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Abstract
Glaciers are of key importance to freshwater supplies in the Himalayan region.

Their growth or decline is among other factors determined by an interaction of 2-m

air temperature (TAS) and precipitation rate (PR) and thereof derived positive

degree days (PDD) and snow and ice accumulation (SAC). To investigate deter-

mining factors in climate projections, we use a model ensemble consisting of

36 CMIP5 general circulation models (GCMs) and 13 regional climate models

(RCMs) of two Asian CORDEX domains for two different representative concen-

tration pathways (RCP4.5 and RCP8.5). First, we downsize the ensemble in respect

to the models' ability to correctly reproduce dominant circulation patterns (i.e., the

Indian summer monsoon [ISM] and western disturbances [WDs]) as well as

elevation-dependent trend signals in winter. Within this evaluation, a newly pro-

duced data set for the Indus, Ganges and Brahmaputra catchments is used as obser-

vational data. The reanalyses WFDEI, ERA-Interim, NCEP/NCAR and JRA-55 are

used to further account for observational uncertainty. In a next step, remaining

TAS and PR data are bias corrected applying a new bias adjustment method, scale

distribution mapping, and subsequently PDD and SAC computed. Finally, we iden-

tify and quantify projected climate change effects. Until the end of the century, the

ensemble indicates a rise of PDD, especially during summer and for lower alti-

tudes. Also TAS is rising, though the highest increases are shown for higher alti-

tudes and between December and April (DJFMA). PRs connected to the ISM are

projected to robustly increase, while signals for PR changes during DJFMA show a

higher level of uncertainty and spatial heterogeneity. However, a robust decline in

solid precipitation is projected over our research domain, with the exception of a

small area in the high mountain Indus catchment where no clear signal emerges.

1 | INTRODUCTION

The Himalayan region, sometimes referred to as the water
tower of Asia or High Mountain Asia (HMA), is home to
the highest mountains on our planet. Located between 28�

and 38�N latitude runoff from the Hindu Kush, Karakoram
and southern Himalaya (HKKH) feed three major rivers, the
Indus, Ganga and Brahmaputra, whose catchments are in the
focus of this study. The water generated in the HKKH has
varying importance for the downstream areas. In comparison
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to the Ganga and the Brahmaputra, the Indus basin is more
dependent on upstream water resources, because of its very
arid downstream climate, westerly influenced precipitation
regimes and large glacier systems (Immerzeel and Bierkens,
2012; Schaner et al., 2012; Lutz et al., 2014). Furthermore,
the Indus basin has the world's largest irrigation scheme
(Jain et al., 2007), but also the Ganga and Brahmaputra river
basins have extensive areas of irrigated agriculture. All three
river basins have large populations, which are growing at
high rates and will demand more water and energy in the
future (Wijngaard et al., 2018).

With a warming climate hydrological systems in high eleva-
tions are expected to experience massive changes
(e.g., Beniston, 2003). In addition, there are a number of indi-
cations that air masses at higher altitudes warm faster compared
to lower altitudes, a process termed elevation-dependent
warming (EDW, Pepin et al., 2015). Because glaciers serve as
water reserves for lower regions they are of key importance for
the water balance of a region. Under a warming climate, rising
temperatures trigger and accelerate melt of glaciers while
changing precipitation regimes may even increase the mass
intake of glaciers if they lead to increases in solid precipitation.

Two major meteorologic phenomena influence the south-
ern Himalayan weather regimes controlling the water bal-
ance of the Indus, Ganga and Brahmaputra rivers: the Indian
summer monsoon (ISM) and Western Disturbances (WDs).
The ISM brings large amounts of precipitation between June
and September (JJAS), while WDs introduce cold air and
precipitation especially to the Hindu Kush and Karakoram
mainly during winter and early spring often in the form of
snow (between December and April [DJFMA]), thereby pro-
viding an important source of mass intake for glaciers.

The ISM is formed by winds transporting moist air from
the Indian Ocean over the Indian subcontinent. During the
monsoon season (JJAS) the moist air propagates northward
and is deflected to the West by the Himalayas. The strongest
precipitation occurs at the south-eastern flanks of the
Himalayas while the Hindu Kush and Karakoram are
experiencing less precipitation intake (see also Figure 3 in
Subsection 3.1). Under the influence of increasing greenhouse
gases, general circulation models (GCMs) project an increase
of the monsoon precipitation with a simultaneous weakening
of the monsoon circulation possibly due to a weakening of
land–sea temperature differences (e.g., May, 2011;
Chaturvedi et al., 2012; Christensen et al., 2013). Further,
there are indications for a positive trend in extreme precipita-
tion as well as a projected increase in day-to-day rainfall vari-
ability for the high emission scenario during the monsoon
period (Chaturvedi et al., 2012; Menon et al., 2013).

