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A B S T R A C T   

Background: Characteristics of the urban environment may contain upstream drivers of obesity. However, 
research is lacking that considers the combination of environmental factors simultaneously. 
Objectives: We aimed to explore what environmental factors of the urban exposome are related to body mass 
index (BMI), and evaluated the consistency of findings across multiple statistical approaches. 
Methods: A cross-sectional analysis was conducted using baseline data from 14,829 participants of the Occupa-
tional and Environmental Health Cohort study. BMI was obtained from self-reported height and weight. Geo-
coded exposures linked to individual home addresses (using 6-digit postcode) of 86 environmental factors were 
estimated, including air pollution, traffic noise, green-space, built environmental and neighborhood socio- 
demographic characteristics. Exposure-obesity associations were identified using the following approaches: 
sparse group Partial Least Squares, Bayesian Model Averaging, penalized regression using the Minimax Concave 
Penalty, Generalized Additive Model-based boosting Random Forest, Extreme Gradient Boosting, and Multiple 
Linear Regression, as the most conventional approach. The models were adjusted for individual socio- 
demographic variables. Environmental factors were ranked according to variable importance scores attributed 
by each approach and median ranks were calculated across these scores to identify the most consistent 
associations. 
Results: The most consistent environmental factors associated with BMI were the average neighborhood value of 
the homes, oxidative potential of particulate matter air pollution (OP), healthy food outlets in the neighborhood 
(5 km buffer), low-income neighborhoods, and one-person households in the neighborhood. Higher BMI levels 
were observed in low-income neighborhoods, with lower average house values, lower share of one-person 
households and smaller amount of healthy food retailers. Higher BMI levels were observed in low-income 
neighborhoods, with lower average house values, lower share of one-person households, smaller amounts of 
healthy food retailers and higher OP levels. Across the approaches, we observed consistent patterns of results 
based on model’s capacity to incorporate linear or nonlinear associations. 
Discussion: The pluralistic analysis on environmental obesogens strengthens the existing evidence on the role of 
neighborhood socioeconomic position, urbanicity and air pollution.   

1. Introduction 

Obesity is a chronic, complex, multi-causal condition that increases 
the risk of a range of non-communicable diseases (Chooi et al., 2019; 
WHO. Obesity and Overweight. Factsheet, 2020). Whereas the essential 

cause of obesity is an imbalance between intake and expenditure of 
energy, the multiple underlying determinants of this imbalance are 
complex, extending beyond individual-level factors to contextual fac-
tors. The life in modern urban environments, with a large availability of 
energy-dense products, motorized transport, sedentary work and lack of 
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physical activity has a huge impact on the growing rate of obesity 
worldwide (Lakerveld & Mackenbach, 2017). 

The urban exposome can be defined as the continuous spatiotem-
poral variation of quantitative and qualitative indicators associated with 
the urban external and internal domains that shape the quality of life 
and the health of urban populations, using small city areas, such as 
neighborhoods (Andrianou & Makris, 2018). Some of the risk factors of 
urban exposome are well known and extensively studied, while other 
factors were not readily available until recent years. Among these less 
commonly studied factors are for instance, radiofrequency electromag-
netic field (RF-EMF), light at night and meteorology. Mobile phone base 
station RF-EMF exposure has been suggested to be associated with sleep 
(Martens et al., 2017a). We hypothesized that RF-EMF exposure or 
outdoor exposure to high intensity electric lighting at night could have 
potential disruptive effect on sleep and therefore might be related to an 
increased BMI, as sleep deprivation is a known risk factor for obesity 
(Patel & Hu, 2008). High temperatures, in turn, may alter lifestyle be-
haviors. For example, high temperatures often lead individuals to be less 
physically active or discourage home-cooking, hence increasing the 
frequency of eating out, which has been linked with increased body 
weight (Bezerra et al., 2012; Gildner & Levy, 2021). 

Previous studies indicate a consistent relationship between socio-
economic position (SEP) (Lam et al., 2021; McLaren, 2007). Studies 
from the Unite States or Australia consistently found a link with urban 
sprawl, - often based on population density and measures of land use mix 
-, and obesity. This trend is, however, less consistent in Europe (Mack-
enbach et al., 2014). Inconsistent findings are also reported with regards 
to other urban exposome attributes, such as green space, air pollution or 
noise exposure (An et al., 2018; Cai et al., 2020; De la Fuente et al., 
2020). One of the explanations for these inconsistent associations may 
be the lack of adequate control for the interactions between exposures or 
combination of exposures. More specifically, two issues are especially 
important: 1) most research to date used a reductionistic approach, by 
focusing on single or a limited number of environmental exposures, 2) 
linear regression analysis was applied conventionally to link environ-
mental factors to adult obesity. Although such studies are valuable to 
investigate a specific hypothesis regarding an underlying pathway from 
environmental exposure to obesity, it is unlikely that such methodo-
logical approaches do justice to the complexity of real life. Such a 
“naïve” linear regression model is limited in the context of multiple, 
highly correlated variables, because it can result in unstable parameter 
estimates with large standard errors (Stafoggia et al., 2017). Moreover, 
it fails to address nonlinear or complex non-additive associations, 
potentially present in multi-exposure models (Casson & Farmer, 2014). 
For these reasons, more advanced statistical methods are advocated to 
capture the complex association of multiple environmental exposures 
and obesity. However, it should be noted that such methods have a 
major application for prediction tasks, but not for hazard characteriza-
tion. Therefore, currently in epidemiology the transition from conven-
tional statistical inference based on hypothesis testing to more advanced 
methods lacks both methodological and applied framework. 

The twin-revolution of data availability and advances in data science 
methods make it possible to pioneer and apply those methods in this 
field of research. Originally the term “machine learning” was defined as 
a program that learns automatically from data. However, this definition 
is very generic and could cover nearly any form of data-driven approach. 
For a given statistical method, the more we reduce the assumptions, the 
more the algorithm moves towards machine learning, but there is never 
a specific threshold where a model suddenly becomes “machine 
learning” (Beam & Kohane, 2018). 

Currently, an increasing number of studies in environmental epide-
miology are trying to capture numerous exposures as part of the expo-
some (Wild, 2012). The exposome approach has been applied previously 
to study obesity in children, but not in adults (Vrijheid et al., 2020). 
Some recent simulation studies have compared the performance of 
different machine learning models to identify exposome-health 

associations (Agier et al., 2016; Barrera-Gómez et al., 2017; Lenters 
et al., 2018; Sun et al., 2013). Results suggest that there is no one-size- 
fits-all model, because data-driven approaches have an ability to adapt 
to the information contained in the data, and each of them makes a 
different use of this information with any given dataset. Thus, it is still 
not known which environmental exposures of the urban exposome are 
consistently associated with adult BMI and which statistical approach 
(es) can deal better with the complex data and provide meaningful/ 
interpretable output. According to the classification provided by Sta-
foggia et al. the multi-exposure models which are able to deal with a 
wide variety of correlated factors, may be grouped by their capacities to 
reduce data dimensionality, select more important variables within a 
group of highly correlated variables or cluster the observations (Sta-
foggia et al., 2017). 

