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Abstract

Field studies in the global ocean have shown that plastic fragments make up the majority of plastic
pollution in terms of abundance. It is not well understood how quickly plastics in the marine
environmental fragment, however. Here, we study the fragmentation process in the oceanic
environment by considering a model which captures continuous fragmentation of particles over
time in a cascading fashion. With this cascading fragmentation model we simulate particle size
distributions (PSDs), specifying the abundance or mass of particles for different size classes. The
fragmentation model is coupled to an environmental box model, simulating the distributions of
plastic particles in the ocean, coastal waters, and on the beach. We demonstrate the capabilities of
the model by calibrating it to estimated plastic transport in the Mediterranean Sea, and compare
the modelled PSDs to available observations in this region. Results are used to illustrate the effect
of size-selective processes such as vertical mixing in the water column and resuspension of particles
from the beach into coastal waters. The model quantifies the role of fragmentation on the marine
plastic mass budget: while fragmentation is a major source of secondary plastic particles in terms of
abundance, it seems to have a minor effect on the total mass of particles larger than 0.1 mm. Future

comparison to observed PSD data allow us to understand size-selective plastic transport in the
environment, and potentially inform us on plastic longevity.

1. Introduction

Studies have shown that fragments make up the
majority of marine plastic litter in terms of abund-
ance in the global ocean (Cézar et al 2014, Suaria
et al 2016). The large amount of fragments is evident
from particle size distribution (PSD) data, specify-
ing the abundance or mass of particles for different
size classes. An overview of PSD data from various
studies is given in Kooi and Koelmans (2019); some
examples are presented in figure 1. What is com-
monly observed in PSD data is a power law for lar-
ger fragments (>1 mm in figure 1) (Cézar et al 2014,
2015, Enders et al 2015, Erni-Cassola et al 2017),
i.e. a straight line on a log-log scale as can be seen
in figure 1. Oftentimes, a maximum in the PSD is
observed at smaller particle sizes (~1 mm in figure 1),
ending the power law regime. This maximum has
been observed to vary, and has been attributed to, for

© 2021 The Author(s). Published by IOP Publishing Ltd

example, the distance to the nearest coast (Isobe et al
2014, Pedrotti et al 2016).

It is necessary to further investigate the frag-
mentation process if we want to explain the partic-
ular shapes of measured PSD data. Fragmentation
of plastics is likely dominant on beaches or inland
water bodies such as rivers, where plastics are sub-
jected to UV-radiation, oxidation, and higher tem-
peratures, embrittling the particles, which enhances
the breaking down of particles by mechanical abra-
sion (Andrady 2011, Kalogerakis et al 2017, Song
et al 2017, Efimova et al 2018). Fragmentation mod-
els have been proposed in e.g. Cézar et al (2014),
hypothesising that the PSD slope depends on whether
particles break down in a three-dimensional fash-
ion (i.e. like a cube), or more in a two-dimensional
fashion (like a thin sheet). It has been shown that
the polymer type influences how plastic particles
fragment (e.g. due to differences in the surface cracks
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Figure 1. Observed number size distributions. (a) Samples from Cézar et al (2014) obtained around the world, and samples from
Cozar et al (2015) and Ruiz-Orej6n et al (2018) obtained in the Mediterranean Sea, see the supplementary material (section S3)
for locations. (b), (c) Samples from Isobe et al (2014, 2015) obtained from the Seto Inland Sea (Japan) and the Sea of Japan.
Coastal samples are defined as less than 15 km from the shoreline. All particle size distributions have been normalized relative to
the total abundance of large items (>10 mm) to show differences for small particle sizes clearly. Most datasets seem to follow a
power law for the larger particle size classes (see figure 7). Coastal samples tend to have relatively few small particles (or: relatively
many large particles), and all distributions show a peak in abundance around 1 mm, instead of a monotonic increase with smaller

sizes.

(Andrady 2011)), and how quickly plastic particles
fragment (Song et al 2017), hence directly influencing
how PSDs evolve.

While the main driver behind the PSD might be
fragmentation, physical processes can have a size-
selective influence on plastic particles (van Sebille
et al 2020). Vertical turbulent mixing, induced by for
example the wind, has been shown to mix smaller
particles with lower rise velocities to larger depths
(Kukulka et al 2012, Reisser et al 2015, Chor et al 2018,
Poulain et al 2019). This can reduce smaller size frac-
tions in PSDs measured by nets at the ocean surface
(typically submerged £10-50 cm depending on net
type, see e.g. Cdzar et al (2015), Pedrotti et al (2016),
and Suaria et al (2016)). Furthermore, bigger (more
buoyant) particles likely experience more influence
from Stokes drift, given its limited depth of influ-
ence (Breivik et al 2016, Bremer and Breivik 2017).
Model studies have indicated that Stokes drift tends
to push plastic particles towards coastal areas (Iwasaki
et al 2017, Delandmeter and van Sebille 2019, Onink
et al 2019). In Isobe et al (2014) it was observed that
for coastal seas near Japan, overabundances of larger
plastic particles were found close to the coast versus
more offshore, see figure 1(b). Coastal processes, such
as beaching and resuspension, can be size-selective.
In Hinata et al (2017), residence times of particles
on beaches in Japan were estimated using tagged lit-
ter. Higher particle rise velocities in the water were
related to longer residence times, as these particles are
more likely to be pushed to the backshore by wave
swash. This could mean that larger objects remain
longer on beaches, and hence experience more weath-
ering (Hinata et al 2020). Finally, PSDs could be
influenced by size selective sinking, induced by for
example biofouling (Ryan 2015). Biofouling mod-
els predict that smaller particles, which have a larger
surface to volume ratio, tend to sink more quickly

2

(Kooi et al 2017). This has been observed in experi-
mental studies as well (Fazey and Ryan 2016).

Previous studies, such as the ones by Koelmans
et al (2017) and Lebreton et al (2019), have tried
to quantify marine plastic mass budget using con-
ceptual models. In both of these works, fragment-
ation is purely defined as a rate, breaking down
a mass percentage of a macroplastics category into
a microplastics category over time. How, and how
quickly plastics fragment is still a very uncertain factor
however.

In this work, we consider a fragmentation
model based on fractal theory (Turcotte 1986,
Charalambous 2015), modelling a large range of dif-
ferent size classes. A benefit of modelling a range
of size classes is that we can calibrate the model to
experimental fragmentation studies such as the one
by Song et al (2017), where different polymers were
subjected to laboratory conditions simulating weath-
ering in the marine environment. By modelling a
range of size classes, we can furthermore compare
model output to measured PSDs in the environment,
such as the ones presented in figure 1.

We couple our fragmentation model to an ideal-
ized box model where the marine environment is
split into three different compartments, similar to
Lebreton et al (2019): the beach, coastal water, and
open ocean. By considering a range of size classes,
we can study size-dependent processes in the marine
environment mentioned earlier and their influence
on the fragmentation process and resulting PSDs.
Finally, our model allows quantification of PSDs both
in terms of the amount of particles in each size class,
and the particle mass in each size class. We will make a
distinction between the two, and call them the num-
ber (i.e. abundance) size distribution (NSD), and the
mass size distribution (MSD). We will use the term
PSD when talking about size distributions in general
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Figure 2. (a) Illustration of a parent cube (size class k = 0), consisting of successively smaller cubes, based on Turcotte (1986).
Only three iterations until size class k = 3 are shown here, the size class can increase indefinitely. (b) Illustration of the cascading
fragmentation model with p = 0.5 and after one fragmentation event ir, based on Turcotte (1986) and Charalambous (2015).

