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Structural dynamics of polycrystalline graphene
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The exceptional properties of the two-dimensional material graphene make it attractive for multiple functional
applications, whose large-area samples are typically polycrystalline. Here, we study the mechanical properties
of graphene in computer simulations and connect these to the experimentally relevant mechanical properties. In
particular, we study the fluctuations in the lateral dimensions of the periodic simulation cell. We show that over
short timescales, both the area A and the aspect ratio B of the rectangular periodic box show diffusive behavior
under zero external field during dynamical evolution, with diffusion coefficients DA and DB that are related
to each other. At longer times, fluctuations in A are bounded, while those in B are not. This makes the direct
determination of DB much more accurate, from which DA can then be derived indirectly. We then show that the
dynamic behavior of polycrystalline graphene under external forces can also be derived from DA and DB via the
Nernst-Einstein relation. Additionally, we study how the diffusion coefficients depend on structural properties of
the polycrystalline graphene, in particular, the density of defects.

DOI: 10.1103/PhysRevE.105.044116

I. INTRODUCTION

Graphite is a material in which layers of carbon atoms
are stacked relatively loosely on top of each other. Each
layer consists of carbon atoms, arranged in a honeycomb
lattice. A single such layer is called graphene. This material
has many exotic properties, both mechanical and electronic.
Experimentally produced samples of graphene are usually
polycrystalline, containing many intrinsic [1–3], as well as
extrinsic [4] lattice defects. Unsaturated carbon bonds are
energetically very costly [5–9], and therefore extremely rare
in the bulk of the material. Polycrystalline graphene samples
are therefore almost exclusively threefold coordinated, and
well described by a continuous random network (CRN) model
[10], introduced by Zachariasen almost 90 years ago.

Polycrystalline graphene is continuously evolving in time,
from one CRN-like state to another. A mechanism by which
such a topological change can happen was introduced by
Wooten, Winer, and Weaire (WWW) in the context of the the
simulation of samples of amorphous Si and Ge. This so-called
WWW algorithm became the standard modeling approach for
the dynamics of these kind of models [11,12].

In the WWW approach, a configuration Ci consists of a list
of the coordinates of all N atoms, coupled with an explicit
list of the bonds between them. From this configuration Ci,
a trial configuration C′

i is produced via a bond transposition:
A sequence of carbon atoms {i, j, k, l} is selected, connected
with explicit bonds i- j, j-k, and k-l . The first and last of these
bonds are then replaced by bonds i-k and j-l , while bond
j-k is preserved. After this change in topology, the atoms

*Also at Department of Information and Computing Sciences,
Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Nether-
lands; z.liu1@uu.nl

are allowed to relax their positions. This simulation approach
requires a potential that uses the explicit list of bonds, for in-
stance, the Keating potential [13] for amorphous silicon. The
resulting configuration is then called the trial configuration
C′

i . The proposed change to this trial configuration is either
accepted, i.e., Ci+1 = C′

i , or rejected, i.e., Ci+1 = Ci. The ac-
ceptance probability is determined by the energy difference
via the Metropolis criterion,

P = min{1, exp(−β�E )}, (1)

where β = (kBT )−1, with Boltzmann constant kB and temper-
ature T , and �E = E (C′) − E (C) is the change in energy due
to the bond transposition. In this way, the simulation produces
a Markov chain C0 . . .CM , satisfying detailed balance.

The properties of polycrystalline graphene sheets have al-
ready been a topic of intense research for some time [14–18].
More recently, Ma et al. reported that the thermal conductivity
of polycrystalline graphene films dramatically decreases with
decreasing grain size [19]. The work of Gao et al. shows that
the existence of a single-vacancy point defect can reduce the
thermal conductivities of graphene [20]. Wu et al. reported
the magnetotransport properties of zigzag-edged graphene
nanoribbons on an h-BN substrate [21]. Additionally, strain
effects on the transport properties of triangular and hexagonal
graphene flakes were studied in the work of Torres et al. [22].

