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Abstract

Non-Riemannian gravitational theories suggest alternative avenues to understand properties of
quantum gravity and provide a concrete setting to study condensed matter systems with non-
relativistic symmetry. Derivation of an action principle for these theories generally proved chal-
lenging for various reasons. In this technical note, we employ the formulation of double field theory
to construct actions for a variety of such theories. This formulation helps removing ambiguities in
the corresponding equations of motion. In particular, we embed Torsional Newton-Cartan gravity,
Carrollian gravity and String Newton-Cartan gravity in double field theory, derive their actions

and compare with the previously obtained results in literature.
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I. INTRODUCTION AND SUMMARY

Non-Riemannian gravitational theories have attracted renewed interest [1-4] mainly due
to the role they might play as an alternative route to understanding properties of quan-
tum gravity [5-7]. However, despite various attempts, providing actions for non-relativistic
gravity based on local Galilean and Carrollian symmetries proved difficult. It was not until
recently that successful attempts have been made [2, 8, 9] for certain classes and limits of non-
relativistic geometries. Importance of understanding dynamics of non-Riemannian gravity
is underpinned by the far-reaching possibilities this entails: theories based on Galilean sym-
metry play a role on truncations of string theory [10-12], post-Newtonian physics [13-16],
and provide a natural setting to study response in condensed matter systems with Galilean
symmetry [17-20]. Carrollian symmetry, on the other hand, is relevant to description of
excitations in the near horizon geometry of black holes [21-23], and is instrumental in flat
space holography [24, 25].

In the particular cases of the Bargmann and Carroll algebras it has been known that
the corresponding algebra of generators of the non-Riemannian space-time symmetries can
be constructed via null reduction of a parent relativistic theory with a null isometry [26—

29]. In the context of string theory they can be further related by means of T-duality



transformations [30-33]. When T-duality is applied in the null direction of the parent
relativistic theory a mapping between non-Riemannian geometries, in particular Torsional
Newton-Cartan (TNC) or Carroll type, can be established [10, 30, 32]. We note that this can
be done for algebras obtained via group contractions of the Poincaré group, while algebras
obtained from large speed of light expansions, i.e. expansions in 1/¢, will fall out of the
scope of this construction [2, 6].

This seems to indicate that we should be able to describe both type of geometries, Rie-
mannian and non-Riemannian, in a T-invariant formulation of gravity. Indeed, such a
formulation exists. It is based on doubling the degrees of freedom by treating D space-time
coordinates and the corresponding D space-time momenta of the compact directions on equal
footing [34-38]. This results in a local O(D, D) invariant theory and the aforementioned
T-duality transformation becomes an O(D, D) rotation. This double field theory (DFT) is
based on a generalized metric H and a generalized dilaton d encompassing the degrees of
freedom in the NS sector of string theory, namely the matter content of the theory consists
of metric, the Kalb-Ramond field and dilaton. This generalized metric H is required to
be an O(D, D) tensor. Parametrization of the generalized metric in terms of the original
relativistic content {g, B, ¢} is known since the postulation of double field theory as a T-
duality invariant generalization of string gravity [36]. Importantly however, the generalized
metric is not restricted to this form and in particular admits non-Riemannian parametriza-
tions, where the TNC and Carroll limits appear as particular cases [32]. This means that
the gravitional dynamics of such non-Riemannian geometries can be obtained by simply

considering the double field equations of motion®
Run =0, R=0 (1)

with R # nMY¥ Ry being the generalization of the Ricci tensor and Ricci scalar to a local
O(D, D) geometry. The tensor and curvature scalar appearing in (1) can be written in terms
of the generalized metric and dilaton allowing us to fix a non-Riemannian parametrization
of H and obtaining the corresponding gravitational equations of motion.

The goal of this work is to derive the actions and corresponding equations of motion of
certain type of non-Riemannian geometries by means of their embedding in double field the-

ory. The relation between DFT and non-Riemannian geometries has already been explored

! These equations can also be unified into a single master equation, as shown in [39, 40]. We would like to

thank Jeong-Hyuck Park for pointing this out.



in some detail in the literature, see e.g. [41, 42]. We will employ the general parametriza-
tion for H given by Park and Morand [32] and derive the corresponding general equations
of motion. We will then specify to particular cases of interest: Torsional Newton-Cartan
(TNC) theory, Carrollian theory and the string Newton-Cartan (SNC) theory. Some or
part of these equations of motion have been obtained from world-sheet beta-functions of
string theory [43-45] or from reductions of ordinary Einstein’s equations. However, in all of
these approaches some extra geometric constraints arise. DFT formulation is free of these
constraints which will allow us to generalize and complete the existing studies.

The plan of the paper is as follows. In section II we give a brief introduction to double
field theory, presenting the basic tensors which will be used to construct the non-relativistic
actions. In sections III, IV and V we determine, respectively, embeddings of TNC, Carroll
and SNC theories in double field theory. Using these embeddings we write down the respec-
tive actions and compute the equations of motion. In section VI we compare and discuss the
equations of motion found in the current work with the ones already found in the literature.
Our work should be viewed as a compendium of useful results on non-Riemannian gravity

theories rather than an extensive discussion of their physical properties.

Notation and conventions

Throughout the paper greek indices {u, v, p, ...} denote curved spacetime directions of
TNC, Carroll and SNC. The first letters of the latin alphabet (both lowercase and uppercase)
refer to flat directions, e.g. the TNC inverse transverse metric is given by h#* = etel§®
and the SNC timelike vielbein is T/f. Capital latin letters from the middle of the alphabet
{M, N, ...} arereserved for the DFT directions, e.g. for TNC we will have M = 0,1, ..., 2d+
1, where d = D — 1 is the dimension of the TNC spacetime. Their lowercase versions refer
to half of the DFT directions, i.e. m =0,1,...,d for the TNC case.

The Riemann tensor is always defined via the action of the commutator of covariant

derivatives on an arbitrary vector:
A A
[Dl” Dl/] Ap - —R p/.u/A)\ - 2F[“V}D)\Ap (2)

where I'f, is the connection associated to D,,.

bt



II. DOUBLED GRAVITY

In this section we review the necessary ingredients of double field gravity. We will not
be thorough in our discussion and will only discuss the key ingredients. For a broader
discussion see for example [32, 34-36, 46, 47]. A double field theory of gravity should be
invariant under O(D, D) rotations and under double diffeomorphisms. As mentioned in the
introduction the basic ingredients are the generalized metric H, generalized dilaton d, and
the O(D, D) invariant metric n, given below. Coordinates on double geometry are denoted

by XM and can be decomposed as X = (X*, X,)) with the invariant metric

(o) @)
10

MN

Double diffeomorphisms are generated via the generalized Lie derivative ﬁg acting on an

arbitrary tensor density with weight w as [32]
Lo, = ENONTwy aa, + wONEN Togy gy + D (O0€n = OnEns) Tagyntyy “aiiron,

i=1

(4)
with ¢M = (¢r, éu) a generalized vector. The form (4) was originally devised such that it
reduces to the one form symmetry for the B-field in addition to the standard Lie derivative
Le on the X* coordinates after the so called “section” or strong constraint 9* = 0 has
been imposed [48]. This condition arises from the covariant constraint ny 00" = 0
introduced to reduce the degrees of freedom to their original value and in fact follows from
the requirement that the Lie derivatives form a closed symmetry algebra®. Under (4) it can
be shown that after exponentiation the generalized dilaton, e=2¢, will act as a scalar density
of unit weight and consequently as the integral measure, while, by construction, H will be

an O(D, D) symmetric tensor satisfying
Hacn“"Hpp = nas. (5)
A. Generalized dilaton and Metric

When considering a Riemannian manifold the generalized dilaton has a simple expression

in terms of the usual dilaton ¢ and ordinary “undoubled” metric g,, which will be useful

2 We thank Chris Blair for pointing this out to us.



for example when considering TNC and Carrollian geometries:

e =%\ /—detg,, =e. (6)

The most general form of A that is symmetric and compatible with (5) is classified by
two non-negative integers, (n,n) with n +n < D, and is of the form [32]
Ky = B, H By, + 23, By y! — 22, B0 —H" B, + yi'x,, — /7,
—H" B, +yla), — 4T, Hr

7'[MN =

(7)

with 1 <7 <nand 1 <7 <n. Here, B is a skew-symmetric matrix that is identified with
the Kalb-Ramond field of string theory, while K and H are symmetric matrices®. They have

n + 7n null eigenvalues each,
H™al = H"T, =0,  Kuy! =Ku.g, =0, (8)
The corresponding null eigenvectors of H and K are denoted as x,  and y, i respectively.
They are subject to the following completeness relation
H" K, + yi's), + 577, = 0} (9)
from which the following identities can be inferred

ylal =6l gzl =6, yl'zl =y'al =0, H"K,H" =H"”, K,H"K,, =K,
(10)
Once the “section” condition is imposed, the generalized Lie derivative (4) reduces to (up

to GL(n) x GL(n) transformations and Milne shifts)

52, = Lo, =L Lol SE=Lap, (D)
oH" :ﬁwaj, 5K;u/ :*CﬁK/w>

0B, = LB, + 0,6, — 0,6,

Note that the trace H3t = 2(n—n)* is an O(D, D) invariant scalar and also that the B-field

acts as an O(D, D) transformation, i.e. its contribution to the generalized metric can be

3 These matrices are identified with the target space metric and inverse metric respectively, when the target

space is Riemannian

4 In [49] it was shown that, upon BRST quantization, a critical bosonic string theory can only be anomaly-
free if the trace of the generalized metric is zero, i.e. we have to impose n = n at the quantum level for a

critical theory to be consistent.



factorized as follows:

1B K 7 1 0
Hap = (12)
01 VAN | —-B1

where we defined

zZh, = yl's), — 'z, (13)

The generalized metric (7) as well as the relations (8)-(10) are invariant under the GL(n) x

GL(n) rotations
(2ot 05 — (205, (BT gy R (R 77) (14)

and under the generalized shift symmetry

(W) =i+ V!
@) =5 +
| _, (15)
(Kp) = Ky — 220, K, VI — 220, K, VE + (2, Vys + 8, V,0) (V7 + 2,V
(Bu)' = By, = 24, Vi + 22, Vogz + 200,20 (Vo + 95V + VoiVY)

with V,; and Vm being the transformation parameters and we defined V}/* = H*V,,, VI
HHV,;.