(i.e. either NSD or MSD). We will show that with
these MSD data, our model can contribute to obtain
a better understanding of the plastic mass budget.
Similar to the models in Koelmans et al (2017) and
Lebreton et al (2019), the idealized model presented
here allows us to efficiently test hypotheses regard-
ing fragmentation, sources, sinks, and transport of
marine plastics. We will demonstrate this by apply-
ing the model to different marine plastic scenarios in
the Mediterranean Sea. The goal is to have an analysis
which is consistent with current experimental data
of the fragmentation process, observational data in
terms of plastic concentrations and plastic PSD data,
and current knowledge on marine plastic sources,
sinks, and transport.

2. Methodology

2.1. The cascading fragmentation model

The fragmentation model discussed here is based
on simple fractal geometries. We define the spatial
dimension as Dy. When Dy =3, we start with a
cube with a size of L x L x L which we call the par-
ent object, see figure 2(a). This cube can be split in
eight equally-sized cubes, which can each be recurs-
ively split again. The size class of the parent object is
defined as k = 0, the size class of the cubes with length
L/2 is defined as k=1, and so on. When Dy =2, the
starting object is a sheet instead of a cube, which can
be split in four smaller sheets each time the size class
increases.

Coézar et al (2014) presented a fragmentation
model where objects are broken down into a set
of smaller (equally sized) fragments in a series of
successive fragmentation events. This fragmentation
model was used to explain why measured PSDs often
resemble power laws, i.e. functions of the form:

n(l) = ClI™*, (1)

where n is the abundance, [ is the particle size, a is the
power law slope, and C is a constant. However, this
fragmentation model requires a constant input of new
parent objects to achieve a power law, while laborat-
ory experiments have shown that power laws in the
PSD also appear after fragmenting a single input of
parent objects (Song et al 2017).

The fragmentation model used here builds upon
the work of Turcotte (1986), where it was noted
that scale-invariance of the fragmentation process,
whether it be caused by weathering, explosions, or
impacts, leads to such a power law. The idea behind
the model of Turcotte (1986) can be illustrated using
figure 2(b). Following one fragmentation event if, a
certain fraction p of the original cube (size class k = 0)
splits off. For example, if p = 0.5, this results in 4 frag-
ments of k =1 splitting off, leaving 0.5 object in size
class k=0. This process is assumed to be the same
on all length scales: a fraction p will split off from the
fragments in size class k=1 as well: 16 fragments of
size class k =2 are created, and 4 x 0.5 =2 fragments
are left in size class k=1. This process is repeated
indefinitely.

Bird et al (2009) and Gregory et al (2012) exten-
ded this model by including a temporal component,
with each fragment breaking down further as if pro-
gresses. Charalambous (2015) showed that repeatedly
breaking down fragments over discrete steps of if is a
sequence of independent and identical Bernoulli tri-
als with a chance of success p, yielding a negative bino-
mial distribution. This is rewritten in terms of a con-
tinuous fragmentation index f (instead of the discrete
i), yielding a probability density function giving the
mass 1 in size class k at fragmentation index f as:

o T(k+))
mkfP) = T rg

where I' is the gamma function. We will call this
model, introduced in Charalambous (2015), the

Pra-pf, @
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Figure 3. Particle size distributions from the cascading fragmentation model, using p = 0.5. Distributions for different
fragmentation indices f are shown. (a) The discrete NSD (left y-axis) and the NSD normalized with respect to the particle size
(right y-axis). (b) The discrete MSD (left y-axis) and the normalized MSD (right y-axis).

cascading fragmentation model. We assume that f is
directly proportional to time in the environment, and
will review this assumption in the discussion.

The amount of fragments in a given size class is
estimated by multiplying the mass with 2PV, a factor
determining how many fragments of size class k fit
inside the parent object:

n(k.f,p) = 2" m(k: f,p). (3)

We use Dy =3 as the baseline. However, this factor
is Dy = 2 for purely flat objects like plastic sheets and
Dy =1 for fibres or lines. As real-world samples con-
tain a combination of these objects, the value for Dy
in the environment can be a non-integer between 1
and 3. The value of Dy is only influenced by the shape
of the objects. The material properties (e.g. polymer
type) only affect the value of p and how quickly f pro-
gresses in time.

Figure 3(a) shows the NSD resulting from the cas-
cading fragmentation model at various fragmenta-
tion indices f. We start with one cube with a length
L of 1 mm at f = 0. The continuous description in (3)
allows us to model the amount of fragments at a very
small fragmentation index of f = 0.001. There are few
larger fragments (>1072 mm) per parent object at
this stage. At f =1 we have exactly a power law in
the NSD, equivalent to the model by Turcotte (1986)
which only considers a single discrete fragmentation
event ir. A fractal dimension Dy of the object formed
by all fractions can be defined, relating to Dy and p
by:

Dy =log, (2D”p) . (4)

The NSD power law slope at f =1 is given by this
fractal dimension.

Fragments can be broken down further, even-
tually resulting in the NSD shown for f =10. This
is not a power law anymore, and the slope of this
curve has increased significantly, with relatively many
particles in the small size classes. The NSD (units:
n) can be normalized, by dividing the amount of

4

fragments by the size class bin width (units: n mm™").
These normalized NSDs are presented by the dashed
lines. Because of the log-scale on the x-axis, the dis-
tance between the given particle sizes increases by a
constant factor. This increases the magnitude of the
normalized NSD slopes by 1 compared to the dis-
crete NSD. The slope of these normalized NSDs is not
dependent on the size class bins used for the meas-
urements, allowing for comparison between different
studies.

Figure 3(b) shows the same analysis in terms of
mass, i.e. the MSD, starting with one cube of 1 g
and 1 mm?>. As fragmentation progresses, mass shifts
from the large fragments towards smaller fragments.
At f =1 we have a power law: the difference in the
slope between the NSD and MSD is 3, resulting from
the 2P¥ term in (3), with Dy = 3.

2.2. Environmental box model

With the cascading fragmentation model we can now
simulate PSDs over time. Different particle sizes will
undergo different types of forcing and transport in
the environment. The combination of fragmentation
and size-selective transport is investigated using a box
model, presented in figure 4. The boxes in this model
represent three different environmental regions: the
beach, coastal waters, and open ocean.

Particles can move between the different environ-
ments, defined by a set of transition probabilities (P):
particles can move to a different environmental box
(the arrows on the right in figure 4), remain in the
current box (recurring arrows on the left), or vanish
from the system (i.e. a sink, arrows on the left). Sub-
scripts in figure 4 denote ocean, coast, beach, or sink
(O, C, B, and S respectively).

Besides different environmental regions, we have
different particle size classes. For a given size class,
certain mass fractions will move to smaller size classes
under the influence of fragmentation. These fractions
are estimated by evaluating (2) for the given time
step of the box model. Similarly, (3) is evaluated to
determine the abundance of fragments moving to
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P P
Beach cB > BC )
Figure 4. Environmental box model used to simulate
particle size distributions in the marine environment.
Particles move between and within the ocean, coast, and

beach boxes, and for each box there is a probability of being
removed from the system.

smaller size classes. Fragmentation is assumed to only
happen on the beach, where degradation is expected
to be much more effective than in the sea (Andrady
et al 1993, Andrady 2011).

Each environmental box contains a range of dif-
ferent particle size classes. The combination of envir-
onmental transition probabilities and fragmentation
is modelled using a transition matrix. For example,
taking 15 different size classes and 3 environmental
compartments leads to a transition matrix of size
45 x 45. Further details are given in the supple-
mentary material (section S2), available online at
stacks.iop.org/ERL/16/054075/mmedia.