This article reports on the dynamical properties of poly-
crystalline graphene. In particular, we study two geometric
quantities that are readily accessible in computer simulations
without having a clear experimental counterpart. In our sim-
ulations, the Lx × Ly graphene sample is rectangular, with
periodic boundary conditions in the x and y directions; the
quantities of interest are the area A = LxLy and the aspect ra-
tio B = Lx/Ly, and their mean square displacements (MSDs)
under simulations in which the dynamics is the WWW algo-
rithm. The results show that in the absence of external forces,
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MSDA and MSDB initially both increase linearly in time. At
longer times, MSDA saturates due to geometric limitations,
while MSDB keeps increasing linearly at all times. We mea-
sure the diffusion coefficients DA and DB, and demonstrate
that the two are related. We then continue to show that DA and
DB govern the response of the sample to stretching and shear
forces, respectively, following the Nernst-Einstein relation.

The main relevance of the research presented here lies in
establishing the relation between observables that are readily
accessible in simulations, but without a clear experimental
counterpart (A and B and their dynamics), and mechanical
properties of real-life graphene (e.g., response to external
stretching and shear forces). Additionally, we demonstrate a
clear relation between MSDA and MSDB, thereby also relat-
ing the bulk and the shear properties. Thus far, much less is
known about this shape fluctuation-driven diffusive behavior;
our work provides insight into the dynamics and mechanics of
polycrystalline graphene.

II. THE MODEL

For simulating graphene, we use a recently developed ef-
fective semiempirical elastic potential [23],

E0 = 3

16

α

d2

∑
i, j

(
r2

i j − d2
)2 + 3

8
βd2

∑
j,i,k

(
θ jik − 2π

3

)2

+ γ
∑
i, jkl

r2
i, jkl . (2)

Here, ri j is the distance between two bonded atoms, θ jik is the
angle between the two bonds connecting atom i to atoms j
and k, and ri, jkl is the distance between atom i and the plane
through the three atoms j, k, and l connected to atom i. The
parameter α = 26.060 eV/Å2 controls bond stretching and is
fitted to the bulk modulus, β = 5.511 eV/Å2 controls bond
shearing and is fitted to the shear modulus, γ = 0.517 eV/Å2

describes the stability of the graphene sheet against buckling,
and d = 1.420 Å is the ideal bond length for graphene. The
parameters in the potential (2) are obtained by fitting to den-
sity functional theory (DFT) calculations [23].

This potential has been used for the study of various
mechanical properties of single-layer graphene, such as the
vibrational density of states of defected and polycrystalline
graphene [24] as well as of various types of carbon nanotubes
[25], the structure of twisted and buckled bilayer graphene
[26], the shape of nanobubbles trapped under a layer of
graphene [25], and the discontinuous evolution of defected
graphene under stretching [27].

The initial polycrystalline graphene samples are generated
as in [28]. Here, N/2 random points are placed in a square
simulation box with periodic boundary conditions, and the
Voronoi diagram is generated: around each random point, its
Voronoi cell is the region in which this random point is nearer
than any other random point. We then translate the bound-
aries between neighboring Voronoi cells into bonds, and the
locations where three boundaries meet into atomic positions.
In this way, we have created a threefold coordinated CRN
which is homogeneous and isotropic (i.e., does not have pre-
ferred directions). It is, however, an energetically unfavorable

LxLy

FIG. 1. An initial buckled polycrystalline graphene sample with
periodic boundary condition generated from a Voronoi diagram and
evolved based on the WWW algorithm. Lx and Ly represent the
lateral dimensions of the sample.

configuration; therefore, we then evolve the sample using the
improved bond-switching WWW algorithm to relax it, while
preserving crystalline density.

Up to this point, the sample is completely planar (i.e., all
z coordinates are zero). After some initial relaxation, we then
assign small random numbers to the z coordinates followed
by energy minimization, which results in a buckled configu-
ration. At this point, we also allow the box lengths Lx and Ly

to relax. We do not relax the box lengths already in poorly
relaxed samples because then the sheet tends to develop all
kinds of unphysical structures.