Finally we note that in the present work we do not include a cosmological constant term
in the DFT action. However this generalization is straightforward as one only needs to add a
term proportional to e 2?Appr to the action [50]. This term could potentially be important

when considering non-relativistic holography.

B. Connection and Curvature

In analogy with general relativity we will introduce a connection I'c 45 that will allow us
to covariantize derivative interactions. The following unique Christoffel connection is found

[47]

Leap = 2(POcPP) ,p +2 (Pu" Py ” = Py Py ") 0p Prc
4 _ PoiaPg P _ PoraPgP ) (0pd + (POP PP 10)
- PMM — 1 ¢t nl + PMM 1 ClAlt B] pd =+ ( )[ED]

with Pyy and Py x the projector operators defined as
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1
Py = 5 (MmN + Hun) (17)

_ 1
Pyn = 3 (M — Hun) (18)

and satisfying the standard properties P> = P, P> = P,PP = 0,P + P = 1, and with the
corresponding traces

Pyu=D+n—n, Py=D-n+n (19)

The connection (16) is determined uniquely after imposing compatibility with #, d, and

the Lie derivative (4) as well as the additional set of projection constraints®

Papc T ppr =0, Papc ey =0 (20)
with
2

Pasc”P" = P, PP P, 4 ar—Painlo B pFID (21)

M
= E F 2 ~ = [E &

Pasc” = PP B, P, + 5 1PA[BPC][ priv. (22)

M

A field strength Rapcp for the connection I' can be constructed as usual

Repap = 0al'sep — 08T acp + Uuc"Tep — U™ Tapp (23)

However (23) is not a covariant object, in fact no fully covariant four-index Riemann cur-
vature can be constructed in DFT [46, 48]. Nevertheless we can build the semi-covariant

curvature [46-48] Ragcp

1
Rapep = 5 (RABCD + Repas — FEABFECD) ) (24)
satisfying symmetry properties
Rapcp = Repas = Riasjen) s Rapep) =0 (25)

and the semi-covariant transformation rule

0¢Rapcp = LeRapep +2Va ((77 +P) B [CD]EFG 8E8F§G)

2V ((P +P) pyan aEaFgG) . (26)

® If these projections are not enforced the connection can not be fully determined [48]. However the relevant

covariant curvatures constructed from it will be unique.



Even though the curvature defined in (25) is not covariant we can build the following co-

variant contraction
R = (PYPPP — PA“PPP) Rypop (27)

which we will call the doubled Ricci scalar. It can be shown that it can be written in terms

of the double fields ‘H and d as
R = AHM N0y 0nd — Oy ONHMY — AHMN Oy dOnd + 40y HM N Ond
+ %’HMNﬁMHKL&NHKL — %HMNaM’HKLaKHNL (28)
Equipped with (27), we can write down the DFT equivalent of the Einstein-Hilbert action
Sprr = / dPzdPz e 'R, (29)
The equations of motion are then found by varying (29), and given by®
65 = / dPzdPie [SHMN Ky — 2RSd] (30)
with Iy n defined as
Ky — %8MHKL8NHKL - i (0, — 2(95d)) (HY O Har) + 20310d .
_ %&M’HKL(?LHN)K + % (01, — 2 (D)) (HFE0u My + HE O HE)

We need to ensure § HM satisfies (5), this can be achieved as long as we assume the variation

takes the form [36]
SHYN — PMSAMEE PN 4 P s pHE Y (32)
After assuming the form (32) we find that the equations of motion associated to the action
(29) are nothing but’
Run =0,

(33)
R=0

6 It is important to note that the variation cannot be performed using the parametrization (7) for fixed

(n,7). This would miss n x 7 equations [51].

" The same result could also be obtained by using the following property of the Riemann tensor [52]:

6RMNPQ = V[M5FN]pQ + V[P(SPQ]MN'

10



where the double Ricci tensor is now expressed in terms of K:
Run :PAZICLKPJQ(—FPJ\L/IICLKPJ{;. (34)

Calling Ry as generalized Ricci tensor is appropriate as it can be related to the semi-
covariant curvature via Ry n = PERAR 45 Py Note however, R # nMNR ny=0.

In the following sections we will consider action (29) and equations of motion (33) for
some choices of (7), in particular TNC, Carroll and SNC parametrizations. This will allow us
to write non-Riemannian gravitational equations of motion by means of the parametrization
(7). Our usage of the relation between DFT and the previously mentioned non-relativistic
geometries will not go further than (7). A detailed analysis pertaining the symmetries and
related aspects of non-Riemann geometry following from (7) has been done by Blair et al.

in [53].

III. TYPE I TNC GEOMETRY
A. Basics

A covariant treatment of Galilean symmetry was first obtained by Cartan [54-56] which
later lead to the Newton-Cartan (NC) geometry as the underlying structure of classical New-
tonian gravity. Subsequent work [57-61] clarified the algebra of spacetime transformations
and its representation theory that underlies NC geometry. In particular it was shown in
[62] that the NC geometry follows from gauging the Bargmann algebra, that is, the U(1)
central extension of Galilean boost algebra, together with translations and rotations. Gen-
eralization of the Newton-Carton geometry to include torsion was obtained in [63, 64], and
this extension was coined “torsional Newton-Cartan” (TNC) geometry®. A crucial element
in this geometry is the U(1) gauge symmetry corresponding to the aforementioned central
charge and physically related to mass conservation. Non-relativistic gravity has recently
been studied in the context of non-relativistic effective actions [17], non-relativistic holog-
raphy [18], post-Newtonian expansions of general relativity [14], and more recently in the
context of string theory [12, 44, 65]. We remark that in this paper we will not consider
Type II Newton-Cartan geometries, which arise from a 1/c expansion of General Relativity

2, 6, 14].

8 In fact, it was argued that it is necessary to include torsion in this theory, see [64].

11



TNC geometries are characterized by local Galilean symmetry of its tangent space. The

non-relativistic spacetime is embedded using a set of spatial frames e used to define a

spatial (or transverse) metric
h;w = €Z€Z5ab, (35>

and a temporal frame 7, used as a universal one-form clock. The local Galilean symmetry
can be extended by including a local U(1) transformation through the introduction of a mass
one-form m,,. This centrally extended local Galilean symmetry acts on the metric complex

{ef, 7.} and the U(1) connection m,, as

def = Leel + A7, + A%el |
01, = LeT,, (36)
omy, = Lemy, + Age)y + 0,0,

with A\ a local Galilean boost parameter, A% a local parameter of rotations, o a U(1)
gauge transformation parameter, and £* parametrizing diffeomorphisms. The square matrix

(Tu,€) has an inverse (—v*, ef) where these inverse frames are orthogonal
T [ ay
v, = —1, elr, =0, epvtt =0, (37)

and complete

esel —vtT, = ob. (38)

Making use of inverse spatial frames e/, one can define an inverse spatial metric as
R = elel 5 (39)
such that the completeness relation can be rewritten as
h*’h,, —vt'T, =6l . (40)

It is well known that a geometry described by these fields and symmetries can be obtained

from null reduction of a relativistic theory described by the line element
ds® = 27, dx"(du — m,dz") + hy,dz"dx", (41)

where u is the direction associated to the null isometry, i.e. 0, is a Killing vector. Note

that the null reduction of the relativistic connection will not give exactly the connection we

12



use in this text, (45), however the difference between the two is simply given by the torsion
component.
Instead of the set of variables {7,,v", h** h,,,m,} it will be more convenient for us to

work with the boost-invariant set {r,,, 0%, h,,,, h**, ®} where {0*, h,,, ®} are defined as

hyw = by — T0my, — 1My,

ot = ot — hM'm,, (42)

o

1
—v’m, + ih””mpmg

which are the boost-invariant combinations with the physical interpretation of a spatial
metric, an “inverse clock”, and Newton gravitational potential (i.e. the scalar which will
appear in Poisson’s equation). While these variables are explicitly invariant under Galilean

boosts, they still transform under the U(1) extension as
Sohy = —271,0,)0 , 0, 0" = —h" 0,0 , 0o® = —0°0,0, (43)

whereas {7,, "’} remain invariant under all local gauge transformations. The Galilean

invariant fields are subject to the identities

huph®” — 0'7, =6y,  Ofr,=—1,  0'hy,, =207, (44)
The connection we will use is”

1 _ _
I, =—0°0,7, + §h”” (Ouhwe + Ovhyo — Onhy) (45)

which is manifestly boost invariant, but not U(1) invariant. Note that this connection is
compatible with A* and 7,. The antisymmetric part of this connection is poportional to
the torsion tensor of TNC:

By = 0, (46)

in terms of which we define the acceleration
a, = 0°F,,. (47)

In the following section we will reformulate this theory by embedding it in DFT.