WDs originate from extratropical storms developing in
the Mediterranean which are subsequently transported east-
ward via the mid-latitude subtropical jet and interact with the

Indian winter monsoon (Dimri et al., 2015). While precipitation
from the stochastic WDs is weaker than monsoon precipitation,
it has a major impact on water supply and agriculture. GCMs
from the phase 3 of the Coupled Model Intercomparison Pro-
ject (CMIP3) indicate an increase in storm activity while the
more recent CMIP5 models suggest the opposite together with
a poleward shift of the storm track (Chang et al., 2012).

State-of-the-art climate models have difficulties simulating
regional patterns of monsoon precipitation, while studies on
their performance for WDs in the Himalayas are scarce
(Turner and Annamalai, 2012; Asharaf and Ahrens, 2015;
Sharmila et al., 2015). Nevertheless, numerous studies have
shown an improvement of regional to local processes in
regional climate models (RCMs) often attributed to improved
model physics and finer resolution (Prein et al., 2015; Torma
et al., 2015; Giorgi et al., 2016). Especially in areas character-
ized by a complex orography like mountainous regions,
RCMs achieve better results due to a higher resolved topogra-
phy (Jones et al., 1995; Di Luca et al., 2013; Kotlarski et al.,
2015). In particular, improvements have been shown for
larger-scale phenomena like WDs and the south Asian mon-
soon with higher resolution (e.g., Dimri et al., 2006, 2013;
Karmacharya et al., 2016). Krishnan et al. (2018) showed that
increasing temperatures and an associated strengthening of
the east–west temperature gradient across the Tibetan Plateau
lead to increases in DJFMA precipitation associated with WD
activity using a variable grid atmospheric GCM focusing on
the bigger Himalayan region.

One key process in mountainous regions is elevation-
dependent warming (EDW, Yan and Liu, 2014; Pepin et al.,
2015). The snow and ice albedo feedback is considered to
be one major driver of EDW. With a warming atmosphere,
the melting of snow and ice in higher elevations decreases
the albedo and thereby leads to an added warming compared
to lower lying areas. Because of sparse station data at high
altitudes, trend studies in mountain regions based on obser-
vations are rare, though EDW was shown to be highest in
December–February (DJF) over the Tibetan Plateau (Yan
and Liu, 2014). While state-of-the-art GCMs are capable of
producing EDW signals (Palazzi et al., 2017; Rangwala
et al., 2016), RCMs are generally expected to reproduce
EDW better than GCMs due to their better resolved orogra-
phy and hence better representation of higher elevations
(Giorgi et al., 1997; Kotlarski et al., 2015).

Here, we undertake the effort to provide bias-corrected
climate scenarios over the HKKH with a particular aim to
subsequently provide an adequate data set to the hydrologic
climate change impact modelling community. To do this, we
combine state-of-the-art climate simulations from both,
GCMs and RCMs (CMIP5 and Coordinated Regional Cli-
mate Downscaling Experiment [CORDEX] models, respec-
tively; Taylor et al., 2012; Giorgi et al., 2009; Evans, 2011,
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see Subsection 2.3), with a model evaluation (Section 3),
selecting only models which are able to reproduce key
weather phenomena and a simplified form of EDW. Further,
we correct the remaining models using a novel statistical
bias adjustment method (see Subsection 2.4), which pre-
serves the projected climate change signal of the climate
models. This is an improvement to other studies applying
variance correcting bias adjustment like quantile mapping.
Also, we use a new observational data set (see Sub-
section 2.2), to derive robust detailed climate change projec-
tions until the end of the century for the Indus, Ganga and
Brahmaputra river basins. Finally, we estimate climate
change effects and their uncertainties on regional meteoro-
logical drivers that are dominating the behaviour of glaciers
in general (Section 4.1).