We therefore aimed to explore what environmental factors of the 
urban exposome are related to BMI, and evaluated the consistency of 
findings across multiple statistical approaches. We selected at least one 
statistical method from each of the three groups of approaches 
(dimension reduction, variable selection, clustering) to effectively 
combine the strengths and compensate the limitations of each method. 
We also compared the results of these approaches with a ‘traditional’ 
multiple linear regression model. The environmental factors represent-
ing the urban exposome included several groups of exposures: air 
pollution, road traffic noise, green space, light at night, radiofrequency 
electromagnetic field, meteorology, diverse socioeconomic and de-
mographic factors of the neighborhood, food environment, urbanicity, 
road safety, access to neighborhood facilities and quality of drinking 
water. 

2. Material and methods 

2.1. Study design and population 

We used baseline data of the prospective, population based Occu-
pational and Environmental Health Cohort (AMIGO) study for a cross- 
sectional analysis. Participants of AMIGO were recruited from the gen-
eral population in the Netherlands, through the Dutch national general 
practitioners network: the NIVEL Primary Care Database (NIVEL Pri-
mary Care Registry, 2021). A maximum of one adult per household was 
randomly selected from the NIVEL database. Overall, 14,829 adult 
cohort members (16% of those invited) consented and filled in the on-
line baseline questionnaire. Participants were aged between 31 and 65 
years during the data collection period (2011–2012). A detailed 
description of the recruitment process, a flowchart of participant data 
and the ethical approval is given elsewhere (Slottje et al., 2015). The 
data of 14,781 participants having complete cases on the outcome 
measure, were analyzed in the current study. 

2.2. Outcome definition and covariates 

Self-reported height and weight from the baseline questionnaire 
were used to calculate body mass index kg/m2. Overweight and obesity 
were defined as BMI ≥ 25 kg/m2 and BMI ≥ 30 kg/m2, respectively 
(WHO. Obesity and Overweight. Factsheet, 2020). The following indi-
vidual socio-demographic characteristics were considered as covariates 
in this study: age, sex (male/female), country of birth (Netherlands/ 
other), country of birth of mother (Netherlands/other), country of birth 
of father (Netherlands/other), civil state (with/without a partner), 
current education (high, defined as college/university degree or higher/ 
low or medium, including vocational education/community college or 
vocational/high school), employment status (employed/unemployed) 
and smoking (yes/no). 

2.3. Characterization of the urban exposome 

A large set of environmental factors were estimated by geospatial 
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models, monitoring stations, satellite data, and land use databases and 
linked to all respondents, using the geocoded residential addresses. The 
addresses were geocoded by the 6-digit postal codes in Netherlands, 
which cover a few houses at one side of a street section. Exposures were 
measured in a buffer of 100 m-20 km depending on the variable. Annual 
average exposure estimates were calculated for the data collection 
period of the baseline questionnaire (2011–2012) or the nearest date 
around in a range of five years. 

We excluded factors that were judged uninformative based on the 
following reasons: i) variables with very low variability, e.g. when most 
observations (>99%) had the same value, assessed by histograms and 
descriptive statistics (see the list in supplementary material, Table A.1) 
ii) or if two variables were correlated at a level of rspearman ≥ 0.95. In the 
latter case only one of the correlated variables was included and 
considered as a proxy for the other variable (Table A.2). Overall, we 
retained 86 out of 99 exposures across a total of 11 exposure constructs: 
air pollution (19 factors), road traffic noise (1 factor), mobile phone base 
station radiofrequency electromagnetic field (1 factor), green space 
density (2 factors), outdoor light at night (1 factor), meteorology (2 
factors), quality of the drinking water (29 factors), socio-demographic 
characteristics of the neighborhood (18 factors), food environment (3 
factors), built environment (9 factors) and road safety (1 factor). The 
measurement of these constructs and variables are detailed in next 
paragraphs. 

2.3.1. Air pollution 
Land use regression (LUR) models were used to assess the air 

pollution exposure. The models provided data on particulate matter 
with aerodynamic diameter<10 µm (PM10), <2.5 µm (PM2.5), between 
10 and 2.5 µm (PM10 − 2.5, the coarse fraction of PM), and smaller than 
100 nm (Ultrafine particles (UFP)), as well as the absorbance of PM2.5 (a 
measure of black carbon particles) and NO2, NOX (sum of NO and NO2). 
The median model explained variance (R2) of LUR models was 71% for 
PM2.5, 89% for PM2.5 absorbance, 68% for PMcoarse, 82% for NO2 and 78% 
for NOX (Beelen et al., 2013; Eeftens et al., 2012). Eight elemental 
components of particulate matter (copper, iron, potassium, nickel, sul-
fur, silicon, vanadium, zinc), were estimated in both PM10 and PM2.5. 
Good models were developed for copper, iron, and zinc in both fractions 
(PM10 and PM2.5) explaining on average between 67 and 79% of the 
concentration variance (R2) with a large variability between areas. 
Models for vanadium and sulfur in the PM10 and PM2.5 fractions and 
silicon, nickel, and potassium in the PM10 fraction performed moder-
ately with R2 ranging from 50 to 61%. silicon, nickel, and potassium 
models for PM2.5 performed poorest with R2 under 50% (De Hoogh 
et al., 2013). The oxidative potential (OP) was estimated in PM2.5, by 
two metrics – electron spin resonance (OPESR) and dithiothreitol 
(OPDTT). The explained variance for these models were 67% and 60% 
accordingly (Yang et al., 2015). References on detailed description of 
each LUR model are provided in Table A.3. 

2.3.2. Road traffic noise 
Noise model maps were used from the Standard Model Instrumen-

tation for Noise Assessments for the year 2016 (Baliatsas et al., 2016; 
Martens et al., 2018). For each participant the exposure to the road 
traffic noise levels (dB) was estimated over a whole day period (Lden), 
overweighing sound levels during evening and night, as the nuisance 
perception is higher during more quiet hours of the day. Following the 
recommendations of The Environmental Noise Directive, we used the 
threshold of 55 dB to define high and low noise levels (European Envi-
ronment Agency, 2018). 