9 See also [66, 67] for a classification of TNC connections.
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B. Embedding in DFT

By examining (41) we can identify the following metric and inverse relativistic metrics:

B 7 h
uv = e ) gwj = ’ (48)
T, 0 —ot 20

which can be embedded in DFT as

hyw 7 0 0
7, 0 0 0
Hunv=| " (49)
0 0 h*™ —oH
0 0 —or 20

We now apply a T-duality transformation to swap the null direction u with the dual null

direction u,

g4, 0 0 0
000 1

TV = NE (50)
0 04,0
0100

which results in the following TNC' generalized metric:

hw 0 0 7,

0 20 —o¥ 0
Moy = . (51)
0 —o* ™ 0
0 0 0

The generalized metrics (49) and (51) will produce the same actions and equations of motion,
however note that the lower right block in (51) is now degenerate meaning that the latter
has a clearer non-relativistic interpretation. As shown in [68], after adding matter to this

parametrization we find that the embedding is given by!'"

h, O hH hHPR B, —-m
Kmn - ! ) H™ = ’ ’ an = g ! (52)
0 0 ROR, RPRR, m, 0

10 Note that now we are briefly using m, n as indices of the DFT tensors, as a way to avoid introducing new
symbols. We have m =0,1,...,d+1 and p =0,1,...,d where d is the dimension of the TNC spacetime

and d + 1 = D is the dimension of its uplift, which includes the null direction w.

14



and

oL (e oL [N
V2 1 ’ VO R
1 —uH 1 —v#
y" == , J"=— : (53)
V2 1= VIR, V2 o= VIR,
where N, = — B, appears from the dimensional reduction of the B-field. We also define
b = 0., ¢, = 0%, (54)

The tensors K, and H" both have 2 = 1 + 1 null eigenvectors and the trace of the
generalized metric is 3% = 0, implying that a TNC geometry corresponds to a (1,1) theory
in the DFT framework.

C. Action and equations of motion

Having obtained the embedding of TNC geometry in double field theory, we can now
immediately write down its action using the DFT action in equation (29). We first introduce

the following notation. Given an arbitrary tensor A,, = we will define for brevity
A=A, RMPRYT (55)

Note that the only TNC fields which naturally have upper indices are 0* and h*", hence any
other tensor with upper indices is to be understood as defined via (55).

Now, the TNC action is given by'!

1 1 1
S = / dize {R + §a“au + 56“% —4a"D,¢ + 4D 9D, — EHMHWP

) ) (56)
—56”}[,)“,,6“” —3 (FHE,, +b6"b,,) (I)]
with H = dB, b = dXN and
_[deth Y

1 Tt is worth noting that this same action can also be obtained as the dimensional reduction of the standard

NS-NS sector of supergravity
1
SNs_NS:/dDZC€72¢ —detg(R—EH2+4(6¢)2)

where g is the Riemannian metric appearing in (48), H,,,, is the field-strength of the B-field and D = d+1
with d the dimension of the TNC spacetime. Note however that this null reduction is not fully consistent,

as one needs to impose Poisson’s equation on-shell, rather than deriving it from the (null-reduced) action.

15



We choose the independent fields of our theory to be ®,0*, ", B,,, and R, see Appendix
A for useful identites.

The variation of the action (56) with respect to ® imposes a generalized twistlessness
contraint on torsion:

F P = b, b (58)

The equations for the matter fields are
1 1 1 1

D,D'¢ +a"D,¢ — 2D, pD"p = §e2 — EHWHWP ~3 AAHAWb’“’ — §FWF‘“’(I> (59)

1
Db, —2D"¢b,, = §F””Hmﬂ (60)

DPHyyy + 0" Hppy — 2D°¢ Hypy = 2Dpe,) — 20 Dby, + 2ap,¢,) + 467, F,®
+ (20" Dy — D,0") by, (61)
while the equation for 7, is
1

DPF,, + a’F,, —2D"oF,, = §bp"HpW + ¢’b,,. (62)

The equation obtained from the variation with respect to h*¥ requires more care. First of
all, notice that we must have 7,7,0h*" = 0. This means that the most general variation is
given by

Oh = (As)z OMP” + dMHMP (AS): (63)
where dM* is an arbitrary symmetric tensor and (Ag)" = h#?h,,. It also follows that the
time-time projection of the equation obtained from this variation will be trivially zero, i.e.
we will not be able to obtain Newton’s law from this variation. This will also be true for
variation of the Carrollian and SNC actions and is, in fact, a general property inherited
from double field theory [51]. By imposing an ansatz on the generalized metric and then
computing the variation of the resulting action we will end up with n x n equations less
than we would initially expect. However, this problem can be easily avoided by taking the
variation of the DFT action first and imposing the TNC ansatz on the resulting equations
of motion (1). With this in mind, we find that the variation of (56) with respect to h*”
produces the equation

a0, — €,e,

1 N "7 po
Riw) + 2D (uDuy¢ = 7070 Hyypr Hor = — 0D Fy)p + 0 Wby Hoso

2
— (FpFyoh?” = by,byeh?”) ® (64)
+ Ry (A7) (A1),

16



where we defined

1
R =R +2D,D,¢ — Zhp"h)‘“Hup,\H,,(,,.i + a27'u7',,<1> — 627'”7',,@.

(65)

Note that because of the presence of 2R, in (64) the time-time projection of Einstein’s equa-

tions is identically zero. As we already explained, Newton’s law can be found by imposing

the TNC ansatz on the DFT equations (1). The resulting equation is
D'D,® + 3a"D,® + mi® — 2F,, F"®* = px + py,
with

m3 = a’ + ¢ +4a" D¢ — 0°H 0",
pc = 0"D, D" + D, 0" Dok = 01D, K. + K, KM,

Hupo==v

1
P = Z@“@”H H, —20"0"D,D,¢.
Notice that by using the identities

"0V R, = —0"D,D, 0" + "D, D, 0" + a"D,® + 2a°®,

D,0"D,0" + ©°D, D, 0" = h** (D, Dy® + 2D, a, ® + 2a,D,P) ,

we can rewrite (66) as

1
100 Hupo H,” = 204" D, Dy — a*® + ¢*P

V'OV Ry =
so that the full Einstein’s equations can compactly be written as
Ay — €8,

2
— (FupFooh? — byybyah?”) ®.

1
Rw) + 2D, D¢ — thoh/\nHupAHum =

17
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In summary, the TNC equations of motion are given by

F;LVF“V = buubwja (74>
1
DPF,, + a’F,, —2D"¢F,, = §bp"HpUu + ¢’b,, (75)
1
Drb,, —2DP¢b,, = §FPUHPUH7 (76)
1 1 1 1
D,D"¢ +a"D,p —2D,¢pD"p = 592 — EHW/)HWP — §@AH,\W6W — iFWFWCI),
(77)
DPHyyy + 0" Hppy — 2D°¢ Hypy = 2Dpe,) — 20" Dby, + 2ap,0,) + 46, F,,®
+ (20°Dy¢p — D,0") by, (78)
1 PO ILAK _ Ay — eMeV ~p AN PO
Rw) + 2D D¢ — Zh W HupaHyor = 9 Y Dty + 007 bpg Hyyxo
— (FupFuoh”” —b,,b,0h"7) @, (79)

where we remind the reader of the short-hand notation (55), as well as the following defini-

tions
a, = 0°Fy,, = 20°0,7,, (£0)
¢, = 07by, = 200,
and ® is Newton’s potential, not to be confused with the dilaton ¢.
Note that these equations are manifestly invariant under almost all transformations de-
scribed by the Bargmann algebra. The only nontrivial transformation corresponds to the
U(1) generator m,,. However a straightforward (but tedious) computation shows that these

equations are indeed invariant under mass U(1), although not manifestly so. We will discuss

some properties of these equations and their relation to known results in section VI.