In our implementation, we use the fast inertial relaxation
engine algorithm (FIRE) for local energy minimization [29];
the values of the parameters in this algorithm (Nmin, finc, fdec,
αstart , and fα) are taken as suggested in Ref. [30]. Figure 1
presents an initial polycrystalline graphene sample with pe-
riodic boundary condition generated from a Voronoi diagram
and evolved based on the WWW algorithm.

III. DYNAMICS OF FLUCTUATIONS IN SAMPLE SHAPES

The oblong polycrystalline graphene sheet in our simu-
lations has lengths Lx and Ly in the x and the y directions,
respectively, as shown in Fig. 1. These are not fixed quantities,
but they fluctuate when bond transpositions are made.

Given that the sample is essentially two dimensional,
throughout this paper we consider two geometric quantities,
defined as follows:

A(t ) = Lx(t )Ly(t ) and B(t ) = Lx(t )/Ly(t ). (3)

Physically, for a flat, rectangular, and homogeneous isotropic
sample, the stiffness matrix is reduced and the mechani-
cal properties of the system can be efficiently characterized
by two independent in-plane modes due to orthorhombic
symmetry. It is easiest to associate A(t ) and B(t ) to fluc-
tuations in the sample shape in the “bulk” and the “shear”
modes, respectively, at the macroscopic scale without these
symmetries breaking. We then track the dynamics of shape
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(a)

(b) (c)

FIG. 2. (a) Typical fluctuations in A and B in time for a sample
with N = 1352; note that the range of fluctuations in B is consider-
ably higher than in A. (b) MSDA(t ) and MSDB(t ) for this sample. The
measured diffusion coefficients, as per Eq. (4), are DA ≈ 1.737 ×
10−4 Å4/(MC unit) and DB ≈ 2.544 × 10−9 (MC unit)−1. See text
for details.

fluctuations of the sample in terms of their mean-square
displacements, MSDA(t ) = 〈[A(t ) − A(0)]2〉 and MSDB(t ) =
〈[B(t ) − B(0)]2〉, with the angular brackets denoting ensemble
averages for a sample of fixed number of atoms and (more
or less) constant density of defects. (We will soon see that
the diffusion coefficients are functions of both these quanti-
ties.) Characteristic fluctuations in A and B for a sample with
1352 atoms are shown in Fig. 2(a) and, correspondingly, their
MSDs are shown in Figs. 2(b) and 2(c). Therein, we find that
fluctuations in A are relatively much smaller in magnitude
than those in B. Intuitively this makes sense, since relaxations
through the shear mode are energetically much more favorable
than through the bulk mode. This is also reflected in the
MSDs. After a linear increase in time, MSDA saturates at
longer times, while MSDB increases linearly at all times. From
the data for MSDA before it saturates and MSDB at all times,
we identify the diffusion coefficients DA and DB, obtained
from fitting the data to the relation given by

MSD(t ) = 2Dt . (4)

Since time is measured in MC units (bond transposition
moves are being attempted once per unit of MC time) and
length is measured in Å, the units of DA and DB are Å4/(MC
unit) and (MC unit)−1, respectively. Time all throughout the
paper is measured in MC units.

A. DB increases linearly with defect density

An interesting question is what determines DB for a sample
with a given number of atoms, N . As we expect DB to be
equal to zero for a perfect graphene sample, our first guess

FIG. 3. DB plotted for four differently sized samples, each with
four different defect densities (points: simulation data; lines: best fit
passing through origin). Error bars represent the standard error of the
mean, obtained from the ensemble of simulation runs. See text for
details.

is that DB might depend on the density of defects. In our
computer simulations of perfectly threefold coordinated net-
works, defects are topological, in particular rings which are
not sixfold. A convenient measure of the defect density ρ is
then obtained by the number of such rings per area. Note that
rings are almost exclusively five-, six-, and sevenfold in the
well-relaxed samples as we studied. Since five- and sevenfold
rings generally appear and disappear in pairs, one can expect
that the ratio of N5/N7 (N represents the number of five- for
sevenfold rings) is close to unity.