2.3. Applying the box model to the Mediterranean
Sea

We will demonstrate the capabilities of the
environmental box model using a set-up based on
the Mediterranean Sea. Environmental transition
probabilities are derived from the literature on plastic
transport in the Mediterranean Sea as much as pos-
sible. The different parameters, the studies on which
they are based, and the areas of these studies are
shown in table 1.

2.3.1. Transport in the marine environment

A Lagrangian simulation of floating plastic in the
Mediterranean Sea (Kaandorp et al 2020) is used
to determine transition probabilities within and
between the ocean and coast (Pp,0, Po,c, Pcc, and
Pco). The coast is defined as the ocean within 15 km
of the coastline.

Previous model studies have indicated that Stokes
drift is able to push floating particles towards the
coast, e.g. in the North Atlantic (Onink et al 2019), the
North Sea (Delandmeter and van Sebille 2019), and
in the Sea of Japan (Iwasaki et al 2017). It has been
hypothesised that this leads to near-shore trapping
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of larger plastic particles, as more buoyant particles
would tend to reside closer to the water surface, where
they experience more influence from the Stokes drift
(Isobe et al 2014, Iwasaki et al 2017).

We investigate the effect of this near-shore trap-
ping of larger plastic particles and its influence on
fragmentation. First, we calculate the transition prob-
abilities assuming all particle sizes reside at the ocean
surface, where they experience the maximum Stokes
drift (corresponding to the transition probabilities
between the ocean and coast in table 1). We then com-
pute how differently sized particles are vertically dis-
tributed in the water column, and how this influences
the lateral transport induced by Stokes drift. The
approach from Poulain et al (2019) is used to estimate
particle rise velocities wy, for different particle sizes,
see the supplementary material (section S3) for fur-
ther details. From these rise velocities we calculate
the median particle depth, using the particle density
profiles from Kukulka et al (2012). The Stokes drift
is estimated at this depth, assuming a Stokes profile
based on the Phillips wave spectrum (Breivik et al
2016). For this Stokes drift, the transition probabil-
ities are calculated using Lagrangian model simula-
tions (Kaandorp et al 2020) with different Stokes drift
factors. In the end, this gives us different transition
probabilities (Po,0, Po,c, Pcc, and Pcp) for each
particle size. More information and resulting trans-
ition probability values are given in the supplement-
ary material (sections S1 and S3).

Using the same approach as in Kaandorp et al
(2020), we estimate Pcp by analysing drifter buoy
data: from a set of 1682 drifters in the Mediterranean
(Menna et al 2017), we calculate how much time
these drifters spend near the coast before beaching.
For drifter buoys within 15km of the coastline, the
beaching rate is estimated to be about 6.7 x 107> d~!
(corresponding to an e-folding time-scale 7¢p of 149
days). In Kaandorp et al (2020) it was estimated that
Tcp for plastic particles is about three times lower
than that for drifter buoys. We will therefore use 7¢p
= 50 days as the baseline estimate here.

We use data from Hinata et al (2017) to estimate
residence times Tpc of plastic particles on beaches,
to obtain Ppc and Ppp. This study was conducted
on a beach in Japan, no information could be found
for the Mediterranean Sea specifically. We therefore
assume that the Japanese setting is representative of
the Mediterranean too: a sensitivity study for 7p¢ is
presented in the supplementary material (S1). As a
baseline estimate we use 7p¢c =211 d, reported for
small plastic floats (corresponding to the baseline Pg ¢
in table 1). We will then investigate the effect of size-
selective resuspension, for which the empirical rela-
tion from Hinata et al (2017) is used, i.e.

Tee(Wp) = 2.6 X 10* wy, + 7.1, (5)

where Tpc is given in days, and w;, in ms™!.


https://stacks.iop.org/ERL/16/054075/mmedia

10P Publishing

Environ. Res. Lett. 16 (2021) 054075

M L A Kaandorp et al

Table 1. Environmental box model parameters and fragmentation parameters, references used to estimate the parameter values, the

respective study areas, and the estimated baseline parameter values.

Parameter Reference study or data Reference study area Baseline parameter value
Po,o Kaandorp et al (2020) Mediterranean 7.2 % 107" week ™!
Po.c Kaandorp et al (2020) Mediterranean 2.7 x 107! week ™!
Pc.o Kaandorp et al (2020) Mediterranean 3.4 % 1072 week !
Pcc Kaandorp et al (2020) Mediterranean 8.3 x 107! week ™!
Pcp Menna et al (2017), Kaandorp et al (2020) Mediterranean 1.3 x 107! week ™!
Pg.c Hinata et al (2017) Japan 3.2 x 1072 week ™!
Py p Hinata et al (2017) Japan 9.6 x 107! week ™!
Ps Cozar et al (2015), Kaandorp et al (2020) Mediterranean 5.1 x 107> week ™!
Input Kaandorp et al (2020) Mediterranean 2500 tyear ™!

p Song et al (2017) South Korea 0.4

A Song et al (2017) South Korea 1.8 x 1072 week ™!

The box model also requires transition probabilit-
ies for removal of particles: Po s, Pc s, Pp,s. We assume
these are the same in all compartments, denoted by
Ps. A given value for Pg yields a certain amount of
steady-state mass in the system. We take the estimated
input of waste into the Mediterranean from Kaandorp
et al (2020) (2500 metric tonnes for the year 2015),
and the estimated total floating mass from Cézar et al
(2015) (2000 metric tonnes). The value for Ps is iter-
ated until this mass balance is satisfied, see the supple-
mentary material (section S2) for more information.

Finally, we need to specify the plastic input into
the marine environment in terms of location and
shape. We assume that new plastic objects are intro-
duced on the beach. This assumption does not affect
results significantly, see the supplementary mater-
ial (S1). We use an initial length of 200 mm based
on typical dimensions of municipal plastic waste in
the Netherlands (Jansen et al (2015), see the supple-
mentary material section S4), assuming that plastic
product dimensions are similar to those used around
the Mediterranean Sea. We use Dy = 3 as the baseline,
i.e. cubical-shaped objects. The model time step is set
to 1 week.

2.3.2. Fragmentation parameters

We use data from Song et al (2017) to estimate the
fragmentation parameter p, and to estimate the frag-
mentation rate A specifying how much f increases per
unit time.

In Song et al (2017), plastic pellets were sub-
jected to different levels of UV exposure and to 2
months of mechanical abrasion with sand, simulat-
ing a beach environment. The data for polyethylene
(PE) and polypropylene (PP) pellets (26 and 19 mm?®
respectively) are used, as these are the most abundant
polymers in the Mediterranean surface waters (PE:
52%-76%, PP: 7%-16% (Pedrotti et al 2016, Suaria
etal 2016)).

We assume a single p value per material, and
Dy =3. The fragmentation index f is allowed to
vary between the different levels of UV exposure
when fitting the data. By fixing p and varying f,

we get a robust estimate for the unknown para-
meter p for which we need a plausible value in
the box model. We can expect that f is larger
for particles subjected to longer periods of UV
exposure, since embrittlement will make it easier
for the mechanical abrasion to wear down the
particles.

Resulting NSD fits using weighted least squares
are presented in figure 5, top row, fitted values for f
are presented in the legend. For PE particles, the best
fit results in p = 0.39, for PP particles p = 0.45. The
experimental data are still at the early stage of frag-
mentation (f < 1), with few fragments per parent pel-
let, except for small fragment sizes.

There is a good fit for the PE data, with almost all
simulations within the data error bars (one relative
standard deviation). For PP there is a good fit for 0, 2
and 6 months of UV exposure. At 12 months of UV
exposure there is more mismatch for the smallest size
class (0.05-0.10 mm). This is also the only case where
the estimated f is lower than for the previous level of
UV exposure.