IV. CARROLLIAN GEOMETRY
A. Basics

The Carroll algebra can be obtained by considering a particular contraction (¢ — 0) of the
Poincaré algebra [69-71]. In [72] it was suggested that this algebra could play an important
role in flat space holography, hence it would be interesting to study how field theories couple
to Carrollian spacetime, see e.g. [73-75]. To this end, one needs a gravitational action

coupled to matter, and this is precisely what we will compute below.
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We will describe Carrollian geometry using the same set of symbols we already introduced
for the TNC case above. However, these fields will now transform under the Carrollian boosts

rather than the Galilean boosts:
oeTu = Ay Seht = 2hPHY) )\ . (81)
Moreover we replace the gauge field m, by a contravariant vector M*, which transforms as
OMY = LMY + e A" = L MF 4 RN, (82)

This allows us to build the following manifestly boost-invariant tensors

~

Tﬂ = Tﬂ — h“l,My,
Y = b — M) 4 200t = B 4 200k, (83)

1 1
q) = _M“TH _'_ ih‘ul/MﬂMV - _M,sz_'u‘ - Qh“yM“My,

which have the interpretation as the boost-invariant clock one-form, inverse spatial met-
ric and the Newton potential respectively. They satisfy the following orthogonality and

completeness relations
hHeh,, — vk, = 61, 7,00 =0 = v'hy,,. (84)

It is possible to embed a Carrollian geometry in a Lorentzian one just as we did for TNC in
(41):
ds® = du(2® du — 27,da") + h,,dz"dz” (85)

A connection compatible with 7, v*, h,, and h#* can be constructed [70, 76]:

- 1. .

F/pw = V70,7, + §hw\ (Ouhur + Ouhyn — Orhyw) — h“)‘/C)\,ﬁ,,, (86)
where we introduced the extrinsic curvature

1 Lo p p

K = _iﬁvh/w -3 (VP 0phyus + (0, 0°) By + (O,0") Py - (87)

However, we find it more convenient to use a slightly different connection,
I, =10, + WK\ (88)
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Using ﬁjﬁ“’ = 0, it is easy to show that this connection is still compatible with 7,, and iz‘“’,
but now we have

Du'UV = —}AZV)\’CA;H DPhuV = _QICP(M%V) (89)

where we used

v, = v’ Dot = 0. (90)

We also define the following tensors in analogy with TNC:

F/W = a[,ﬁ'u], a,, = UPFPM. (91)

B. Embedding in DFT

Given the relativistic geometry (85) we can construct the generalized metric

hyw —7 00
—7 20 0 0
Hun = a B . (92)
0 0 hw ot
0 0 o+ 0

There are clearly some similarities between this metric and the TNC one (49). In fact when
the scalars ®© and ®TN) are both zero (which implies M* = m,, = 0) it is easy to see that
the two generalized metrics become identical up to some obvious identifications. When the
two scalars are not zero we still have a relation between the two geometries, but it is a bit
more involved. To see this we can start from (92) and then apply a T-duality transformation

that swaps the Carrollian directions p with their dual ones i and arrive at

v 0 0 oM

0 206 —7, 0

%MN_> . (93)
0 —# hu O
v 0 0 0

This is equivalent to (51) if we make the identifications

higy < hiN, 79 & Orneys ) 5 N, (94)
C v TNC TNC
) < hiney, Uley & TN, M) 5 miNO) (95)
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This is the same duality that was proposed and discussed in [70, 76, 77|, however when
working in the DFT framework it is clear what the interpretation of this duality is, i.e. it
is simply a T-duality following from the fact that this theory is embedded in string theory!
Note that this duality is mapping two theories that are in principle really different, since
one is a non-relativistic theory while the other is an ultra-relativistic theory. In some sense
it seems like this T-duality is acting on these spacetimes as ¢ <+ 1/c with ¢ being the speed
of light. It is also interesting to note that when acting with this transformation on the
Carrollian side we are effectively generating massive particles, which will correspond to the

eigenstates of the U(1) generator on the TNC side.

Moreover we remark that this duality only maps the TNC generalized metric to the
Carrollian one (and vice versa). To map the full actions to one another we would need to

transform the partial derivatives as well, i.e. we would need a transformation of the form
(8)( ) 4 (0) TN, (96)

but it is not clear what a partial derivative with upper index means in a non-relativistic
(or ultra-relativistic) theory. It will be interesting to explore this duality in more detail in

future works, to understand if the two actions can indeed be mapped to each other.
C. Action and equations of motion
Given an arbitrary tensor A,, . we define

AP = Ay PR (97)

The only Carroll fields which naturally have upper indices are v¥, h*, h and M # hence

any other tensor with upper indices is to be understood as defined via (97).

The action for a Carrollian gravitational theory is given by!?

12° As for TNC, this action can be obtained as the dimensional reduction of the standard NS-NS sector of
the supergravity actions, with (relativistic) metric given by g,, appearing in (85). Furthermore note that

when ®(C©rell) — () this action correctly reduces to (56) with ®(TN) = .
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S

1 1
/ d'ze [R + 5@ a, + e, — 40" Dyd + AD"G D, + 2K0" Dy @ + 40" Dy 0* D,
1
+2P (/C‘“’ICW — K- 40D, v" Dy — 4KV D, + ZUPUUHWpHWU)

1 v 1 v
_EHHVPHH P + ib'u HWJPUP:|
(98)

with I = ﬁ“”ICW =-D,v", R = ﬁ“”RW and the measure is defined as

29 _
_ 20 — 20
e=e i © \/2® det by, (99)

where fLW = hy — % We choose the independent fields of our theory to be &, v*, ﬁ“”, B,

and N, see Appendix B for useful identites.

The variation of the action with respect to ® gives
1
R0t = ZU”U”H“VPHWU —2v""D, D, ¢. (100)

Note that contrary to what happened for TNC, this equation does not impose any constraint
on the antisymmetric part of the connection, however it does impose a constraint on intrinsic
torsion, which in the Carrollian case is given by the extrinsic curvature [78].

The equations for the matter fields are

D, D¢ + a*D,¢ — 2D, 6D ¢ = 200" (9D, Dy — 20D, 6D, ¢ + D, D, D) — 2KV D,

! pvp ! Py,0 v e“eu ! PRV
_EH HNVP+§UU®H/) HJNV+T+§,Ub pr/
(101)
DPb,, —2D’¢b,, = =200 D¢, — 20e’K,, + 2P, K + 400D, P,
1
+ ~F" H,pp + 2D°® 07 H,pp — 2000 H (102)

2
D*H,,, +a’H,,, —2D"¢ H,,, = v"D,b,, —20°D,pb,, — QIC[Mpb,,}p — Kb,

+ 2000 (D,H gy — 2D ,¢ Hyypy) + 20°0°D,® H,yy,,,
+ 4<I)U”IC[:H,,]W —2KPvPH . (103)
The equation for v* is
D*F,, + a’F,, —2D"¢ F,, = —4®v" D ,a,) + 2®a, + 4®0°D,p a, — 20° D, P ay,
+2v°D,D,® +2K,,D’® - 2KD,® — 40D, D, (104)

1 g ag
+ ibp H 5y — by, — 200°¢7 H .
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Einstein’s equations are given by

1 - a,a, — ¢,¢, p
Rw) + 2D D¢ — ZHup Hype = % + Duan) — F(upICV)P + Upb(u Hy)po
+ 20°K,,D,® — 20K K, 4 200°D,K,,, (105)
— 400°K,, Dy — P M H \ Hy .
Once again one equation is missing, but it can be found directly from DFT. It is found
to be
1
D'D,® — a"D,® — 2D"¢D,® + (a* — ¢*)® = 7 (F" Fuy = Vb)) — 2KS0° D,
(106)
+ 29007 (D,Dy® — 2D, D,P) .

It is also possible to rewrite these equations in terms of h* = h 4 2&uiyY rather than

h* . The new connection T’ f, 1s defined as
e, = fzu + 200K, (107)
where quantities with a bar on them are understood to be defined with A* instead of A,
ie.
_ 1.
F;pu/ = _Upa/i%'/ + ihu)\ (auhlf)\ + thM)\ - a)\h';u/) . (108)

The new Ricel tensor is related to the old one via
Ry = R — 20°D,® K, + 20K K,y — 200D, K. (109)

The action and equations will look nicer when using this connection, however h*”, h* and

7, are not compatible now:

D,Jz”" = QUP’UUDM(I) — 8ICM,\71)‘(”U")(I>,
D h?" = 4K, \h PP, (110)
D,7, = —2K,,®.

