristic, we first solve the problem of assigning activ-
ities to personnel. The assignment gives us the schedules of the individual staff
members, which we will combine with the precedence constraints from the partial
order schedule to compute the start times of the activities in the second step.

We model the staff assignment problem for each type of personnel T (train
drivers, mechanics and cleaners) separately as a maximum weighted matching
problem in a bipartite graph. Let AT = {a1, . . . , an} be the set of activities that
require staff members of type T , and define kT as the number of staff members
available.

We construct the bipartite graph G = (U, V,E) by adding for each activity ai
in A the vertices ui to U and vi to V . Additionally, U and V both have has kT
additional dummy vertices. A matching of the vertices in U to the vertices in V will
model the predecessor-successor relations of the activities in the staff schedules.
That is, if ui is matched to vj , then activity ai directly precedes activity aj in a
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staff schedule. The dummy vertices in U and V correspond to dummy activities
representing the start and end of each schedule, respectively.

For every u ∈ U and v ∈ V we add an arc (u, v) if either:

� u is a dummy vertex and v is an activity vertex;

� u is an activity vertex and v is a dummy vertex;

� both u and v are activity vertices and activity au can precede activity av
according to the partial order schedule.

For a matching to be feasible with respect to the whole shunting plan, the
additional constraints should neither create cyclic precedence constraints on the
activities nor cause delayed train departures.

The problem of cycles in the maximum matching arises from the partial order
schedule, where we can have anti-chains, which are sets of activities that are
incomparable, i.e., without a well-defined ordering in the POS. These anti-chains
can result in cycles in our matching problem. For example, suppose that we have
two activities, ai and ai′ , that are incomparable. Then the bipartite graph would
contain the arcs (ui, vi′) and (ui′ , vi). If both arcs are selected in the matching,
then ai and ai′ would have cyclic precedence constraints, which is clearly infeasible.
To mitigate this problem we order the anti-chains during the construction of the
graph G using the priority list L introduced in the previous sub-section. That is,
we only include arcs from ui to vi′ if ai has a higher priority than ai′ in L. Note
that the priorities only indicate the order of activities assigned to the same staff
member. If two activities in an anti-chain are assigned to different staff members,
then the activities can be performed simultaneously.

To find a maximum matching that is likely to satisfy the departure time con-
straints, we assign weights to the arcs in the bipartite graph. For each activity
ai ∈ AT , we compute its earliest completion time ecti and latest start time lsti in
the original partial order schedule. Then, for every arc (u, v) where u corresponds
to an activity ai and v to activity aj , we set the weight of the arc to

wi,j = lstj − ecti −mtli,j , (5.2)

where mtli,j is the minimum time lag due to walking between ai and aj . The
weights of arcs involving dummy vertices are set to zero. With these weights,
matchings in which the staff has sufficient time between their scheduled activities
are preferred. Note that we cannot guarantee that a maximum weighted matching
causes no departure delays, as the arc weights are only pair-wise indications of
the feasibility of performing two activities consecutively. The weights cannot fully
express whether sequences of more than two activities are feasible.

From the solutions of the staff assignment problems we obtain a set of min-
imum time lag constraints C between the activities that extend the precedence
relations in the partial order schedule POS. With these constraints we can assign
the earliest start and completion times of the activities efficiently using a greedy
approach. The earliest start time of an activity is the maximum of the completion
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time plus the minimum time lag over its direct predecessors in C ∪ POS. The
order in which we assign the times to the activities follows from the priority list
L. As L is a valid topological ordering of the activities with respect to the prece-
dence constraints in C and POS, this assignment order ensures that the start and
completion time of an activity is assigned before evaluating any of its successors.

During the start times assignment we use the dynamic programming approach
from Section 5.3.1, which allows drivers to travel with other train movements to re-
duce walking, to compute the minimum time between two consecutive movements
assigned to the same train drivers.

After solving the staff and time assignment sub-problems, the solution might
contain delayed train departure conflicts. To reduce the delays and improve our
staff assignment, we will update the weights of the arcs, and solve the two sub-
problems again. We select the matching variables that have their corresponding
precedence relation on a critical path causing the delays, and reduce their weight
by the total amount of departure delay resulting from the critical path. Then,
we resolve the maximum weighted matching problem and again determine earliest
start times of the activities. This procedure is repeated until we either find a
feasible solution, fail to generate a new solution, or reach the predefined maximum
number of iterations, iDH . The best candidate solution found in the iterations is
then returned by the decomposition heuristic.

5.3.3 Embedding in the Local Search

The two staff assignment heuristics are intended to extend a partial solution of
the first five problem components defined in Section 5.2 — generated by the local
search — to a full shunting plan including staff schedules. In addition to the POS,
the input of the two methods consists of a priority list L of the activities as well.
Since the order of activities in the priority list affects the solutions produces by
the two staff assignment algorithms, we have to allow the local search to modify
the priority of the activities.

As described in Chapter 2, the local search has several neighborhoods that
change the order of the activities in the partial order schedule. When the local
search modifies the ordering in the POS, we update the priorities of the activities
such that the priority list remains a linearization of the partial ordering. Addition-
ally, we introduce two new neighborhoods that change the ordering of L without
affecting the POS by shifting and swapping activities, respectively.

5.4 Experimental Setup and Results

To compare the two solution methods, we will evaluate their performance on a
set of instances generated for a real-world shunting yard. The “Kleine Binkchorst
(KBH)”, shown in Figure 2.1, is a shunting yard of the NS near the central station
of The Hague. For this location, we have generated 300 instances in which 13 to
15 train units arrive during the evening and have to depart the next morning. The



71 Chapter 5. Extending the Shunting Problem with Staff Assignment

Method Solved Instances Average Computation Time (s)

No Drivers 300 32

Complete LSP 276 54

Complete DH 196 414

Partial LSP 286 116

Partial DH 195 245

Table 5.1: The results for 300 instances of the Kleine Binckhorst yard in the
Netherlands. The average computation time of feasible solutions is listed in the
table.

arrival and departure times are sampled from an empirical distribution based on
data provided by NS. All trains have to be cleaned internally.

For the case without drivers, feasible solutions for 300 instances are found by
the local search algorithm described in Chapter 2, as is shown in Table 5.1. To
model the staff assignment problem, we included three train drivers that will be
available during the entire planning horizon. The walking distances are provided
by NS based on real-world data and range from 2 to 20 minutes, depending on the
physical location of the tracks.

We tested four configurations of the local search on these instances extended
with the staff requirements. In the first two configurations we call the staff as-
signment sub-routine (either the list scheduling policy LSP or the decomposition
heuristic DH) for every solution that the local search explores. We will refer to
these two configurations as the complete LSP and the complete DH approaches.
In the two other configurations, we first search for a feasible solution without any
staff assignment, similar to the baseline case where we did not include the train
drivers in the instances. Once a feasible solution without personnel is found, we
run either one of the staff assignment heuristics. If the resulting solution con-
tains delays, we continue the local search algorithm with the staff assignment
sub-routine. These two configurations are listed in Table 5.1 as the partial LSP
and partial DH methods. On each instance we ran the four local search variants
until a feasible solution was found, or the maximum computation time of 1800
seconds was reached.

Table 5.1 shows the number of solved instances as well as the computational
results of our experiments. All instances with train drivers have been solved suc-
cessfully by at least one of two list scheduling configurations of the local search.
The list scheduling policy outperforms the decomposition heuristic for both the
complete and partial local search variants. The decomposition heuristic fails to
find feasible solutions for one-third of the instances, whereas the list scheduling
algorithm solves most of the instances relatively fast. This might indicate that
the decomposition approach is not able to update the edge weights properly to
converge to a good schedule for the train drivers. The longer computation time
of the decomposition approach is most likely due to constructing and solving the
matching problem every iteration.
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Figure 5.1: The computation time of solved instances of the five local search
configurations listed in Table 5.1.
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The differences between starting directly with the staff assignment or first
searching for a feasible solution without staff are much smaller. In the case of the
LSP approach, starting from a feasible solution without staff increases the number
of instances that can be solved at the cost of doubling the computation time. This
suggests that adapting the solution without staff to the staffing constraints might
require either many small modifications, or several high-cost intermediate solutions
that are unattractive for the local search to explore.