The bottom row of figure 5 compares the estim-
ated volume fractions of the parent pellets and the
fragments. Generally, the modelled volume fraction
of the parent pellet is estimated reasonably well,
although there is some overprediction for PE with
12 months of UV exposure. The modelled fragment
volumes are higher than the ones estimated in Song
et al (2017). A possible explanation is that some of
the larger fragments could have been missed in the
experimental setting since there are very few of these
per parent object (e.g. tenths or hundredths). One can
see in figure 3 that at an early stage of fragmentation
(f < 1), the larger fragments contribute little to the
total abundance of fragments (figure 3(a)), but a lot
to the total volume or mass of fragments (figure 3(b)).
In the experimental setting ten parent objects per
sample were used, and fragments were counted under
magnification on 0.7%-5% of the filter paper area.
The larger fragments could therefore have been
missed, or even have a low probability of actually
existing.
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Following this analysis, we set the baseline value
of p in the box model to 0.4, within the range of
the fitted p for PE and PP. A fragmentation rate A
needs to be chosen, specifying how much f increases
per unit time. We assume that A is a constant, mean-
ing that the amount of fragmentation f is directly
proportional to the time that particles spend on the
beach.

In Song et al (2017) 12 months of laboratory UV
exposure were roughly related to 4.2 years of envir-
onmental exposure, representing beach conditions in
South Korea. Regarding UV exposure, these condi-
tions are quite similar to the Mediterranean (Her-
man et al 1999). Taking our estimated fragmentation
indices for PE and PP results in fragmentation rates
Aof 1.8x 1072 fy~! t0 6.9 x 1072 fy~L. The value
for PE is used as the baseline here, given it is the most
common polymer in the Mediterranean surface water
(Pedrotti et al 2016).

In Song et al (2017) low-density polyethylene pel-
lets are used: future studies are necessary to ana-
lyse how the results change for high-density poly-
ethylene. We acknowledge that the fragmentation
rate A is still very uncertain, and more experi-
mental research is necessary to verify whether the
assumption that f varies linearly in time is a good
approximation.

3. Results

3.1. Modelled environmental particle size
distributions

Now that we have estimates for transition prob-
abilities in the box model and estimates for the
fragmentation parameters, we will simulate PSDs
using a scenario based on the Mediterranean Sea. We
will quantify the power law slope « of the results by
numerically maximizing the log-likelihood ¢ of the
data (Virkar and Clauset 2014):

k
£=n(o— )by + 3 el (617 < b72)),
(6)

where b are the bin boundaries used to discretize the
data, containing n; samples in the bin with index i,
and n=>_n;. In some cases, not the entire particle
size range adheres to a power law. The lower bound of
the power law domain is estimated by minimizing the
Kolmogorov—Smirnov statistic between the modelled
NSD and the theoretical power law NSD (Virkar and
Clauset 2014).

NSDs resulting from the box model are shown in
figure 6, corresponding MSDs and a table with para-
meter settings can be found in the supplementary
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material (section S1). Fragmentation is expected to
increase the fraction of small particles, increasing o
over time (see figure 3). However, environmental
sinks limit the magnitude of «: assuming a con-
stant removal rate of plastic particles, smaller frag-
ments, which tend to be older, have a higher prob-
ability of being removed from the environment. This
combination of fragmentation and environmental
sinks eventually leads to an equilibrium, or statistical
steady state. This is illustrated in figure 6(a) using the
box model with the baseline parameters described in
section 2.2. As time progresses, the relative propor-
tion of fragments to parent objects increases. In this
scenario, it takes on the order of years for the NSD to
resemble the steady state (red dashed line). The mag-
nitude of the environmental sinks is high enough to
avoid long persistence of fragmented particles: there
are still relatively many parent objects, and o = 2.57 is
still below the value derived from the fractal dimen-
sion of v =2.67 from (4).

Steady state NSDs for different scenarios are
presented in figure 6(b). Results for the baseline
parameters (blue lines) almost overlap with the

results where size-selective lateral transport is added
to the box model, induced by vertical mixing and
Stokes drift (orange lines). In the baseline scen-
ario o = 2.57 for all three NSDs. When adding size-
selective ocean transport, larger particles tend to
move more frequently from the ocean to the coast.
This results in slightly more small particles in the
ocean box, increasing the power law slope here
to av=2.73. Adding size-selective resuspension of
particles (Hinata et al 2017) has a strong effect (green
lines). Bigger objects have longer residence times on
the beach, and therefore undergo more fragmenta-
tion. This produces a large number of smaller frag-
ments with shorter residence times, which therefore
move more rapidly to the coastal and ocean cells.
This near-shore trapping of larger plastic objects was
already hypothesized in e.g. Isobe et al (2014). The
empirical resuspension relation (5) causes the model
to deviate from a power law, the domain over which
o is calculated is shaded in green in figure 6. The
model yields o =2.69 on the beach, which is lower
than in the coastal and ocean cells (both ov =3.37). A
scenario where the fragmentation rate is based on PP
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instead of PE is presented (red lines). Fragmentation
breaks down the particles more quickly: a mono-
tonic relation between particle size and abundance is
observed, with o = 3.03. Finally, a scenario is presen-
ted (purple lines) where the input of plastic waste into
the Mediterranean is 100 000 tonnes per year (Jam-
beck et al 2015, Liubartseva et al 2018), instead of the
aforementioned 2500 tonnes per year (Kaandorp et al
2020). The magnitude of the sinks needs to be much
larger now to attain a mass balance based on 2000
tonnes of floating plastics (Cézar et al 2015). Frag-
mentation has little time to break down the particles,
resulting in relatively few fragments per parent object.

In figure 7, we compare PSDs resulting from the
box model with observed ones in the Mediterranean
Sea. In the model results we include both size depend-
ent ocean transport and resuspension. Fragmenta-
tion parameters are set to A=2 x 107* f week™!,
and Dy = 2.5, resulting in good agreement with the
observed PSDs. The effect of vertical turbulent mix-
ing of fragments using the model from Poulain et al
(2019) is shown as well (calm, Ujp~4 m s~', and
above average, Ujp ~ 7 m s~ ! conditions based on the
30% and 70% quantile of Mediterranean sea weather
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conditions (Hersbach et al 2020), see supplementary
material section S3), assuming a submerged net depth
of 25 cm (similar to e.g. Cozar et al (2015)).

Figure 7(a) presents the resulting NSDs. We com-
pare model results in the ocean cell with measure-
ments by Cozar et al (2015), and results in the coastal
cell with measurements by Ruiz-Orején et al (2018),
as these were mainly obtained further away from the
coast or close to the coast respectively (see the sup-
plementary material: section S3, figure S8). Under
calm wind and wave conditions there is good agree-
ment between the modelled and observed NSDs. Ver-
tical mixing causes the modelled NSDs to deviate
from the power law around <3 mm, similar to the
measured NSDs. Many of the smaller fragments are
expected to be mixed below the net depth, result-
ing in measuring only a fraction of small fragments.
This, combined with a size detection limit effect
where elongated particles escape from meshes smal-
ler than their maximum length (Enders et al 2015,
Abeynayaka et al 2020, Tokai et al 2021), could explain
a part of the underabundance of sub-millimetre frag-
ments in observations. Measurement campaigns with
much smaller size-detection limits than the standard
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neuston nets (see e.g. Enders et al (2015) or Kooi and
Koelmans (2019)) show increasing abundances for
sub-millimetre fragments. It is therefore unlikely that
the underabundance of sub-millimetre fragments is
explained by an increased loss of these particles, sug-
gested in some studies (Cézar et al 2014, Pedrotti et al
2016).