2 | DATA AND METHODS

2.1 | Variables and indices

A glacier's mass balance is the result of the total ablation
and the total snow accumulation over the glacier surface. In
this paper, we focus on changes in 2-m air temperature
(TAS) and precipitation rate (PR) caused by global climate
change until the end of the century, and additionally on indi-
ces important for hydrologic glacier modelling, that is, posi-
tive degree days (PDD) and snow and ice accumulation
(SAC). Many glacier models use air temperature as a proxy
for glacier melt in the form of a positive degree day model.
In such models, the total melt is the time accumulated num-
ber of TAS degrees above zero (PDD) multiplied by a
degree day factor. In our study, we use PDD as a proxy for

the total melt of a glacier. SAC is the total accumulated
amount of snow fall over the glacier area and is an indicator
of potential changes on the supply side. Throughout this
paper we have derived SAC values from PR values condi-
tioned on TAS below 1.5�C.

2.2 | Observational data sets

As observational data, we use a novel data set of daily air
temperature and precipitation fields at 10 × 10 km resolution
covering 1981–2010 at a daily time step, developed for the
Indus, Ganga and Brahmaputra river basins (IGB, Lutz
et al., 2018, see Figure 1). This data set is based on the
Watch Forcing ERA-Interim (WFDEI) data set (Weedon
et al., 2011, 2014) and was generated in the following way:
For the upstream basins, the raw temperature data were spa-
tially interpolated from a resolution of 0.5� × 0.5� to a reso-
lution of 1 × 1 km, and subsequently downscaled using a
1 × 1 km digital elevation model (DEM) derived from the
shuttle radar topography mission (SRTM) DEM (Farr et al.,
2007) and vertical monthly temperature lapse rates. The
downscaled temperature data were bias-corrected to the
observations of 40 meteorological stations located in the
upstream basins. In addition, a temperature bias-correction is
conducted, by capping the average annual glacier ablation to
a maximum plausible value (Immerzeel et al., 2012; Ragettli
et al., 2015), to avoid unrealistic high temperatures at high
altitudes. The raw precipitation data were similarly spatially
interpolated, and subsequently corrected for the underesti-
mate of high-altitude precipitation by using geodetic mass
balance data (Gardelle et al., 2013) as a proxy to reconstruct
precipitation amounts, according to the method described by
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FIGURE 1 Orography of the observational IGB-data set with a resolution of 10 km × 10 km. The global plot indicates the domains of EA-
CORDEX (yellow) and SA-CORDEX (red) as well as the research domain (black square). White and red boxes indicate the evaluation grid boxes.
Green boxes indicate the three regions used to present differences in the annual PR patterns (see Figure 3). The purple lines indicate the upstream
and downstream river basins of the Indus, Ganga and Brahmaputra rivers
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Immerzeel et al. (2015). Finally, the corrected 1 × 1 km
temperature and precipitation data sets were aggregated to a
resolution of 10 × 10 km. For the downstream basin, no bias
corrections have been applied to WFDEI data. Also, air tem-
perature data is spatially interpolated from 0.5� × 0.5� reso-
lution to 10 × 10 km and downscaled using a DEM and
vertical temperature lapse rates, whereas precipitation data
where only spatially interpolated to the 10 × 10 km resolu-
tion. The meteorological data required for the bias-correction
of the temperature data sets were obtained from 40 meteoro-
logical stations that are acquired through the Nepal Depart-
ment of Hydrology and Meteorology (DHM), Pakistan
Meteorological Department (PMD) and the Pakistan Water
and Power Development Authority (WAPDA).

Different observations may lead to different conclusions,
especially over areas with sparse direct measurements of
considered properties. To account for observational uncer-
tainty during the model evaluation (Collins et al., 2013, see
Section 3), we further considered several reanalysis datasets:
the European Centre for Medium-Range Weather Forecasts
(ECMWF) Interim reanalysis (ERA-Interim), Japanese
55-year reanalysis (JRA55) and 40-year National Centers for
Environmental Prediction/National Center for Atmospheric
Research reanalyses (NCEP/NCAR) in our analyses.
Because IGB is based upon the WFDEI data set using global
precipitation climatology centre (GPCC) data to correct pre-
cipitation rates, we included also this data set in our evalua-
tions. Asian Precipitation Highly Resolved Observational
Data Integration Towards Evaluation (APHRODITE) has
been shown to seriously underestimate precipitation over the
HKKH (Immerzeel et al., 2015, see also Figure 3), making
it unsuitable for glacier impact studies. Nevertheless, we
included it for the period of 1980–2007 for demonstrative
reasons, while we did not use it in the model evaluation (see
Supporting Information, Figures S1,3 and 4 in Section 3).
An overview of all used observational data sets is given in
Table 1.