Of the four local search configurations, the variant in which we schedule the
staff with the list scheduling policy for every candidate solution shows the best
performance. The computation time of this configuration is close to the local
search without staff assignment, and 92% of the instances are solved.

5.5 Conclusion

In this chapter, we have studied the extension of the train unit shunting problem
with staffing constraints. We proposed two methods that construct staff sched-
ules for a given partial ordering of the activities on the shunting yard. The first
method implements a list scheduling policy to distribute the activities of the avail-
able personnel, whereas the second approach decomposes the problem into a staff
assignment and a time assignment sub-problem that are solved iteratively. These
methods can be used in conjunction with the local search presented in Chapter 2
to find feasible shunting plans that fully integrate all components of the planning
problem at the railway yards.

We studied the performance of the solution methods on a set of 300 realistic
instances of the “Kleine Binckhorst” shunting yard. The experiments show that
the list scheduling approach outperforms the decomposition heuristic, and that
the former solves 92% of the instances in reasonable time.
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Chapter 6

Exact Methods for Train
Driver Assignment at
Railway Yards

6.1 Introduction

In Chapter 5 we introduced the staff assignment problem at railway yards. We
proposed two heuristic methods that try to assign staff members and start times
to activities, which are constrained by a partial order schedule, such that the
temporal constraints and staff requirements are satisfied. The heuristics can be
combined with the local search approach described in Chapter 2, which constructs
the partial order schedules of the activities, to find feasible shunting plans with
staff assignments.

In practice the scheduling of the train drivers is the main bottleneck of the
staff assignment problem. Cleaning and maintenance tasks are often limited to a
few locations on the railway yard due to the requirement of specialized facilities
or tools, whereas train movements take place all over the yard. Therefore, the
efficiency of the schedules of the train drivers is a major concern of the planners.

To evaluate the quality of the solutions produced by the heuristics, we can
compare them to optimal train driver assignments for the partial order schedule.
In this chapter we propose exact solution methods based on mixed integer linear
programming for the train driver assignment problem and several extensions of
this problem. The problem extensions consist of robust formulations of the basic
problem, allowing drivers to join scheduled train movements as passengers, and
limiting the availability of the train drivers to predetermined shifts.

This chapter is organized as follows. We start with an overview of the train
driver assignment problem in Section 6.2, and formulate MIP models of two vari-
ants of the problem in Sections 6.3 and 6.4. We compare solutions constructed by
the heuristics in Chapter 5 with the optimal train driver assignment of the exact

75
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models in Section 6.5. We conclude this chapter with recommendations for future
research in Section 6.6.

6.2 Problem Description

Similar to the general staff assignment problem at railway yards, described in Sec-
tion 5.2, the input of the train driver assignment problem is a set of train drivers
who are available to operate the trains, and a shunting plan that contains both
the train movements that have to be performed and a set of minimum time lags
between the movements. The minimum time lags arise from the service activities
scheduled in the shunting plan as well as the train safety regulations, which spec-
ify a minimum time between train movements over the same track. Each train
movement has to be operated by one train driver.

Let A be the set of train movements in the shunting plan, consisting of move-
ments a1, . . . , an. From the partial order schedule of all activities in the shunting
plan we can derive the set of minimum time lag constraints between the train
movements. We denote this set by C, where mtlij ∈ C is the minimum time lag
between the completion times of ai and aj . Note that there is a time lag between
ai and aj if and only if aj is a direct successor of ai in the partial order schedule.
Furthermore, for each train movement ai we can derive its earliest completion
time ecti and latest completion time lcti in the shunting plan from the arrival and
departure times of the trains, and the minimum time lags in C.

To operate the trains there are m train drivers present during the planning
horizon at the railway yard. Each driver k ∈ {1, . . . ,m} is available during his
or her shift, which starts at sk and ends at ek. The drivers all start and end
their shifts at the same location on the railway yard. The walking time from the
destination of movement ai to the origin of movement aj is denoted as ωij . We
further use the following notation:

A = set of train movements {a1, . . . , an} that have to be operated,

duri = duration of movement ai,

ecti = earliest completion time of movement ai,

lcti = latest completion time of movement ai,

C = set of minimum time lag constraints between movement pairs, with

mtlij ∈ C = minimum time lag from completion time of ai to completion time of aj ,

ωij = minimum walking time from ai to aj ,

ω0i = minimum walking time from shift start location to ai,

ωi0 = minimum walking time from ai to shift end location.

The goal of the train driver assignment problem is to assign train drivers and
start times to the train movements in A such that each movement is operated by
a train driver, and the start times satisfy the walking and time lag constraints.
Although feasibility is the main objective, planners try to construct train driver
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assignments that use as few drivers as possible. The surplus of train drivers may
be kept in reserve during operations to quickly respond to unexpected events such
as the delayed or unplanned arrival of trains on the railway yard.

6.3 Continuous Driver Shift Models

We first study variants of the train driver assignment problem in which the shifts
of the train drivers all span the entire planning horizon. That is, we assume that
all shifts start before the first train arrives and end after the last departure.

In the models we will decide on the completion time ci ≥ 0 of each train
movement ai ∈ A. Furthermore, we have to assign the movements to the train
drivers. We model the assignment as a flow problem in which the flow through
the train movements defines the staff schedules.

Let a0 be a dummy movement representing the start and end of the shunting
plan, and define A+ = A

⋃
{a0}. For each pair of movements ai, aj ∈ A+, with

ai ̸= aj , we define the decision variable

xi,j =

{
1 if ai directly precedes aj in the schedule of a train driver,

0 otherwise.

By assigning to each ai ∈ A a single predecessor and successor we construct the
sequences of the train movements in the driver schedules. Each schedule starts
and ends with a0.

To formulate the staff assignment problem as a mixed integer linear program,
we denote the following properties of the POS and the driver schedules as

mtl′ij =

{
mtlij if mtlij ∈ C

ectj − lcti otherwise,

ω′
ij = max{ωij + durj −mtl′ij , 0}

The problem of finding a feasible driver assignment can then be formulated as

min

n∑
i=1

x0,i (6.1)

s.t. cj − ci − ω′
ijxi,j ≥ mtl′ij ∀ai, aj ∈ A (6.1a)

n∑
j=0

xi,j = 1 ∀ai ∈ A (6.1b)

n∑
j=0

xj,i = 1 ∀ai ∈ A (6.1c)

ci ∈ [ecti, lcti]

xi,j ∈ {0, 1}.



6.3. Continuous Driver Shift Models 78

In Model 6.1 the minimum time lag between activities is enforced by (6.1a). The
minimum necessary time lag ω′

ij is included if and only if ai is the direct predecessor
of aj in some train driver schedule. Each movement ai ∈ A is included in a single
staff schedule due to the in- and outflow constraints (6.1b) and (6.1c).

Note that in any feasible solution the precedence graph induced by C and the
driver schedules is always acyclic due to the constraints in (6.1a).

6.3.1 Robustness

Since the railway yard is a very dynamic environment with many possible distur-
bances, we strive for resilient solutions. In Chapters 3 and 4 we studied several
metrics that quantify the robustness of the shunting plans. Although robustness
measures based on normal distribution approximations cannot easily be expressed
in a linear model, some of the slack-based approaches can be formulated using
linear constraints.

We will illustrate this with two robust formulations of Model 6.1. In both
formulations we assume that the number of train drivers in the problems are
fixed; we denote the number of drivers by m.

