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ABSTRACT

We present a sample of luminous red-sequence galaxies to study the large-scale structure in the fourth data release
of the Kilo-Degree Survey. The selected galaxies are defined by a red-sequence template, in the form of a data-driven
model of the colour-magnitude relation conditioned on redshift. In this work, the red-sequence template is built using
the broad-band optical+near infrared photometry of KiDS-VIKING and the overlapping spectroscopic data sets. The
selection process involves estimating the red-sequence redshifts, assessing the purity of the sample, and estimating
the underlying redshift distributions of redshift bins. After performing the selection, we mitigate the impact of survey
properties on the observed number density of galaxies by assigning photometric weights to the galaxies. We measure the
angular two-point correlation function of the red galaxies in four redshift bins, and constrain the large scale bias of our
red-sequence sample assuming a fixed ΛCDM cosmology. We find consistent linear biases for two luminosity-threshold
samples (‘dense’ and ‘luminous’). We find that our constraints are well characterized by the passive evolution model.

Key words. galaxies: distances and redshifts- cosmology: large-scale structure of Universe- methods: data analysis-
methods: statistical

1. Introduction

The Kilo-Degree Survey (KiDS) is an optical galaxy sur-
vey primarily designed to map the large-scale structure by
studying the weak gravitational lensing of galaxies (de Jong
et al. 2013; Kuijken et al. 2015, 2019). This is done by
measuring the distortion of the shapes of distant galaxies
known as cosmic shear, which has become a cornerstone of
modern cosmological imaging surveys. Current surveys are
already yielding competitive constraints on some cosmolog-
ical parameters (e.g. Troxel et al. 2018; Hikage et al. 2019;
Hildebrandt et al. 2020; Asgari et al. 2020).

However, the full constraining potential of weak lens-
ing studies can only be realized through the joint analysis
of the cosmic shear of background galaxies and the posi-
tions of foreground galaxies with robust distance estimates.
This involves measuring the correlation between the cosmic
shear estimates of the background galaxies, the correlation
between the positions of foreground galaxies, as well as the
cross-correlation between the cosmic shear of background
galaxies and the positions of foreground galaxies, known as

? E-mail: vakili@strw.leidenuniv.nl

‘galaxy-galaxy lensing’ (e.g. Cacciato et al. 2013; Abbott
et al. 2018; van Uitert et al. 2016; Joudaki et al. 2018).
Such combined analyses yield tighter constraints on cosmo-
logical parameters, and offer a venue for mitigation of a
range of observational and theoretical systematics such as
photometric redshift uncertainties and intrinsic alignments
(van Uitert et al. 2016; Joudaki et al. 2018; Samuroff et al.
2019; Heymans et al. 2020).

In this work, we focus on selecting a sample of galaxies
with robust redshift estimates as well as measuring their
angular two-point correlation function in slices of redshift.
Following Vakili et al. (2019) we construct a sample of red-
sequence galaxies by leveraging the fact that the distribu-
tion of these galaxies in colour space closely follows a multi-
variate Gaussian distribution. The mean of this distribution
is a linear function of magnitude. Furthermore, the coeffi-
cients of this linear relation, as well as the covariance of the
Gaussian distribution, are determined by the redshift (e.g.
Bower et al. 1992; Ellis et al. 1997; Gladders et al. 1998;
Stanford et al. 1998).

We can then leverage this empirical distribution to se-
lect red-sequence galaxies with the broad-band photome-
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try of imaging surveys (Gladders & Yee 2000; Hao et al.
2009; Rykoff et al. 2014; Rozo et al. 2016; Elvin-Poole et al.
2018; Oguri et al. 2018; Vakili et al. 2019). In this work, we
build this data-driven model with the multi-band photom-
etry of the KiDS Data Release 4 (DR4, Kuijken et al. 2019)
and its overlap with the following spectroscopic data sets:
SDSS DR13 (Albareti et al. 2017), GAMA (Driver et al.
2011), 2dFLenS (Blake et al. 2016), and the GAMA re-
analysis of the redshifts in the COSMOS region (hereafter
G10-COSMOS, Davies et al. 2015).

Following the redMagiC prescription (Rozo et al.
2016), we impose a set of luminosity ratio cuts and con-
stant comoving densities, and we construct two samples of
red-sequence galaxies with nearly constant comoving den-
sity suitable for galaxy clustering and galaxy-galaxy lens-
ing studies. We call these the dense (high density, low
brightness) and the luminous (low density, high brightness)
samples. The former (latter) sample is constructed such
that the comoving density is approximately 10−3 Mpc−3h3

(2.5 × 10−4 Mpc−3h3). The main differences between the
red-sequence selection in this work and the previous KiDS
DR3 work of Vakili et al. (2019) are: the inclusion of the
VIKING (Edge et al. 2013; Wright et al. 2019) Z-band mag-
nitudes in the red-sequence template, and the inclusion of
the G10-COSMOS in the spectroscopic calibration of the
model, adding more depth and redshift coverage for our
red-sequence model. In addition, we apply this method to
the fourth data release of KiDS which more than doubles
the sky coverage with respect to the KiDS DR3.

Furthermore, we utilize the VIKING Ks-band magni-
tude to investigate the impurity (contamination with stel-
lar like objects) of the selected objects within each lumi-
nosity threshold sample. The redshift reach of each sample
is chosen such that the sample remains pure while nearly
volume-limited (constant comoving density) below that red-
shift. Afterwards, we divide the galaxy sample into four red-
shift bins between 0.15 and 0.8, with the first three redshift
bins comprising the galaxies in the dense sample and the
last bin consisting of the galaxies in the luminous sample.
After modeling the individual redshift distributions of red
galaxies in our sample with a Student t-distribution, we
compute the underlying redshift distributions of galaxies in
the four redshift bins by summing the individual redshift
probabilities.

Given that galaxy clustering measures the excess proba-
bility of finding pairs of galaxies at a given angular or phys-
ical separation, accounting for the impact of survey prop-
erties on the galaxy density variations across the footprint
requires a careful treatment. These properties can influence
the detection of galaxies as well as the selection process of
any galaxy sample in the survey (e.g. Morrison & Hilde-
brandt 2015; Alam et al. 2017; Kwan et al. 2017; Ross et al.
2017a; Elvin-Poole et al. 2018; Crocce et al. 2019a; Kalus
et al. 2019). In order to remove the dependence of the on-
sky variations of galaxy number density on the KiDS survey
properties, we assign a set of photometric weights for galax-
ies in each redshift bin separately. By up-weighting (down-
weighting) areas of the survey where the galaxy density
is down-graded (enhanced) due to survey properties, this
scheme mitigates the systematic modes present in the sam-
ple. In our method, similar to that of Bautista et al. (2018);
Icaza-Lizaola et al. (2020), the photometric weights are es-
timated such that possible correlations between the survey
properties are accounted for.

After measuring the angular clustering signal and its co-
variance in each of the redshift bins, we estimate the large-
scale bias of these galaxies assuming a fixed ΛCDM cosmol-
ogy. We then compare our bias constraints with the predic-
tions of the passive evolution bias model of Fry (1996).

In the last step of our analysis, i.e. estimation of the
galaxy bias parameters, we use a blinding method in order
to prevent the final bias constraints from influencing the
choices we have made in our work. Prior to estimating the
galaxy bias parameters, we blind our covariance matrices
of the clustering signals with the method proposed by Sell-
entin (2019). The added advantage of this approach is that
the intermediate steps of our data analysis pipeline such as
catalogue curation and systematic mitigation remain un-
changed.

This paper is structured as follows. The data, both pho-
tometric and spectroscopic, are described in Sect. 2. In
Sect. 3 we discuss the sample selection and the photometric
redshifts. We then provide the galaxy-density systematic
correlations and the derivation of photometric weights in
Sect. 4. In Sect. 5 we present the angular two-point correla-
tion functions as well as the theoretical predictions. Finally,
we summarize and conclude in Sect. 6.

2. Data

2.1. KiDS photometric data

The Kilo-degree Survey (KiDS, de Jong et al. 2013) is
a deep multi-band imaging survey conducted with the
OmegaCAM camera (Kuijken 2011) which is mounted on
the VLT Survey Telescope (Capaccioli et al. 2012). This sur-
vey uses four broad-band filters (ugri) in the optical wave-
lengths. KiDS has targeted approximately 1350 deg2 of the
sky split over two regions, one on the celestial equator and
the other in the South Galactic cap.

KiDS broadband photometry in the optical is sup-
plemented by the VISTA Kilo-degree Infrared Galaxy
(VIKING) survey (Edge et al. 2013). The VIKING ob-
servations of nearly the same regions (by design) with the
near infrared filters ZY JHKs significantly increase the wave-
length coverage of KiDS, turning the KiDS dataset into a
unique wide-field optical+NIR catalogue particularly suit-
able for cosmological analysis.

In this work we use the fourth KiDS data release (KiDS
DR4; Kuijken et al. 2019) which covers 1006 deg2 of the sky
in 1006 tiles superseding the 440 tiles released in KiDS DR3
(de Jong et al. 2017) on which Vakili et al. (2019) was based.
Reduction of the ugri images was performed with the As-
troWISE pipeline (McFarland et al. 2013). The 1-percentile
limiting AB GAaP magnitudes of the survey are 24.8, 25.6,
25.6, 24.0, 24.1, 23.3, 23.4, 22.4, 22.4 in the ugriZY JHKs
bands respectively. The objects present in the final cata-
logue were detected from the r-band images reduced with
the THELI pipeline (Schmithuesen et al. 2007; Schirmer &
Erben 2008). For a thorough description of the KiDS data
processing, we refer the readers to the data release paper
(Kuijken et al. 2019).