The action can then be rewritten as

_ 1 1 _ o o
S = / dize [R + ia”au + 5&‘% — 4a"D,¢ + AD"¢D, ¢ + 4v"v"D,¢ D, ®

_ 1 1
—8OKv D, — EHWPH“VP + ibWUPH

uvp | s

(111)
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where now the tensors with upper indices are defined using h** and we will always write
any expression such that no derivatives act on h*, e.g. D*¢ = h**D,¢ # D, (ﬁ”"(ﬁ). The
resulting equations of motion for the geometric fields are

R0 = S0P P T "D, D

Rt = el Hye — 20"0" D, D, ¢ (112)

_ _ 1 _ _
DY Fyy+ @' Fyy = 2D°6 Fyyy = 5V gy + ¢, + 207K, — 2KD, P

+ 20D, D,® — 4v”D,¢ D, ® (113)
— _ | ——- a,a, — ¢,e, o or o
Ry + 2D Dy — ZH“ Hypo = 9 + D) — F(u Kouyp +v b(u Hy)po
_ D,®
+ 4P0” (D,,ICW — KK + %ICW) (114)

The equations for the matter fields are

_ _ o 1 1 1
D,D¥¢ + a" Dy — 2D, D¢ = 200" D@Dy — S HP" Hypy + 5o+ S0 0" Hy

2
(115)
_ _ 1 _
Drb,, —2DP¢b,, = in”pr +20°D°® H ), (116)
DPHpyy + a” Hppy = 2D°¢ Hppy = 26, K0 — Kby, + 07 (Dpbyy — 2D p$ by, + 207 Dy ® Hyyy) -
(117)
The "missing” equation is
_ _ _ 1
D'D,® —a"D,® —2D"¢ D, ® = 1 (FME,, —b"b,,). (118)

As in the case of TNC, we note that the equations (112)-(117) are manifestly invariant
under transformations corresponding to the Carroll algebra. We also recall the following

definitions:

CLM = UPFPM = QUPa[pf‘M],
¢y = Upbpu = 2v”8[pN,4, (119)

1 1
K = 5 Loh = =5 (0D - 07) by + (99) )

which have the physical interpretation as the acceleration field, the electric and the extrinsic

curvature of the geometry.
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V. STRING NEWTON-CARTAN GEOMETRY
A. Basics

In [10, 79-82] a non-relativistic string theory was formulated, which was then found to
correspond to a target space geometry called String Newton-Cartan (SNC) [11, 30, 83-86].
A D-dimensional SNC spacetime naturally splits into two longitudinal directions and D — 2
transverse directions, that are mapped to each other by means of string Galilean boosts.
Recent works have delved deeper into the quantum aspects of such non-relativistic string
theory, in particular studying the Weyl symmetry and computing the beta functions, that
are required to vanish for the theory to be anomaly-free [43, 45].

The basic geometric fields are the longitudinal and transverse vielbeins, 7.}, v’y EA’ E",
where A runs over the two longitudinal directions and A’ runs over the remaining transverse
directions. Using the transverse vielbeins we can build, as usual, two tensors hty and h*”.

These fields satisfy the following completeness relations

h*h, — vhTt = 6h, Tl = =0k, TR = vhhy =0 (120)
and transform under string boosts with parameter ¥4  as

Ssult = —E4, 24 S TR SEY, = by =0. (121)

The metric of the longitudinal space is nap = diag (—1,1) and our convention for the
longitudinal Levi-Civita symbol is €y; = +1.
Furthermore we can introduce a Z 4 symmetry in the theory via the gauge field m/‘:‘, which

transforms under boosts as

dsmy, = EX S, (122)
This allows us to build the following manifestly boost invariant quantities:

Py = hty + QnABmeTf),

ufy = vl + h“”mpA, (123)
@A _ 2up(A — ¥ A B uuA VBhw/,
which satisfy
ht php,, — uAT = oM UAT —6%, u‘jﬁup = (I)ABTf (124)
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The Z,4 transformations of the fields are

527713 = DuO'A,

(Szile = QnABT(:iBD,,)O'B

(125)
Syuly = W Do
57048 = 201D 0P

Note that this transformation is a symmetry of SNC only if the foliation constraint is im-
posed. However, one can avoid imposing this constraint by requiring the B-field to transform
as well [65], the full Z, transformations are then given by the upcoming (158).

Using these fields it is also possible to construct the following boost-invariant connection:

I, = s (s + 0ur?) + 50 (OF + Dol — Oy

1 B B B (126)
= —uQV,ﬁf + §hp" (0,]1,,6 + O,he — 0Jh,w)
where we introduced the spin connection quB = wueAB , associated with the longitudinal

covariant derivative V,. The connection (126) is compatible with A" and Tf and has an
antisymmetric component
oIy = —uQFh (127)

[nv] v

where we defined the “torsion” tensors as'®

F;;‘j = 20[M7V}A + QEABW[MTV}B = 2V[MT:}‘. (128)
We can also decompose these tensors as
FA = fleporPrC 4+ 20,547, + FA (129)

where we defined the acceleration a, 4z, the temporal part of torsion f# and the transverse

torsion tensor F ;ﬁ/ as
p _ A _ BC __ _AB (C Ao _
Wy Foup = auas, a7 =T Y u g =0. (130)

Finally we define the extrinsic curvature in the usual way:

1
K, = — 5 Luly (131)

13 Note that Fﬁ, = 0 is the so called foliation constraint.
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which satisfies in particular

Ko, b = =Dyut,
1 (132)
WK K = Dt Dy S W W7 F e Fop p @€ OEP.

Below we discuss how this structure is embedded in the double field theory framework.

B. Embedding in DFT

To find the embedding of SNC in DFT we will use the same approach used for TNC [68],

namely we will compare the SNC worldsheet action [43],

Sene = — ~ /d2 [e OX"0XY hyy + € (NeaTy + NeaT,) 05X
: (133)
-3 / P €0, X 93 X" By,
with the worldsheet action written in terms of DFT fields'4,
1 25 [ OXPOX" K i+ Baal}) D5 X"
Sprr=—5 | d°o [6 =+ 2¢*” (@mxﬂ + 50@97#) ’ } (134)
134

_ %/ [ afy W X' O0s XV B, — 2y8 (ﬁaax — Boa® )86)(#}

To make the identifications needed to define the SNC embedding we need to rewrite (133)

in a more suitable way. In particular there are two issues we need to address:

1. We need to have a term proportional to v 95 X* and v*¥A9; X" to be able to
properly identity the null eigenvectors of DF'T;

2. We need to make sure that K, is a degenerate matrix, which is not the case if we

naively identify K, = h,,

The first issue is simply solved by the following field redefinition:

A, ()\ Ned 4+ (A+/\) %)\ea—%)\ea. (135)

4 We define e, = €2 +el, &, = €% — ¢!, and similarly for 7 and 7. Notice that v*# = nabe B =

[e3 a?

—egel + egel) = —4e(@eP) where e = Llef +ef), e = L(efy — ef), such that e¥e, = 1 = €€, and

abaﬁ

e“e, = 0. Moreover we have e*8 = ¢e with €% = —gg; = +1 and ey = eflao‘ﬁe%aba, which implies

62—

et = —%so‘ﬁég and €% = %ao‘ﬁeﬁ. Note that our convention for the worldsheet Levi-Civita symbol ¢*?

is the opposite of the one for the longitudinal SNC Levi-Civita symbol 42
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In terms of these new Lagrange multipliers the SNC action becomes

Sove = 3 [ 0 [c00X90X" By + 267, 4,0, X7

1
-3 / d*0 [P0, X 05 X" By + 2e7* 1) Aa0s X*] |

(136)

This form of the action makes it easy for us to identify the null eigenvectors of DFT, however
we still have to solve problem (2), i.e. the fact that K, = h,, is not a degenerate matrix.
To solve this issue we can make use of the Stueckelberg symmetry of the SNC action. The

action (133) is invariant under the following transformations with parameters C4 [11, 65]:

Shyw = 2C, TN AB, 0B, = 20t ean (137)
N =\+etee,Cs, N =X+etePe, O, (138)

where C, = C’g + C}l and éu = CS - C’EL. This means we can rewrite the action in terms of
hi,/ and By, by choosing C/j‘ = —m;‘. After redefining the Lagrange multipliers one more

time we arrive at the action

1
Ssve == 3 / &0 [e OXFOXY B, + 26*07) A, 05X "]

1

(139)
— = / d*0 [P0, X 05 X" By + 2e7* 1) Aa0s X*] |

2

where now all the tensors appearing in (139) are manifestly Z,4 invariant. This allows us to

make the following identifications:

K, =h, B, = B, (140)

A
and

(5&6“ + Bafu) = (T + 7u) Ao = 273Aa

_ (141)
(ﬁaxu — ﬁafu) =— (1, —Ty) As = —QT;AQ,
This is solved by (note the mismatch of bars between DFT and SNC fields)
1 1
T, = —=Ty, = —=A,
A B V2
(142)
_ 1 3 1 A
z, = —=T,, = —=Aa-
NG 5
By requiring z,y* = 1 = z,y" we find
yh = —V20", i = V2ot (143)
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Moreover we have
H" = p (144)
and
7 =no” = 1,07 (145)

In summary, string Newton-Cartan can be embedded in DFT as

K = hy,, H" = p (146)
B, = B, Zy = —m0" + 1,07 (147)

and the eigenvectors are

T, = —=Tu, Y= —V20"

(148)
T, = —=T,, gt = —V20",

An issue with this parametrization is that it does not include the gauge field m/‘:‘. To reinstate

it we can once again make a Stueckelberg transformation (or a shift transformation (15) from

the point of view of DFT)

Y (149)
(K;w)/ = K;w - 25'3(uKV)pr - 2j(uKV)pr + (xHV;) + i’uvp) (x,,V” + jva)

(Buu)/ = B;w — QI[uVV} + Qf[u‘_/,,} + QI[W'Z',,} (yp‘_/p + yij,, + Vpr)

where V), Vu are two arbitrary local parameters and we set V? = H?P*V, for brevity. The

1
() =—v"+ §m“
1
(") = —v" + om”
12 . (150)
(K;w)/ = hyw — 5957_;177/ - 59077_/1711/ = T 7Ty

(Buv)" = By, + T 1Ty
with
_ 1,
@ = 2ut'm, + g™m

L_,

¢ = 2ut'm, + 5 (151)

1
Tzu“mﬂ+ﬂ“mﬂ+§m~m
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and
Wi Ly h— i L
ut =wv _ih Mp, ' =0 _ih mp (152)

FL,W = hty — T(uMy) — T(uMw), B,W = B;w + Ty — T (153)

Changing back from lightcone coordinates we finally find

7 A_B
K, = hu +(I>AB7'H T,

H"W =
154
7V = —eputtrh, (154
1
B, = B, — 5@%37’5‘7’5,
where we defined & = ®4.
C. Action and equations of motion
Given an arbitrary tensor A,, = we will define
A= Ay RPRYO L (155)

The only SNC fields which naturally have upper curved indices are ufy and h** hence any
other tensor with upper indices is to be understood as defined via (155).