In our first model, we use the free slack times — the maximum amount of
time an activity can be delayed without affecting other activities — as a measure
for the robustness. We denote this by fsi and try to maximize the sum in our
objective function. In Model 6.2 we formulate the mixed integer linear program
of the train driver assignment problem with free slack times as

max

n∑
i=1

fsi (6.2)

s.t. cj − ci − fsi − ω′
ijxi,j ≥ mtl′ij ∀ai, aj ∈ A (6.2a)

n∑
j=0

xi,j = 1 ∀ai ∈ A (6.2b)

n∑
j=0

xj,i = 1 ∀ai ∈ A (6.2c)

ci + fsi ≤ lcti ∀ai ∈ A (6.2d)
n∑

i=1

x0,i ≤ m (6.2e)

ci ≥ ecti

xi,j ∈ {0, 1}.

In this formulation the free slack of activity ai is constrained by the minimum
time lag relations in (6.2a) and the latest completion time of ai in (6.2d). Con-
straint (6.2e) provides the upper bound on the number of train drivers that can
be assigned to the activities.
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In our second model we measure the robustness using the total slack times of
the activities. In the context of a scheduling problem with deadlines the total slack
of an activity represents the maximum amount of time that the activity can be
delayed without violating any of the deadline constraints. The total slack can be
expressed as the difference between the largest possible completion time and the
smallest possible completion time of the activity in the solution. We denote the
smallest completion time of activity ai by c−i and the largest completion time by
c+i . Note that c

−
i is the smallest completion time of ai in a train driver assignment,

whereas the input parameter ecti is earliest completion time of ai in the partial
order schedule of the shunting plan without train drivers.

The objective function of the second model is the maximization of the sum of
the total slack times of the activities. We formulate the train driver assignment
with total-slack-based robustness as

max

n∑
i=1

(
c+i − c−i

)
(6.3)

s.t. c−j − c−i − ω′
ijxi,j ≥ mtl′ij ∀ai, aj ∈ A (6.3a)

c+j − c+i − ω′
ijxi,j ≥ mtl′ij ∀ai, aj ∈ A (6.3b)

n∑
j=0

xi,j = 1 ∀ai ∈ A (6.3c)

n∑
j=0

xj,i = 1 ∀ai ∈ A (6.3d)

c+i − c−i ≥ 0 ∀ai ∈ A (6.3e)
n∑

i=1

x0,i ≤ m (6.3f)

c−i ≥ ecti

c+i ≤ lcti

xi,j ∈ {0, 1}.

In Model 6.3 the constraints (6.3a) and (6.3b) ensure that the smallest and largest
completion time variables satisfy the minimum time lag constraints imposed by
the shunting plan and the train driver assignment. The total slack cannot be
negative in a feasible solution, which is modeled by constraint (6.3e). Similar to
constraint (6.2e) of Model 6.2 we bound the maximum number of drivers that can
be assigned with constraint (6.3f).

When the shunting plan and the train driver assignment is implemented during
operations, all activities will be performed as early as possible. If no disturbances
occur, then each activity ai will be completed at time c−i .
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6.3.2 Allowing passengers

To reduce the distance that train drivers have to travel on foot, they can board
the trains operated by their colleagues to move more efficiently over the railway
yard, as described in Section 5.2. To allow multiple train drivers on the same train
movement, we introduce, next to xi,j , for each pair of movements ai, aj ∈ A+ the
decision variable

yi,j = the number of driver schedules in which ai directly precedes aj ,

with yi,j ≥ 0 and integral.
We formulate the driver assignment problem extended with passenger options

as

min

n∑
i=1

y0,i (6.4)

s.t. cj − ci − w′
ijxi,j ≥ mtl′ij ∀ai, aj ∈ A (6.4a)

n∑
j=0

yi,j ≥ 1 ∀ai ∈ A (6.4b)

n∑
j=1

(yi,j − yj,i) = 0 ∀ai ∈ A (6.4c)

yi,j − xi,j ≥ 0 ∀ai, aj ∈ A (6.4d)

mxi,j − yi,j ≥ 0 ∀ai, aj ∈ A (6.4e)

ci ∈ [ecti, lcti]

xi,j ∈ {0, 1}
yi,j ∈ N0

Similar to Model 6.1, we have the minimum time lag constraints in (6.4a).
The constraints in (6.4b) ensure that at least one train driver is assigned to each
movement. Constraint (6.4c) ensures that the number of drivers embarking and
disembarking for train movement ai remains balanced. The two constraints (6.4d)
and (6.4e) model the logical relation between xi,j and yi,j : yi,j ≥ 1 ⇔ xi,j = 1.

Note that the model does not decide which train driver operates the train when
multiple drivers are present during a train movement. However, since we assume
that each train driver has the skill set to operate all train types, the distinction
between operator and passenger does not impact the staff schedules.

6.4 Non-identical Driver Shifts Models

In the previous section we assumed that each train driver is available during the
complete planning horizon. However, in practice the train drivers work in shifts
of six to nine hours. The number and start times of the train driver shifts are
scheduled before the shunting process at the railway yard is planned, and thus
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is input to the train driver assignment problem. The shifts can overlap in time
and the number of simultaneous shifts can vary during the planning horizon. We
assume that all driver shifts start and end at the same location on the railway
yard.

We denoted the set of train driver shifts by K, which consists of m shifts. Each
shift k ∈ K has a start time sk and an end time ek. Instead of a single dummy
movement a0 that models the start and end of all shifts, we introduce for each
shift k ∈ K a dummy movement an+k that represents the start and end of shift k.

Similar to the models proposed earlier in this chapter, we model the train
driver assignment as a flow circulation problem in which the flow through the
train movements defines the driver schedules. The xi,j decision variables model
the flow, and the flow corresponding to the driver schedule of shift k ∈ K starts and
ends at activity an+k. However, since the shifts are not assumed to be identical,
we have to ensure that the flow which starts in dummy activity an+k does not
pass through any of the other dummy activities. For example, suppose that we
have two shifts, which are scheduled for the time intervals [9 : 00, 17 : 00] and
[12 : 00, 20 : 00]. Then we have to prevent train driver assignments with flows
from 9 : 00 to 20 : 00 or from 12 : 00 to 17 : 00, as these flows do not correspond
to shifts.

To avoid solutions with invalid flows we introduce decision variables to explic-
itly assign shifts to activities. In addition to the xi,j variables, we have three binary
variables for each activity-shift pair in our model to represent the assignment of
drivers to activities:

zi,k =

{
1 if movement ai is operated by the driver of shift k,

0 otherwise,

xn+k,i =

{
1 if the driver of shift k starts with ai,

0 otherwise,

xi,n+k =

{
1 if the driver of shift k ends with ai,

0 otherwise.

Furthermore, for each shift we add a binary decision variable

xn+k,n+k =

{
1 if the driver of shift k is not assigned to any activity in A,

0 otherwise,

to model that a shift is not used in the train driver assignment. Let ecti,k and lcti,k
be the earliest and latest completion times of ai if ai is the first or last activity in
shift k, respectively:

ecti,k = sk + ω0i + duri,

lcti,k = ek − ωi0.