2.3 | Climate models

Our climate model ensemble consists of GCMs from the
CMIP5 (Taylor et al., 2012) and RCMs from two Coordi-
nated Regional Climate Downscaling Experiment
(CORDEX) domains over the HKKH region: South-Asia
CORDEX (SA-CORDEX) and East-Asia CORDEX (EA-
CORDEX) (Giorgi et al., 2009; Evans, 2011). We use
data of two emission scenario experiments, the representa-
tive concentration pathways (RCPs) 4.5 and 8.5 until the
end of the century (2005–2100). For the observational
period (1981–2010) we use data from the historical exper-
iment (until 2005) and fill up the remaining 5 years with
data of RCP4.5 for every model (RCP8.5 if no data for
RCP4.5 was available). Thirty-six CMIP5 GCMs have
been included in our initial ensemble. Thirty-four of
which provided climate projections under RCP4.5 and
33 under RCP8.5. Additionally 13 RCMs from the two
CORDEX regions with a horizontal resolution of 50 km
have been included. Eight RCMs1 stem from the SA-
CORDEX ensemble (eight under RCP4.5 and six under
RCP8.5) and five RCMs from the SA-CORDEX ensemble
(four under RCP4.5 and three under RCP8.5). The
included RCMs dynamically downscaled driving data
provided by six different CMIP5 GCMs in the case of SA-
CORDEX (three RCM runs downscaled data from MPI-
ESM-LR and one respective RCM run data from GFDL-
CM3, ACCESS1-0, CNRM-CM5, EC-EARTH and
NorESM1-M), and two CMIP5 GCMs over the EA-
CORDEX domain (four RCM runs downscaled data from
HadGEM2-AO and one data from EC-EARTH). In total
eight different institutes utilized nine different RCMs
(MM5, WRF, RegCM4, HIRHAM5, HadGEM3-RA,
REMO2009, RCA4, CCLM and the mentioned CCAM-
1391M) to dynamically downscale climate information
over our research domain. In total we included 49 climate
model runs (see Table 2 for an overview).

TABLE 1 Overview of the used observational datasets

Name Institution Spatial res. Reference

IGB FutureWater, HI-AWARE consortium 10 km × 10 km Lutz et al. (2018)

WFDEI
GPCC

Water and Global Change (WATCH) Project,
Europe

0.5� × 0.5� Weedon et al. (2011), Weedon et al. (2014),
Schneider et al. (2013)

ERA-interim European Centre for Medium-Range Weather
Forecasts, Europe

0.75� × 0.75� Dee et al. (2011)

JRA55 Japan Meteorological Agency, Japan 1.25� × 1.25� Kobayashi et al. (2015) and Harada et al. (2016)

NCEP/NCAR National Centers for Environmental
Prediction/National Center for Atmospheric
Research Reanalyses, USA

2.5� × 2.5� Kalnay et al. (1996)

APHRODITE Japan Meteorological Agency, Japan 0.25� × 0.25� Yasutomi et al. (2011) and Yatagai et al. (2012)
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2.4 | Bias correction

Climate models, both GCMs and RCMs, feature systematic
biases, while assessments of climate change impacts require
realistic estimates of possible changes to come. Bias correction
is one way to bridge the gap between biased model output and
data demands of the impact modelling community
(e.g., Maraun, 2016). It is important to note that bias correction
is uninformed of underlying physical processes and their repre-
sentation in the climate models. Subsequently process misrep-
resentations may lead to biases in the corrected data itself
(e.g., Addor et al., 2016). To control for misrepresentations in
the raw model data and to ensure that our ensemble consists
only of models which are able to reproduce basic key charac-
teristics of the climate system relevant for climate change

impacts on glaciers we conducted a model evaluation (see next
section). We used a trend-preserving bias adjustment method,
scale distribution mapping (SDM, Switanek et al., 2017),
which allows us to preserve beforehand asserted elevation-
dependent trend signals in the models (see Subsection 3.2).