The KiDS data reduction involves a post-processing pro-
cedure in which Gaussian Aperture and PSF (GAaP, Kui-
jken 2008) magnitudes are derived (Kuijken et al. 2015).
This procedure is performed in the following way. First,
the PSF is homogenized across each individual coadd. Af-
terwards, a Gaussian-weighted aperture is used to measure
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Table 1: Summary of the spectroscopic data used in this work.

Data # objects in KiDS # unique objects z16% z50% z84% mr,16% mr,50% mr,84%
GAMA 233046 233046 0.12 0.22 0.34 18.7 19.6 20.1
SDSS 99253 77371 0.09 0.37 0.57 17.7 19.7 21.1
2dFLenS 37462 34253 0.13 0.30 0.59 18.3 19.5 21.0
COSMOS (GAMA-G10) 20324 20324 0.32 0.68 1.24 21.6 22.9 24.0

Notes. The first three columns are the the spectroscopic data sets under consideration, their total number of objects in KiDS DR4,
and the unique number of objects in each data set. The next three columns are the 16-, 50-, and 84-percentiles of the spectroscopic
redshifts of the unique objects in the spectroscopic data sets. The last three columns are the 16-, 50-, and 84-percentiles of the KiDS
GAaP r-band magnitudes of the objects in each spec-z data. For each row, the unique number of objects is obtained after removing
the objects that are already included in the GAMA catalogue (GAMA or SDSS catalogues) in the case of SDSS (2dFLenS).

the photometry. The size and shape of the aperture is de-
termined by the object’s length of the major axis, its length
of the minor axis, and its orientation, all measured in the
r-band. This procedure provides a set of magnitudes for
all filters. We refer the readers to Kuijken et al. (2015)
and de Jong et al. (2017) for a more detailed discussion
of the derivation of GAaP magnitudes. The magnitudes
used in this work are the zeropoint-calibrated and fore-
ground dust extinction-corrected magnitudes. The GAaP
magnitudes provide accurate colours but underestimate to-
tal fluxes of large galaxies. Total fluxes are, however, needed
in our LRG selection procedure to derive luminosity ratios.
The magnitude types that provide total fluxes are Source
Extractor-based AUTOmagnitudes (Bertin & Arnouts 1996),
which are provided in the r-band. For the rest of this pa-
per, we work with the AUTO r-band magnitude and GAaP
colours. The nine-band photometric catalogue is supple-
mented by a mask that flags satellite tracks and imaging
artefacts such as stellar halos from the images. We use the
9-band catalogues’ mask that requires detection of objects
in all the 9 bands.

2.2. Spectroscopic data

In Vakili et al. (2019) we made use of the spectroscopic
data of SDSS DR13 (Albareti et al. 2017), GAMA (Driver
et al. 2011), and 2dFLenS (Blake et al. 2016). In this work,
we also take advantage of the KiDS deep field observa-
tion of the COSMOS field. In the COSMOS field we utilize
the GAMA-G10 COSMOS spectrocopic data (Davis et al.
2017), which encompasses a deeper magnitude range, albeit
over a much narrower area than the other spectroscopic
data considered in this work. The GAMA-G10 catalogue
consists of a curation of the redshifts of bright galaxies in
the COSMOS region. It is important to note that the COS-
MOS region is not within the KiDS DR4 footprint as it
was not observed by VIKING (although it does have KiDS
photometry). Instead, KiDS DR3 and VIKING-like1 pho-
tometric data collected in this area serves as one of the deep
photometric redshift calibration samples in KiDS DR4.

A brief description of these spectroscopic catalogues is
provided in Table 1. For objects with duplicate redshifts
in our spectroscopic compilation, we exclude the objects in
SDSS that are present in the GAMA catalogue, and we ex-
clude the objects in 2dFLenS that are present in the SDSS
or GAMA catalogues, and homogenize the reference frame

1 In the near-infrared photometry of the cosmos region, the
CFHTLS Z-band is used.

in which the redshifts are measured2. We note that for the
luminous red galaxies, the redshifts obtained by GAMA,
SDSS, and 2dFLenS agree on average to |δz| < 5×10−4 level
with a scatter that increases with redshift. We note that
these differences can only mildly impact the uncertainty
over the mean values of the redshift distributions.

3. Sample selection

3.1. Red-sequence model

Several aspects of the selection procedure in this work are
similar to what has been outlined in Vakili et al. (2019). In
what follows we describe the main distinctions. Previously,
we only utilized the KiDS optical photometry for our red-
sequence model. In this work, we also include the VIKING
Z band in the red-sequence template. The added advantage
of the Z band is the additional constraining power on the
redshifts of the red-sequence galaxies at higher redshifts
(z > 0.7). In principle, one could also include the Y JHKs
bandpasses of VIKING in the red-sequence model. How-
ever, we decided to exclude those bands in the modelling as
they would increase the computational cost of selecting the
set of seed galaxies (with spectroscopic redshifts) for esti-
mating the parameters of the red-sequence template, and
eventually computing the conditional probability of colours
conditioned on the redshift and magnitudes for all the ob-
jects in the survey.

Our data-driven model of the colours of the red-
sequence galaxies (see Vakili et al. 2019) is fully charac-
terized with the probability of the colours of red galaxies
conditioned on their apparent magnitudes and redshifts:
p(c|mr, z). This conditional probability is a modelled by a
mulitvariate Gaussian distribution. The mean and the co-
variance of this distribution are parametric functions, via
cubic spline, of the apparent magnitudes as well as the
redshifts of galaxies. First, we use a mixture of Gaussians
to the distribution of spectroscopic galaxies in the colour-
magnitude space in thin slices of redshift. Then we esti-
mate the parameters of the parametric functions using the
selected seed galaxies.

After evaluating this probability distribution for ev-
ery object in the survey, we proceed in a similar fashion
as described in detail in Rozo et al. (2016); Vakili et al.
(2019). We estimate the best-estimate redshift zred and its
uncertainty σz from the conditional probability distribu-
tion p(z|mr, c) (see Eqs. 5-7 of (Vakili et al. 2019)). Then,

2 The redshifts of SDSS DR13 and GAMA galaxies are reported
in the heliocentric frame while the redshifts of the 2dFLenS
galaxies are reported in the CMB rest frame.
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Fig. 1: Distribution of the selected luminous red-sequence galaxies in colour space as a function of redshift (colour map).
The COSMOS-G10 galaxies are shown as red stars. In each panel, the colour scale denotes the number density of luminous
red galaxies in the colour-redshift space, with yellow corresponding to higher number densities and blue corresponding
to lower number densities.

we construct two luminosity-threshold samples with the lu-
minosity ratio defined as

L
Lpivot (z)

= 10−0.4
(
mr−mpivot

r (z)
)
, (1)

in which the characteristic magnitude mpivot
r (z) is evaluated

using the EZGAL (Mancone & Gonzalez 2012) implemen-
tation of the Bruzual & Charlot (2003) stellar population

model. In the calculation of mpivot
r (z) we assume a solar met-

alicity, a Salpeter initial mass function (Chabrier 2003), and
a single star formation burst at zf = 3. Furthermore, this
stellar population model is adjusted such that mi = 17.85 at
z = 0.2, matching the magnitude of the redMaPPer cluster
galaxies (Rykoff et al. 2016; Rozo et al. 2016).

The samples are defined by setting a lower bound on
the luminosity ratios given by equation 1 and by having
a constant comoving density. We define two samples: the
dense sample with L/Lpivot(z) > 0.5 and comoving density of

10−3 Mpc−3h3, and the luminous sample with L/Lpivot(z) > 1
and comoving density of 2.5 × 10−4 Mpc−3h3. The comov-
ing densities are calculated assuming a ΛCDM model with
Planck (Ade et al. 2016) best-fit parameters. We find that

the choice of cosmology has no impact on the estimated
red-sequence redshifts.

Using the LePhare code (Arnouts et al. 1999; Ilbert
et al. 2006) we derive the stellar masses and the absolute
magnitudes of the galaxies in these two samples. For the
dense sample, the medians along with the confidence in-
tervals based on the 16th and 84th percentiles of the de-

rived quantities log
[
M?/h−2

70 M�
]

and Mr are 10.86+0.29
−0.26 and

−22.3+0.6
−0.7 respectively. For the luminous sample, the medi-

ans along with the 68 percentiles of the same quantities are
11.03+0.23

−0.19 and −22.7+0.3
−0.5 respectively.

For the luminous sample, we show the evolution of the
GAaP colours with respect to the estimated red-sequence
redshifts in Fig. 1. The red points show the red-sequence
galaxies with L > Lpivot(z) in the GAMA-G10 COSMOS
field. These galaxies are selected in a consistent manner
and hence, they follow the redshift-dependent colour distri-
bution of the luminous red-sequence sample in KiDS DR4.