We formulate the train driver assignment problem with non-identical shifts in
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Model 6.5,

min

m∑
k=1

n∑
i=1

xn+k,i (6.5)

s.t. cj − ci − ω′
ijxi,j ≥ mtl′ij ∀ai, aj ∈ A (6.5a)

ci −
m∑

k=1

(ecti,k − ecti)xn+k,i ≥ ecti ∀ai ∈ A (6.5b)

ci −
m∑

k=1

(lcti,k − lcti)xi,n+k ≤ lcti ∀ai ∈ A (6.5c)

n+m∑
j=1

xi,j = 1 ∀ai ∈ A (6.5d)

n+m∑
j=1

xj,i = 1 ∀ai ∈ A (6.5e)

xn+k,n+k +

n∑
i=1

xn+k,i = 1 ∀k ∈ K (6.5f)

xn+k,n+k +

n∑
i=1

xi,n+k = 1 ∀k ∈ K (6.5g)

m∑
k=1

zi,k = 1 ∀ai ∈ A (6.5h)

zi,k − zj,k + xi,j + xj,i ≤ 1 ∀ai, aj ∈ A,∀k ∈ K (6.5i)

zj,k − zi,k + xi,j + xj,i ≤ 1 ∀ai, aj ∈ A,∀k ∈ K (6.5j)

ci ∈ [ecti, lcti] (6.5k)

xi,j ∈ {0, 1} (6.5l)

zi,k ∈ {0, 1}. (6.5m)

In this model we minimize the number of train drivers assigned to activities.
Constraints (6.5a) model the minimum time lags between activities that are im-
posed by the staff assignment and the partial order schedule.

Since the shifts do not span the entire planning horizon, it is necessary to
include in the model that the drivers start and end their shift at a fixed location
on the railway yard. Constraints (6.5b) ensure that the drivers have enough time
to walk from that location to start locations of their first activities. Similarly, the
drivers can walk from the last activity in their shifts back to the central location
within theirs shifts due to Constraints (6.5c).

Constraints (6.5d) and (6.5e) model that each activity ai ∈ A has a single
successor and predecessor in the shift to which it is assigned. The constraint that
each shift is either empty or contains a first activity is modeled by (6.5f). A similar
constraint for the last activity in each shift is given by (6.5g).
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Each activity is assigned to exactly one driver shift by constraint (6.5h). Con-
straints (6.5i) and (6.5j) ensure that if ai directly precedes or succeeds aj in a
driver shift, then ai and aj are assigned to the same driver shift. That is,

xi,j = 1 ∨ xj,i = 1 ⇒ ∀k ∈ K : zi,k = zj,k,

which is equivalent to

∀k ∈ K : |zi,k − zj,k| ≤ 1− xi,j − xj,i.

Model 6.5 gives a complete description of the train driver assignment problem
with shifts. The constraints that each activity ai must be completed within the
shift to which it is assigned are modeled implicitly by the constraints (6.5a), (6.5b)
and (6.5c). In Model 6.5’ we extend Model 6.5 by explicitly constraining the
completion times ci of the activities to the start and end times of the shifts.

min

m∑
k=1

n∑
i=1

xn+k,i (6.5’)

s.t. cj − ci − ω′
ijxi,j ≥ mtl′ij ∀ai, aj ∈ A (6.5a)

...
...

zi,k ∈ {0, 1}, (6.5m)

ci −
m∑

k=1

(sk − duri − ecti) zi,k ≥ ecti ∀ai ∈ A (6.5n)

ci −
m∑

k=1

(ek − lcti) zi,k ≤ lcti ∀ai ∈ A (6.5o)

The constraints (6.5n) and (6.5o) ensure that the activities are operated within
the time intervals of the shifts. Although these constraints are redundant with
respect to the integral solution space, the explicit restrictions of the completion
times improve the LP-relaxation of the model. This can reduce the computation
time needed to solve the model, as shown in Section 6.5.

6.4.1 Branch-and-price formulation

The MIP formulation proposed in Model 6.5 introduces a large number of con-
straints to schedule the activities in the available driver shifts. In particular, the
model contains constraints (6.5i) and (6.5j) for every combination of activity pairs
and shifts. Models with large sets of constraints can be challenging to solve effi-
ciently. As an alternative to the flow-based approach used in the previous models,
we can formulate the problem as a covering problem in which we assign complete
driver schedules of activities to the driver shifts. This leads to a model with fewer
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constraints. The major disadvantage of this approach is in the number of decision
variables; the number of possible activity schedules that can be assigned to the
shifts increases exponentially with the number of activities.

To cope with the large number of decision variables we apply the branch-and-
price method. With this (mixed) integer linear programming technique we start
with a small subset of the decision variables, or columns, and solve the restricted
version of the LP relaxation of the master problem. We then search for columns
that might reduce the objective value by solving a sub-problem, which is known
as the pricing problem, and add these to the master problem. We continue to
solve the master and pricing problem alternately until we find no new potentially
beneficial columns in the pricing problem. Then we solve the integral version of the
master problem. This process is repeated for each node in the branch-and-bound
tree.

In the master problem of the branch-and-price approach, we decide on the
completion time ci ≥ 0 of each activity ai ∈ A. Furthermore, we have to assign
the activities to the train driver shifts. We model the schedules of individual
train driver shifts as sequences of the activities in A. In such an individual driver
schedule we only describe the sequence of activities to be done; the times at which
these are done are decided by the master problem.

Let Πk be the set of possible driver schedules for shift k, then we can construct
a feasible driver assignment by selecting for each shift k a schedule πl ∈ Πk such
that all activities are covered and completed before their deadline. We represent
the decision of selecting driver schedule πl ∈ Πk by the binary decision variable
dsk,l, where

dsk,l =

{
1 if schedule πl is chosen for train driver shift k,

0 otherwise.

To formulate the train driver assignment problem with shifts as a mixed integer
linear program, we denote the following properties of the train driver schedules as

ai,l =

{
1 if ai is in schedule πl

0 otherwise

rijl =

{
1 if ai directly precedes aj in schedule πl

0 otherwise

The problem of finding a feasible train driver assignment that minimizes the
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number of shifts assigned to activities is formulated in Model 6.6.

min

m∑
k=1

∑
l∈Πk

dsk,l (6.6a)

s.t.

m∑
k=1

∑
l∈Πk

ai,ldsk,l = 1 ∀ai ∈ A (αi) (6.6b)

cj − ci − ω′
i,j

m∑
k=1

∑
l∈Πk

ri,j,ldsk,l ≥ mtl′i,j ∀ai, aj ∈ A (βij) (6.6c)

∑
l∈Πk

dsk,l ≤ 1 ∀k ∈ K (γk) (6.6d)

ci ∈ [ecti, lcti] (6.6e)

Constraints (6.6b) ensure that each activity is included in one of the driver
shifts. The minimum time lag constraints imposed by the partial order schedule
and the driver schedules are modeled by (6.6c). At most one sequence of activities
is assigned to each driver shift due to constraints (6.6d).

The promising driver schedules πl are identified in the pricing problem. The
values of the dual variables of the constraints (6.6b), (6.6c) and (6.6d) are denoted
by αi, βi,j and γk, respectively. The reduced cost of a schedule πl of driver shift
k ∈ K is given by

1−
∑
i

αiai,l +
∑
i,j

βi,jω
′
i,jri,j,l − γk, (6.7)

and πl is added to the restricted master problem if its reduced cost is less than
zero.

The pricing problem is then to construct an ordered subset of the activities for
the driver shift that maximizes the weight∑

i

αiai,l −
∑
i,j

βi,jω
′
i,jri,j,l, (6.8)

subject to the feasible completion time intervals [ecti, lcti] of each activity ai,
the minimum time lag constraints between activities derived from the POS, the
walking time of the train driver, and the time interval of the shift.

Finding an optimal solution to this pricing problem is NP-hard. In Van den
Akker et al. (2012) the authors propose a local search method to solve a similar
pricing problem. They apply the column generation technique to a parallel ma-
chine scheduling problem with release dates, deadlines and generalized precedence
constraints. The corresponding pricing problem is to find a feasible schedule for
a single machine that minimizes the reduced cost such that all precedence and
temporal constraints are satisfied.