2.3.3. Radiofrequency electromagnetic field 
With regard to the exposure of radiofrequency electromagnetic field 

(RF-EMF), for each geocoded address the model estimates the total sum 
of the exposures to downlink field strength of GSM900 (Global System 
for Mobile Communication), GSM1800, and UMTS (Universal Mobile 

Telecommunications System) (mW/m2) (Martens et al., 2017b). 

2.3.4. Green space 
The neighborhood greenness was estimated for 100 m and 1000 m 

buffers around each respondent’s home. Satellite images from Landsat 8, 
captured in September 2016 were used to generate the Normalized 
Difference Vegetation Index (NDVI), which quantifies vegetation den-
sity (Rhew et al., 2011). 

2.3.5. Outdoor light at night 
To measure the exposure to outdoor artificial light at night, the 

global low-light imaging data from Earth’s surface was collected by the 
Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band 
(DNB) (Elvidge et al., 2017). The VIIRS-DNB map from 2015 was used to 
assign an exposure value to the home address. 

2.3.6. Meteorology 
An urban or metropolitan area usually tends to be warmer than its 

surrounding rural areas. This phenomenon is called “urban heat island 
effect”. Satellite pictures from Landsat 8 were used to estimate the 
surface temperatures as measured from space on a hot day (20 July 
2016). During heatwaves, the urban heat island effect is best assessed. In 
addition, we used a map to assign urban heat (difference in temperature 
to surrounding less urbanized areas), which was modeled using data 
from wind speed, population density and green space, as described in 
the heat island map from the Dutch National Institute for Public Health 
and the Environment (RIVM)(Remme, 2017). 

2.3.7. Drinking water quality 
To estimate the quality of drinking water the data was collected from 

drinking water quality map of RIVM, for annual average values of 2012 
(Quality of Drinking Water in Netherlands, 2018). Twenty-eight water 
compounds were measured in the closest tested pump to the geocoded 
addresses. The measurements were done for two main types of con-
taminants: chemical and bacterial. Chemical contaminants, in turn, 
were from three sources: agricultural runoff (pesticides: ammonia, ni-
trate/nitrite, phosphate), industrial runoff (heavy metals: arsenic (can 
also be natural), mercury, cadmium, chromium), as well as fecal matter 
and urine. Biological compounds included coliform bacteria and 
Escherichia coli. The chlorine (disinfectant), which is used to reduce the 
bacterial contamination, and the acidity and turbidity of water were also 
measured. 

2.3.8. Characteristics of neighborhoods 
All geocoded residential addresses were linked to the neighborhood 

map of the Land Use Database of Statistics Netherlands for 2011, in 
order to collect a large set of neighborhood socio-demographic and built 
environmental data (Statistics Netherlands, 2012). The urbanicity level 
was calculated by Statistics Netherlands based on the density of ad-
dresses. The categories of urbanicity were defined as follows: 1 = very 
highly urban ≥ 2,500 addresses per km2; 2 = highly urban 1 500–2 500 
addresses per km2; 3 = moderately urban 1,000–1,500 addresses per 
km2; 4 = few urban 500–1,000 addresses per km2; 5 = non-urban < 500 
addresses per km2 (Statistics Netherlands, 2012). Several socio- 
demographic characteristics of the neighborhoods were also collected 
for each participant, e.g., the percentage of residents in the neighbor-
hood of different age groups, the relative number of residents belonging 
to different marital status, one-person households, and immigrants 
based on their country of birth, classified as Western and non-Western. 

The economic status of the neighborhoods was estimated by the 
average value of the houses/apartments, the percentage of inhabitants 
with the lowest registered personal income (the lowest 40% after all 
persons have been ranked according to their personal income), the 
highest personal income (the highest 20% in the ranking), and the total 
number of cars registered in the neighborhood. Road safety was esti-
mated by the number of registered cumulative road accidents from 2009 
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to 2011 in a buffer of 200 m around the home. 
Accessibility of destinations including institutions of health, cultural 

institutions, schools, train stations, supermarkets, restaurants etc. was 
also mapped. For each destination two measures were used: the average 
distance (km) calculated by road for all residents of the neighborhood, 
and the count of specific destinations within buffers, extending from 1 to 
20 km around the home (CBS, 2013). Some of these destinations were 
grouped together to reduce the number of highly correlated variables. 
For instance, the average distance to the general practitioner’s office or 
pharmacies and hospitals were grouped as participants “access to 
medical facilities”. Average distance to kindergartens, elementary, 
middle, and high school facilities were grouped as “access to educational 
facilities”. Museums, cinemas, attraction parks, concert halls, swimming 
pools, ice skating halls, saunas and tanning clinics were grouped as 
“access to recreational activities”. The exposure to the food environment 
in each neighborhood was assessed by the number of food retailers in 1 
km and 5 km buffers. Food retailers were categorized into “healthy” and 
“less healthy” food options, based on the healthfulness of the food re-
tailers. Although there is not a clear definition on the healthiness of food 
retailers, often the supermarkets and local food shops are considered as 
healthy food options (Pinho et al., 2019). Home-cooked meals are 
generally healthier in terms of salt or fat consumption as compared to 
restaurants. Thus, the supermarkets and local food shops (e.g., green-
grocers, bakeries, butchers etc.) were considered as “healthy food” 
exposure, and the restaurants (including fast food restaurants), fast food 
take-away places, cafés, pancake houses, bars and pubs were classified 
as exposure to “non-healthy food” choices. 

2.4. Statistical analysis 

2.4.1. Data pre-processing 
The highest percentage of missing values among the retained vari-

ables was 10.7%, for the variable ‘share of immigrants in neighborhood 
with other non-western origins. A multiple imputation by chained 
equations was applied to handle missing data in the remaining dataset. 
Variables were transformed by logarithmic, root square or inverse 
functions as appropriate to best approach a Gaussian distribution 
(Osborne & Ph, 2005) (Table A.4). Note that the nature of association 
was inversed for the multiplicative inverse transformed variables 
(multiplicative inverse = 1/variable) (Table A.4). For some variables, 
notably those with a substantial proportion of zero values, trans-
formation was impossible, and we therefore used the predictive mean 
matching algorithm for imputation. The outcome (BMI) was included in 
the imputation model as a predictor, but missing BMI values were not 
imputed (White et al., 2011). Only a single imputation set was retained, 
because there is not a widely accepted way to combine the results in 
different imputation sets from machine learning approaches applied in 
this study. Besides, repeating the analysis several times on large datasets 
would significantly increase the already high computational time. The 
distributions of imputed and non-imputed data were compared for all 
the imputed exposures. A sensitivity analysis was conducted to compare 
the estimates of linear models obtained from imputed and complete- 
case analysis. All continuous exposures were standardized to the same 
scale by their standard deviations, so that all the coefficients would 
weigh equally, independently of the original scales of the variables. As 
part of descriptive statistics, we calculated the absolute average values 
of Spearman’s correlation coefficients between the groups of exposures. 