Figure 1 offers an intuitive picture of how different
colours contribute to determination of the redshifts of red
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Fig. 2: Distribution of Sérsic indices of luminous red-
sequence galaxies selected in GAMA-G10 (blue) versus that
of all galaxies in the COSMOS Structure and Morphology
catalogue (orange). The selected red-sequence galaxies tend
to have larger values of Sérsic indices compared to all galax-
ies in the COSMOS region.

galaxies3. At low redshifts, the g−r colour rises sharply with

increasing redshift. As the 4000 Å break moves between the
broadband filters, the g− r colour reaches a relative plateau
while the r − i colour starts a rapid increase. At high red-
shifts however, it is the i − Z colour that shows a higher
sensitivity to the redshift of red galaxies. The u − g colour
shows a slow and noisy decline considering that red galaxies
become fainter in the u filter at higher redshifts.

We are also interested in the morphological properties
of the selected sample, i.e. whether the selected galaxies
tend to have morphological parameters associated with el-
liptical morphologies. We match the red-sequence galax-
ies in the GAMA-G10 field with the Zurich Structure and
Morphology catalogue (Scarlata et al. 2007; Sargent et al.
2007). This catalogue contains the best-fit parameters of
the Single-Sérsic GIM2D model applied to the HST ACS
imaging data of the COSMOS galaxies. We extract the
SERSIC N GIM2D column of this catalogue which represents
the best-fit Sérsic index. In Fig. 2 the distribution of the Sér-
sic indices of red-sequence galaxies in GAMA-G10 is shown
in blue, while that of all galaxies in the Zurich catalogue
is shown in orange. It is clear that Sérsic indices of the
selected red galaxies in GAMA-G10 tend to have higher
values, consistent with the picture that these galaxies are
better described by a bulge-dominated morphology com-
mon amongst galaxies with old stellar populations.

3 Note that in this intuitive description we have neglected the
magnitude dependence of the red-sequence template which plays
an additional constraining role in determining the redshifts.

3.2. Purity and completeness

We assess the purity of the sample by inspecting the distri-
bution of the selected objects in the (r − Z, r − Ks) space.
In this 2D colour space we focus on the selected red-
sequence galaxies and the objects classified as high con-
fidence star candidates in KiDS DR4, i.e. the objects that
have4 SG FLAG = 0. In Fig. 3, we show the distribution of
red-sequence galaxies and high confidence stars in this 2D
space. The left (right) panel of Fig. 3 shows this distribu-
tion for the selected objects in the dense (luminous) sample
colour-coded by the estimated redshifts. The contours show
the 68% and 95% of the distribution of high confidence stars
in this space.

As evident in the left panel of Fig. 3, there is some
overlap between the distribution of the colours of galaxies in
the dense sample with zred > 0.6 and the distribution of the
colours of high confidence stars. In contrast, there is a clear
distinction between the colour distribution of objects in the
luminous sample and that of the high confidence stars. In
both cases, there is a clear gap between the objects labeled
as stars and a large majority of the selected red-sequence
objects. In the redshift range of zred > 0.6 ∼ 40% (∼ 5%) of
the objects in the dense (luminous) sample are ambiguous.

The difference between the purity of the dense and the
luminous samples at high redshift arises from the different
size-magnitude distributions of the two samples. The ob-
jects with higher estimated redshifts tend to be fainter and
smaller, making them difficult to distinguish from high con-
fidence stars. The objects in the dense sample with zred > 0.6
tend to have higher apparent magnitudes and smaller sizes
compared to the objects in the luminous sample. This is in
line with the findings of Rozo et al. (2016), according to
which the stellar contamination is higher amongst fainter
red-sequence objects.

We use Support Vector Machines (hereafter SVM,
see Cortes & Vapnik 1995; Cristianini et al. 2000; Schölkopf
et al. 2000) to estimate a decision boundary (a line) that
maximizes the margin between the objects in the two classes
in 2D space. SVMs are a class of maximum margin classi-
fiers in which a decision boundary is chosen such that the
margins between multiple classes are maximized.

It is important to note that we have made an explicit
choice of feature engineering for this task. That is motivated
by our observation of the gap between the distribution of
the two labels in the (r − Z, r − Ks) plane. Our motivation
for using SVM is that in this 2D space, there is a clear
margin between the two labels and therefore our choice of
a maximum margin classifier for this task is appropriate.

The left panel of Fig. 4 shows the predicted decision
boundary (the pink dashed line) separating the two red-
sequence objects and the high confidence stars. The selected
red-sequence galaxy candidates on the right hand side of the
decision boundary—shown by red open circles—are likely
stellar objects that cannot be differentiated from galaxies
with morphological information only. Such objects are re-
moved from the red-sequence samples in order to maximize
the purity of the sample. The red-sequence sample purity
(impurity) can be quantified as the fraction of red-sequence
candidates that lie above (below) the decision boundary
shown in the left panel of Fig. 4. The right panel shows the

4 The SG FLAG parameter makes use of the size-peakiness rela-
tion of objects in order to determine whether they can be clas-
sified as star or not.
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Fig. 3: Demonstration of the use of optical+NIR colours for the identification of likely stellar objects amongst the red-
sequence galaxy candidates. In each panel, the points colour-coded with redshift show the red-sequence candidates in
the (r − Ks) × (r − Z) space, while the blue contours show the 68% and 95% confidence regions of the distribution of
high confidence stars. Left Panel: At high redshifts (zred > 0.6), the considerable overlap between the distribution of
red-sequence candidates in the dense sample (L > 0.5Lpivot(z)) and that of the high confidence stars becomes clear. Right
Panel: In the case of the red-sequence candidates in the luminous sample (L > Lpivot(z)), the overlap between the two
distributions is less apparent.

redshift-dependence of the estimated purity of red-sequence
objects in the dense (luminous) sample shown in green (or-
ange).

Evidently, the estimated purity of galaxies in the dense
sample drops significantly for zred > 0.6. On the other hand,
the purity of the luminous sample remains nearly above
90% across the entire redshift range 0.1 < zred < 0.8. Exclud-
ing the contaminants from the dense sample undermines
the constant comoving density of this sample for redshifts
higher than 0.6.

Another important factor to take into consideration is
the variable depth of the survey in the bands used in the
red-sequence model. In the fourth data release, the vari-
able depth is provided by the GAaP limiting magnitudes
denoted by MAG LIM band, where band = ugriZY JHKs. We
inspect the distribution of the selected objects in a two
dimensional space spanned by GAaP magnitude and the
GAaP limiting magnitude. In particular, we aim to set the
redshift reach of the samples such that the distribution of
galaxies in this space is not bounded by the limiting mag-
nitude of the survey. We carry out this investigation for the
ugriZ bands.

For the griZ bands the distribution of galaxies is not
limited by the depth of the survey as long as a redshift cut
of zred < 0.6 and zred < 0.8 are applied to the dense and the
luminous samples, respectively. For the u-band however, we
note that even after applying the redshift cut of zred < 0.6
to the dense sample and zred < 0.8 to the luminous sample,
both samples are bounded by the depth of the survey. The
underlying reason of this limitation is that the red-sequence

galaxies become faint in the u-band at high redshifts. The
possible consequences of this problem are tackled in Sect. 4
where we discuss the various survey properties that can
affect the observed number density of galaxies.

3.3. Photometric redshifts

For our large-scale structure studies, we construct four red-
shift bins. In order to maximize the signal-to-noise ratio of
the clustering as well as of the tangential shear signals we
make use of the dense sample as far as the purity and com-
pleteness considerations allow us (see Sect. 3.2). We con-
struct three redshift bins with the dense (L > 0.5Lpivot(z))
sample: 0.15 < zred < 0.3, 0.3 < zred < 0.45, 0.45 < zred < 0.6;
and finally one redshift bin with the luminous (L > Lpivot(z))
sample: 0.6 < zred < 0.8.

Table 2 summarizes the characteristics of each redshift
bin, including the number of objects, the mean redshift
〈zred〉, the redshift scatter, the 84- and 99.85 percentiles of
the r-band magnitudes of LRGs and LRGs with spectro-
scopic redshift. The selected objects tend to be fainter than
the objects with spectroscopic redshifts. In the last redshift
bin, which encompasses the faintest objects, the 84-, and
99.85-percentiles of the r-band GAaP magnitudes in the
photometric and spectroscopic samples in the last redshift
bin are [22.77, 23.58] and [21.93, 23.1] respectively. This
implies that the redshift scatters quoted in Table 2 may be
optimistic. The robustness of redshifts depend on the accu-
racy of the red-sequence template, which itself is simply de-
scribed by a straight line in the colour-magnitude space at
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Fig. 4: Left Panel: At redshifts above zred > 0.4 red-sequence galaxies (shown in red) and high confidence stars (shown
in blue) reside in separated regions of the two-dimensional (r − Ks) × (r − Z) colours. Shown by pink dashed line is the
predicted decision boundary between the two classes. The red-sequence candidates falling below the predicted boundary
are marked by open circle. These objects are flagged as likely stellar objects in the final catalogue, and thus removed
from our large-scale structure analysis. Right Panel: Purity fraction of the dense (green dashed line) and the luminous
(orange dashed line) samples as a function of redshift.