Using the parametrization (154) we find that the SNC action is given by'®

1
S = / dPre [R — a"*B(a,ap) — =napa,) + (@ — 2D"$) (a, — 2D,9)

2

156

LIARE (4 — Span®) + SeapuPt B H Lo "
—3 i (Pap — 574 )+ Seapu o~ T3 puv

where we defined a, = a, £, @ = ¢4 and the invariant measure is given by

N det h
e=e 2¢”det<l>' (157)

This action is invariant under the 7,4 transformations

Shy, = 27'(:1DV)0A, 0B, = 2€ABT£D,,}UB,

(158)
durt = 1 D, 0048 = 204D, 0",

15 Close to the completion of this work we became aware of the work of Bergshoeff et al. [87] where they

obtained a similar action by taking a particular non-relativistic limit of NS-NS gravity.
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The equations of motion can be found by varying the action with respect to the indepen-
dent fields h*, ufy and ®45'0, also see Appendix C for useful identities. Sometimes it will be
useful to further decompose the acceleration in its antisymmetric and traceless symmetric

components:

1
0" =87+ on"Pay + P A, (159)

with SHABUAB = 0 and we recall a, = aHABnAB.

Taking the variation of (156) with respect to ® 45 we find the equation'”
FHMAR,,. =0, (160)

which we will use when writing the remaining equations. The space projection of the equa-

tion of motion for v/ is

1
DPFY  +a, P F"y — 2F" \DP¢ = §eABFp"BH” (161)

po
while the time projection is
1
DPSAP 4 atS AP — 28°48D ¢ = —ZF’“’AFﬁCb + 24 FRC (162)
where we defined

v

1
BC _ BC B oC v
FPC = —AP8 PC + Zup( FOH ™. (163)
The equation for the B-field is
DPH M +aPH " — 2DP¢ H ™ = 201 + eapH"™ AP, (164)

where we defined

HAP = 2uPA D, PP — 2P PP Dy — 2D AP — 281 8V PC (165
165
— KAF™E 4+ oF W prrAgBC
as well as Q,,, = 20w, and £* = h”"ICfL‘V.
The dilaton equation is

1 1 1 1
D*Dyé = 5 D¥a, +2a,D"6 = 2D¢ Dy — a0 = Jeapu PP Hpyy — —H™ Hy,.

(166)

16 Note that, despite appearances, the action does not depend on the spin connection, i.e. §S/dw,, = 0.

17 The action actually only depends on the trace of the tensor ® 45, as can be seen by expanding the Ricci
scalar and noticing that the FFAF, ﬁ,@ Ap terms cancel out. This is why the corresponding equation is a

singlet and not a tensor.
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The space-space projection of Einstein’s equations is

1
RV +2DWD" ¢ — —HY, H” = ufy DVF, 4 + S4B, .

— APy Y %FW’AFVMQ
The time-space projection is
WU R oy +2uP D Dy + a*uf Dy — EH“MH)\MUAA = %UPAUUBDPFUMB —u’yD"a, P 4w Dha,
— %u”BDpa‘éA + %upADpa“ 20" 4P? D¢ — a"uP* D, — 1a“lCA + ;a”BAICB
— F"oa?PAD Y + ol P04+ %a”Fp“Afb - 5W’BppcpAB —~ %F“”ADPCD

+ eABpry
(168)
where
1 1
pHB — —§u”BDpH“pU + u”BH”pJD”QS + apuABH”p,\ + §F“p0u(’3uéHM,\ (169)
1 1 1
- §a”CBu"CH“pU — D“fB - §a“fB + a“BCfc + éa“Cch + a“Bcfc
Finally the time-time component (found directly from DFT) is given by
1 3 3
' R +2ur D, D,y — Zu“Au"AHWJHVp” = 5‘S‘Pf‘“-ffp,,epAB - 1" Du®
3 (170)
— ZCLHCLH(I) + S“ABSuAC(I)BC — QfAfA + EAB QAB
where
1 P 0 DA H H 3
Qup = —iu WD H o\ + s Hyy DP o + v uy DA, + 2 fauly Do + uA D,fs
uAu”CS H,,, —uhusa’H,,, + faKp + BANSMAC(I)B (171)

1 . 1 1
— ZF“Auf’CH,W(bBC 4F Ll H o ® + 4F“ U\ H @ e

We remind the reader of the definitions of some of the fields appearing in these equations:

FA _2V T] _fAEBC T 4‘2&[‘u T,,}B—Fﬁﬁ,
1 (172)

A ApB _ QA A A

auB:uP Fpi:SuB%—?n Ba, + P A,

These equations are clearly more complicated than the ones found for TNC or Carroll,
as there is no obvious way to combine the time and space projections of an equation into
a single simpler equation. Despite this technical difficulty, it is possible to show that these
equations are invariant under the SNC algebra as expected. In the next section we will

discuss these equations and their relations to previous results .
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VI. COMPARISON WITH KNOWN RESULTS
A. TNC beta functions

In [44], three of us computed the beta functions for string theory describing a Type I
TNC target space. The equations obtained by setting those beta functions to zero were the

two twistlessness contraints

F/u/ = auTy — Tuly , (173)
b,uu =CuTy — Tuly, (174)
two scalar equations
D-a+a*=2¢+2(a- Do), (175)
D-e=2(e- Do), (176)

and two tensor equations

2 (207,70 — ) — epe,
2

1 oo
Ry — H" Hy)po + 2D, Dy =

% — ()] Hoe

aua, — 2a* 1,7,

+ (As){, Dyya, + : : (177)
DPHpp + a”Hpyy — 2H",, Dy = 2 (As)[pu Dyje, —2 (AT)[pu Dyje, — 2ay,e,

+ (20°D,¢ — D,v”) by, (178)
where we remind the reader of the definitions of the projectors (Ar)!) = —0*7, and (Ag)! =
h#*h,,, which satisfy

(As), + (Ar), =6} (179)

We now want to compare these equations with the ones obtained from DFT. First of all,
notice that in [44] twistless torsion was assumed from the start which explains the difference
between the equations (173)-(174) and (58). To compare the rest of the equations, we
impose the twistlessness constraints in equations (59)-(62) and (73). We then find two

scalar equations

D-a+a*=¢*+2(a- Do), (180)
D-e=2(e- Do), (181)
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and two tensor equations
1
4

HPU(MHV)W +92D(,Dyyp = 2e2<1>7‘u7; —euly 242 @T/ﬂ; —aya,

+(As)!, Dyya, — ¢ (Ag)], Hyppo (182)
DPHypy + 0" Hypy — 2H,, Dy = 2 (As)!, Dyje, — 2 (Ar)l, Dyje, — 2ap,¢,

Ry —

+ (20°D,¢p — D,v”) by, (183)

where in the last equation we also used the Bianchi identity for b,,. The main difference
between these two sets of equations is the factor in front of ¢? in (175) and (180). The further
difference in equations (177) and (182) arise precisely because of this factor of 2, since one
needs to use the scalar equations to prove that the remaining equations are U(1) invariant.
In other words, the form of Einstein’s equations depends on the factor in front of ¢? in
the scalar equation, because of the requirement of U(1)-mass invariance, also see upcoming
equations (184) and (185). Hence it looks like the DFT and beta functions computations
produce almost the same result with the difference being a factor of two in (175) and (180).
It is worth noting that this difference goes away when we consider torsionless geometries,
since in that case we have ¢, = 0 and world-sheet beta functions and double field theory
give rise to the same set of equations in the target space.

Despite this difference, both sets of equations describe spacetimes with the same symme-
tries. In fact, we could generalize them further by modifying equations (180) and (182) by

introducing an arbitrary constant A:

D-a+a*=(1+Ne*+2(a- Do), (184)
1 o 62(2(1)7—7_1/_)\711/)—6 e, 26!2(1)7'7',,—aa,,
B = EHP (HH”)PU + 2D, Do = - 5 - B2 & 5 K
+ (As)fu Dya, — ¢ (AT)& Hy\po (185)

while keeping the other equations unchanged. These equations are U(1) invariant for any
choice of the constant A and they are written in terms of manifestly boost-invariant quanti-
ties. Therefore, they describe theories with extended Galilean symmetry. The only difference
between the theories with A = 0 and A = 1 is that the former can be found by a variational
principle starting from the action (56), while the latter can be found by requiring vanishing
of Weyl anomaly in the string embedding.