2.4.2. Assessing exposome-health associations 
Seven supervised algorithms for regression were applied to identify 

robustness of findings across methods. In a recent review, Stafoggia et al. 
suggested to classify the statistical approaches addressing multiple 
correlated exposures in three groups: dimension reduction, variable 
selection and grouping of observations (Stafoggia et al., 2017). Based on 
this classification, we applied one dimension reduction method: sparse 
group Partial Least Squares (sgPLS), three variable selection approaches: 

Bayesian Model Averaging (BMA), Minimax Concave Penalty (MCP) and 
Generalized Additive Model (GAM) boost, and two methods from 
grouping of observations: Random Forest (RF) and Extreme Gradient 
Boosting (XGBoost). Several other criteria shaped our choice for the 
selected approaches. For instance, we considered factors such as the 
popularity, the feasibility (e.g. with regard to computational burden), 
the interpretability or the ability to incorporate nonlinear associations 
or interactions. Besides the selected approaches we also considered 
applying Bayesian Kernel Machine Regression. However, as initially 
suggested by the size of our data, this was infeasible. Additionally, the 
results of these models were compared to results from a classical mul-
tiple linear regression (MLR) model, as the most conventional model to 
estimate exposure-effect associations. 

In context of these data-driven approaches, there is no single method 
which is universally the best. Hence, we applied multi-model inference 
to avoid increasing the sensitivity at the expense of a lower specificity. 
The second advantage of applying different methods is the increased 
chances of capturing the entire picture of exposure-obesity in-
terrelations, including nonlinear associations and interactions and 
allowing for a pluralistic approach for data interpretation. 

To compare the results across multiple methods, we used the variable 
importance scores (VI). Each model generated VI scores associated to all 
variables, depending on their contribution to the final model. For each 
approach all exposures were ranked (89 exposures including dummy 
variables), with lower values corresponding to the more important 
variables. Then, an overall ranking across all approaches was calculated 
based on the median values of ranks across the approaches. In case of 
ties, each of them was replaced by their mean. The confounders were 
ranked separately from the exposures (9 confounders), thus they were 
excluded from the overall ranking of exposures. 

In contrast to linear models, there is not a straightforward inter-
pretation of coefficients of nonlinear models. Besides, the VI scores do 
not provide information about the directions of associations. In order to 
improve the interpretability of nonlinear models and to learn how a 
given exposure was related to BMI (positively, negatively or nonlinear 
associations), we used Shapley values, which is a concept coming from 
coalitional game theory (Shapley, 1953). During recent years Shapley 
values gained popularity for studies based on explainable machine 
learning (Smith & Alvarez, 2021). Shapley values are the average 
contribution of a feature value to the prediction when different combi-
nations of features are used, rather than the difference in prediction 
when we would remove the feature from the model (Molnar, 2020). For 
each approach, scatterplots were used to visualize the relationship be-
tween the response and the most influential predictors. Shapley plots 
were used also to calculate the exposure effects of the most important 
predictors in nonlinear and nonparametric models. 

In order to provide robust results and assure model stability, the 
parameters were optimized for efficiency using a three-times repeated 
cross validation (Table A.5). Tuning parameters were calibrated and set 
for each model individually (Table 1). All models included all the factors 
and were adjusted for age, sex, country of birth of participants and their 
parents, civil state, education, employment status and smoking, because 
of their potentially confounding role. The education and employment 
status were used as estimators of individual socio-economic status. All 
analyses were performed with the R statistical software (version 4.0.2). 
The package “mice” was used for the multiple imputation. All the var-
iables, including also the confounders were included in multiple expo-
sure models simultaneously. The entire dataset was used in all models to 
assess the VI scores. 

A short summary of applied methods is given in the next paragraphs. 

a) PLS is a supervised dimension reduction technique that builds sum-
mary variables as linear combinations of the original set of variables 
(Agier et al., 2016). sgPLS is a version of PLS regression, which al-
lows sparsity both of groups of exposures, as well as within each 
group; only relevant variables within a group are selected (Liquet 
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et al., 2016). For selected variables, the absolute values of weights in 
the linear combination were used to calculate the VI. No VI score was 
attributed to the non-selected variables. The R package “sgPLS” was 
used for this analysis (Liquet et al., 2016). In sgPLS function cali-
bration parameter “ncomp” refers to the number of components to be 
included in model, “keepX” shows the number of variables kept in 
the model on each component and the parameter “alpha” is related to 
the within group sparsity.  

b) Penalized regression approaches were developed to address the 
problems of multicollinearity in high-dimensional settings causing 
the MLR models to produce unstable parameter estimates. Penalized 
regression by Minimax Concave Penalty (MCP) is a high- 
dimensional, linear variable selection approach, similar to the 
well-known LASSO penalty, but with better performance quality 

(Zhang, 2010). The variable selection was based on a ten-fold cross- 
validation, which helped to determine the optimal degree of the 
penalization. The final set of selected variables was decided by the 
stability selection procedure. The VI score was calculated by ranking 
the largest lambda (penalty) for which a variable was still included in 
the model. The package “ncvreg” was used to run the MCP regression 
model (Breheny & Huang, 2011). One of the important parameters to 
calibrate for the MCP regression model is the “lambda”, which rep-
resents the degree of penalization. The parameter “penalthy.factor” 
allows to apply differential penalization if some coefficients are 
thought to be more likely than others to be in the model, for example 
the confounders. In this study no differential penalization was 
applied.  

c) GAM boost is a variable selection approach. It fits a generalized 
additive model by likelihood-based boost and is particularly useful in 
the case of nonlinearly associated predictors (Tutz & Binder, 2006). 
Variable selection was done by the stability selection procedure. In 
this study the VI score obtained from the cross-validation model was 
used to rank the exposures. The “mboost” package was used for 
running the GAM boost model (Bühlmann & Hothorn, 2007; Hofner 
et al., 2014). The parameter “mstop” represents the optimal number 
of boosting iterations which was calibrated by the cross-validation.  