3 | PROCESS-BASED MODEL
EVALUATION

Differences in regional projections of climate change are to
a certain extent attributable to a miss-positioning or miss-
timing of weather phenomena in climate models or a cor-
ruption of important physical processes that may alter cli-
mate change in different aspects (e.g., Hall, 2014; Shepherd,

TABLE 2 Summary table of the model evaluation. [Correction added on 30 January 2020, after first online publication: Table 2 has been
updated.]

Model rTAS rPR ΔTAS Model rTAS rPR ΔTAS

IGB 0.79 0.68 0.32 GFDL-ESM2G r1i1p1 0.73 0.53 −0.01

WFDEI_GPCC 0.72 0.78 0.32 GFDL-ESM2M r1i1p1 0.74 0.58 −0.09

JRA-55 0.90 0.86 0.07 GISS-E2-H r6i1p3 0.67 0.39 0.26

NCEP/NCAR 0.82 0.79 0.29 GISS-E2-R r6i1p1 0.69 0.21 −0.07

ERA-Int 0.72 0.68 0.18 HadGEM2-AO r1i1p1 0.86 0.71 −0.12

ACCESS1-0 r1i1p1 0.86 0.72 0.23 EA NIMR HadGEM3-RA 0.91 0.79 −0.09

SA CSIRO CCAM-1391M 0.86 0.51 −0.09 EA SNU MM5 0.86 0.72 0.63

ACCESS1-3 r1i1p1 0.86 0.61 0.25 EA SNU WRF 0.88 0.73 0.46

bcc-csm1-1 r1i1p1 0.64 0.00 −0.12 EA KNU RegCM4 0.86 0.81 0.22

bcc-csm1-1-m r1i1p1 0.85 0.60 0.02 HadGEM2-CC r1i1p1 0.86 0.69 0.29

BNU-ESM r1i1p1 0.67 0.13 0.02 HadGEM2-ES r1i1p1 0.87 0.72 0.34

CanESM2 r1i1p1 0.74 0.56 0.40 inmcm4 r1i1p1 0.78 0.60 −0.3

CCSM4 r1i1p1 0.87 0.71 0.23 IPSL-CM5A-LR r1i1p1 0.72 0.03 −0.02

CESM1-BGC r1i1p1 0.87 0.75 0.14 IPSL-CM5A-MR r1i1p1 0.85 0.50 0.14

CESM1-CAM5 r1i1p1 0.87 0.76 0.22 IPSL-CM5B-LR r1i1p1 0.73 −0.38 −0.02

CMCC-CESM r1i1p1 0.35 0.02 0.07 MIROC-ESM r1i1p1 0.54 0.19 0.19

CMCC-CM r1i1p1 0.89 0.78 0.12 MIROC-ESM-CHEM r1i1p1 0.52 0.19 0.31

CMCC-CMS r1i1p1 0.82 0.70 0.19 MIROC5 r1i1p1 0.84 0.77 0.16

CNRM-CM5 r1i1p1 0.83 0.79 0.18 MPI-ESM-LR r1i1p1 0.81 0.67 0.22

SA CSIRO CCAM-1391M 0.85 0.53 −0.15 SA MPI-CSC REMO2009 0.90 0.78 0.11

CSIRO-Mk3-6-0 r1i1p1 0.73 0.42 0.45 SA IAU CCLM 0.86 0.83 −0.02

CSIRO-Mk3L-1-2 r1i2p1 0.38 −0.18 0.15 SA CSIRO CCAM-1391M 0.85 0.49 0.06

EC-EARTH r12i1p1 0.88 0.81 −0.21 MPI-ESM-MR r1i1p1 0.81 0.70 0.07

SA SMHI RCA4 0.91 0.79 −0.05 MRI-CGCM3 r1i1p1 0.85 0.67 0.23

EA r3i1p1 DMI HIRHAM5 0.90 0.73 0.10 MRI-ESM1 r1i1p1 0.84 0.66 0.25

GFDL-CM3 r1i1p1 0.85 0.62 0.19 NorESM1-M r1i1p1 0.67 0.57 0.09

SA CSIRO CCAM-1391M 0.85 0.51 −0.43 SA CSIRO CCAM-1391M 0.85 0.50 0.14

Columns denote the modelname, the lowest Pearson correlation for TAS (rTAS) and PR (rPR) as well as trend differences between lower grid points (< 2000 m a.s.l.) and grid
points above 3,000 m a.s.l. for DJF in