Including vertical mixing has a strong effect on
the estimated power law slope a. An overview of
the estimated o and the power law size range for
figure 7(a) is given in the supplementary material,
section SI. In the ocean cell, o =2.73 without ver-
tical mixing, and decreases to o = 2.63 for calm con-
ditions (U;p~~4 m s~!), and to 2.37 for above aver-
age conditions (Ujg~7 ms™!). A similar decrease is
observed for the coastal cell: « = 2.69 without mixing,
decreasing to « =2.60 (Ujp~4 ms~ ') and a =2.34
(Upp~7 m s '). Similar to the model, a slightly
lower « is calculated for the measurements near the
coast (2.49 £0.06) compared to measurements fur-
ther away from the coast (2.53 = 0.04), although this
difference is not significant.

Few PSD measurements are available for beaches.
Two examples are shown in figure 7(a): one from
the Mediterranean (Constant et al 2019), and one
for which both the NSD and MSD were available
(Fok et al 2017). The measurements on beaches have
much lower power law slopes (o < 1.60) compared
to measurements in the water. This is also captured
by the model, meaning size-selective resuspension
indeed seems to play an important role. In the beach
cell the modelled power law slope of @ = 2.02 is higher
than the measured ones, which might indicate that
size-selective beaching should be taken in account as
well.

Figure 7(b) presents the modelled MSDs. Vertical
mixing has a large influence on the measured mass
for small particle sizes: even under calm conditions,
the measured mass for particles of 0.1 mm is almost
three orders of magnitude lower than without mix-
ing. Unfortunately, there is very limited observational
data reporting MSDs, so the comparison to data is
more limited than for the NSDs in figure 7(a). On
beaches, the model matches the set of measurement
well, but more data are necessary to further verify this.
Large fragments are expected to dominate in terms of
mass on beaches. In the water, o seems to be approx-
imately zero on average. This would mean that the
mass contribution would scale roughly quadratically
for an increasing size class k, i.e. large fragments also
dominate in terms of mass here.

The environmental box model used to model the
PSDs is a useful tool for future mass balance stud-
ies. The steady-state with the model settings used
for figure 7, gives that about 98% of the mass in
the system is on the beach, about 2% in the coastal
surface water, and about 0.2% in the surface open
ocean. This large fraction of plastics stranding is in
good agreement with previous mass balance estimates
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(Lebreton et al 2019). It should be noted that other
environmental regions, like the ocean floor, are not
included in these numbers as these are part of the
sinks in the box model (Ps), which continuously take
up more mass over time. Secondary microplastics
generation can be estimated: for the same model set-
tings, about 6.5 X 107°% of the macroplastic (>5
mm) mass breaks down into microplastics per week,
about 2.0 x 107%% of microplastics become smaller
than 0.1 mm. This is orders of magnitude smaller than
the estimated sinks, taking up about 5.0 x 1072% of
the plastic mass per week. Longevity of plastics can
be estimated: taking a sudden stop of new plastics
entering the marine environment, it would take about
176 years for 99% of the plastic mass to disappear
from the surface water and beaches. This is a much
longer time scale than given by the conceptual model
in Koelmans et al (2017), where for a similar stop
of new plastics, almost all plastic mass was removed
from the ocean surface layer within three years. Plastic
residence times are highly dependent on the input
scenarios: in Koelmans et al (2017), 3% of the world
plastic pollution was estimated to enter the ocean.
Here, the input scenario from Kaandorp et al (2020) is
used for the Mediterranean Sea, where less than 0.1%
of plastic waste from coastal population was estim-
ated to enter the marine environment. These differ-
ences show the importance of further mass balance
studies to constrain this number.

4. Discussion

4.1. Model limitations

We will give a brief overview of the fragmentation
model and environmental box model limitations in
this section, which can be addressed in future studies.

The fragmentation model presented here only
has few parameters (p, f, and Dy), and assumes
that the fragmentation process is scale-invariant. One
example where the assumption of scale-invariance
might not hold is when only the plastic surface layer
gets brittle with microcracks (Andrady 2011). This
possibly increases the fragmentation rate below a cer-
tain length scale, dependent on how far UV radi-
ation penetrates the polymer and the polymer type.
It is assumed that f is directly proportional to the
time that particles spend on the beach, leading to
a constant fragmentation rate \. In e.g. Charalam-
bous (2015), it was shown that grinding can become
less efficient as particles become smaller, which might
lead to e.g. a logarithmic relation instead.

One source of uncertainty in the fragmentation
model is the fact that parameters are calibrated using
experimental data for low-density polyethylene and
polypropylene pellets only (Song et al 2017). More
research is necessary to quantify how fragmentation
differs between low-density and high-density poly-
ethylene, and for other polymers found in the envir-
onment not taken in account here (e.g. polyamides
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and polystyrene, which form a substantial fraction
of polymers found in the Mediterranean Sea surface
water (Pedrotti et al 2016)). PSDs are quite sensitive
to the choice of A (see figure 6) and p (see the sup-
plementary material, section S1), for which the values
are still quite uncertain. More experimental data are
required to further constrain these parameters and
to estimate how they vary globally. Finally, it is still
uncertain which processes can extend the degradation
process to finer scales than mechanical abrasion, and
the magnitude of their influence (e.g. photochem-
ical oxidation (Ward et al 2019), or biodegradation
(Molitor et al 2019, Gerritse et al 2020)).

The environmental box model is an idealized
section of the marine environment, only considering
overall transport between cells representing the open
ocean, coastal water, and beach. Regional influences
are not taken in account and should be investigated
in the future: think, for example, about different
types of coasts (Weideman et al 2020) with differ-
ent particle residence times and beaching timescales
(Samaras ef al 2014). A number of assumptions were
made to arrive at the environmental box model. We
assume that the majority of plastic particles are frag-
ments (Cozar et al 2014, Suaria et al 2016), which
means that the influence of primary plastics such as
resin pellets (Turner and Holmes 2011) or plastic
beads from consumer products (Fendall and Sewell
2009) is neglected. It is assumed that fragmenta-
tion is dominant on beaches (Andrady 2011). Frag-
mentation in the water column is neglected, which
might be for example induced by hydrolysis and
biodegradation (Gerritse et al 2020), or ingestion
and scraping by marine organisms (Reisser et al
2014, Mateos-Cardenas et al 2020). It is further-
more assumed that new plastic particles are intro-
duced on the beach. In reality there will be a com-
bination of inputs into the different environmental
compartments depending on the sources. In the sup-
plementary material (section S1) it is shown that
this assumption has no significant effect on the res-
ults. Finally, it is assumed that the rate of plastic
removal from the marine environment is constant.
Although we are looking at time scales in the order
of years here, seasonality might have an effect on the
removal rate by influencing, for example, biological
activity.

We demonstrated the model capabilities using a
set-up based on the Mediterranean Sea. One source
of uncertainty is that the resuspension time scale is
obtained from Hinata et al (2017), based on exper-
iments at a Japanese beach. A sensitivity study for
this parameter is given in the supplementary material
(section S1). Future studies should look at how this
parameter varies for different beaches globally. The
size of new plastics introduced into the marine envir-
onment is still uncertain: it is fixed to 200 mm here,
while in reality this will be a spectrum of different
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sizes, see the supplementary material (sections S1, S4)
for more information.