Table 2: Redshift bin information

Redshift bin Sample # objects 〈zred〉 scatter mphot
r,84% mphot

r,99.85% mspec
r,84% mspec

r,99.85%
0.15 < zred < 0.3 dense 32225 0.241 0.014 19.86 20.52 19.69 20.2
0.3 < zred < 0.45 dense 78086 0.383 0.016 20.98 21.72 20.21 21.16
0.45 < zred < 0.6 dense 124668 0.531 0.012 22.11 22.96 21.19 22.28
0.6 < zred < 0.8 luminous 56880 0.704 0.019 22.77 23.58 21.93 23.10

Notes. The redshift bins (1st column), the mean redshifts (3rd column), their corresponding scatters (4th column, and visualized
in Fig. 5), the 84- and 99.85-percentiles of the GAaP apparent magnitudes in the r-band of the selected galaxies in each redshift bin
(6th and 7th columns), and the 84- and 99.85-percentiles of the GAaP apparent magnitudes in the r-band of the selected galaxies

with spectroscopic redshift. The scatter is defined as the scaled median absolute deviation of
(zred−zspec)

1+zspec
.

Table 3: Photo-z bias divided into four redshift bins and four spec-z data sets.

Redshift bin Bias GAMA × 104 Bias SDSS × 104 Bias 2dFLenS × 104 Bias G10 × 104

0.15 < zred < 0.3 −5 ± 2 (1100) 50 ± 5 (8342) 8 ± 6 (847) 40 ± 4 (21)
0.3 < zred < 0.45 3 ± 3 (2428) −10 ± 5 (6449) 0.5 ± 8 (1105) 80 ± 50 (112)
0.45 < zred < 0.6 50 ± 6 (7499) −10 ± 2 (1237) 5 ± 9 (1965) 60 ± 40 (107)
0.6 < zred < 0.8 50 ± 40 (994) 30 ± 10 (37) −10 ± 30 (541) −10 ± 70 (80)

Notes. In each redshift bin, we compare the photo-z biases, summarized with mean and standard deviation, with respect to the
four spectroscopic surveys. The number of spectroscopic redshifts available in each redshift bin and spectroscopic data set is shown
in parenthesis.

each redshift. The template, estimated with brighter galax-
ies, is generalizable to fainter samples as long as the assump-
tion of the red-sequence template, a ridge-line in the colour-
magnitude space, holds. For a sample of galaxies with spec-
troscopy, comparison between the estimated red-sequence
redshifts and the spectroscopic redshifts is shown in Fig. 5.

The photometric redshift scatter, defined as the scaled
median absolute deviation of the quantity

(
zspec − zred

)
/(1 +

zspec), is estimated for each redshift bin. The scatter ranges
between 0.012 and 0.019 with the last redshift bin zred ∈

[0.6, 0.8] having the largest scatter. Furthermore, the slight
rise in scatter from the first bin to the second one can be
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Fig. 5: Comparison between the estimated red-sequence
redshifts and spectroscopic redshifts for galaxies with spec-
troscopy.

Fig. 6: The distribution of the quantity (zspec − zred)/σz is
shown in orange, where zred and σz are per galaxy estimated
quantities. Shown in blue (red) is the best-fit Student-t
(Gaussian) distribution. A Student t-distribution provides
a better description of the long-tails of the redshift distri-
butions of individual galaxies.

attributed to the transition of the 4000 Å break between
the broadband filters in the second redshift bin. Table 3
summarizes the photometric redshift biases zred − zspec with
respect to the four spectroscopic data sets. The biases are,
generally, of order 10−3 with some scatter between the spec-
troscopic data sets. We will take this scatter into account in
Sect. 5.3 where we estimate the uncertainties on the mean
values of the redshift distributions of the four redshift bins.

Fig. 7: The redshift distributions of the four redshift bins
designed for studying the large-scale structure.The shaded
regions mark the redshift boundaries used for defining the
redshift bins.

Table 4: Best-fit Student t-distribution parameters.

Redshift bin ν µ s
0.15 < zred < 0.3 5.89 0.055 0.907
0.3 < zred < 0.45 4.36 0.005 0.898
0.45 < zred < 0.6 2.92 0.02 0.820
0.6 < zred < 0.8 4.03 -0.015 0.875

Notes. The distribution of the scaled reshift residuals in each
bin is modeled by a Student-t probability density. The best-fit
parameters of the Student t-distribution are summarized in this
table. A lower value of the parameter ν signals a larger deviation
from Gaussianity.

We define the scaled redshift residuals as the difference
between the spectroscopic redshifts and the red-sequence
redshifts, divided by the red-sequence redshift uncertain-
ties:

(
zspec − zred

)
/σz. In each redshift bin, we fit the dis-

tribution of the scaled residuals with the Normal and the
Student-t parametric distributions. The probability density
function of a Student-t distribution for a random variable
x is given by the following form:

f (x̃) =
Γ
( ν+1

2
)

√
νπΓ

( ν
2
) (1 +

x̃2

ν

)− ν+1
2

(2)

x̃ =
x − µ

s
, (3)

where Γ denotes the Gamma function, the shape of the dis-
tribution is controlled by the parameter ν, the parameter
µ sets the mean of the distribution, and the parameter s
scales the width of the distribution. For a sufficiently large
value of ν, the Student t-distribution converges to a stan-
dard Normal distribution with a mean µ and a standard
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deviation s. In general, a smaller value of ν corresponds to
a distribution with wider tails.

Figure 6 shows the distribution of the scaled redshift
residuals in the second redshift bin along with the best
fit Normal and Student t-distributions. The Student t-
distribution provides a better description of the distribution
of the redshift residuals. In particular, the tails of the dis-
tribution are better modeled by the Student-t whereas the
Normal distribution fails to capture the long tails. This im-
plies that the individual redshift probabilities have a longer
tail than what a simple Normal distribution suggests.

In each redshift bin summarized in Table 2 the distribu-
tion of the scaled redshift residuals is modelled by a Student
t-distribution specified by the best-fit parameters summa-
rized in Table 4. The redshift distributions based on this as-
sumption will have longer tails than in the case where the
individual distributions are described by a Gaussian den-
sity function. In each zred bin, the Student t-distribution
provides a model for p(ztrue|zred) which itself is described by
a Student t-distribution with the following shape ν̃, mean
µ̃, and scale s̃ parameters:

ν̃ = ν, (4)

µ̃ = zred + σzµ, (5)

s̃ = σzs, (6)

where the parameters (ν, µ, s) parameters given by Table 4.
We estimate the redshift distribution of each redshift

bin by convolving dN/dzred with p(ztrue|zred) which is equiv-
alent to summing the individual redshift probability distri-
bution functions given by p(ztrue|zred). Figure 7 shows the
redshift distributions of the four redshift bins designed for
our galaxy clustering analysis.

4. Imaging systematics

By necessity, the data quality of large galaxy surveys such
as KiDS is not homogeneous. The variable survey conditions
can potentially affect the observed galaxy density and con-
sequently can bias the cosmological inferences with these
galaxy samples (Ross et al. 2012; Leistedt & Peiris 2014;
Leistedt et al. 2016; Zhai et al. 2017; Elvin-Poole et al. 2018;
Bautista et al. 2018; Crocce et al. 2019b; Kitanidis et al.
2019; Rezaie et al. 2019; Heydenreich et al. 2020; Icaza-
Lizaola et al. 2020). In this section, first we describe the
imaging systematics considered in our analysis, and then
we discuss our mitigation strategy.

4.1. Survey properties

We consider a range of effects with on-sky variations that
can impact the variations of galaxy number densities. In
total we take into account 15 survey properties that we fur-
ther pixelate using HEALPIX (Górski et al. 2005). We pro-
duce the HEALPIX map of these properties with Nside = 256
(equivalent to a pixel size of 13.7 arcmin). This choice of
map resolution (also adopted by (Ross et al. 2012; Bautista
et al. 2018) in clustering measurements of LRGs) is suffi-
cient for mitigating the systematic effects in density varia-
tions of a galaxy sample with low number density such as
ours. We compute the area of each pixel at higher resolu-
tion (Nside = 4096, equivalent to 0.86 arcmin). This is the

resolution at which, the KiDS DR4 mask is provided. That
is, the effective areas of large pixels after masking are com-
puted using the unmasked pixels in the high resolution map
with Nside = 4096.

It is important to note that the detection band in the
KiDS photometry pipeline is the r-band. Therefore, many
of the systematic parameters considered in our analysis are
extracted from the r-band imaging data. Since we make use
of the galaxy GAaP magnitudes and magnitude errors in
our red-sequence pipeline, we also include the GAaP limit-
ing magnitudes in our list of imaging systematics.

In what follows, we list the set of survey properties con-
sidered in our investigation:

– Residual background counts in the THELI im-
ages: The background counts at the centroid positions
of the objects in the THELI-processed r-band detec-
tion images. In KiDS DR4, the background count is
provided as BACKGROUND. Note that the THELI pro-
cessed detection images are background subtracted. The
BACKGROUND parameter simply returns the value of the
residual sky background at the positions of objects,
therefore the background ‘counts’ could be also nega-
tive.

– Detection threshold above background: This
quantity is measured in units of counts and it is pro-
vided in the single-band source list as THRESHOLD.