�
C (ΔTAS). Criteria that led to the exclusion of one particular model are indicated by grey shadings. RCM model names are indented

and located under their respective driving CMIP5 GCM modelname and inform about the underlying CORDEX ensemble (SA-CORDEX: SA, EA-CORDEX: EA).
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2014). One way to overcome this limitation is to evaluate
models in terms of their ability to reproduce relevant weather
phenomena and key processes and exclude those who show
shortcomings in that respect. We argue that models missing
key processes relevant for a region in the observable past are
unlikely to provide credible projections of future climate
(e.g., Knutti, 2010; McSweeney et al., 2012; Hall, 2014). In
particular, we evaluate the models' ability to reproduce the
mean timing and spatial distribution of the ISM and WDs as
well as a simplified form of observable EDW.

3.1 | Circulation-based phenomena

Weather patterns are diverse over the HKKH. The quality of
representation of important weather systems varies in state-
of-the-art climate models. Additionally, the applied bias
adjustment does not correct biases in the representation of
atmospheric processes like circulation patterns. Both argu-
ments demanded a thorough evaluation of the climate
models as precipitation regimes in this region are majorly
driven by two distinct processes, the Indian summer mon-
soon (ISM) and western disturbances (WDs).

Several studies evaluate the representation of monsoon
systems in state-of-the-art climate models, while evaluation
of WDs is rare. All of them have been focusing on different
aspects of one weather phenomena in question, most of the
time accounting for a multitude of criteria and focusing on a
rather large domain (e.g., Chang et al., 2012; Ridley et al.,
2013; Sperber et al., 2013; Lee and Wang, 2014; Ghimire
et al., 2018; Sharmila et al., 2015).

Here, we calculated Pearson correlation coefficients of
TAS and PR to our observations (IGB) in temporal, spatial
and combined dimensions on the southern slopes of the
Himalayas to capture model performance for both phenom-
ena in one step. In doing so, we do not control for the circu-
lation systems directly, but we ensure that only those
models that are able to reproduce connected tangible surface
impacts remain in our model ensemble. In comparison to
spatial and temporal patterns, absolute amplitudes of, for
example, PRs are of minor importance during our model
evaluation, as they are corrected by the applied bias adjust-
ment. All models of the ensemble have been conservatively
regridded to a 2.5� × 2.5� regular grid. For every grid point
we derived the 30 year monthly means for our historical
period (; January 1, 1981–December 31, 2010, giving us
12 values per grid point), and in order to capture representa-
tions of the mentioned weather phenomena in a higher
mountain environment, only grid points above 3,000 m
above sea level (a.s.l.) are included in the analysis
(c.f. white squares in Figure 1). Subsequently, we calculated
Pearson correlations coefficients of all models to our obser-
vational data sets for each grid point over time (referred to

as temporal correlations hereafter), for each month over the
evaluation grid points (referred to as spatial correlations here-
after) and for all data points combined (referred to as com-
bined correlations hereafter). The singe correlation
coefficients over the temporal and spatial dimensions have
been aggregated using Fisher z-transformations (see Tables S1
and S2). To account for the observational uncertainty (Collins
et al., 2013), correlations were also calculated with every
reanalysis as reference (WFDEI-GPCC, ERA-Interim, JRA55
and NCEP/NCAR). For TAS and PR the lowest correlation
coefficient r of every model to any observational data set was
consulted to remove poor performing models from the ensem-
ble. The limit has been set to 0.6 for TAS and to 0.5 for PR,
which is about 1.5 times the observational uncertainty
(i.e., the lowest correlation among the observational data sets).
Below this threshold a strong decline in model performance is
observed (see Figure 2).

3.1.1 | Selection of climate models based on
the representation of large-scale climate
phenomena

Almost all climate models are able to reproduce the annual
cycle of temperature on the evaluation grid (see Figure S1).
For both, observational and climate model data, spatial cor-
relations show the lowest correlations, while temporal corre-
lations are not lower than 0.97 (c.f. Table S1). Between our
observational data sets mostly high correlations exist, with
the lowest r value being 0.72 between WFDEI and ERA-
Interim (first five rows of Table S1). Only four climate
models perform below the exclusion criterion of 0.6 (see
Figure 2 left panel and Table 2).