d) BMA is a linear, variable selection approach, that considers model 
uncertainty by evaluating all possible exposure combinations and 
assigns weights for each model (Sun et al., 2013). The final exposure 
effect is calculated as a weighted average of the exposure effects from 
each model (Stafoggia et al., 2017). The variable selection was 
assessed after the control for false discovery rate. The posterior in-
clusion probabilities were used as estimator of VI score. The R 
package called “BAS” was used to run the BMA model (Clyde M, 
2020). For BMA model it is required to specify the prior distribution 
for regression coefficients (function “prior”) and to assign a priori 
probabilities for each model (function “modelprior”).  

e) Random forest algorithm is a recursive partitioning method, based 
on conduction of many decision trees and the aggregation of the 
predictions from these trees. For each iteration randomly selected 
predictors and a random subset of data are chosen (Ishwaran & Lu, 
2019). It can capture complex interactions and nonlinear associa-
tions among the exposures (Stafoggia et al., 2017). We applied a 
model-based optimization, evaluating the out-of-bag predictions, to 
tune random forests. The permutation importance approach was 
used to assess the relative VI score. For non-selection methods, such 
as RF, we used scatterplots of VI score to decide the selected vari-
ables. The variables with highest VI, which were standing out from 
the others were considered selected. Packages “tuneRanger” and 
“ranger” were used to calibrate and to run the RF model (Probst 
et al., 2019; Wright & Ziegler, 2017). There are several important 
parameters to calibrate for the RF model, e.g. “sample.fraction” 
which shows the number of observations to sample, “min.node.size” 
refers to the minimal node size and the “mtry”, shows the number of 
variables to possibly split at in each node. 

f) Extreme Gradient Boosting (XGBoost) is another tree based tech-
nique, that captures the interactions and nonlinearity in the depen-
dence structure (Z. Y. Chen et al., 2019). In fact, the main difference 
between the XGBoost and random forest is that, XGBoost iteratively 
combines the output of multiple decision trees in a stepwise manner 
to improve performance at each iteration to make a strong classifier, 
while in RF the decision trees are independent from each other, and 
the results are combined at the end of the process (T. Chen & 
Guestrin, 2016). A repeated cross-validation was used to assess the 
optimal tuning parameters for the model. The VI score was obtained 
using the fractional contribution of each feature to the model based 
on the total gain of this feature’s splits. Like RF, the variable selection 
was based on scatterplots of VI. The R package called “xgboost” was 
used for the XGBoost model (T. Chen & Guestrin, 2016). Following 
parameters were calibrated for the final XGBoost model: “eta”, which 

Table 1 
Summary characteristics of algorithms, packages and parameters optimized 
throughout the calibration process.  

Model Package Tuning parameters Characteristics 

sgPLS sgPLS ncomp = 1 
keepX = 1 
alpha = 0.01 
upper lambda = 1e +
05 

• Dimension reduction and 
variable selection 
simultaneously 
• Creates linear combinations 
of the original predictors 
• Allows sparse variable 
selection both within groups 
and in groups 

MCP ncvreg  

stabsel 

lambda = 0.0144 
gamma = 3 
alpha = 1 
penalty=“MCP” 
family=“gaussian” 
nlambda = 300 
max.iter = 100000 
convex.min = 94 
penalty.factor = rep(1, 
ncol(X)) 

• Linear regression shrinkage 
method 
• Good interpretability 

BMA BAS prior = JZS 
modelprior = beta. 
binomial() 

• Bayesian variable selection 
model 
• Takes into account model 
uncertainty 
• Considers the linear 
associations and interactions 
• Good interpretability 
• Low computational cost 

GAM 
boost 

mboost 
caret 

mstop = 316 
prune = no 
bol and bbs 

• Generalized additive model 
by likelihood-based boost 
• Useful method for detecting 
nonlinear associations 

RF ranger 
tuneRanger 

sample.fraction = 0.77 
min.node.size = 987 
importance 
=“permutation” 
mtry = 41 
splitrule = variance 

• Captures complex 
interactions and nonlinear 
associations 
• No information on 
magnitude or direction of the 
association 
• Less intuitive for 
interpretation 
• Computationally complex 

XG 
Boost 

xgboost 
caret 

nrounds = 1000 
max_depth = 3 
eta = 0.005 
verbose = 1 
gamma = 2  
colsample_bytree =

0.5 
min_child_weight =
0 subsample = 0.632 
objective = “reg: 
linear” 
eval_metric = “rmse” 

• Tree based, supervised 
technique 
• Captures the interaction and 
nonlinearity in the 
dependence structure 
• Iteratively combines the 
output of multiple decision 
trees in a stepwise manner to 
improve performance at each 
iteration to make a strong 
classifier 
• VI scores facilitate the 
interpretability 

sgPLS = sparse group Partial Least Squares; MCP = Minimax Concave Penalty; 
GAM boost = Generalised Additive Model boost; BMA = Bayesian Model 
Averaging; RF = Random Forest; XGBoost = Extreme Gradient Boosting. 
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is the learning rate; “gamma” refers to the minimum loss reduction 
required to make a further partition on a leaf node of the tree; 
“max_dept” is the maximum depth of a tree; “min_child_weight” is 
the minimum sum of instance weight (hessian) needed in a child; 
“subsample” corresponds to the ratio of the training instances at each 
iteration; “colsample_bytree” is the subsample ratio of columns when 
constructing each tree (“XGBoost Parameters — xgboost 1.5.0-dev 
documentation”). 

g) Multiple linear regression was applied as a simple model, simulta-
neously including all explanatory variables and BMI being the 
explained variable. The VI score from MLR model was based on the 
p-values for each exposure. 

Additionally, a sensitivity analysis was performed to compare the 
effect estimates from single exposure models with the multiple exposure 
models. Single exposure models included all the confounders and a 
single exposure at a time. Associations were deemed significant or not 
after correction for multiple testing by Bonferroni method. 

Most of the statistical approaches used in this study do not provide p- 
values. Consequently, it was impossible to control for the familywise 
error rate and the false discovery rate for all the models at a similar level. 
We considered, however, to have reduced the false discovery rate by 
applying stability selection procedure to two variable selection ap-
proaches: Minimax Concave Penalty regression and Generalized Addi-
tive Model boost. Stability selection is a subsampling based method used 
in high-dimensional variable selection setting, which provides a finite 
sample control for false discovery rate (Meinshausen & Bühlmann, 
2010). The false discovery rate was controlled at the level of 0.2 in the 
Bayesian Model Averaging approach. A correction for multiple testing 
by the Bonferroni method was implemented in the Multiple Linear 
Regression model. 

3. Results 

3.1. Study population 

The analytical sample consisted of 14,781 participants, with an 
average age of 50.7 ± 9.4 years and the majority were women (55.8%) 
(Table 2). More than one third had a higher education (38.2%) and most 

were employed (71.8%). About two-third was overweight (65.1% 
including obesity). Less than a fourth of participants (15.7%) were 
active smokers (Table 2). 