4.2. Fragmentation models and size distribution
data
The cascading fragmentation model by Charalam-
bous (2015) used in this work, shows quite good cor-
respondence with experimental data from Song et al
(2017) (see figure 5). A benefit of the fragmenta-
tion model presented here, is the ability to model
the mass size distribution (MSD) as well, which can
help us obtain a better understanding of the marine
plastic mass budget. MSD data to validate the model
is currently lacking however, for example to verify
whether the larger size classes indeed make up most
of the environmental plastic mass. More PSD data
from beaches would allow for better constraining res-
idence times of plastic particles on beaches and in
coastal waters, and more data from marine sediment
might give insight in the role of size-selective sinking,
induced by e.g. biofouling (Kooi et al 2017).
Fragmentation models for plastics have been
introduced in previous works, such as in Cézar
et al (2014). They focused mainly on spatial dimen-
sionality: =3 in the NSD was related to three-
dimensional fragmentation, i.e. a cube splitting into 8
smaller cubes. Care should be taken in future studies
that when working with logarithmic binning, the nor-
malized NSD (units: n mm™!) slope decreases by one
compared to the discrete NSD (units: n), see figure 3.
This was overlooked in Cézar et al (2014): =3
would correspond to two-dimensional fragmentation
with their model, see the supplementary material
(section S5) for further explanation. Normalization is
also important to take into account when describing
plastic particle size in terms of a probability density
function (Kooi and Koelmans 2019), specifying the
probability per unit length (units: mm™!). Finally,
estimating « is not trivial: fitting straight lines on log-
log transformed data induces large biases, maximum
likelihood approaches are more suitable, see e.g. New-
man (2005) and Virkar and Clauset (2014).

5. Conclusions

In this work, we modelled particle size distributions
(PSDs) of plastics in the marine environment, by
considering a cascading fragmentation model, and a
box model taking in account size-selective transport
between the open ocean, coastal water, and beach.
We showed that the cascading fragmentation model
is able to explain the power law observed in PSDs
from the environment and experimental fragment-
ation studies, that size-selective transport plays an
important role near the coast, and that vertical mixing
in the water column has a strong impact on measured
PSDs.
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Understanding the nature of PSDs and how they
differ in environmental regions can help us get a bet-
ter understanding of the marine plastic mass budget.
Previous conceptual mass balance studies, such as the
ones by Koelmans et al (2017) and Lebreton et al
(2019), did consider fragmentation, but only for 2 or
3 categories (macro-, micro- and nanoplastics). Here,
we model a range of size classes. This way, we can not
only predict which environmental compartment con-
tains most plastic mass, but also which size ranges.

We applied the combined fragmentation and
environmental box model to a scenario based on the
Mediterranean Sea. For the steady-state, we estimate
that of buoyant plastics about 98% of plastics reside
on beaches, about 2% in coastal surface waters, and
about 0.2% in the surface open ocean. On one hand,
the model predicts fragmentation to play an import-
ant role in terms of generating a large number of
plastic fragments. On the other hand, fragmentation
seems to play a minor role in the mass budget com-
pared to other environmental sinks, by moving mass
from large to small particle size classes.

Opverall, the idealized model presented here is a
valuable tool to efficiently test hypotheses regarding
the marine plastic mass budget. It can be checked
whether a certain hypothesis leads to results which are
consistent with current knowledge of plastic sources,
sinks, transport, fragmentation, and observational
data of plastic concentrations and PSDs. At a later
stage, the fragmentation model could also be applied
to more complex physical models, taking into account
spatial and temporal variability of plastic transport in
the marine environment.

Data availability statement

The data that support the findings of this study
are openly available at the following URL/DOL:
https://github.com/OceanParcels/ContinuousCascad
ingFragmentation.

Acknowledgments

This work was supported through funding from
the European Research Council (ERC) under the
European Union Horizon 2020 research and innov-
ation programme (Grant Agreement No. 715386).
This work was carried out on the Dutch national e-
infrastructure with the support of SURF Cooperat-
ive (Project No. 16371). We would like to thank Dr
Wonjoon Shim and Dr Young Kyoung Song for their
data on plastic fragmentation, Dr Marie Poulain-
Zarcos for providing data on particle sizes and ver-
tical mixing, Dr Andrés Cézar and Dr Atsuhiko
Isobe for providing raw particle size distribution data.
We would like to acknowledge the two anonymous
reviewers of this manuscript, whose thoughtful com-
ments substantially improved the clarity and readab-
ility of this work.

12

M L A Kaandorp et al

ORCID iDs

Mikael L A Kaandorp ® https://orcid.org/0000-
0003-3744-6789

Henk A Dijkstra ® https://orcid.org/0000-0001-
5817-7675

Erik van Sebille ® https://orcid.org/0000-0003-
2041-0703

References

Abeynayaka A, Kojima F, Miwa Y, Ito N, Nihei Y, Fukunaga Y,
Yashima Y and Itsubo N 2020 Rapid sampling of suspended
and floating microplastics in challenging riverine and
coastal water environments in Japan Water 12 1903

Andrady A L 2011 Microplastics in the marine environment Mar.
Pollut. Bull. 62 1596-605

Andrady A L, Pegram ] E and Song Y 1993 Studies on enhanced
degradable plastics. II. Weathering of enhanced
photodegradable polyethylenes under marine and freshwater
floating exposure J. Environ. Polym. Degrad. 1 117-26

Bird N R A, Tarquis A M and Whitmore A P 2009 Modeling
dynamic fragmentation of soil Vadose Zone J. 8 197-201

Breivik @, Bidlot J R and Janssen P A E M 2016 A Stokes drift
approximation based on the Phillips spectrum Ocean Model.
100 49-56

Charalambous C 2015 On the evolution of particle fragmentation
with applications to planetary surfaces PhD Thesis Imperial
College, London

Chor T, Yang Di, Meneveau C and Chamecki M 2018 A turbulence
velocity scale for predicting the fate of Buoyant materials in
the oceanic mixed layer Geophys. Res. Lett. 45 11817-26

Constant M, Kerhervé P, Mino-Vercellio-Verollet M,

Dumontier M, Vidal A Sanchez, Canals M and Heussner S
2019 Beached microplastics in the Northwestern
Mediterranean Sea Mar. Pollut. Bull. 142 263-73

Cozar A et al 2014 Plastic debris in the open ocean Proc. Natl
Acad. Sci. USA 111 1023944

Cézar A, Sanz-Martin M, Mart1 E, Ubeda B, Gélvez J A, Irigoien X
and Duarte C M 2015 Plastic accumulation in the
mediterranean sea PLoS One 10 1-12

Delandmeter P and van Sebille E 2019 The Parcels v2. 0
Lagrangian framework: new field interpolation schemes
Geosci. Model Dev. 12 357184

Efimova I, Bagaeva M, Bagaev A, Kileso A and Chubarenko I P
2018 Secondary microplastics generation in the sea swash
zone with coarse bottom sediments: laboratory experiments
Frontiers Mar. Sci. 5 313

Enders K, Lenz R, Stedmon C A and Nielsen T G 2015
Abundance, size and polymer composition of marine
microplastics > 10 gm in the Atlantic Ocean and their
modelled vertical distribution Mar. Pollut. Bull.