An alternative approach is to first discretize the problem to a time-indexed
formulation. We can then model the discretized pricing problem as a single-source
path-finding problem in a time-expanded graph. In this directed graph we have
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two vertices representing the start and end of the shift. We denote these vertices
by vs and ve, respectively. Furthermore, for every activity ai and every time step
t ∈ [sk, ek] we add a vertex vi,t to the graph that represents that activity ai is
completed at time t.

The arcs in the graph model the sequences of activities that can be operated
by the driver. We add an arc from vi,t to vj,t′ if the driver can complete ai at time
t followed by aj at time t′ without violating any of the constraints:

� t ∈ [ecti, lcti];

� t′ ∈ [ectj , lctj ];

� the driver can walk from ai to aj and operate aj in t′ − t time;

� completing ai at time t and aj at time t′ satisfies the minimum time lag
constraints imposed by the POS.

The weight of an arc from activity ai to aj is set to αj − βi,jω
′
i,j .

In addition to the arcs between activities we also connect the two shift vertices
to the activities. An arc from the start-of-shift vertex vs to vertex vi,t is added to
the graph if assigning ai as the first activity in the shift and completing ai at time
t is feasible. The weight of this arc is αi. Similarly, we add an arc with weight 0
from vertex vi,t to vertex ve if the driver can finish the shift by completing ai at
time t and returning to the end-of-shift location.

The resulting time-expanded graph is an acyclic directed graph. The objective
of the path-finding problem in this graph is to construct a path from vs to ve that
maximizes the total weight of the path.

Note that the driver schedules constructed in the pricing problem of our pro-
posed branch-and-price method consist of sequences of activities; the completion
times of the activities are decision variables in the master problem. In the pricing
problem we only check the completion times to ensure that each driver schedule
πl satisfies the temporal constraints.

An alternative formulation is to assign the completion times of the activities
in the driver schedules. In this formulation, the completion times of activities are
decision variables in the pricing problem instead of the master problem. Although
this model has no completion time decision variables in the master problem, the
set of possible driver schedules is much larger. Furthermore, the completion times
that are assigned in the pricing problem have to be compatible with respect to
the temporal constraints imposed by the POS in the master problem. We have
tested both the proposed formulation with activity sequences and the option of
assigning the completion times in the driver schedules on small instances, but the
latter turned out to be significantly slower, and therefore we did not pursue this
line of research.

6.5 Experimental Setup and Results

To evaluate the quality of the staff assignments produced by the list scheduling
heuristic proposed in Chapter 5, we compare the train driver assignments of these
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Instance Train Movements Driver Shifts Max. Simultaneous Shifts

Alkmaar 73 11 4

Rotterdam 126 31 12

Eindhoven 276 18 8

Table 6.1: Characteristics of the problem instances of three major stations in the
Netherlands.

solutions to the optimal assignments computed with the MIP models formulated
in the previous section. For three large real-world instances we have constructed
shunting plans and staff assignments using the local search approach combined
with the list scheduling policy, which was denoted in Chapter 5 by Complete
LSP . Each of the instances is a standard week day on a major station in the
Netherlands. The number of train movements that have to be operated by a train
driver and the number of driver shifts in the instances are listed in Table 6.1. The
last column of the table shows the maximum number of train drivers that are
simultaneously on the railway yard during the planning horizon.

By design the list scheduling policy will greedily assign whomever is available
first to the train movements. This often results in train driver assignments in
which all drivers are assigned, but some drivers having an almost empty sched-
ule. To determine the minimum number of train driver shifts required by the list
scheduling policy to operate all train movements, we repeatedly solve the problem
instance with the policy with decreasing number of available driver shifts. That
is, we solve the problem instance, remove the train driver shift with the largest
amount of idle time in the current solution from the instance, and try to solve
this restricted problem instance. We repeat this process until the list scheduling
policy fails to find a feasible train driver assignment. The computation times of
the list scheduling heuristic presented in the tables are time measurements over
the complete iterative process.

6.5.1 Continuous driver shifts

We first compare the heuristic with Models 6.1 and 6.4, which model the train
driver assignment problem with identical shifts that span the full planning horizon.
We compare solutions of the heuristic approach and the two exact methods on the
number of train drivers required to perform all train movements as well as the
total walking time of the drivers in the solutions. The MIP models of the problem
instances are solved using Gurobi 9.1.

Table 6.2 shows that the number of drivers needed to operate the trains is in all
cases significantly lower in the optimal solutions when compared to the assignments
produced by the heuristic. The list scheduling policy requires all available train
drivers in the Alkmaar and Eindhoven instances to construct a feasible train driver
assignment. The passengers options added in Model 6.4 do not lead to lower driver
requirements in the three problem instances.
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Problem Instances

Alkmaar Rotterdam Eindhoven

Required drivers

Complete LSP 4 10 8

Model 6.1 3 6 5

Model 6.4 3 6 5

Total walking time

Complete LSP 11.0 27.1 26.6

Model 6.1 9.1 24.5 24.3

Model 6.4 9.0 24.2 24.1

Computation times

Complete LSP ¡ 0.01 ¡ 0.01 ¡ 0.01

Model 6.1 5 11 25

Model 6.4 7 23 49

Table 6.2: A comparison of the driver assignments produced by the solution meth-
ods for instances with continuous driver shifts. The total walking time is listed in
hours, and the computation time is in seconds.

For the total walking time of the train drivers we do see a small improvement
when drivers can join train movements as passengers. However, the number of
train movements with more than one driver in the solutions of Model 6.4 ranges
from one in the Alkmaar instance to three in Rotterdam. The total walking time is
reduced by at most twenty minutes when compared to the solutions of Model 6.1,
suggesting that few beneficial opportunities for passengers are available in the
shunting plans produced by the local search on these instances. Both MIP models
do result in solutions with significantly less time spent on foot by the drivers than
in the driver schedules produced by the list scheduling policy.

The stronger performances of the exact solution methods come at the cost of
computation times that are several orders of magnitude larger than those of the
list scheduling heuristic. With computation times of less than one minute, both
MIP models can be used to find train driver assignments for individual shunting
plans in practice. However, the exact methods are too slow to replace the list
scheduling policy as the staff assignment sub-routine of the local search approach
presented in Chapter 2. A local search algorithm requires an efficient evaluation
of the candidate solutions to achieve good performance. Out of these three only
the list scheduling heuristic, which finds feasible solutions in a few milliseconds,
meets this criterion.

6.5.2 Non-identical driver shifts

When we focus on the train driver assignment problem with eight hour shifts, the
instances require more time to solve with the proposed exact methods. Table 6.3
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Problem Instances

Alkmaar Rotterdam Eindhoven

Required driver shifts

Complete LSP 10 26 18

Model 6.5 8 16 —

Model 6.5’ 8 16 15

Computation times

Complete LSP ¡ 0.01 ¡ 0.01 ¡ 0.01

Model 6.5 158 34 1800*

Model 6.5’ 5 8 45

Table 6.3: A comparison of the driver assignments produced by the solution meth-
ods for instances with non-identical shifts. The total walking time is listed in hours,
and the computation time is in seconds. Model 6.5 did not solve the Eindhoven
instance within 30 minutes.

lists the results of the list scheduling heuristic and Models 6.5 and 6.5’ on the
three instances. We set the maximum computation time of the exact methods
to thirty minutes. The feasible solution spaces of the two MIP formulations are
identical. However, as Model 6.5’ extends Model 6.5 with additional constraints,
for the LP-relaxation we have that the solution space of Model 6.5’ is smaller than
that of Model 6.5. Model 6.5 failed to solve the Eindhoven instance in the allotted
time.

As with the instances with full-day shifts, these results illustrate that the ex-
act methods can improve the train driver assignment significantly. In the optimal
assignments the number of train driver shifts necessary to operate all train move-
ments is reduced by ten to almost forty percent when compared to the heuristic
solutions.