Table A.6 contains a detailed description of all the factors of the 
urban exposome included in this study. The range of absolute average 
inter- or intra- group correlations between the exposures extended from 
low to moderate (|rsp|=0.1–0.6) (Fig. 1). The intragroup correlations 
were relatively higher for air pollutants (|rsp|=0.4), green space (|rsp|=
0.5) and meteorology (|rsp|=0.4) (Fig. 1). 

The directions of associations are mentioned for the selected expo-
sures by each approach. “Positive” stands for a positive association and 
“Negative” for a negative association. Empty cells indicate that the given 
variable was not selected by the given approach. All models were 
adjusted for the following covariates: age, sex, country of birth, country 
of birth of mother, country of birth of father, civil state, education, 
employment status and smoking. 

3.2. Urban exposome and BMI 

Table 3 shows an overview of the variables that were selected by at 
least one of the approaches. The BMA was the only method to select up 
to six variables. The sgPLS method, on the other hand, did not select any 
variables associated with BMI. It selected only the group of covariates/ 
confounders and all the variables within that group (since the variables 
were grouped, covariates were introduced as one group) (Fig. A.1). 

Exposures reflecting the socioeconomic position of the neighbor-
hoods were observed to have the most consistent associations with BMI. 
The average price of the houses was selected by six out of seven methods 
(besides sgPLS), and the highest rank was attributed to it by five 
methods. All models detected a negative association between the 
average price of houses and BMI (median rank = 1[min–max = 1–3]) 
(Fig. 2, Fig. 4, Table 3, Table A.7). 

The second most important exposure was the oxidative potential of 
PM2.5 (2.5 [2–5]), although it was only selected by RF, BMA and MLR 
(Fig. 2, Table 3). The association between oxidative potential and BMI 
was a positive association for all models (Fig. 4, Table 3). 

Some consistency was found for particular area level characteristics, 
such as the number of healthy food outlets in a 5 km buffer (6 [1–20]) 
and the percentage of one-person households in the neighborhood, 

Table 2 
Baseline characteristics of the participants.  

Characteristics Complete cases Mean ± SD or n(%) 

BMI (kg/m2) 14,781 (99.7%) 26.1 ± 4.4 
Age 14,829 (100%) 50.7 ± 9.4 
Sex 14,829 (100%)  
Female  8268 (55.8%) 
Male  6561 (44.2%) 
Country of origin 14,829 (100%)  
Netherlands  14,127 (95.3%) 
Other  702 (4.7%) 
Country of birth of mother 14,793 (99.8%)  
Netherlands  13,750 (92.9%) 
Other  1043 (7.1%) 
Country of birth of father 14,787 (99.7%)  
Netherlands  13,776 (93.1%) 
Other  1011 (6.8%) 
Civil state 14,805 (99.8%)  
Having a partner/being married  11,902 (80.4%) 
Not having a partner  2903 (19.6%) 
Education 14,820 (99.9%)  
Low/Medium  9164 (61.8%) 
High  5656 (38.2%) 
Employment status 14,829 (100%)  
Employed  10,641 (71.8%) 
Unemployed  4167 (28.2%) 
Smoking 14,806 (99.8%)  
Yes  2322 (15.7%) 
No  12,484 (84.2%)  

Fig. 1. Absolute average intra- and intergroup correlations between constructs 
of exposures. Higher values indicate higher absolute value of correlation co-
efficient. RF-EMF = Radiofrequency electromagnetic field. 
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Table 3 
Overview of the variables that were selected by at least one of the approaches.  

Exposures  MLR sgPLS1 MCP BMA GAM Boost XG Boost RF Median rank [Range]2 

Average house price Negative  Negative Negative Negative Negative Negative 1[1–3] 
OPESR  Positive   Positive   Positive 2.5[2–5] 
Healthy food (5 km) Negative   Negative    6[1–20] 
One-person households (%)   Negative    10[4–63] 
Non-Western immigrants     Positive    22[7–62.5] 
Amenity shops in 20 km     Positive    33[5–47] 

OPESR = Oxidative potential of PM2.5 measured by electron spin resonance; MLR = Multiple Linear Regression; sgPLS = sparse group Partial Least Squares; MCP =
Minimax Concave Penalty; BMA = Bayesian Model Averaging; GAM boost = Generalized Additive Model boost; XGBoost = Extreme Gradient Boosting; RF = Random 
Forest. 
1The cells are empty for sgPLS because no exposures were selected by this method. 
2Reported median ranks of exposures are calculated based on VI scores of MCP, BMA, GAM Boost, XGBoost, RF and MLR. Lower ranks indicate higher VI score and the 
opposite for higher ranks. 

Fig. 2. The ranking of top 30 important exposures across different approaches. The rankings are sorted by the overall rank across approaches. The decimal values 
represent tie ranks, where the ranks have been replaced by their mean. The results of the sparse group Partial Least Squares are not presented, because no VI was 
attributed to the non-selected variables. GAM boost = Generalized Additive Model boost; PM = particulate matter; OP (ESR) = particulate matter measured by 
electron spin resonance. 
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which were associated with lower BMI (10 [4–63]) (Fig. 2). Participants 
living in neighborhoods where the percentage of inhabitants with the 
lowest registered personal income was higher, tended to have increased 
levels of BMI (11.5 [3–15]). The proximity to a large train station (15 
[6–57]), high-income neighborhoods (16.5 [2–51]), the share of non- 
Western immigrants in a neighborhood (22 [7–62.5]), fine particles 
PM2.5 (23.5 [5–67]), silicon in PM2.5 (17.5 [15–38]) and amount of 
green in a 100 m buffer (24 [7–37]) were also related to BMI, but with 
less consistency across approaches as evidenced by Fig. 2. 

For most exposures we observed a certain variability across ap-
proaches. The rankings between various approaches correlated with the 
overall median rank in a range of rspearman = 0.5–0.7 (Fig. 3). The output 
of MLR model was assimilating to the overall rank rspearman = 0.6, 
slightly better than other linear models rspearman = 0.5. The sgPLS was 
the only method that correlated poorly with other approaches. Inter-
estingly, a hierarchical clustering on the VI rankings from each approach 
showed that the results of linear and non-linear methods clustered 
separately (Fig. A.3). For instance, we observed that healthy food outlets 
in 5 km buffer and one-person households in the neighborhood received 
a much higher rank by linear models, as compared to nonlinear models 
(1–4 vs 8–20 and 4–8 vs 12–63 accordingly) (Fig. 2). In contrast, 
nonlinear models detected a strong, positive association with the share 
of inhabitants with highest registered personal income (ranked 2, 5 and 
4 corresponding to GAMboost, RF and XGBoost), whereas the associa-
tion received much less importance in linear models (ranked 45, 51, 28 
corresponding to BMA, MCP regression and MLR). 