Finally, note that to arrive at the parametrization (52)-(53) one needs to perform field

redefinitions involving both the B-field and X. While such field redefinitions are allowed at
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the classical level, it is not clear whether this will produce the same actions at the quantum
level as the path integral measure may, in principle, transform as well. This question is

beyond the scope of this work and should be addressed separately in future.

B. SNC beta functions

In [43, 45] the beta functions for a worldsheet with SNC target space have been computed.

They imposed the so called foliation constraint through their computation:
Vi =0=F;,. (186)
If we impose this geometrical constraint, the equations (161)-(171) become
DPH,M —2DP¢ H,M = 0,
DMD/@ —2D"¢ Du¢ = _1_12HPWHPW>

1
R 42Dk D) g — T H o H7 =0, (187)

1 1
WU R o) + 2 D! Doy — S HY, HYu = Sefpu® (DPHY,, — 2uPPHY,, D"9)

1 1
w Y Ry + 20’ D, Dy — Zu“Au”AHWU H)" = _§EABUPAUUB (D*Hpop — 2H,;\D*9)
where in the first equation we used the fact that the foliation constraint implies'®
Qo = 47,0, — QW = 0. (188)

Note that the connection used in the present work is in general different from the one used
in the literature, however they are actually equal when the foliation constraint is imposed.
The connection used in [43, 45] is

T 1 o 7 7 1 o
T, = b’ (8uhwe + Ouhye — Oshy) + §upAu % (OuTvo + 0uTuo — 00T (189)

where 7, = 7';;‘7',, 4. One can check that when F ;}, = 0 we have
FZU = FZU. (190)

This means that the equations (187) are exactly the same as the ones that are obtained by

requiring the cancellation of the Weyl anomaly in the worldsheet theory.

18 Note that this is a sort of ”twistlelss condition” on the field strength of w,.

35



C. Comparison of TNC and SNC equations of motion

It was found in [65] that, under certain assumptions which we review below, the SNC
worldsheet action reduces to that of TNC. It is then natural to ask whether the equations
of motion of SNC also reduce to the ones of TNC. The basic condition under which SNC
reduces to TNC is the presence of an isometry along a compact longitudinal direction. We
can then split the SNC spacetime directions as m = (i, u), where u is the compact direction
and p will describe the TNC directions. Then we impose the following gauge choice on the

SNC fields:
miy =0, 70 =0, Tl =1, EY =0. (191)

Substituting this ansatz in the equations of motion would be quite tedious. Luckily, since
the equations of motion are obtained from an action, which in turn is obtained from the
generalized metric of DFT, it will suffice to compare the generalized metrics rather than the
equations or the actions. Comparing (52)-(53) with (154) we see that the two parametriza-

tions are indeed the same once we impose the following identifications:

vy =0, vy =1,
vy = vH, vy = v,
hsney = Mrneys hsney = HR, (192)
uu o SNC TNC
(SNC) — h” N,,NU, Bfw ) = Bfw )
ijNC) = —my,.

In addition, it is not hard to check that the invariant measure of SNC (157) correctly reduces
to the one of TNC (57).

This identification implies that the SNC equations of motion will match the ones obtained
for TNC, at least in the DFT formulation. Unfortunately, the SNC beta functions have
only been computed under the assumption that the foliation constraint is satisfied'” | and
similarily the TNC beta functions have been computed assuming twistless torsion, so we
cannot compare the full SNC and TNC equations obtained from DFT with the ones obtained

by setting the beta functions to zero. However we already showed that when F ;ﬁ/ = 0 the

19 The SNC beta functions without the requirement of the foliation constraint were also computed, but only

at the linearized level.
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SNC equations (187) do indeed match the ones computed in [43, 45]. Using the identification
between the SNC and TNC generalized metrics this also implies that the SNC beta functions
with Flf}/ = 0 match the TNC beta functions with F},, = 0.

Finally, we have not found any existing results in the literature on actions of Carrollian

geometry to compare with our result in section IV.

VII. DISCUSSION AND OUTLOOK

In this work we studied a family of non-relativistic gravity theories in the framework
of Double Field Theory. In particular we studied three spacetimes which are related to
each other: Type I Torsional Newton Cartan, String Newton-Cartan and Carroll. The non-
relativistic actions we found are respectively given by equations (56), (156) and (98) . As far
as we know, these actions are explicitly presented for the first time in the literature. They
should correspond to consistent truncations of the related Supergravity actions obtained
from string theory and hence are fundamental ingredients in the study of non-relativistic
quantum gravity.

These three geometries correspond to a DFT embedding with n = 1 = n, so it is natural
to ask how they are related to each other. Relation between Carrollian and TNC geometries
was already proposed in [21, 70]. We found that this connection becomes more clear in the
context of DFT: to relate TNC to Carroll we simply have to perform a T-duality on the
generalized metric. This is quite a curious result by itself, in that, it implies T-duality in
this case transforms a non-relativistic geometry to the null?® Carrolian geometry. It would
be interesting to figure out physical implications of this. Moreover, we also explicitly showed
how one can recover the TNC generalized metric from the SNC one by using the prescriptions
proposed in [65]. This means that the three non-relativistic geometries, Torsional Newton-
Cartan, Carrollian, and String Newton-Cartan are all related to each other by either a
T-duality or a null reduction/uplift.

By varying the actions we also obtained a set of equations of motion for the three afore-
mentioned non-relativistic geometries. In particular we consistently found that each set of
equations misses a projected component. As we discussed, this is a general property of DFT:

n X n number of equations — which equals one equation in our case — would be missing in

20 In some sense, ultra-relativistic, as it is obtained by the limit ¢ — 0.
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the final set of equations. The full DFT framework [32] resolves this issue as (1) provides
the complete set. This means that theories with n x n # 0 are to be considered as particular
sectors of Double Field Theories rather than independent theories by themselves. When
working at the level of low energy effective actions one should then append the missing
constraints to the equations of motion derived from the actions (56), (98) and (156). For
example, to define a TNC theory we need to provide the action (56) together with an extra
equation, Newton’s law, which should be imposed on-shell. This resembles the self-duality
condition of the 5-form field in the effective action for Type IIB String Theory, albeit the

origin of the issue is clearly different here.

Once equations of motion were found, we asked whether these equations match the ones
already known in the literature. For TNC we showed that the equations in the present
work match the ones obtained from world-sheet beta functions [44] when e - dX, that is,
contraction of the electric field with the field strength of the Kalb Ramond vector, in (62)
vanishes. In its presence the difference between the two sets of equations turns out to be
merely a factor of 2. The origin of this discrepancy is not clear to us, see section VI A for a
more detailed discussion. On the other hand, we showed that the SNC equations of motion
obtained from DFT match precisely the ones obtained in [43, 45] from the world-sheet beta
functions when the foliation constraint is imposed. As already mentioned, the generalized
SNC metric reduces to the TNC one in a particular limit, which implies that the equations
of motion will also reduce to the TNC ones. Recalling that the foliation constraint reduces
to the torsionless limit on the TNC side we conclude that the SNC beta functions [43, 45]
reduce to the TNC ones [44], which is consistent with what we found by embedding both
theories in the DFT framework. It is worth stressing that the discrepancy between the TNC
equations and beta functions disappears in the absence of dX, which is also implied by the
foliation constraint on the SNC side. The full (non-linearized) SNC beta functions with
VW';]‘ = 0 are not known, therefore we are unable to tell if the discrepancy we find in TNC

theory will also appear for SNC.

The present work can be extended in a number of ways. The most obvious direction is
studying solutions to the non-relativistic actions (56), (98) and (156). Of particular interest
would be solutions that are equivalent to black holes in general relativity. The definition
of a black hole in a non-Riemannian manifold is unclear [88-91], and we believe that the

actions presented in this work would help clarify their physical interpretation. In particular,
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variations of on-shell actions (note that the DFT on-shell action is trivially zero up to
boundary terms) would allow for investigation of the thermodynamical properties of such
hypothetical black holes and possibly relate them to holographically dual theories in non-
relativistic quantum plasmas. Another interesting direction would be to study the relation
between TNC and Carroll (94)-(95), i.e. understanding in detail the T-duality map between

a non-relativistic limit and an ultra-relativistic one.
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Appendix A: TNC identities
1. Identities

The connection we use is
I, = 00,7, + S H7 (Db + Dl — Do) (A1)
Integration by parts is not as straightforward as in usual general relativity. Instead we have
D, A" =719, (e A*) — a, A" + 2A"D,¢, (A2)

where A" is an arbitrary vector.