Due to the many shifts in these more realistic instances, the computation time
of Model 6.5 increases rapidly. The model could not be solved within thirty minutes
for the largest instance. In contrast, all instances are solved in less than one minute
with Model 6.5’. The results show that the additional constraints in Model 6.5’
help the solver to find better bounds on the objective function. For example, with
the Eindhoven instance the objective of the LP relaxation of Model 6.5 is 8, and
after 30 minutes the (rounded) best objective bound is 10. In comparison, the
objective of the LP relaxation of Model 6.5’ is 13, which results in a significantly
smaller gap between the objective bound and the optimal solution cost.

In addition to the direct MIP formulations we have also tested the branch-and-
price method on these three instances. However, the branch-and-price method did
not solve any of the instances within the allotted 30 minutes.
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6.6 Conclusion

In this chapter we proposed multiple exact solution methods based on mixed inte-
ger programming for the train driver assignment problem that arises in the train
unit shunting problem at railway yards. For the problem variant with continuous
availability of the drivers we formulated MIP models that maximize slack-based
robustness measures as well as a model that allows train drivers to board other
scheduled train movements to move more efficiently on the railway yard. For the
case that the availability of the train drivers is restricted to shifts with a duration
smaller than the full planning horizon we proposed a direct MIP formulation and
a branch-and-price model.

To study the quality of the train driver assignments produced by the list
scheduling policy introduced in Chapter 5, we compared these solutions with the
assignments constructed with the exact MIP models. We solved three real-world
instances of week days at major train stations in the Netherlands with both the
MIP models and the list scheduling heuristic. The results showed that the optimal
solutions required significantly fewer train drivers to feasibly operate all trains in
the shunting plans, allowing the surplus of drivers to handle disruptions in the
time table that might occur during operations or even a reduction in the number
of scheduled drivers.

Furthermore, we have investigated the impact of allowing multiple train drivers
on the same train movement to reduce their walking time. The results on the
three problem instances suggested that the benefit of this option is limited, with
at most a two percent reduction in total walking duration of the train drivers.
The passenger extension might be preferable for instances with distant railway
yards, since the overhead in computation time with respect to the basic model is
small. Note that assigning train drivers as passengers of train movements results
in additional temporal constraints between the movements, which might have a
negative effect on the robustness of the driver assignment.

For the instances with train driver shifts of eight hours the direct MIP model
constructed solutions in which up to forty percent fewer drivers were required to
operate all train movements. By strengthening the LP relaxation of the MIP model
with additional constraints the model was solved in less than sixty seconds. Our
branch-and-price algorithm could not solve these instances within thirty minutes.

The computation times of solving the direct MIP models of the different prob-
lem instances were at most one minute in all cases. In contrast, the list scheduling
policy constructs solutions in milliseconds. Although the MIP models cannot be
solved efficiently enough to completely replace the list scheduling policy as the
staff assignment sub-routine in the local search proposed in Chapter 5, the exact
approaches do construct much better solutions. To improve the quality of the
train driver assignments the MIP models can be used as a post-processing step
after the local search procedure. Furthermore, applying the MIP models in parts
of the local search might be beneficial and is a topic for further research.

Although minimizing the number of train drivers assigned in the shunting plans
and maximizing the sum of slack times are some approaches to creating robust
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solutions, further improvements to the robustness could be made by integrating
other robustness measures discussed in Chapter 3 in the objective of the train
assignment problem. A direction for future research is to extend the MIP models
proposed in this chapter with linearized versions of the robustness measures that
are strongly correlated with the robustness of shunting plans.

Another area for further research is the inclusion of other staff scheduling
constraints that are important in practice in the exact models. For example, the
train drivers have a mandatory break during their shift. The regulations specify
that this break must start at least two hours after the start of the shift, and be
completed before the last two hours of the shift.
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Chapter 7

Conclusions

The continuing growth in rail utilization across the globe leads to increasingly
complex logistic challenges in the planning and operation of major hubs in the
railway network.

In this thesis, we studied the shunting process at railway yards in these rail
hubs, and developed a novel decision support framework to construct feasible
and robust shunting plans. We first presented a local search approach that is
capable of constructing feasible solutions for the train unit shunting problem with
service scheduling in real-life instances of railway yards, where we assumed that
there is always sufficient staff available. The next topic that we investigated in
this thesis was the resilience of schedules to frequently occurring disruptions. We
quantified the predictive power of surrogate robustness measures in shunting plans,
and extended the objective function of the local search algorithm with some of the
well-performing robustness measures to guide the local search to robust solutions.
The last part of this thesis was centered around the staff assignment sub-problem
of the shunting problem. We proposed and evaluated both heuristic and exact
methods for this sub-problem.

7.1 Summary of Scientific Contributions

We started in Chapter 2 with a definition of the Train Unit Shunting Problem
with Service Scheduling (TUSPwSS). This problem consists of six sub-problems:
assigning train units arriving at the railway yard to departure time-slots; splitting
and combining trains to achieve the required departure compositions; scheduling
the required service tasks of the trains; parking trains on the available tracks;
routing the trains safely over the yard; assigning the correct staff members to
all tasks. Different researchers have studied MIP models to solve the shunting
problem. We proposed a local search that uses a partial-order-based solution rep-
resentation and exploits this structure to efficiently generate and assess neighbor
solutions and hence efficiently search the solution space. Our local search contains
all the first five sub-problems, which turns out to be very difficult with a MIP. We

93
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concluded that our local search algorithm is the first method capable of solving
real-world instances provided by the rail operator NS. Moreover, the local search
algorithm outperforms an existing MIP-based heuristic on realistic instances.

We shifted our focus from finding feasible shunting plans to constructing so-
lutions that are resilient to commonly occurring operational disturbances such as
delays in Chapters 3 and 4. In particular, we studied the applicability of surro-
gate robustness measures, which are characteristics of the behavior of a schedule
in simplified stochastic models. We started in Chapter 3 by studying the proper-
ties of surrogate robustness measures in relation to different characterizations of
robustness in stochastic machine scheduling problems.

With the insights obtained in this study we returned in Chapter 4 to the
Train Unit Shunting Problem, where we quantified the predictive power of the
surrogate robustness measures in shunting plans. We concluded that the strongest
predictors of robustness were the robustness measures based on either the normal
approximation method or the minimum slack. Based on these results we extended
the objective of the local search with these robustness measures to guide the local
search to robust solutions. We showed that adding the normal approximation
robustness measure to the objective of the local search results in shunting plans
that are significantly more robust at the cost of a small overhead in computation
time.

In Chapter 5 we proposed two heuristic methods to solve the staff scheduling
problem at shunting yards. The first heuristic assigned staff members and start
times to the activities using a list scheduling policy. The second heuristic was a
two-phase approach in which we first created a staff assignment, and then assigned
start times to all activities. We concluded that the local search presented in Chap-
ter 2 with the list scheduling policy as a sub-routine can solve real-world problem
instances of the complete TUSPwSS including staff scheduling. To the best of our
knowledge this algorithm is the first method to solve TUSPwSS instances of such
size.

In Chapter 6 we proposed several exact formulations of the staff assignment
sub-problem that are based on mixed integer linear programming and column
generation. To evaluate the quality of the heuristic solutions, we compared the staff
schedules constructed by the heuristics with the optimal schedules. We showed
that the exact methods produce staff assignments that require significantly fewer
staff members, in particular in the instances where staff members work in eight
hours shifts instead of continuously throughout the planning horizon. Since the
exact methods required up to one minute to solve the instances, we concluded that
these mathematical models are computationally too demanding to replace the list
scheduling policy as the staff assignment sub-route of the local search algorithm.
However, the exact solutions methods can be applied as post-processing to improve
the shunting plans constructed by the local search approach.
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7.2 Practical Innovations

One of the goals of this thesis was to develop planning methods that can be applied
in practice by passenger railway operators to support their shunting process. In co-
operation with NS we made significant and impactful steps towards achieving this
goal. Together with researchers and software developers at NS we transformed the
scientific contributions summarized in the previous section into tangible software
solutions for the logistic challenges that arise in passenger railway shunting.