In terms of effect sizes, generally, the estimated associations were in 
line with previously reported findings. The exposure association was 
strongest for the average value of houses and considerably less impor-
tant for the rest of the exposures. Shapley plots (Fig. 4) showed that 
going from maximum to minimum values of the average house prices 
resulted in a change of BMI of 0.5 kg/m2 for the RF model, whereas for 
oxidative potential it was 0.2. In XGboost model these values were 0.4 
and 0.09 accordingly. Similar results were observed by linear models: 
the coefficients of BMA were 0.11/0.04, for MLR 0.07/0.05 and for the 
MCP 0.11/0.05 (Table A.8). Shapley plots of RF and XGBoost repre-
senting other influential variables can be found in Fig. 4 and Fig. A.2. 

The sensitivity analysis showed that the effect estimates were 
different between single-exposure models and the multiple linear 

regression model. Overall, effect estimates from single-exposure models 
were lower compared to multiple linear regression. After the correction 
for multiple testing, ten significant associations were found by single 
exposure models: oxidative potential of PM2.5 measured by ESR (p-value 
< 0.01) and DTT (p < 0.01), Nickel in PM10 (p < 0.01), Silicon in PM2.5 
(p < 0.02), share of divorced inhabitants (%) (p < 0.01), share of non- 
western immigrants (p < 0.01), average value of houses (p < 0.01), 
high- and low-income neighborhoods (p < 0.01 for both) and the 
amount of Mecoprop (herbicide) in drinking water (p < 0.01). In 
contrast, only three factors were found significant by multiple linear 
regression model average value of houses (p < 0.01), oxidative potential 
of PM2.5 (ESR) (p < 0.01) and number of healthy food outlets in 5 km 
buffer (p < 0.01). The R2 was on average 3.6% for single exposure 
models and 4.7% for multiple linear regression model. The results of this 
analysis are summarized in Table A.9. Furthermore, another sensitivity 
analysis on complete cases showed comparable results with the imputed 
dataset. 

4. Discussion 

In this study we assessed how the urban exposome relates to adult 
BMI. We addressed many environmental exposures and used a 
comprehensive pluralistic statistical strategy to account for linear as 
well as nonlinear associations and complex interactions among the ex-
posures. The results from multi-model inference were consistent only for 
the strongest associations. Residents of neighborhoods with higher 
values of average house prices had a lower BMI and oxidative potential 
of PM2.5 was related to increased BMI. Living in neighborhoods with 
higher share of one-person households was associated with lower levels 
of BMI. Furthermore, a clustering of results was observed based on 
model’s capacity to deal with linear or non-linear associations. These 
results offer suggestions for further studies to explore the interactions 
between social structures, specific urban characteristics, and their effect 
on health-related behaviors. 

Studying multiple environmental factors as one system offers ad-
vantages. Mainly, multiple exposure studies allow to disentangle the 
effects of individual factors, considering the complex interactions be-
tween them. Generalizing the results of this study, many of the selected 
environmental factors were reflecting urbanisation. As we did not find 
any associations between BMI and urbanicity level (measured by resi-
dential density), this suggests that urban obesogenic environments are 
not simply driven by population densities but rather by specific neigh-
borhood characteristics associated with population density. 

We confirmed that the neighborhood SEP is an important health- 
related component of the neighborhood environment. We found clear 
links between a variety of indicators of neighborhood SEP and BMI 
irrespective to individual-level SEP, which is in line with the previous 
literature (Kim et al., 2019). As mentioned in a recently published meta- 
analysis by Mohammed et al., low neighbourhood SEP might promote 
unhealthy dietary practice and sedentary lifestyle, as health-enhancing 
facilities are often limited, whereas energy-dense food items and 
alcohol are more readily available (Mohammed et al., 2019). Besides, in 
low SEP neighbourhoods residents are exposed to more psychosocial 
stressors and higher risk of depression, which is likely to influence one’s 
unhealthy lifestyle choices, resulting in higher risk of obesity (Gary- 
Webb et al., 2011). Moreover, in low SEP neighbourhoods, streets 
walkability and safety might negatively influence the mobility and 
physical activity of residents (Popkin et al., 2005). 

Some might argue to consider the area-level SEP variables as con-
founders rather than exposures. If area-level SEP would indeed have 
been considered as a confounder rather than an exposure in this study, 
reported results would not be distorted regarding to other exposures, 
because all the exposures and confounders were introduced simulta-
neously in all the models, including the area-level SEP proxies. This 
would mean that three variables representing proxies for neighborhood 
SEP (average house prices, low- and high-income neighborhoods) would 

Fig. 3. Spearman correlation coefficients between variable importance scores 
attributed by each method and the median rank across these scores. GAM boost 
= Generalized Additive Model boost. 
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be taken out of the overall ranking of exposures. This would cause a 
slight shift in the ranking of other variables, such that the number of 
educational facilities in 10 km, road traffic noise and the share of young 
children (0–14 years old) in neighborhood will then be included among 
the 30 most important predictors of BMI. 

Social networks are important upstream determinants of obesity 
(Lakerveld & Mackenbach, 2017). In our study, linear models observed a 
link between the share of one-person households in neighborhood and 
BMI which highlights the importance of social networks, as a neigh-
borhood of singles is probably more active, thriving neighborhood with 
many more social connections (Sarkisian & Gerstel, 2016). It is inter-
esting to note that this outcome is contrary to that of individual level 
household composition found by Barnes et al. who observed that living 

with others is associated with lower body weight (Barnes et al., 2013). 
The present study raises the possibility that oxidative potential of 