In order to test our intuition, we simulate graphene samples
for four different atom numbers (around N = 2000), each
with four different defect densities. The results are shown
in Fig. 3. Points represent the simulation data with statisti-
cal error bars, and dashed lines are best-fit lines with each
line passing through the origin (corresponding to DB = 0 at
ρ = 0). Even though there is no a priori reason for DB to
increase linearly with ρ for every value of N , Fig. 3 demon-
strates that the linear scaling holds for the range of defect
densities that we simulated. Also clear is the decreasing trend
in DB with increasing N for a certain defect density. On a
technical side, each point is obtained from averaging over 10
independent samples, and each sample is simulated 16 times
over 30 000 attempted bond transpositions at a temperature of
kT = 0.25 eV within each run. We perform further averaging
over the initial time. The CPU time of a single attempted bond
transposition is, on average, 0.76 s for samples (N = 2000).

B. Relation between DA and DB

Further, since both A and B bear relations to Lx and Ly,
one would expect them to be related through these length pa-
rameters, which we establish below. In order to do so, having
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FIG. 4. The ratio DA/DB vs L4
y for different N values and de-

fects densities [points: simulation data; lines: best fit of the form
DA/DB = k(〈ρ〉) L4

y ]. Error bars represent the standard error of the
mean, obtained from the ensemble of simulation runs. The points,
located on the color bar, are measured with the same N . The inner
plot shows that k(〈ρ〉) also bears a linear relation with 〈ρ〉 obtained
from averaging in the ranges k(〈ρ〉) = 0.02078〈ρ〉 + 0.0028.

denoted the change in A and B over a small time interval
dt for samples with dimensions Lx and Ly by dA and dB,
respectively, we express them in terms of small changes dLx

and dLy as

〈dA2〉 = 〈
[LydLx + LxdLy]2

〉
and

〈dB2〉 =
〈

1

L4
y

[LydLx − LxdLy]2

〉
. (5)

Using 〈dLxdLy〉 = 0 after an ensemble averaging, Eq. (5)
leads to the simplified form

〈dA2〉 = L2
y

〈
dL2

x

〉 + L2
x

〈
dL2

y

〉
and

〈dB2〉 = 1

L4
y

[
L2

y

〈
dL2

x

〉 + L2
x

〈
dL2

y

〉]
, (6)

i.e., 〈dA2〉/〈dB2〉 = L4
y . If we extend this analysis to finite

times, for which Ly does not appreciably change, then we
expect the ratio DA/DB to behave ∼L4

y .
In Fig. 4, we plot DA/DB for N = 800, 1800, 2048, 2178,

2450 and five different ranges with approximate defect den-
sities. We indeed observe that DA/DB ∼ L4

y : once again, the
simulation data are shown as points, while the dashed lines
are the best-fit DA/DB = k(ρ) L4

y lines through the data points.
The k values, summarized in Table I, are plotted as an inset to
Fig. 4. The initial lateral lengths for different N values are
listed in Table II. Here we determine k by using statistical
quantity 〈ρ〉 obtained from averaging in the ranges; these

TABLE I. Values of k for different values of 〈ρ〉, corresponding
to the best-fit DA/DB = k(〈ρ〉) L4

y lines in Fig. 4.

〈ρ〉 k(〈ρ〉)

0.16433 6.24 × 10−3

0.21065 7.20 × 10−3

0.26154 8.14 × 10−3

0.31323 9.35 × 10−3

0.36670 1.04 × 10−2

k(〈ρ〉) vs 〈ρ〉 points also lie on a straight line, whose best-fit
estimate is k(〈ρ〉) = 0.02078〈ρ〉 + 0.0028.

C. MSD in the z direction

The graphene in our simulations is free floating, and the
presence of defects causes it to buckle, i.e., the carbon atoms
show displacements in the out-of-plane direction. During
bond transpositions, the buckling structure changes. To quan-
tify the dynamics of buckling, we determine the minimal and
maximal values of the z coordinates of the atoms, and the
difference dz = zmax − zmin; this is illustrated in the top panel
of Fig. 5,

MSDdz(t ) = 〈[dz(t ) − dz(0)]2〉. (7)

Analogous to our analysis of the dynamics of Lx(t ) and
Ly(t ), we then determine the MSDdz of dz(t ). The results for
various system sizes are shown in Fig. 5, in samples with a
defect density around 0.15, simulated at a temperature of kT
= 0.25 eV. Figure 5(b) shows that the dz fluctuates around
a level ≈11 Å, which is the typical equilibrium amplitude
of the buckling for these samples; out-of-plane displacement-
related studies can be found in our previous simulations [24].
Figure 5(c) shows that the initial behavior is diffusive, with a
diffusion coefficient that is insensitive to N .