– Limiting magnitudes in 9 bands: The limiting
GAaP magnitude attributes are provided in DR4 as
MAG LIM band, where band = {u, g, r, i,Z,Y, J,H,Ks}. For
each band the limiting magnitudes are evaluated on an
object-by-object basis. At the position of a given object,
the limiting GAaP magnitude corresponds to the 1-σ
GAaP flux error for the aperture of the source. Thus, it
depends on the pixel noise—in the Gaussianized image
where the GAaP flux is measured—as well as the aper-
ture size. This implies that the limiting magnitudes are
indirectly dependent on the full-width-at half-maximum
of the point spread function (PSF) in the bandpass as
well as the sky background counts. Note that in our
red-sequence selection process, we have only used the
ugriZKs bands. However since we use the KiDS DR4
9band mask, which requires detection across all 9bands,
we also include the limiting magnitudes in the Y JH
bands in our imaging systematic mitigation.

– PSF full width at half maximum (FWHM) in
the r-band: the PSF FWHM in the r-band measured
in units of arcseconds. The PSF FWHM is calculated
using the PSF Strehl ratio column in the catalogue.

– PSF ellipticity in the r-band: the KiDS PSF elliptic-
ity in the r-band. The PSF ellipticity quantity is com-
puted from the PSFe1, PSFe2 columns in the data.

– Galactic dust extinction in the r-band: This quan-
tity is provided as EXTINCTION r in the nine-band cat-
alogue of the KiDS DR4 (Schlegel et al. 1998; Schlafly
& Finkbeiner 2011).

– Star number density: We determine the stellar den-
sity from the pixelated number density map of bright
stars in the second data release of GAIA (DR2, Gaia
Collaboration et al. 2018). This is done by consider-
ing the GAIA stars with the G-band magnitude be-
tween 12 and 17. This is the magnitude range in which
the GAIA DR2 G-band is complete (Gaia Collaboration
et al. 2018; Arenou, F. et al. 2018). Note that only GAIA
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Fig. 8: The HEALPIX maps of the density of GAIA DR2 stars with 14 < G < 17 in the KiDS DR4 footprint (first row),
Galactic dust extinction (second row), Detection threshold above background (third row), and Residual Background
(fourth row). All maps are generated with nside = 256.

Fig. 9: Demonstration of the correlation between some of the survey properties. In each panel, the mean and scatter
values of the survey property indicated in the label of the y-axis are shown in bins of the survey property indicated in
the label of the x-axis. The anti-correlation between the residual background counts in the coadds and the stellar number
density is evident (Left). There is an anti-correlation between the limiting magnitude in the r-band and the PSF FWHM
r-band (Middle). Furthermore, there is a correlation between the NIR magnitude limits in the H and the Ks bands (Right)
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Fig. 10: Relation between the set of orthogonal survey fea-

tures {S ( j)
⊥ }

15
j=1 (see Eq. 7) and the original survey proper-

ties. Some notable features are S (1)
⊥ dominated by the NIR

magnitude limits, S (9)
⊥ dominated by magnitude limit in the

u-band and PSF ellipticity, S (11)
⊥ dominated by the star den-

sity and dust extinction.

DR2 stars that lie in the KiDS footprint are considered
in the process of generating the map of stellar number
densities.

The HEALPIX maps of star number densities, galactic
dust extinction, detection threshold, and the residual back-
ground counts are shown in Fig. 8. The maps of the rest of
the survey properties considered in this study are displayed
in Figs. 12, 21, and 22 of Kuijken et al. (2019).

4.2. The impact of survey properties

The survey properties considered in our investigation are
correlated. Figure 9 demonstrates the mutual information
between various survey properties. For instance, there is
a strong anti-correlation between the residual background
counts in the r-band and the stellar number density. This
anti-correlation stems from the tendency of the image pro-
cessing pipeline to over-estimate, and as a result, to over-
subtract the sky background in the fields with higher stellar
density. There is also an anti-correlation between the mag-
nitude limit in the r-band and the PSF FWHM (middle
panel of Fig. 9). This can be attributed to larger GAaP
flux errors for areas of the survey with larger PSF FWHM.
Conversely, there is a strong correlation between H-band
and the Ks band limiting magnitudes shown in the right
panel of Fig. 9. This stems from the strong relation between
the flux errors of these bands. The estimated flux errors are
highly correlated in the ZY bands and HKs bands respec-
tively. There is also a strong, albeit with a larger scatter,
correlation between the flux errors of all the NIR bands

ZY JHKs. This mutual information can be attributed to the
tiling strategy of the NIR bands. Another possible expla-
nation is the anti-correlation between the limiting magni-
tudes and the aperture size used for estimating the GAaP
flux values. A larger aperture gives rise to a lower limiting
magnitude, where the effective photometric aperture is de-
termined by the seeing in each band as well as the degree
of detection in the r-band.

Given the covariance between some of the survey prop-
erties, we inspect the variation of the observed galaxy num-
ber densities and the survey properties in the linear basis in
which the covariance matrix between the parameters is di-
agonal. The basis vectors of this space are the eigen-vectors
of the covariance matrix of survey properties5. In such a
basis, one can assess the variations between the observed
galaxy number density and the different basis vectors inde-
pendently.

In particular, we inspect the variation of galaxy over-
densities δgal = ngal/〈ngal〉, where ngal is galaxy number den-

sity in units of arcmin−2. As pointed out in Sect. 4.1, the
areas pixels in the HEALPIX maps with Nside = 256 are calcu-
lated using a higher resolution HEALPIX map of KiDS DR4
mask with resolution of Nside = 4096. Any deviation of this
quantity from unity as a function of an imaging systematic
indicates a non-vanishing impact of that systematic6. Let us
denote the list of all pixelated survey property parameters

by {si ∈ R
15}

Npix

i=1 where the subscript i denotes the position
of the pixel i on the sky. Furthermore, we transform the set

of vectors {si ∈ R
15}

Npix

i=1 so that the mean and the variance
across each of the 15 dimensions are zero and one, respec-
tively. Afterwards, we transform this 15 dimensional linear
basis to a new orthogonal basis in which the covariance ma-
trix of the survey property vectors is diagonal. In this new
basis, we represent the list of survey property parameters

by {S⊥,i ∈ R15}
Npix

i=1 where at each pixel we have:

S⊥ = [S (1)
⊥ , S

(2)
⊥ , ..., S

(15)
⊥ ], (7)

where S ( j)
⊥ is the j-th systematic vector in the new basis.

The relation between the survey properties and the orthog-
onal features is illustrated in Fig. 10. It is clear that the
first orthogonal feature is dominated by the near-IR lim-
iting magnitudes. The second feature S (2)

⊥ is related, with
negative signs, to the residual background counts, detection
threshold, and the r-band limiting magnitude and related,
with positive signs, to the star density and the dust extinc-
tion.

For the third redshift bin7 (zred ∈ [0.45, 0.6]) the varia-
tion of the observed number density versus the survey prop-
erty parameters S⊥ is shown by the red bands in Fig. 11,
where in each panel, the red bands show the mean and scat-
ter values of the galaxy over-densities in bins of the survey

5 Prior to diagonalization of the covariance matrix of survey
properties, we apply a log-transformation to the parameters
whose distributions have long tails.
6 Note that alternatively, one can reformulate this by looking
at the deviations of Ngal/Nrandom (modulo some normalization)
from unity, where Nrandom is the number density of a set of uni-
formly distributed random points across the survey footprint
(e.g. Bautista et al. 2018; Icaza-Lizaola et al. 2020).
7 For brevity we only show the survey property-density trends
in the third bin. The trends in the rest of the redshift bins and
the corrections are similar.
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Fig. 11: Variation of the galaxy overdensity versus the orthogonal survey property parameters {S⊥} in the third redshift
bin zred ∈ [0.45, 0.6] with (shown in blue) and without (shown in red) the photometric weights included. The deviation
of the galaxy over density from unity is quantified by χ2

null/dof with degrees-of-freedom (dof) = 14. In each panel, the

bands show the means and scatters of ngal/〈ngal〉 in bins of survey property S ( j)
⊥ shown in the x-axis. Note that we have

only included the four components of {S⊥} that induce the most significant variations in the observed galaxy number
densities. After including the photometric weights, the variation of galaxy densities with respect to survey properties is
reduced significantly.

property indicated by the x-axis. We have only shown the
four most significant variations quantified by the null chi-
squared χ2

null, with higher values of χ2
null corresponding to

higher deviations of galaxy densities in relation to the sur-
vey properties. For instance, the most significant systematic
mode present in density variation of galaxies in the third
redshift bin is due to the feature S (9)

⊥ which itself is dom-
inated by the magnitude limit in the u-band. The strong
S (9)
⊥ systematic mode in the third redshift bin (the highest

redshift bin constructed from the dense sample) is due to
the fact that the u-band magnitude distribution of the high
redshift galaxies in our sample is limited by the depth of
the survey in this band.

It is clear that the galaxy density in our sample cor-
relates with survey properties. Therefore, we mitigate the
impact of systematics by introducing a set of photometric
weights. This approach has been widely utilized in galaxy
clustering analyses: the clustering of LRGs in SDSS BOSS
(Ross et al. 2012, 2017b), galaxy clustering in the Dark En-
ergy Survey (Elvin-Poole et al. 2018; Crocce et al. 2019b),
DESI legacy survey (Kitanidis et al. 2019), and finally clus-
tering of LRGs in SDSS-eBOSS (Bautista et al. 2018; Icaza-
Lizaola et al. 2020).