100 70-81

Erni-Cassola G, Gibson M I, Thompson R C and
Christie-Oleza J A 2017 Lost, but found with Nile red: a
novel method for detecting and quantifying small
microplastics (1 mm to 20 pm) in environmental samples
Environ. Sci. Technol. 51 136418

Fazey F M C and Ryan P G 2016 Biofouling on buoyant marine
plastics: an experimental study into the effect of size on
surface longevity Environ. Pollut. 210 354—60

Fendall L S and Sewell M A 2009 Contributing to marine
pollution by washing your face: microplastics in facial
cleansers Mar. Pollut. Bull. 58 1225-8

Fok L, Cheung P K, Tang G and Li W C 2017 Size distribution of
stranded small plastic debris on the coast of Guangdong,
South China Environ. Pollut. 220 407—12

Gerritse J, Leslie H A, de Tender C A, Devriese L I and
Vethaak A D 2020 Fragmentation of plastic objects in a
laboratory seawater microcosm Sci. Rep. 10 1-16


https://github.com/OceanParcels/ContinuousCascadingFragmentation
https://github.com/OceanParcels/ContinuousCascadingFragmentation
https://orcid.org/0000-0003-3744-6789
https://orcid.org/0000-0003-3744-6789
https://orcid.org/0000-0003-3744-6789
https://orcid.org/0000-0001-5817-7675
https://orcid.org/0000-0001-5817-7675
https://orcid.org/0000-0001-5817-7675
https://orcid.org/0000-0003-2041-0703
https://orcid.org/0000-0003-2041-0703
https://orcid.org/0000-0003-2041-0703
https://doi.org/10.3390/w12071903
https://doi.org/10.3390/w12071903
https://doi.org/10.1016/j.marpolbul.2011.05.030
https://doi.org/10.1016/j.marpolbul.2011.05.030
https://doi.org/10.1007/BF01418205
https://doi.org/10.1007/BF01418205
https://doi.org/10.2136/vzj2008.0046
https://doi.org/10.2136/vzj2008.0046
https://doi.org/10.1016/j.ocemod.2016.01.005
https://doi.org/10.1016/j.ocemod.2016.01.005
https://doi.org/10.1029/2018GL080296
https://doi.org/10.1029/2018GL080296
https://doi.org/10.1016/j.marpolbul.2019.03.032
https://doi.org/10.1016/j.marpolbul.2019.03.032
https://doi.org/10.1073/pnas.1314705111
https://doi.org/10.1073/pnas.1314705111
https://doi.org/10.1371/journal.pone.0121762
https://doi.org/10.1371/journal.pone.0121762
https://doi.org/10.5194/gmd-12-3571-2019
https://doi.org/10.5194/gmd-12-3571-2019
https://doi.org/10.3389/fmars.2018.00313
https://doi.org/10.3389/fmars.2018.00313
https://doi.org/10.1016/j.marpolbul.2015.09.027
https://doi.org/10.1016/j.marpolbul.2015.09.027
https://doi.org/10.1021/acs.est.7b04512
https://doi.org/10.1021/acs.est.7b04512
https://doi.org/10.1016/j.envpol.2016.01.026
https://doi.org/10.1016/j.envpol.2016.01.026
https://doi.org/10.1016/j.marpolbul.2009.04.025
https://doi.org/10.1016/j.marpolbul.2009.04.025
https://doi.org/10.1016/j.envpol.2016.09.079
https://doi.org/10.1016/j.envpol.2016.09.079
https://doi.org/10.1038/s41598-020-67927-1
https://doi.org/10.1038/s41598-020-67927-1

10P Publishing

Environ. Res. Lett. 16 (2021) 054075

Gregory A S, Bird N R A, Watts C W and Whitmore A P 2012 An
assessment of a new model of dynamic fragmentation of soil
with test data Soil Tillage Res. 120 61-8

Herman J R, Krotkov N, Celarier E, Larko D and Labow G 1999
Distribution of UV radiation at the Earth’s surface from
TOMS-measured UV-backscattered radiances J. Geophys.
Res. 104 12059-76

Hersbach H et al 2020 The ERAS5 global reanalysis Q. J. R.
Meteorol. Soc. 146 19992049

Hinata H, Mori K, Ohno K, Miyao Y and Kataoka T 2017 An
estimation of the average residence times and
onshore-offshore diffusivities of beached microplastics
based on the population decay of tagged meso- and
macrolitter Mar. Pollut. Bull. 122 17-26

Hinata H, Sagawa N, Kataoka T and Takeoka H 2020 Numerical
modeling of the beach process of marine plastics: a
probabilistic and diagnostic approach with a particle
tracking method Mar. Pollut. Bull. 152 110910

Isobe A, Kubo K, Tamura Y, Nakashima E and Fujii N 2014
Selective transport of microplastics and mesoplastics by
drifting in coastal waters Mar. Pollut. Bull. 89 324-30

Isobe A, Uchida K, Tokai T and Iwasaki S 2015 East Asian seas: a
hot spot of pelagic microplastics East Asian seas: a hot spot
of pelagic microplastics Mar. Pollut. Bull. 101 618-23

Iwasaki S, Isobe A, Kako S, Uchida K and Tokai T 2017 Fate of
microplastics and mesoplastics carried by surface currents
and wind waves: a numerical model approach in the Sea of
Japan Mar. Pollut. Bull. 121 85-96

Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M,
Andrady A, Narayan R and Law K L 2015 Plastic waste
inputs from land into the ocean Science 347 76871

Jansen M, van Velzen U T and Pretz T 2015 Handbook for Sorting
of Plastic Packaging Waste Concentrates (Wageningen:
Wageningen UR—Food and Biobased Research)

Kaandorp M L A, Dijkstra H A and van Sebille E 2020 Closing the
Mediterranean marine floating plastic mass budget: inverse
modelling of sources and sinks Environ. Sci. Technol. 54
11980-9

Kalogerakis N, Karkanorachaki K, Kalogerakis G C, Triantafyllidi
E1, Gotsis A D, Partsinevelos P and Fava F 2017
Microplastics generation: onset of fragmentation of
polyethylene films in marine environment mesocosms
Frontiers Mar. Sci. 4 84

Koelmans A A, Kooi M, Law K L and van Sebille E 2017 All is not
lost: deriving a top-down mass budget of plastic at sea
Environ. Res. Lett. 12 114028

Kooi M and Koelmans A A 2019 Simplifying microplastic via
continuous probability distributions for size, shape and
density Environ. Sci. Technol. Lett. 6 5517

Kooi M, van Nes E H, Scheffer M and Koelmans A A 2017 Ups
and downs in the ocean: effects of biofouling on vertical
transport of microplastics Environ. Sci. Technol. 51 7963-71

Kukulka T, Proskurowski G, Morét-Ferguson S, Meyer D W and
Law K L 2012 The effect of wind mixing on the vertical
distribution of buoyant plastic debris Geophys. Res. Lett.
391-6

Lebreton L, Egger M and Slat B 2019 A global mass budget for
positively buoyant macroplastic debris in the ocean Sci. Rep.
912922

Liubartseva S, Coppini G, Lecci R and Clementi E 2018 Tracking
plastics in the Mediterranean: 2D Lagrangian model Mar.
Pollut. Bull. 129 151-62

Mateos-Cardenas A, O’Halloran J, van Pelt FN A M and
Jansen M A K 2020 Rapid fragmentation of microplastics by
the freshwater amphipod Gammarus duebeni (Lillj.) Sci.
Rep. 10 1-12

Menna M, Gerin R, Bussani A and Poulain P-M 2017 The OGS
Mediterranean Drifter Dataset: 1986—2016 Technical Report

13

M L A Kaandorp et al

Molitor R, Bollinger A, Kubicki S, Loeschcke A, Jaeger K E and
Thies S 2019 Agar plate-based screening methods for the
identification of polyester hydrolysis by Pseudomonas
species Microbial Biotechnol. 13 27484

Newman M E J 2005 Power laws, Pareto distributions and Zipf’s
law Contemp. Phys. 46 323-51

Onink V, Wichmann D, Delandmeter P and van Sebille E 2019
The role of Ekman currents, geostrophy and stokes drift in
the accumulation of floating microplastic J. Geophys. Res.:
Oceans 124 1474-90

Pedrotti M L, Petit S, Elineau A, Bruzaud S, Crebassa ] C,
Dumontet B, Marti E, Gorsky G and Cézar Aes 2016
Changes in the floating plastic pollution of the
Mediterranean sea in relation to the distance to land PLoS
One 11 1-14