D. Summary: Defect density determines
shape fluctuation dynamics

In summary so far, we have established that the density of
defects determines DB, and that the ratio DA/DB = k(〈ρ〉)L4

y
in Sec. III B. Putting these results together then implies that
the density of defects is the sole determining factor for the
dynamics of fluctuations in the sample shapes.

TABLE II. Dimensions of initial configurations obtained after
optimization. Averaging for each N was done over 5 (〈ρ〉 values
listed in Table I) × 10 (independent samples) × 16 (repetitions).

N 〈Lx,initial〉(Å) 〈Ly,initial〉(Å)

800 45.35 45.72
1800 68.47 68.95
2048 73.91 72.58
2178 75.78 75.39
2450 80.15 80.38
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(a)

(b) (c)

FIG. 5. (a) A suspended graphene sample naturally tends to
buckle, where dz is the thickness of the sample. (b) The variation
of dz for four differently sized samples; the initial defects densi-
ties for all sample are fixed at around 0.15. (c) MSDdz for these
samples.

IV. SAMPLE RESPONSE TO EXTERNAL FORCES

That the fluctuations in quantity B lead to diffusive be-
havior without being limited by geometric constraints made
us follow up with the response of the samples to externally
applied forces. In particular, if we apply a (weak) force FB to
excite the shear mode, then we expect the (linear) response
in terms of “mobility” μB in the relation vB = μBFB for the
“deformation velocity vB of the sample along the B direction”
to satisfy the Einstein relation

μB = DB

kBT
, i.e., vB = DB

kBT
FB, (8)

where kB is the Boltzmann constant and T is the temperature
of the sample.

In order to check for this relation in our simulations, we
add an extra “force term” in the Hamiltonian in Eq. (2), to
have the new Hamiltonian as

E = E0 + c
Lx

Ly
≡ E0 + cB, (9)

and calculate vB in the following manner, for the applied force
FB = ∂E/∂B = c.

The behavior of the aspect ratio B as a function of time,
under a constant force fB, is shown in Fig. 6(a), for forces
fB = ±800, 900, 1000, and 1100 eV/Å. The curves in this
figure are obtained by averaging over 8 independent samples,
each one simulated 32 times for each value of the force. At
relatively short times, B increases linearly in time. Afterwards,
the shear rate has a tendency to slow down. We speculate that
this slowing down at longer times might be due to deformation
of domains: Initially, these crystalline domains are isotropic,
but after the sample has sheared over quite some distance, the
domains become elongated. The tendency to restore isotropy
makes the sample resist further deformation. This is illustrated
in Fig. 6(a). There is no a priori reason to assume that the

increase in energy due to shearing is harmonic. In analogy to
the quartic increase of the length of a circle under this type of
deformation, we rather expect highly nonlinear behavior. At
short times, where the sample has not deformed significantly,
the change in B as a response to the force fB is expected to
be given by the Nernst-Einstein equation (7). To test this, we
obtained the short-time shear velocity vB by fitting the slopes
in Fig. 6(a) for the various forces. These measurements of vB

are plotted in Figs. 6(b) and 6(c), as a function of fB. Also
plotted in Figs. 6(b) and 6(c) are the theoretical expectations
as obtained from the Nernst-Einstein equation, in which we
used the earlier obtained values for DB. Figures 6(b) and
6(c) show agreement between the direct measurements of vB

and the theoretical expectations, indicating that with forces of
these strengths, the mechanical response is well understood.