The prime example of our collaboration with NS is the development of the
decision support system Hybrid Integrated Planner (HIP), which is based on the
methods proposed in Chapters 2 and 5. The tool searches for feasible solutions to
the complete Train Unit Shunting Problem with Service Scheduling at the railway
hubs operated by NS, and returns the best solution found. The resulting plan can
be viewed and edited by the human planners in the graphical user interface of the
tool. In Chapter 2 we discussed a pilot study that has been conducted by NS with
the decision support system on two railway hubs in the Netherlands. The goals of
the pilot study were to evaluate the performance of HIP as well as the experiences
of the planners using the decision support tool. The pilot was a success: the
solution method solved most of the real-world instances and the feedback of the
planners was positive. Although the tool failed to find feasible solutions in some
cases, the human planners were able to construct feasible shunting plans much
faster with the support of HIP than when they had to start from scratch. In other
cases the tool seemed to find plans that could accommodate more train units on
the yard. Moreover, the decision support system can search for shunting plans
outside working hours of the planners, thereby further shortening the lead time of
constructing plans. The planners involved in the pilot study responded positively
to the decision support tool in general, and particularly appreciated the flexibility
of the tool with regard to adding new constraints and planner preferences. Due
to the successful outcome of the pilot study, NS has decided to implement HIP in
the planning process of all railway hubs in the Netherlands in the coming years.
With the shorter lead times due to HIP, the planning process can start closer to
the day of implementation. This improves the accuracy of the data available to
the planners, and thus reduces the need for plan adjustments before or during
operations.

NS is in the top three of the world with respect to punctuality, but on a highly
utilized rail network the occurrence of delays is inevitable. In Chapters 3 and 4
we showed that the resilience of the shunting plans to such disruptions can be
improved significantly by embedding robustness measures in the objective function
of our local search method. Moreover, the small computational overhead imposed
by these robustness measure allows real-world problem instances at railway yards
to be solved in acceptable time. By constructing and implementing robust shunting
plans, railway operators such as NS can reduce the probability that disturbances
in the shunting process result in delays in the timetable, which in turn helps to
further improve their punctuality and passenger satisfaction.

Regarding the topic of the staff assignment, there is interest within NS to
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improve the rostering of the shifts of the train drivers at the railway hubs, i.e., the
number of shifts and when the shifts start. The train driver shifts are determined
weeks before the shunting plan, because the roster of the train drivers must be
published on time. The goal is to schedule the shifts such that the number of
available train drivers is sufficient to handle most disruptions, without having
too many idle train drivers. These shift schedules are currently evaluated by the
planners. We are working with NS to improve this evaluation process by using
HIP, which contains the list scheduling policy proposed in Chapter 5, to estimate
the quality of the shift schedules. A line of research that we are currently pursuing
is to first generate problem instances and then determine the likelihood of finding
feasible shunting plans and staff assignments with HIP for these instances with
the giving train driver schedule. The exact methods proposed in Chapter 6 can
be used to quantify the surplus of train drivers in the solutions.

7.3 Further Research

It is infeasible to study all intricacies and practical extensions of a challenging
problem such as TUSP with service and staff scheduling in one thesis. We conclude
by discussing some open problems and directions for further research related to
the topics of this thesis.

With heuristic methods such as the local search approach proposed in Chap-
ter 2 there can be problem instances that the solution methods fails to solve, but
which might be solvable by other methods. Determining whether these instances
are infeasible or not is still an open problem. In the absence of an exact method
that can solve non-trivial instances, the next best approach is to solve relaxations
of the TUSPwSS. The individual matching, service scheduling and parking sub-
problems can be solved efficiently, but often provide weak bounds of the complete
TUSPwSS problem. The planning of the train movements appears to be a bottle-
neck in many instances, but defining and solving a relaxation of TUSPwSS that
preserves the train routing sub-problem remains an open problem.

Extending the scope of the TUSP from a single shunting yard to a major train
station with multiple nearby railway yard poses several new challenges. Although
we have adapted our local search algorithm in Section 2.5 to cope with the new
elements introduced in the extended scope, experiments show that the local search
struggles to find feasible solutions when the assignment of trains to the different
railway yards is not properly balanced in the initial solution. This is mainly caused
by the lack of local search operators that move all activities of a single train from
one railway yard to another, and the large number of railway network movements
that obstruct traffic between the yards. Solving TUSPwSS instances that contain
multiple railway yards is an interesting topic for future research.

In Chapters 3 and 4 we restrict the sources of uncertainty to the arrival times
of trains and the duration of service tasks and train movements. However, there
are many more causes of disturbances in practice. Trains can arrive in a different
order, or their compositions are not as planned. Additional trains might arrive if
there is a disruption on the railway network, or part of the yard infrastructure can



97 Chapter 7. Conclusions

go out of service unexpectedly.
Achieving a resilient shunting process that adapts to these events requires fur-

ther research in the directions of robustness measures for the smaller disturbances
and recovery strategies for the large disruptions that cannot be mitigated in the
shunting plan.

Our assumption in Chapters 5 and 6 that all personnel is available during their
entire shift does not hold in practice. For example, staff members are entitled to a
one-hour break, which has to be scheduled near the middle of the shift. Including
these constraints in the heuristics proposed in Chapter 5 as well as in the exact
methods of Chapter 6 has to be explored in future research to ensure that the staff
assignments produced by HIP are in accordance with the regulations.
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Door economische en sociale ontwikkelingen is de vraag naar spoorvervoer hard
gegroeid in de afgelopen decennia. De toenemende behoefte aan duurzaam trans-
port maakt dat deze trend zich in de nabije toekomst zal voortzetten. Een grote
uitdaging hierbij is dat de vraag naar treinvervoer sneller groeit dan de uitbreiding
van het spoornetwerk, aangezien het bijleggen van sporen vraagt om grote inves-
teringen en moeilijk te realiseren is in stedelijk gebied. Om mee te gaan met het
groeiende aantal treinreizigers wordt er door overheden en spoorvervoerders dan
ook volop ingezet op een efficiënter gebruik van de bestaande spoorinfrastructuur.

De toenemende drukte op het spoor leidt tot allerlei uitdagende planproblemen.
Spoorwegmaatschappijen maken steeds vollere dienstregelingen en breiden hun
treinvloten uit om alle ritten uit te voeren. Dit zorgt weer voor extra druk op de
planning van treinonderhoud, -bewegingen en -opslag.

De voor de reiziger zichtbare kant van de planning, zoals de dienstregeling,
kent een rijke onderzoeksgeschiedenis. In het automatiseren van de dienstregeling
zijn er in de laatste decennia grote stappen gezet door wetenschappers wereldwijd.
Hierdoor zijn spoorvervoerders in staat om efficiënte dienstregelingen te maken
met behulp van automatische beslissingsondersteunende systemen.

In tegenstelling tot deze ontwikkelingen in de planning op spoornetwerkniveau
wordt het lokale logistieke proces rondom de stations — de knooppunten in het
spoornetwerk — nog grotendeels handmatig gedaan. Een knooppunt bestaat uit
een station met één of meer nabijgelegen rangeerterreinen. Deze rangeerterrei-
nen worden gebruikt als parkeerplaats voor treinen die niet nodig zijn binnen de
dienstregeling, bijvoorbeeld tijdens de daluren. Daarnaast kunnen treinen ook ge-
reinigd en gëınspecteerd worden op de rangeerterreinen. Alle treinbewegingen en
onderhoudsactiviteiten binnen een knooppunt worden vooraf gepland en vormen
tezamen het knoopplan.