Following the work of Bautista et al. (2018), we com-
pute the photometric weights by assuming a relation be-
tween the pixelated observed galaxy overdensities and δgal =
Ngal/〈Ngal〉 and the set of pixelated systematic parameters.
In Bautista et al. (2018) this relation is assumed to be lin-
ear, i.e. δgal = Ws + b + noise. Additionally, we consider
two modifications. First, we introduce a set of second-order
polynomial features from the original feature space {s}. The
second-order features consist of all possible combinations
of {sis j} as well as single features {si}. These polynomial
features are then mapped to the observed galaxy densi-
ties via a linear relation. Furthermore, we introduce an
L2 regularization to this regression problem which is im-
plemented by adding a regularization term λ

∑
k W2

k to the
least square cost function. The added advantage of this reg-
ularization term is that it tends to keep the W parameters
small thereby avoiding overfitting.

In practice, we choose the regularization hyper-
parameter λ by a k-fold cross-validation search in which
we explore a wide range of λ values from 10−4 to 105. We
note that in all the redshift bins, our cross-validation opti-
mization procedure prefers a heavy regularization in which
a very large value of λ ∈ [103 − 105] is favored. The advan-
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tage of this approach over that of Ross et al. (2017b) is that
we do not assume that there is no correlation between the
systematic parameters.

The prediction of this model, once applied to the pix-
elated systematic maps, provides a set of photometric
weights that remove the systematically induced variations
in the galaxy number density. The photometric weights
are obtained by taking the inverse of the prediction of
the model. Figure 11 demonstrates how the photometric
weights derived from our framework can help reduce the
systematic trends seen in the observed galaxy number den-
sities. In Fig. 11, the density-correlations are displayed af-
ter taking into account the photometric weights (shown in
blue) and without the photometric weights (shown in red).
We note that the reduced χ2 improves significantly once the
photometric weights are taken into consideration.

We also investigated the two-point cross-correlations of
the galaxy number density and the orthogonal systematic

parameters {S⊥,i}
Npix

i=1 as a function of angular separation in
our galaxy sample. We find that the cross correlations, be-
fore and after including the photometric weights, are con-
sistent with zero, albeit with slight improvements once the
photometric weights are taken into account.

Alternatively, one can use self organizing maps (SOM,
Kohonen 1997) for learning the systematic galaxy density
modes due the variable survey properties and then gener-
ating a set of ‘organized randoms’ mimicking the galaxy
depletion pattern across the survey footprint. We have also
tested this method and we found that this method works
best in correcting the systematic depletion in a galaxy sam-
ple with a higher number density than in our study. This
approach is being pursued by Johnston et al (in prep) to
mitigate the systematic biases in clustering of galaxies in
the KiDS DR4 bright sample (Bilicki et al. in prep.).

We have not explored the effect of various observing con-
ditions on the distribution of derived physical properties of
the galaxies. Such effects can in principle generate system-
atic on-sky variations of the estimated host halo mass of
galaxies in our sample which can subsequently complicate
the cosmological analysis. This problem is exacerbated in a
galaxy survey covering a larger area, due to significant re-
duction in statistical uncertainty, and can only be taken into
account through a careful forward model approach which is
outside the scope of this paper.

5. Galaxy Clustering

5.1. Theory

Assuming a local deterministic linear galaxy bias, the
galaxy overdensity δg is related to the matter overdensity δm
through a linear relation: δg = bgδm, where the parameter bg
is the linear bias parameter. Such assumption is expected
to hold on sufficiently large scales (e.g. Kravtsov & Klypin
1999; Marian et al. 2015), whereas on small scales, the non-
linear structure formation is best described by the more
sophisticated halo model (e.g. Berlind & Weinberg 2002;
Cooray & Sheth 2002; Zehavi et al. 2011; Hand et al. 2017;
Vakili & Hahn 2019).

Given a nonlinear matter power-spectrum PNL(k, z), and
a galaxy population with linear bias of bg and redshift dis-
tribution ng(z), one can predict the angular two-point corre-
lation function wg(θ). Under the assumption of flat universe,
and the Limber- and flat-sky approximations (Limber 1961;

Loverde & Afshordi 2008; Kilbinger et al. 2017; Kitching
et al. 2017), the angular clustering wg(θ) is given by:

wg(θ) = b2
g

∫ ∞

0

ldl
2π

J0(lθ)

×

∫ χH

0
dχc

ng(z) dz
dχc

χc


2

PNL

(
l + 1/2
χc

; z
)
, (8)

where χc is the comoving distance to redshift z, χH the Hub-
ble distance, and J0 the 0-th order Bessel function of the
first kind. The nonlinear power spectrum can be calculated
using different recipes such as the halo model (e.g. Taka-
hashi et al. 2012; Mead et al. 2015; Smith & Angulo 2019),
or emulation (e.g. Heitmann et al. 2014). Hereafter we use
the Core Cosmology Library (CCL, Chisari et al. 2019b,a)
to compute the theoretical predictions of angular clustering.
We use the Takahashi et al. (2012) model as it is capable
of predicting the matter clustering in the linear and quasi-
linear regimes (i.e. χc > 8 Mpc/h) considered in this study.

We calculate the theoretical prediction (eq. 8) for all
four redshift bins in our galaxy sample with their corre-
sponding linear bias parameters {b(i)

g }
4
i=1 and redshift distri-

butions {n(i)
g (z)}4i=1.

Assuming a fixed cosmology, we aim to estimate the
linear bias parameters {b(i)

g }
4
i=1 by fitting the theoretical pre-

diction (8) to the angular clustering of our LRG samples. It
is worth noting that one major source of systematic error in
this theoretical prediction is the uncertainty on the mean
of the redshift distributions {n(i)

g (z)}4i=1. In order to mitigate
its impact, we assume that the estimated redshift distribu-
tion at each redshift bin n(i)

g (z) is effectively given by shifting

the underlying unbiased redshift distribution n(i)
g,true(z−δz(i)),

where the parameter δz(i) is the uncertainty on the mean
of the redshift distribution of i-th redshift bin. In Sect. 5.3
we will discuss how the uncertainty over the mean of the
redshift distribution can be estimated. When reporting the
constraints on the galaxy bias parameters, we marginalize
over the redshift uncertainties.

5.2. Clustering measurements

The galaxy two-point correlation function is the excess
probability, compared to random, of finding a pair of galax-
ies within a given angular or physical separation. Given that
we do not know the exact redshifts of the galaxies, we fo-
cus on computing the angular correlation function which
can be obtained by performing pair-counts in angular bins
perpendicular to the line of sight. We measure the angu-
lar clustering using the Landy-Szalay estimator (Landy &
Szalay 1993):

ŵ(θ) =
DD − 2DR + RR

RR
, (9)

where DD denotes the number of galaxy pairs within an
angular separation bin centered at θ, DR denotes the num-
ber of galaxy-random pairs, and RR denotes the number of
random pairs. The random points are uniformly distributed
within the survey footprint.

As discussed in Sect. 4, in each redshift bin a photo-
metric weight is assigned to each galaxy depending on its
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Fig. 12: Clustering measurements for the four redshift bins. In each panel, the blue (orange) data-points correspond to
the correlation functions computed with (without) the photometric weights designed to remove survey-related systematic
density variations.

position on the sky. These weights are derived such that
the on-sky variations of galaxy overdensity due to survey
properties are mitigated. We compute two sets of angular
clustering measurements, one with the photometric weights,
and another without. In the presence of weights the DD and
DR pair count calculations are modified in the following
way:

DD(θ) =

Ngalaxy∑
i=1

Ngalaxy∑
j=1

ωiω jΘi j(θ), (10)

DR(θ) =

Ngalaxy∑
i=1

Nrandom∑
j=1

ωiΘi j(θ), (11)

where Θi j(θ) = 1(0) when a galaxy-galaxy, or a galaxy-
random pair in the case of DR, (indexed by i, j) are (are
not) within the angular bin centered on θ, and ωi is the
photometric weight associated with the i-th galaxy.

The angular clustering measurements of LRGs in four
redshift bins are displayed in Fig. 12, with the first three
bins encompassing the galaxies in the dense (L > 0.5Lpivot(z))
sample and the last bin (0.6 < z < 0.8) encompassing the
galaxies in the luminous (L > Lpivot(z)) sample. The cluster-
ing signal estimated with (without) the photometric weights

is shown in blue (orange). The correlation functions are
measured in 15 logarithmically-spaced bins in the range
10 ≤ θ ≤ 100 arcmin. Although the lowest angular limit
of 10 arcmin is lower than the systematic map resolution
of 13 arcmin, the scale cuts (see Sec. 5.3.3) that will be ap-
plied to our clustering data vectors will be larger than both
of these angular scales.

We estimate the measurement uncertainties using the
jackknife resampling method (Norberg et al. 2009; Friedrich
et al. 2016; Singh et al. 2017; Shirasaki et al. 2017). In
this method, the KiDS survey footprint is first divided
into NJK = 100 contiguous jackknife subsamples of approx-
imately equal area8 For each subsample k ∈ {1, ...,NJK}, the
clustering data vector w(k)

g is measured by dropping the k-
th subsample and estimating the clustering signal from the
rest of the survey area. Note that the vector w(k)

g contains
the correlation function measured in all the 15 angular bins
considered in this study. The jackknife estimator of the co-

8 The segmentation of KiDS DR4 footprint into NJK is done with
the K-means algorithm. We made use of an implementation of
this algorithm designed to handle RA and DEC coordinates on
the sky (https://github.com/esheldon/kmeans radec).
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variance matrix is then given by:

ĈJK =
NJK − 1

NJK

NJK∑
k=1

(
w(k)

g − wg
)T (

w(k)
g − wg

)
, (12)

where wg is the mean of all w(k)
g vectors.