PM2.5 is related to obesity. Oxidative potential measures the inherent 
capacity of PM to oxidise target molecules (Yang et al., 2016). Previ-
ously published studies observed higher concentrations of oxidative 
potential (assessed by ESR) in urban as compared to rural areas (Janssen 
et al., 2014) and near major roads compared to urban background. To 
the best of our knowledge, this is the first study to investigate associa-
tions between exposure to oxidative potential (DTT and ESR) of PM2.5 
and adult obesity. As documented for other air pollutants, the oxidative 
potential of PM2.5, might also contribute to cardiometabolic disorders by 
inducing oxidative stress and inflammatory processes (Gangwar et al., 
2020; Viehmann et al., 2015). In an animal study, Xu et al. showed that 

a) Random forest 

Fig. 4. Shapley plot illustrations of the most influential exposures in Random Forest (a) and Extreme Gradient Boosting (b) models. Shapley BMI (kg/m2) represents 
the difference between a prediction and the average prediction of BMI. OPESR = Oxidative potential of particulate matter (PM2.5) measured by electron spin 
resonance. For the interpretation of OPESR, note that the direction of association should be inversed, as it was multiplicative inverse transformed (multiplicative 
inverse = 1/variable) to approach normality. 
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PM2.5 exposure triggers oxidative stress in brown adipose tissue in mice, 
and results in key alterations in mitochondrial gene expression and 
mitochondrial alterations that are pronounced in brown adipose tissue. 
The authors assume that exposure to PM2.5 may induce imbalance be-
tween white and brown adipose tissue functionality and thereby pre-
dispose to metabolic dysfunction (Xu et al., 2011). However, we must 
note that oxidative potential is reported to be highly sensitive to the 
components of PM sourced in atmosphere by road traffic (Yang et al., 
2015). These data therefore must be interpreted with caution, as the 
observed association could be explained by unmeasured exposures 
related to urbanicity or road traffic. However, no associations were 
observed with other traffic related factors like UFP, NO or PMabsorbance 
arguing perhaps for an actual role of the oxidative potential of partic-
ulate matter in obesity. 

Previous studies have observed inconsistent results on whether the 
food environment is associated with weight status (Lam et al., 2021). 
Our findings add to the existing literature in that healthy food outlets 

were related to lower BMI. However, we also observed inconsistency of 
direction of association between non-healthy food outlets and BMI. A 
possible explanation to this finding is that in the Netherlands healthy 
and unhealthy food retailers often co-locate. Furthermore, in this study 
healthy food outlets were defined by supermarkets and convenience 
stores, whereas these types of retail offer both healthy as well as un-
healthy food. 

As expected, sensitivity analysis showed that the results of single 
exposure models differed from the results of multiple exposure models, 
mainly by an increased proportion of identified significant associations 
and underestimated effect estimates. One of the reasons for this is the 
insufficient control for confounding factors from the environment. 

We combined seven different statistical approaches to find the most 
consistent exposure-BMI associations. For the strongest associations, the 
results were consistent across all approaches besides the sparse group 
PLS, which did not select any exposures. As the exposure effects were 
modest, this could be the reason why sgPLS did not pick up any 

b) Extreme gradient boosting 

Fig. 4. (continued). 
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exposures. The performance of the multiple linear regression model was 
comparable with the other linear models. Our analysis was still in a 
rather low-dimensional setting (<100 variables) with relatively high 
number of observations and moderate correlations between variables. In 
this scenario the MLR model showed not to be compromised by multi-
collinearity problems. In terms of variable selection, MLR correlated 
with the overall median rank slightly better compared to other linear 
models, but less well than nonlinear methods (Fig. 3). Data-driven 
methods such as RF or XGboost proved useful for the incorporation of 
nonlinear and non-additive associations, especially combined with 
Shapley plot visualizations, which drastically improved the interpret-
ability of these models by plotting nonlinear associations. Despite these 
remarkable advances in the interpretation of these powerful methods, 
we did not investigate interactions in the data, because with current 
variable importance measures the detection of interactions is not 
straightforward, especially for modest effect sizes, as in this study 
(Wright et al., 2016). RF approach provided a better balance between 
the capacity to address multiple exposure data, the computational 
burden and the robustness of model. However, as we do not know the 
true exposure-health associations in the data it is difficult to compare 
these statistical methods with each other and give strong recommen-
dations on their future use. We therefore advocate a pluralistic approach 
in which multiple methods with different model specifications are used 
to derive inference across different models. 

One of the challenges of a multi-inference approach is collective 
interpretation of the results. We handled this issue by using VI scores 
from various models to get a ranking of exposures, and evaluate the 
consistency of findings across approaches. A multi-inference approach 
also helps in achieving a balance between false positives and false 
negatives, i.e., multiple approaches reduce false negatives and the 
combination of stability selection/cross validation and collective eval-
uation of the results reduces false positives. It should be noted that 
despite the robustness of the pluralistic approach, it imposes a compu-
tational burden and does not offer a solution for the exact effect esti-
mates. This question is however, a topic for further discussion indicating 
the need for more research in this field and advocates for the develop-
ment of adapted statistical methods. 

The strengths of this study include, first, the large number of par-
ticipants (n > 14,000), sampled from the general population (age 
30–65) in Netherlands. Second, we have analyzed a large number of 
individual level and contextual urban exposures and important con-
founding factors. Third, we have accounted for complex interactions and 
non-linear associations by applying six different statistical approaches, 
which are scarcely used in epidemiological studies. 

We also acknowledge several limitations of this study. First, our 
study has a cross-sectional design, which makes it impossible to estab-
lish the temporal link between the events and limiting the causal 
interpretation of associations. This is particularly important for the 
vulnerability to residential self-selection bias, resulting from health- 
related attitudes, neighborhood preferences, or other unmeasured 
characteristics related to both neighborhood choice and health-related 
outcomes (James et al., 2015). For instance, despite that many of the 
identified factors reflect the degree of urbanization, it could also be the 
case that participants with lower SEP are generally living in these urban 
areas. Second, our outcome was self-reported BMI. Literature suggests 
that adults tend to under-report their own weight and that the gap be-
tween self-reported weight and actual weight increases with obesity 
(Maukonen et al., 2018). Third, the issue of measurement error could 
also apply to the environmental exposures, which consisted of a mix of 
modelled and measured values with heterogeneous error structures. 
Therefore, complex combinations of both types of measurement errors: 
classical and Berkson’s, might be present in the given dataset. In general 
terms, this means that the sensitivity of models is lower for highly var-
iable factors (if we repeat the exposure assessment several times, those 
with the lowest intra-class coefficient of correlation) compared to factors 
that are more stable over time (Agier et al., 2020). 

Despite its limitations, a pluralistic multi-model inference seems yet 
to be the best approach when an established method of reference is 
lacking. Although such an approach is computationally heavy, with 
current computational resources it is implementable. This study is, to 
our knowledge, one of the first to assess the contributions of a large set of 
urban environmental factors in adult overweight and obesity. It in-
dicates that urban infrastructure and socioeconomic and demographic 
characteristics at the neighborhood level could be drivers for obesity. As 
these neighborhood characteristics are modifiable, it strengthens the 
evidence base for targeted built environmental policies and intervention 
approaches. Further research should be undertaken to confirm and 
further investigate the role of oxidative potential of particulate matter in 
relation to obesity. 
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