For precipitation, some models have difficulties simu-
lating the annual cycle (c.f. Figure 3) and obtained corre-
lation coefficients are generally lower than in the case of
temperature (see Figure 2 and Table S2). Also the obser-
vational uncertainty is higher than for temperature with
r values ranging between 0.68 and 0.99 (first five rows of
Table S2) and again observational disagreements are
highest for spatial correlations. While also for PR, cli-
mate models show the lowest r values for spatial correla-
tions, some models have also deficits in reproducing
temporal patterns. Here, our rejection criterion of 0.5
leads to an exclusion of 14 models (2 RCMs) from the
subsequent analysis (see right panel in Figure 2 and
Table 2). Although we have been focusing on land grid
points over the Himalayas only, some of the models
removed from our analysis have been identified to per-
form weak in terms of the Asian and Indian summer
monsoon also in other studies (Sperber et al., 2013;
Sharmila et al., 2015, respectively). Precipitation intake
from the Indian summer monsoon is most prominent in
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the eastern Himalayas while WDs are responsible for the
bigger part of precipitation in the Hindu Kush and
Karakoram (Figure 3).

3.2 | Elevation-dependent warming

On the mentioned 2.5� × 2.5� evaluation grid we calculated
differences in TAS linear trends (estimated by ordinary least
squares) for the historical period of grid boxes above
3000 m a.s.l. and grid boxes below 2000 m a.s.l.2 (c.f. white
and red squares in Figure 1, respectively). Trend calculations
of reanalysis data can be problematic (e.g., Bengtsson et al.,
2004) and indeed, throughout the year trend differences
between higher and lower altitudes (>3,000 m a.s.l. and
<2000 m a.s.l., respectively) varied among the observational
data sets (see Figure 4 left panel). Nevertheless, and in agree-
ment with Yan and Liu (2014), all observational data sets
showed a higher warming trend at high altitudes for DJF, also

for every single month in that season with the exception of
JRA55. Throughout the year NCEP/NCAR showed excep-
tionally high variations of trend differences, while the
remaining observational data sets showed a higher level of
agreement. Because of the high agreement among all observa-
tional data sets for DJF and because of the strong impact of
EDW on glaciers, we did not want to abstain from this impor-
tant aspect of mountain climatology in our evaluation. We
therefore excluded models that did not show a higher TAS
trend for higher elevations for DJF from the ensemble.

3.2.1 | Selection of climate models based on
the representation of elevation-dependent
warming during winter

For DJF all observational data sets indicate a higher trend in
higher altitudes (cf. Figure 4). More than two thirds of the
evaluated climate models were able to reproduce this feature.

r

Models Models

FIGURE 2 Lowest values of r for TAS (left) and PR (right) of all evaluated models. The rejection criterion is marked by the dashed black line
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However, 16 models, out of which 7 are RCMs,4 did not
reproduce this trend differences and have been removed form
the subsequent analysis (see Figure 4 and Table 2). Interest-
ingly, four of five realizations of CCAM-1391M (see
Section 2.3) were not able to reproduce this simplified form
of EDW, although EDW signals were present in their driving
GCM. In two cases a miss-representation in the driving GCM
lead to a miss-representation in the RCM as well, while in
four cases dynamical downscaling led to an improved repre-
sentation of EDW. In one case on the other hand, one of three
RCMs being driven by the same GCM data has been
excluded, while the GCM fulfilled our EDW criterion.

In total we excluded 23 models (7 RCMs) from the
ensemble, while 26 models (6 RCMs) remained for the fol-
lowing analysis of climate change over the Indus, Ganga
and Brahmaputra river basins (see Table 2 for an overview).
[Correction added on 30 January 2020, after first online pub-
lication: In the preceding sentence, “8 RCMs4 and 5 RCMs”
was changed to “7 RCMs and 6 RCMs” respectively.]

4 | RESULTS AND DISCUSSION

4.1 | Projected climate change

Until the end of the century TAS is projected to rise robustly
over the entire domain by about ~2.5�C under RCP4.5 and
~5�C under RCP8.5 (Figure 5 top left). The strongest
increase in TAS is projected for higher elevations especially
under the high emission scenario (Figure 6 left). While there
are only small differences in projected temperature changes
between the three respective mountainous catchments, there
is a tendency of a stronger temperature rise in the West for

the three lowland river catchments. In addition, TAS is pro-
jected to increase more during winter, though this seasonality
is weakly defined (see two panels to the top left in Figure 7).