Since the covariance matrix is estimated from the jack-
knife method with a finite number of jackknife subsamples,
our estimate of the covariance matrix and its inverse are
noisy. The unbiased estimate of the inverse covariance ma-
trix is related to the inverse of the estimated jackknife co-
variance matrix ĈJK with the Anderson-Hartlap-Kaufman
(Kaufman 1967; Hartlap et al. 2007) debiasing factor:

Ĉ−1 =
NJK − Nd − 2

NJK − 1
Ĉ−1

JK , (13)

where NJK is the number of jackknife subsamples and Nd is
the number of bins, in the clustering measurements, that
enter the likelihood function evaluation. Since we remove
the nonlinear scales from our likelihood analysis, only the
data points that pass the cuts determine the number of data
points Nd appearing in Equation 13.

5.3. Inference setup

5.3.1. Parameters

In order to fit the theoretical model of angular clustering
to the data, we need to clarify our choices of parameters.
Assuming a fixed cosmology, we estimate the linear galaxy
bias (using equation 8) of the red galaxies in the redshift
redshift bins. We estimate the bias parameters by marginal-
izing over the photometric redshift uncertainty parameters.
Furthermore, we choose a flat LCDM model assuming Ωm =
0.25, ΩΛ = 0.75, Ωb = 0.044, σ8 = 0.8, ns = 0.95, h = 0.7,
which is the input cosmology of the MICE suite of cos-
mological simulations (Fosalba et al. 2015). We picked this
set of cosmological parameters for internal comparison pur-
poses (Fortuna et al in prep). However, given that the am-
plitude of galaxy clustering depends on the amplitude of the
power spectrum, growth factor, and galaxy bias, we expect
our bias constraints in this work to depend on the assumed
cosmology.

We adopt the following priors on the model parameters.
For the galaxy bias parameters, we assume a uniform prior
with a lower bound of 1 and an upper bound of 3. For the
prior distribution of the photo-z shift parameters {δzi}

4
i=1 we

assume a Gaussian distribution with zero mean and a dis-
persion which we estimate in the following way. We assume
that there are two major contributions to the uncertainty of
the mean of the redshift distributions. The first contribution
is the spatial sample variance which we compute using the
jackknife resampling method. The second contribution is es-
timated by computing the covariance between the photo-z
biases with respect to the four spectroscopic redshift sur-
veys considered in this study (see Table 3). Combining these
two sources of uncertainty will provide us with an estimate
of the prior distribution over the photo-z shift parameters:

δzi ∼ N
(
0, σδzi

)
, (14)

where σδzi is 2.4×10−3, 3.2×10−3, 2.3×10−3, and 4.6×10−3 for
the first, second, third, and fourth redshift bins respectively.

5.3.2. Blinding

In order to avoid confirmation bias we adopt the blinding
scheme introduced in Sellentin (2019). In this approach the
blinded element of the inference pipeline is the inverse co-
variance matrix as opposed to the catalogues (Hildebrandt
et al. 2017), photo-z distributions (Hildebrandt et al. 2020),
or the correlation functions (Muir et al. 2019).

The estimated inverse covariance matrix is changed by
multiplication of a diagonal matrix to the Cholesky decom-
position of the estimated inverse covariance matrix9. The
diagonal matrix is chosen such that the posterior distribu-
tions derived from the new inverse covariance matrix are
shifted with respect to those estimated from the fiducial in-
verse covariance matrix. Transformation of the inverse co-
variance matrix is given by the following set of equations:

Ĉ−1 = LT L (15)

→ LT BT BL, (16)

where LT L is the Cholesky decomposition of the original
inverse covariance matrix, B is the diagonal matrix respon-
sible for shifting the peak of the posterior probability dis-
tribution over the galaxy bias parameter, and LT BT BL is
the blinded inverse covariance matrix. The elements of the
diagonal matrix B are given by

Bii =
ei

ẽi
, (17)

with the vectors e and ẽ defined in the following way:

ei = LT [
ŵ − w(bfid)

]
(18)

ẽi = LT
[
ŵ − w(b̃)

]
(19)

In Eqs 18 and 19, ŵ denotes the clustering measure-
ment data vector, while w(b̃) and w(bfid) denote the clus-
tering model data vectors evaluated at a fiducial galaxy
bias parameter bfid and at a perturbed bias parameter b̃ re-
spectively. The equations 18 and 19 are designed such that
the model w(b̃) under the blinded inverse covariance ma-
trix given by Eq. 16 achieves the same χ2 goodness-of-fit
as the model w(bfid) under the original inverse covariance
matrix given by Eq. 16. For our dense (luminous) sample
we set the parameters bfid and b̃ to 1.8 (2.1) and 1.78 (2.08)
respectively.

Figure 13 demonstrates the blinding scheme, with the
two panels showing the correlation matrix of the clustering
measurement corresponding to the last redshift bin before
and after blinding. After finalizing all the steps of our analy-
sis, we repeat the last step of our investigation with the orig-
inal covariance matrices. The difference between our galaxy
bias constraints before and after blinding is described in Ap-
pendix A. We have not incorporated any invariance of the
width of the target posterior pdfs, which can lead to seem-
ingly undesirable feature such as the first panel of Fig. A.1.
In practice however, this implementation serves our purpose
of avoiding confirmation bias.

9 The Cholesky decomposition of a symmetric positive-definite
matrix A is a matrix factorization that can be expressed as A =
LLT, where L is a unique lower triangular matrix.

Article number, page 15 of 21



A&A proofs: manuscript no. lrg kids

Fig. 13: Illustration of our blinding scheme based on modifying the covariance matrix. Two correlation matrices corre-
sponding to the angular clustering measurements in the last redshift bin: the matrix shown in the left panel is the original
correlation matrix derived from the jackknife covariance matrix computed in Sect. 5.2, while the matrix shown in the
right panel is constructed with the method of Sellentin (2019) such that the posterior probability over the galaxy bias
parameter is shifted.

5.3.3. Scale cuts

The theoretical model summarized in equation 8 fails to
capture the full complexity of the galaxy-matter connec-
tion on small scales as it relies only on a simple linear de-
terministic treatment of galaxy bias. Therefore, we decided
to apply a conservative cut on the comoving scales consid-
ered in our theoretical modeling of the clustering signal. In
particular, we adopt a cut at a comoving scale of 8 Mpch−1

which translates to a minimum angular scale (hereafter de-
noted by θmin) of 39.8 arcmin for the first bin, 25.9 arcmin
for the second bin, 19.3 arcmin for the third bin, and finally
15.2 arcmin for the last redshift bin. The comoving distance
is converted to angular scales assuming the flat ΛCDM cos-
mology discussed above. Furthermore, the parameter θmin in
each redshift bin is calculated from dividing the minimum
comoving scale of 8 Mpch−1 by the comoving distance at
the mean redshift of the redshift bin under consideration.

5.3.4. Likelihood and posterior sampling

With the theoretical model, the measurements, and the
blinded covariance matrix at hand, now we are ready to
constrain the linear galaxy bias and photo-z distribution
shift parameters for each redshift bin: {b(i)

g , δz(i)}4i=1.

We assume that the likelihood is a multivariate Gaus-
sian distribution with the mean given by the theoretical
prediction (Eq. 8) and with the inverse covariance given by
the blinded inverse covariance matrix (Eq. 16). The model
parameters are constrained by MCMC sampling from the
posterior probability distribution p(θ|d) ∝ p(d|θ)p(θ) using
the emcee implementation (Foreman-Mackey et al. 2013) of
the affine-invariant ensemble Markov Chain Monte Carlo
sampling method of Goodman & Weare (2010).

5.4. Constraints

Figure 14 presents measurement of the angular correlation
function (data points with error bars) together with the
68% and 95% posterior predictions of wθ for all the four
redshift bins. Given the uncertainties, the model predic-
tions are consistent with the measurements. The 1σ and 2σ
levels of the 2D posterior surfaces in the (bg, δz) parameter
space as well as the marginalized distributions over the indi-
vidual parameters are displayed in Fig. 15. The correlation
between the inferred bias parameter and the photo-z shift
parameter appears to be very small. The Spearman corre-
lation10 between the two parameters is 0.02, 0.06, 0.06, and
0.06 for the four bins in increasing redshift order.

The marginalized distributions are summarized in Ta-
ble 5. We note that the constraints on the photo-z shift
parameters are consistent with zero and largely consistent
with the adopted priors over these parameters. Further-
more, we find consistency, given the uncertainties, between
the constraints on the galaxy bias parameters of the first
three bins. Note that the first three bins are constructed
from the dense galaxy sample which has an approximately
constant comoving density. On the other hand, our con-
straint on the bias parameter of the last bin is higher than
those of the first three bins. This is expected as the last bin
is constructed from the luminous sample which consists of
brighter galaxies residing in more massive halos.