Het doel van het onderzoek in dit proefschrift is het ondersteunen en verbe-
teren van de planning van de knooppunten in het spoornetwerk, waarbij we alle
aspecten van het planproces meenemen. Een tweede doel is het verhogen van de
betrouwbaarheid van deze knoopplannen in de operatie door in de planning al
rekening te houden met mogelijke verstoringen.

In het eerste deel van dit proefschrift richten we ons op de rangeer- en on-
derhoudsplanning binnen een rangeerterrein. In dit planningsprobleem arriveren
treinen op het rangeerterrein volgens een dienstregeling. Evenzo is bekend wan-
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neer er treinen vanaf het rangeerterrein weer terug moeten naar het station. Het
doel van de planning is om zonder conflicten alle treinen te onderhouden, parke-
ren en rangeren gedurende hun aanwezigheid op het rangeerterrein. Hierbij heeft
de planner de vrijheid om zelf te kiezen welke van de aanwezige treinen van de
juist types aan de geplande vertrekken in de dienstregeling toegewezen worden.
In Hoofdstuk 2 presenteren wij een planningsalgoritme voor het rangeer- en on-
derhoudsprobleem. Het algoritme is gebaseerd op local search en zoekt naar een
conflictvrije oplossing door iteratief kleine aanpassingen te maken aan een plan.
We laten zien dat dit algoritme realistische planproblemen op rangeerterreinen
gebruikt door spoorwegmaatschappij NS kan oplossen. Voor zover wij weten is dit
het eerste algoritme dat hiertoe in staat is. Verder tonen we enkele uitbreidingen
van het algoritme om plannen te maken voor de volledige knoop, inclusief stations-
gebied, in plaats van enkel losse rangeerterreinen. Op basis van deze uitkomsten
heeft NS een project gestart om het planningsalgoritme in gebruik te nemen op
knopen in Nederland.

In Hoofdstukken 3 en 4 verschuiven we onze aandacht naar de robuustheid van
knoopplannen tegen alledaagse, kleine verstoringen. We beginnen in Hoofdstuk 3
met een overzicht van methodes die gebruikt worden voor het schatten van de
robuustheid van oplossingen van algemene stochastische planningsproblemen met
beperkingen in tijd en middelen. Het belangrijkste kenmerk van deze problemen is
de onzekerheid in de uitvoering van de planning, waarbij verstoringen kunnen lei-
den tot een afwijking van het opgestelde plan. Aangezien tijdens de planning nog
niet bekend is welke verstoringen zullen optreden, is het van belang om robuuste
plannen te maken. Dat wil zeggen, we willen plannen die in staat zijn om ver-
storingen op te vangen zonder al te veel in te boeten in kwaliteit. Het definiëren
en berekenen van de robuustheid van plannen is echter complex, waardoor veel
onderzoek zich gericht heeft op het ontwikkelen van afgeleide robuustheidsmaten.
Dit zijn planeigenschappen die kunnen dienen als surrogaat voor de robuustheid
met vaak als voordeel dat ze efficiënter te berekenen zijn. We introduceren een
aantal nieuwe robuustheidsmaten en bestuderen de verschillende eigenschappen
van zowel bestaande als de nieuwe robuustheidsmaten.

We passen de opgedane inzichten in de robuustheidsmaten toe op de rangeer-
en onderhoudsplanning binnen de rangeerterreinen in Hoofdstuk 4. Voor de ro-
buustheid van rangeer- en onderhoudsplannen zijn we met name gëınteresseerd in
de kans op vertraging bij treinen die vertrekken van het rangeerterrein. Deze trei-
nen gaan immers weer starten binnen de dienstregeling, dus vertrekvertragingen
vanaf een rangeerterrein leiden tot verstoringen waar de reizigers last van hebben.
In dit hoofdstuk starten we met het vergelijken van de kans op vertrekvertraging,
die we geschat hebben met een stochastische discrete-event simulatie, en de uit-
komsten van de verschillende robuustheidsmaten. Het doel van deze vergelijking
is om robuustheidsmaten te identificeren die sterk correleren met de kans op ver-
trekvertraging en zodoende geschikt zijn om snel te evalueren of een rangeer- en
onderhoudsplan robuust is. Onze experimenten laten zien dat de beste voorspel-
lers van de kans op vertrekvertragingen bij de onderzochte plannen bestaan uit
robuustheidsmaten die gebaseerd zijn op benaderingen met normale verdelingen
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of de minimale speling in het plan.
De vervolgvraag in dit hoofdstuk is of we met behulp van de robuustheidsmaten

ook robuuste plannen kunnen maken. Met het planningsalgoritme uit Hoofdstuk 2,
die in de basis geen rekening houdt met robuustheid, hebben we plannen gegene-
reerd voor verschillende realistische instanties van planningsproblemen voor een
rangeerterrein dat gebruikt wordt door NS. Voor een selectie van goedpresterende
robuustheidsmaten hebben we de doelstellingsfunctie van het planningsalgoritme
uitgebreid met sturing op de robuustheidsmaat, om zo voorkeur te geven aan ro-
buustere plannen. Met deze robuustheidsmaatgestuurde varianten van het planal-
goritme hebben we voor plannen gegenereerd voor dezelfde realistische instanties.
Voor alle plannen hebben we de kans op vertrekvertraging geschat met behulp van
een stochastische simulatiestudie. We laten zien dat het sturen op een robuust-
heidsmaat binnen het planalgoritme leidt tot significant robuustere plannen. In
het bijzonder geeft het schatten van de robuustheid met behulp van normale ver-
delingen zeer robuuste rangeer- en onderhoudsplannen ten koste van een geringe
toename in rekentijd van het algoritme.

In het laatste deel van dit proefschrift onderzoeken we het verrijken van het
rangeer- en onderhoudsplan voor de rangeerterreinen met een personeelsplanning.
Voor de verschillende treinactiviteiten op het rangeerterrein is personeel, zoals ma-
chinisten en monteurs, nodig en ook wie wanneer welke taak uitvoert moet vooraf
gepland worden. Rangeerterreinen bestaan uit kilometers aan spoor, waardoor
het efficiënt bundelen van taken noodzakelijk is binnen de personeelsplanning om
grote looptijden te voorkomen. We presenteren in Hoofdstuk 5 twee heuristieken
voor de personeelstoewijzing die gëıntegreerd kunnen worden met het algoritme uit
Hoofdstuk 2. Hiermee is het voor het eerst mogelijk om automatisch een volledige
rangeer-, onderhouds- en personeelsplanning te maken voor rangeerterreinen en
spoorknooppunten. We laten zien voor een verzameling van planproblemen met
personeel op een rangeerterrein in Nederland dat het planalgoritme uit Hoofd-
stuk 2 samen met de bestpresterende personeelstoewijzingsheuristiek in staat is
om 97% van de planproblemen op te lossen in gemiddeld drie minuten rekentijd.

In Hoofdstuk 6 bekijken we het toewijzen van machinisten aan rangeerbewe-
gingen op knopen in meer detail. Dit deelprobleem van de algemene personeelstoe-
wijzing is op veel knopen het meest uitdagende onderdeel. We introduceren ver-
schillende exacte modellen gebaseerd op geheeltallig lineair programmeren, waarin
we onder andere het benodigde aantal machinisten minimaliseren en onderzoeken
wat de invloed is van het laten passagieren — meereizen met al geplande trein-
bewegingen — van machinisten op de totale looptijd en oplossingskwaliteit. Onze
experimenten laten zien dat de kwaliteit van de optimale machinistentoewijzingen
significant beter is dan die van de heuristieken uit Hoofdstuk 5. Daar staat tegen-
over dat de rekentijden van de mathematische modellen velen malen hoger liggen,
waardoor deze exacte oplossingsmethodes ongeschikt zijn om te gebruiken binnen
het planningsalgoritme uit Hoofdstuk 2.
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