V. CONCLUSION

Computer simulations of materials at the atomistic level
usually involve samples containing typically a few-thousand
atoms, with periodic boundary conditions. Quantities that can
be easily and reliably measured in such simulations are, for
instance, the evolution in time of the lateral sizes of the pe-
riodic box, such as their fluctuations. In the simulations on
graphene as presented here, the directly observable quantities
are the lateral lengths Lx and Ly of the rectangular periodic
box. The dynamics of Lx and Ly are coupled and can be better
understood by considering the area A = LxLy and aspect ratio
B = Lx/Ly. Specifically, we concentrate on the mean-square
displacements of A and B. At short times, in which only a few
atomic rearrangements occur, A and B show ordinary diffusive
behavior, with diffusion coefficients DA and DB. We show that
if the changes in Lx and Ly are uncorrelated, DA and DB can
be obtained from each other. While this might not seem very
surprising at first sight, it does connect the dynamics of the
shear mode and bulk mode—two quantities that are usually
assumed to be uncorrelated—at short times.

At longer times, A and B show different behavior.
Graphene has a characteristic density, which translates di-
rectly into a preferred value for A around which it fluctuates.
The amplitude of the fluctuations in A is determined by the
bulk modulus, which is an equilibrium property and therefore
computationally obtainable from simulations without realistic
dynamics. The aspect ratio B does not have an energetically
preferred value, and its diffusive behavior is therefore unre-
stricted. A practical consequence is that in simulations, the
quantity DB can be determined more accurately than DA, as
the latter shows a crossover from short-time diffusive behavior
to late-time saturation.

In our simulations, we have studied samples of polycrys-
talline graphene with a variation in the amount of structural
relaxation, the size of the crystalline domains, and the density
of structural defects (mainly fivefold and sevenfold rings).
In our simulations, we show a linear relation between the
number of such structural defects and the diffusion coeffi-
cient DB. In well-relaxed samples, large crystalline domains
are separated from each other by rows of structural defects.
Consequently, the number of defects decreases linearly with
the average domain size. We therefore also expect that the
diffusion coefficient DB decreases linearly with the average
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(a)

(b) (c) (d)

FIG. 6. (a) A relaxed polycrystalline graphene sample. Elongated domains arise if the sample is stretched significantly within a short
period of time. (b),(c) vB directly measured vs predicted by the Nernst-Einstein relation (8). Error bars represent the standard error of the
mean, obtained from the ensemble of simulation runs. (d) Change in B in time when a constant stretching force is applied to the sample;
restoring tendencies of elongated domains cause slower-than-linear increases at longer times (t > 1000).

domain size. In this context, it will be useful to deepen this
connection to domain size engineering [15,31,32], fabrication
of polycrystalline graphene [33–35], and mechanics of grain
boundaries [36,37].

From a materials science point of view, as well as from
an experimental point of view, the mechanical behavior of a
sample of graphene under external forces is important. We
show that the deformation of graphene under an external shear
force is related to the quantity DB, which is readily accessible
in simulations, via the Nerst-Einstein relation. For this pur-
pose, the external shear force is translated into a force fB on
the quantity B, after which the shear rate vB = ∂B/∂t can be
obtained from Eq. (8), in which the diffusion coefficient DB

is used. And the mechanical deformation can then be readily
obtained from vB.

We have limited ourselves to a relatively modest dynamical
range of Lx and Ly, as well as relatively mild deformation
forces. Consequentially, in our simulations, the domains do
not get deformed to elongated shapes but retain circular sym-
metry. If the material would be stretched significantly in a time

that is short enough to rule out complete structural rearrange-
ment, elongated domains should arise, and the sample would
experience restoring forces back towards its original shape.
This is illustrated in Fig. 6(a). We speculate that this mecha-
nism would actually slow down the shearing process, making
the shear distance nonlinear in time. Our simulations show
signs of the onset of decreasing shear rate in time [Fig. 6(d)].
A quantitative study of this phenomenon, in which the pos-
sible relation between elongation of domains and nonlinear
shear is investigated both in experiments and mechanism, such
as strengthening or weakening of graphene [38–40], fracture
toughness [41–43], and mechanical mutability [44], requires
very long simulations, which we will pick up in future work.
We believe these investigations enhance our understanding of
the mechanical properties of polycrystalline graphene.
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