In the default setup for studying the large-scale struc-
ture, we have relied on four redshift bins, three of which
are constructed from the dense sample with bins defined by
the redshift edges of [0.15, 0.3, 0.45, 0.6], and one last bin

10 The Spearman correlation coefficient provides an estimate of
the monotonicity in the relation between two parameters with-
out assuming that the distribution of the parameters is Normal
(Zwillinger & Kokoska 1999).
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Fig. 14: Comparison between the posterior predictions (red shaded) of clustering and the clustering measurements (blue
points with error bars) in the four redshift bins. The dark and light shaded regions mark the 68% and the 95% confidence
intervals. The error bars are derived from the diagonal elements of the blinded covariance matrix of the observations.

Table 5: Summary of parameter constraints

Redshift bin bg δz

0.15 < zred < 0.3 1.70+0.18
−0.17 −0.00+0.002

−0.002
0.3 < zred < 0.45 1.72+0.14

−0.13 −0.00+0.003
−0.003

0.45 < zred < 0.8 1.74+0.06
−0.06 −0.00+0.002

−0.002
0.6 < zred < 0.8 2.01+0.08

−0.08 0.00+0.005
−0.004

Notes. Model parameter constraints and uncertainties derived
from the median and the 68% confidence intervals of the
marginalized posterior distributions.

constructed from the luminous sample within the [0.6, 0.8]
redshift interval. In order to assess the redshift-dependence
of the estimated bias parameters, we define two additional

redshift bins for the galaxies in the luminous sample with
the redshift edges of [0.2, 0.4, 0.6]. Following the steps we
have discussed for our fiducial large-scale structure analysis,
we perform redshift estimation, photometric weight assign-
ment, correlation function measurement, and blinding for
the two new redshift bins in the luminous sample.

The redshift-dependence of the bias is shown in Fig. 16,
where the estimated bias parameters of the luminous
(dense) sample are shown in red (blue). The boxes mark the
68% as well as the 95% confidence intervals in the marginal-
ized bias distributions. We note that within each sample,
the bias constraints do not appear to have any strong red-
shift evolution. We also note that for the dense sample,
our linear bias constraints are consistent with the findings
of Brown et al. (2008) that studied the clustering of pho-
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Fig. 15: Joint constraints on the linear galaxy bias and
photo-z shift parameters shown for the redshift bins con-
structed with the dense sample (blue contours) and the last
redshift bin which is constructed from the luminous sample
(red contour).

Fig. 16: Redshift-dependence of the estimated linear galaxy
bias shown for the dense sample (blue) and the luminous
sample (red). The boxes mark the 68% and the 95% con-
fidence intervals of the marginalized distribution over bias
parameters. The solid (dashed) lines show the predictions
of the passive evolution model of Fry (1996) given the bias
constraints in the three redshift bins (in the last redshift
bin) for each galaxy sample.

tometrically selected red galaxies in different ranges of red-
shift and comoving density.

We compare our findings with the passive evolution
model of galaxy bias (see Fry 1996; Tegmark & Peebles
1998) according to which, the evolution of the linear bias
follows:

b(z) = 1 +
b0 − 1
D(z)

, (20)

where D(z) is the linear growth factor normalized to unity at
z = 0, and b0 the linear bias at z = 0. The passive evolution
model has been tested against the amplitude of the clus-
tering of LRGs in Tojeiro et al. (2012); Guo et al. (2013).
In particular, this latter study investigated the evolution
of the large-scale bias of red galaxies for various ranges of
constant comoving density, absolute magnitude, as well as
colour. Following the approach of Guo et al. (2013) we fit
the passive evolution model to our estimated biases as a
function of redshift in two samples.

Let us start by describing the bias evolution of the lu-
minous sample. By fitting the passive evolution model of
Fry (1996) to the bias constraints in the luminous sample
we find that this model provides a good picture of the evo-
lution of galaxy bias yielding a χ2/dof of 0.04/2 (red solid
line in Fig. 16). When constraining the passive evolution
model with the bias estimate of the highest redshift bin
(0.6 < zred < 0.8), we find that the expected bias parame-
ters for the first and the second bins are consistent with the
estimated parameters within 1σ levels (red dashed line in
Fig. 16).

Turning our attention to the dense sample, we find that
the passive evolution model still provides a consistent pic-
ture of bias evolution with a χ2/dof of 0.17/2 (blue solid
line in Fig. 16). Once we condition the passive evolution
model on the bias constraint of the highest redshift bin
(0.45 < zred < 0.6), we find that the expected bias values for
the first and the second redshift bins are in perfect agree-
ment with the inferred bias parameters (blue dashed line
in Fig. 16). Overall, we find that the redshift evolution of
the bias of our LRG samples is consistent with the passive
evolution model. The small χ2/dof values can also be at-
tributed to the large error bars on the estimated biases of
the two samples.

6. Summary

In this work we have introduced the selection and clus-
tering measurements of the red-sequence galaxies in the
fourth data release of the Kilo-Degree Survey. The data-
driven colour-redshift relation of these galaxies allows us to
obtain precise and accurate estimates of their redshifts. We
construct two samples, a bright one and a dense one, each
with approximately constant comoving density.

We find that the near-infrared magnitudes derived from
the VIKING imaging of the selected galaxies allow us to
assess the purity of the sample. This purity assessment
is done by comparing the colour distribution of the red-
sequence candidates and that of high confidence stars in
the fourth data release. The outcome of this procedure is
the removal of ∼ 40% of the candidates in the dense sam-
ple with zred > 0.6 and ∼ 5% of the the candidates in the
luminous sample in the same redshift range.
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After taking into account the purity and completeness
of the samples, we construct four redshift bins for our large-
scale structure analysis with the first three bins based on the
dense sample and the last bin based on the bright sample.
In order to estimate the redshift distributions as well as the
uncertainty over the mean redshift of the distributions, we
rely on four spectroscopic redshift surveys. Of these redshift
surveys, three have overlap with the fourth data release,
while GAMA-G10 only covers one of the KiDS calibration
fields in the COSMOS region. In each redshift bin, the in-
dividual redshift distributions of galaxies are well described
by a Student t-distribution, parameters of which are esti-
mated with the overlapping spectroscopic data sets.

In order to account for the impact of data quality, we
extend the works of Bautista et al. (2018) and Icaza-Lizaola
et al. (2020) to allow for a more flexible relation between the
systematic-induced variations of observed galaxy densities
and the survey properties, while making use of heavy regu-
larization to avoid overfitting. In comparison to Ross et al.
(2012); Crocce et al. (2019b), our adopted framework for re-
moving the impact of survey properties does not make any
assumption regarding the lack of correlation between the
survey properties. Having validated our method for remov-
ing the effect of imaging systematics on the observed density
variations, we apply the derived photometric weights to the
measurement of the red-sequence galaxy clustering.

In order to avoid confirmation bias in our theoretical
interpretation of the clustering measurements, we adopt a
blinding method introduced by Sellentin (2019) in which
the estimated inverse covariance matrix of the clustering
measurements is perturbed. This perturbation manifests it-
self in shifting the posterior probability distributions over
model parameters.

We find that the estimated bias parameters of the galax-
ies in the L > 0.5Lpivot(z) sample are lower than those of
L > Lpivot(z) sample, consistent with the expectation that
brighter galaxies reside in higher mass halos. The con-
straints on the photo-z shift parameters are consistent with
zero and largely consistent with the adopted priors over
these parameters. By comparing the redshift evolution of
our bias constraints with the passive evolution model, we
find that the bias evolution of galaxies in both dense and
luminous samples is consistent with the expectations of the
model.

We will utilize the large-scale analysis of this study in a
3×2pt analysis for constraining the cosmological parameters
with combination of the positions of red-sequence galaxies
and cosmic shear signal of the background sources in the
fourth data release of the Kilo-Degree Survey. The galaxy
sample constructed in this work is also being used for con-
straining the intrinsic alignment of galaxies (Fortuna et al.
in prep.) and constraining cosmological parameters with
density-split statistics (Burger et al. in prep.).
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Fig. A.1: Illustration of the difference between the un-
blinded (blue histogram) and the blinded (red histogram)
marginal posteriors over the bias parameters, along with
the 68% confidence intervals (dashed lines).

Appendix A: Comparison between the blinded and
unblinded results

Figure A.1 demonstrates the difference between the
marginalized posterior distributions of the galaxy bias pa-
rameters in our sample given the blind covariance matrix
(shown in red) and the unblind covariance (shown in blue).
Generally, the blinded posteriors are slightly shifted with
respect to the unblinded ones except for the posterior prob-
ability of b(1)

g . The narrow width of the blinded constraint

on b(1)
g is due to the fact that for the first redshift bin, the

last diagonal element of the matrix B given by Eq. 17 is
large resulting in the collapse of the last diagonal element
of the blinded covariance matrix. Consequently, this gives
rise to a narrower constraint on b(1)

g given the blinded co-
variance matrix. In order for this blinding method to work
as expected, the diagonal elements of the matrix B need to
be close to unity which is not the case in the first redshift
bin. In principle, this problem could have been avoided by
imposing further constraints such as the invariance of the
width of the posterior after blinding using the procedure
described in Sect. 4.3 of Sellentin (2019). In our blinding
procedure, we had set the parameter bfid (b̃) to 1.80 (1.78)
for first three redshift bin and 2.1 (2.08) for the last red-
shift bin. That is, if the true underlying bias parameter of
a redshift bin was bfid, the blinding scheme would result in
a -0.02 shift in the position of the peak of the posterior
probability.
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