Many geometric identities can be derived from the completeness relation

(A3)

e

— 0, + WR, =
For example we can take the derivative of this relation and then multiply with s. This gives
Dyhy = 27(,h)2D,0* — 27,7,D,® (A4)

and
DyD by, = 27,03 Dy D,0* + 27, Doy D, 0" — 27,7, D,D,®. (A5)
More useful identities can be derived by the definition of the connection:
hpUDoile = 4hpoFo(HT,,)(I) -+ QT(HD,,)TAJP
0Dyt = W7 (D, P + 2a,P) (A6)
h** D, 0" = h"? D, 0" + 20 F,,h""h"°.

2. Variational calculus

We choose the independent geometric fields to be h*¥, 0" and ®. The variations of the

dependant fields are given by

5%,, = —27,7,0P + QT(Mi_z,,)péf)p — i_zupﬁ,,aéh””

_ ~p po
07Ty = TuTp00” — hy,T,0h.
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The variation of the measure is then
€ (757 0P e, - oo L
e = 5 h??oh e — T 460 | = 3 (—hpgdh + 27,00° — 46gz5) (A8)
The variation of the acceleration is
da, = 00" F,, + 20°D|,07, — a,0°07,. (A9)
The variation of the connection is
1 1 1 - _ _
5Ffw =_ 551}”FW — 0D, o7, — 5@1%,,7},5@" + §hp" (Duéhw + D, oh,, — Dgéh“,,)
1 _ _ _
+ 55}#}" (Dyphuo + Dyl — Doly) — 2070, Fo0h" — 27, F,y h*° 5 (A10)
— 07( F)c W7 ® + hp"hA(u 5v
The Palatini identity in the presence of torsion is
R = DP(SF,@M - D,,5Fp 21“’ p]cSF D,,(SF,@M - DV&FZ# + OJFVpcSFgu. (A11)

The indipendent matter fields are R, B, and ¢. The variation of b, is

Obu, = 2Dy, 08, QFfW O, (A12)
so that the variation of the electric field is
de, = 007Dy, + 2D, 08, Q@VFP 1O, (A13)
while that of H,,, can be written as
0H pp = 3D(0 By — 217,10 Byo — 217,10 By — 21,0 Byo - (A14)

The Kalb-Ramond matter satisfies the usual Bianchi identities
dH =db=0. (A15)

In the twistless case we have b, = ¢, 7, — ¢,7,, then we can express the Bianchi identity

in terms of ¢, rather than b,,. We find
b = 2Dy,e,7, + 2ap,e,7, = 0. (A16)
A similar identity can be derived for the acceleration, yielding
0, F ) = 2Dy,a,7, = 0. (A17)
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Appendix B: Carroll identities
1. Identities

The connection we utilize when varying the action is
1x
Iy, =—v0,7, + ih”” (Ouhwo + Ovhye — Oshyw) | (B1)
from which we find the following identitiy
D, A" =¢e719, (e A*) — a, A" + 2A"D,¢, (B2)

valid for any arbitrary vector A*. From the completeness relation and the definition of the

connection it is possible to derive the following identities:

D,h,, = =Kot — Koty
Dot = K, (B3)
v’D vt =0,

where the extrinsic curvature was defined in the main text as

1 1
K = _§£vh/w -3 (VP 0l + (0, 0°) By + (O,0") Py - (B4)

2. Variational calculus

We will use 7#“’,1}“, ® as indipendent geometric fields. The other geometric fields are

related to them via
Sty = 27(uhu)p00° = hyuphieOh?°
07y = TuT,00P — hy T 0N (B5)
ShH = Sh™ — Advl§0”) — 26D vF0”.
The variation of the measure is then
Je = g (ﬁpo(sﬁpo + %D . 45¢) - g (—huyaiﬁ” + 27,000 — 45¢) . (B6)
The variation of the acceleration is
da, = 0V F,, + 207D, 07, — a,vPoT,. (B7)
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The variation of the connection is

1 1 1.
0%, = = 500 Fyyy = vD,0%, — 0" B30 + S (Dbl + Dydhug — Dadhy)

2 A (B8)
+ 500" (Dyhvs + Dyhys = Dohyu) + R Iy Fo o 007
The Palatini identity is
ORuw = Dpol'y, — D,oTY, — 217, 101 = D,oly, — D, oIy, + v7F,,017,,. (B9)
The variations of the Kalb-Ramond matter fields are given by (A12)-(A14).
Appendix C: SNC identities
1. Identities
The connection is
1 _ _ _
Fﬁu = _ugvuﬂfl + §hpa (Duhw + Dyhye — Dahw/) (C1)
where we introduced the spin connection via
V.t =0, + QMAB’T,,B = 0,7 + w, TP (C2)

and our convention for the longitudinal epsilon symbol is €g; = +1. This connection is boost

invariant and compatible with A** and Tf,

D,h" = D, =0, (C3)

I

where we are using the symbol D (not to be confused with the dimensionality of spacetime)

to denote the full covariant derivative, i.e.

Dt =0, — FZVT;‘ +w,epTE = 0. (C4)

Integration by parts is then performed with the use of the identity
D, A" =719, (e A*) — a, A" + 24D, ¢, (Ch)
where we recall a, = a/‘:‘BnAB.
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From the completeness relation we find the following decomposition
Dyhy = 27, hiyoe D’y — 7,077 D, ® ap. (C6)
From the definition of the connection we find
h* (Dyhys + Dyhye — Dohy) = =207 F, A1, P @ . (C7)

From the projections of this identity it follows that

1
WD u = §F‘“’B(I>BA (C8)
and
1
UI(ADVU%) = hH (aV(AC(I)B)C + §D,,(I)AB) . (Cg)

Since @45 is a 2 X 2 symmetric matrix, we can write its inverse as

_ Pap —nap?®

(@ ap = ol D (C10)

where det ® = 2eABeCP P 4 Dpp and & = q)ﬁ. Moreover since the longitudinal indices can

N[

only take two different values, we have that
Tl =0 (C11)

for any tensor 1" with three or more longitudinal indices.

The field strength of 7';‘ can be decomposed as

Flﬁj = ATETVCEBC + 2aﬁATy]B + fﬁj (C12)
with
uy Fupp =0, u“Aa“BC = AB O (C13)

2. Variational calculus

The indipendent fields are u’y, h*, ®45 and B,,,. The other SNC fields are related via

ot = 7BrA6ul, — 2R, 0hP°
o (C14)
Oy = QTahy)puZ — hyphye0h?? — TfoéCDAB.
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The variation of the connection is

1%, = —ufy (D07 + T7,007 + €57 p0w,,) — 0ufT],i7
1 . . . 1 _ _ _
+5h (Dydhyy + Dyhyy — Dydhy,) + S0h* (Duhye + Dyhyo — Dohy,)  (C15)
+ 1?7 (Tpg10ha0 + T g0h) + 687 (D 1haw + Thogha) -

vo (o]

The variation of the Ricci scalar can be found as usual through the Palatini identity

0R,, = DyoT%, — D,oT%, — 2T, 1019, = D,oT%, — D81, — 24V, 740T%,.  (C16)

vo

The variation of the field strength of the B-field can be read off from (A14).

Appendix D: Actions in Einstein frame

In this section we will perform a conformal redefinition of the metric complex to rewrite

the non-relativistic string frame actions (56), (98), (111) and (156) in Einstein frame.

1. TNC

The action and equations of motion can be written in terms of the basic fields A* | 0*

and ®. The aforementioned fields transform as

B — R

VM — e M, (D1)
P — e P,
where e~®? is the conformal factor and o = d%“l. Then, in Einstein frame, the TNC action

(56) can be rewritten as

det hy, 1 1 1
S = / 'y \/% [R T 50, + se e, — aD'OD, 6 — e PO HMH,,,

1 1 (D2)
—5€ PO H W — o (F - 70" b,,)

45



2. Carroll

The action and equations of motion can be written in terms of the basic fields v , P
and ®. The aforementioned fields transform as
s oo,
vH — ey, (D3)
P — TP,
4

where once again we have o = 575 In Einstein frame the action (98) is

. 1 1
S = / d®z \/2® det by, {R + gaa, + ge e, — aD 9D, + 2K D,

1
+2P (IC“”ICW — K*+ av'D,¢v"D,¢ + Ze—%@U%UJLIWPJLJM)

1 1
——e % H,,, "’ + 56—%%“”}1%@%’}

12
(D4)
Similarily we can transform the action (111):
d h » 1 B 1 —2a0 ,p DI AT
S = [ dz+/2®det h, R+§a au+§e e, —aD"pD,¢
(D3)

1 —ZQ 17 1 — 4t v
~ 5 20, HMP + 5¢ 200 p UPHW,)} :

3. SNC

The action and equations of motion can be written in terms of the basic fields A" | v/

and ® 5. The aforementioned fields transform as
Y — e" P hM
uy — ek, (D6)
Dup — e D yp,

where a = 4 for SNC. The action (156) can be written in Einstein frame as

det h,, 1
S = / dPx T (I)ZB {R — a"*B(a,ap) — inABau) + a*a, + aa’D,¢ + a(a — 1) D ¢ D,

1 1 1 1 5, y
—§F“”AF£(<I)AB — 57},43@) + §e_a¢eABupAF“”BHpW ~15¢ 20¢ prem H,.
(D7)
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