Poulain M, Mercier M J, Brach L, Martignac M, Routaboul C,
Perez E, Desjean M C and Halle A 2019 Small microplastics
as a main contributor to plastic mass balance in the North
Atlantic Subtropical Gyre Environ. Sci. Technol. 53 115764

Reisser J, Shaw J, Hallegraeff G, Proietti M, Barnes D K A,
Thums M, Wilcox C, Hardesty B D and Pattiaratchi C
2014 Millimeter-sized marine plastics: a new pelagic habitat
for microorganisms and invertebrates PLoS One 9 1-11

Reisser J, Slat B, Noble K, Du Plessis K, Epp M, Proietti M,

De Sonneville ], Becker T and Pattiaratchi C 2015 The
vertical distribution of buoyant plastics at sea: an
observational study in the North Atlantic Gyre
Biogeosciences 12 1249-56

Ruiz-Orején L F, Sardd R and Ramis-Pujol ] 2018 Now, you see
me: high concentrations of floating plastic debris in the
coastal waters of the Balearic Islands (Spain) Mar. Pollut.
Bull. 133 63646

Ryan P G 2015 Does size and buoyancy affect the long-distance
transport of floating debris? Environ. Res. Lett. 10 84019

Samaras A G, De Dominicis M, Archetti R, Lamberti A, and
Pinardi N 2014 Towards improving the representation of
beaching in oil spill models: a case study Mar. Pollut. Bull.
88 91-101

Song Y K, Hong S H, Jang Mi, Han G M, Jung S W and Shim W J
2017 Combined effects of UV exposure duration and
mechanical abrasion on microplastic fragmentation by
polymer type Environ. Sci. Technol. 51 4368-76

Suaria G, Avio C G, Mineo A, Lattin G L, Magaldi M G,
Belmonte G, Moore C J, Regoli F and Aliani S 2016 The
Mediterranean plastic soup synthetic polymers in
Mediterranean surface waters Sci. Rep. 6 1-10

Tokai T, Uchida K, Kuroda M and Isobe A 2021 Mesh selectivity of
neuston nets for microplastics Mar. Pollut. Bull. 165 112111

Turcotte D L 1986 Fractals and fragmentation J. Geophys. Res.

91 1921-6

Turner A and Holmes L 2011 Occurrence, distribution and
characteristics of beached plastic production pellets on the
island of Malta (central Mediterranean) Mar. Pollut. Bull.
62 377-81

van Sebille E et al 2020 The physical oceanography of the
transport of floating marine debris Environ. Res. Lett.

15 023003

Virkar Y and Clauset A 2014 Power-law distributions in binned
empirical data Ann. Appl. Stat. 8 89-119

van den Bremer T S and Breivik @ 2017 Stokes Drift Phil. Trans.
R. Soc. A. 376 20170104

Ward C P, Armstrong C ], Walsh A N, Jackson ] H and Reddy CM
2019 Sunlight converts polystyrene to carbon dioxide and
dissolved organic carbon Environ. Sci. Technol. Lett.

6 66974

Weideman E A, Perold V, Omardien A, Smyth L K and Ryan P G
2020 Quantifying temporal trends in anthropogenic litter in
a rocky intertidal habitat Mar. Pollut. Bull. 160 111543


https://doi.org/10.1016/j.still.2011.11.007
https://doi.org/10.1016/j.still.2011.11.007
https://doi.org/10.1029/1999JD900062
https://doi.org/10.1029/1999JD900062
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.marpolbul.2017.05.012
https://doi.org/10.1016/j.marpolbul.2017.05.012
https://doi.org/10.1016/j.marpolbul.2020.110910
https://doi.org/10.1016/j.marpolbul.2020.110910
https://doi.org/10.1016/j.marpolbul.2014.09.041
https://doi.org/10.1016/j.marpolbul.2014.09.041
https://doi.org/10.1016/j.marpolbul.2015.10.042
https://doi.org/10.1016/j.marpolbul.2015.10.042
https://doi.org/10.1016/j.marpolbul.2017.05.057
https://doi.org/10.1016/j.marpolbul.2017.05.057
https://doi.org/10.1126/science.1260352
https://doi.org/10.1126/science.1260352
https://doi.org/10.1021/acs.est.0c01984
https://doi.org/10.1021/acs.est.0c01984
https://doi.org/10.3389/fmars.2017.00084
https://doi.org/10.3389/fmars.2017.00084
https://doi.org/10.1088/1748-9326/aa9500
https://doi.org/10.1088/1748-9326/aa9500
https://doi.org/10.1021/acs.estlett.9b00379
https://doi.org/10.1021/acs.estlett.9b00379
https://doi.org/10.1021/acs.est.6b04702
https://doi.org/10.1021/acs.est.6b04702
https://doi.org/10.1029/2012GL051116
https://doi.org/10.1029/2012GL051116
https://doi.org/10.1038/s41598-019-49413-5
https://doi.org/10.1038/s41598-019-49413-5
https://doi.org/10.1016/j.marpolbul.2018.02.019
https://doi.org/10.1016/j.marpolbul.2018.02.019
https://doi.org/10.1038/s41598-020-69635-2
https://doi.org/10.1038/s41598-020-69635-2
https://doi.org/10.1111/1751-7915.13418
https://doi.org/10.1111/1751-7915.13418
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1029/2018JC014547
https://doi.org/10.1029/2018JC014547
https://doi.org/10.1371/journal.pone.0161581
https://doi.org/10.1371/journal.pone.0161581
https://doi.org/10.1021/acs.est.8b05458
https://doi.org/10.1021/acs.est.8b05458
https://doi.org/10.1371/journal.pone.0100289
https://doi.org/10.1371/journal.pone.0100289
https://doi.org/10.5194/bg-12-1249-2015
https://doi.org/10.5194/bg-12-1249-2015
https://doi.org/10.1016/j.marpolbul.2018.06.010
https://doi.org/10.1016/j.marpolbul.2018.06.010
https://doi.org/10.1088/1748-9326/10/8/084019
https://doi.org/10.1088/1748-9326/10/8/084019
https://doi.org/10.1016/j.marpolbul.2014.09.019
https://doi.org/10.1016/j.marpolbul.2014.09.019
https://doi.org/10.1021/acs.est.6b06155
https://doi.org/10.1021/acs.est.6b06155
https://doi.org/10.1038/srep37551
https://doi.org/10.1038/srep37551
https://doi.org/10.1016/j.marpolbul.2021.112111
https://doi.org/10.1016/j.marpolbul.2021.112111
https://doi.org/10.1029/JB091iB02p01921
https://doi.org/10.1029/JB091iB02p01921
https://doi.org/10.1016/j.marpolbul.2010.09.027
https://doi.org/10.1016/j.marpolbul.2010.09.027
https://doi.org/10.1088/1748-9326/ab6d7d
https://doi.org/10.1088/1748-9326/ab6d7d
https://doi.org/10.1214/13-AOAS710
https://doi.org/10.1214/13-AOAS710
https://doi.org/10.1098/rsta.2017.0104
https://doi.org/10.1098/rsta.2017.0104
https://doi.org/10.1021/acs.estlett.9b00532
https://doi.org/10.1021/acs.estlett.9b00532
https://doi.org/10.1016/j.marpolbul.2020.111543
https://doi.org/10.1016/j.marpolbul.2020.111543

	Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation 
	1. Introduction
	2. Methodology
	2.1. The cascading fragmentation model
	2.2. Environmental box model
	2.3. Applying the box model to the Mediterranean Sea
	2.3.1. Transport in the marine environment
	2.3.2. Fragmentation parameters


	3. Results
	3.1. Modelled environmental particle size distributions

	4. Discussion
	4.1. Model limitations
	4.2. Fragmentation models and size distribution data

	5. Conclusions
	Acknowledgments
	References