For the entire domain and until the end of the century
PDD is projected to increase by ~2 and ~4�C under RCP4.5
and RCP8.5, respectively (Figure 7). For the three upstream
river catchments projected PDD increases are a little smaller,
amounting to ~1.5�C under RCP4.5 and ~3�C under
RCP8.5 (Figure 8). However, PDD, the temperature-based
index for glacier melt, behaves opposite to the EDW pattern
seen for TAS: the higher the elevation, the lower the projec-
ted increase in PDD (c.f. Figure 6). Temperatures, though
rising, often stay below the freezing point in high elevations.
Likewise, PDD are projected to increase more during sum-
mer (see two panels to the top right in Figure 7), especially
in the three upstream river catchments (see first row in
Figure 8) underpinning the statement that glacier melt will
accelerate mostly during summer periods. The projected
increase in PDD as well as the increase in TAS are highly
significant, all of our included models agree in the sign of
projected changes (see also Figures 7 and 8).

Our downsized bias-corrected ensemble indicates small
increases in mean precipitation for the entire domain and the
three upstream river catchments which become larger with
progressing time and higher emissions (see Figure 5). How-
ever, projected changes in PR show a heterogeneous spatio-
temporal behaviour. Until the end of the century increases
are expected in particular during the ISM period (two panels
to the bottom left in Figure 7). This increases during JJAS
are especially pronounced over the eastern and central
Himalayas (Brahmaputra and Ganga catchments, Figures 9
and S3), where the models agree also on the sign of the
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projected JJAS changes under RCP4.5. For the higher emis-
sion scenario RCP8.5 the models additionally project signifi-
cant precipitation increases over the Indus catchment during
the ISM (c.f. Figure 9). Contrary to the projected increase in
monsoon precipitation, there is a tendency of decreasing
WDs dominated DJFMA precipitation for the Ganga high
elevation catchment as well as large parts of the Indus and
Ganga lowlands (c.f. Figure 10). For the higher emission
scenario this signal enhances further. Significant changes
during DJFMA are projected only for the northern bound-
aries of the research domain, being the northern areas of the
Indus and Brahmaputra high elevation catchments. The con-
trasting behaviour of robustly increasing precipitation rates
during summer and uncertain projections during winter is
also visible in the seasonal cycle over the entire domain
(Figure 7 two panels to the bottom left). However, while the
increase in JJAS PR in relative terms is clearly indicated in
the map plots (Figure 9), increasing absolute PR values are
hardly reflected in the seasonal cycle over the arid upper
Indus catchment (Figure S3).

In contrast to PR, the derived SAC index is projected to
decrease significantly, especially for longer timescales and
the higher emission scenario (see Figures 5 and 11). The
largest decreases are displayed for the transitional months

May and September (c.f. Figure 7), where large parts of for-
mer solid precipitation are projected to precipitate in liquid
form in the future. Especially over the eastern catchments a
larger decline in SAC is projected (see bottom row in
Figure 8). Over the upper Indus catchment however model
disagreement in projected SAC changes is high
(c.f. Figure 11 right), and in the winter months the sign of
the change is not clear at all (see Figure 8 bottom left). The
contrasting behaviour of PR and SAC during the seasons
when WDs and the ISM predominate is evident in their tem-
poral evolution (see Figure S2). PR and SAC during DJFMA
are projected to change little with progressing time. On the
other hand, increases in JJAS PR are accompanied by higher
temperatures and go along with stronger decreases in SAC
with increasing time and higher emissions.

The projected changes will likely have strong impacts for
the regional cryosphere and hydrology throughout the 21st
century. The projected increase in PDD and decrease in SAC
imply accelerated melt and eventual reduction of ice volumes.
The large range in the projections also implies a large uncer-
tainty in the timing and magnitude of the impacts for
cryosphere and hydrology. For example, Kraaijenbrink et al.
(2017) projected end of century glacier volume reductions in
the HMA region varying from 15 to 75% by forcing a glacier
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FIGURE 6 Median projected climate change of annual TAS (left column) and PDD (right column) under the RCP4.5 (top row) and the
RCP8.5 (bottom row) scenario until the end of the century (X2071-2100 − X1981-2010)
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model with all climate models in CMIP5 for all four RCPs.
Several regional or global scale studies (Lutz et al., 2016;
Huss and Hock, 2018; Zheng et al., 2018) showed strong var-
iability in the timing of hydrological response to future glacier

changes. The use of our data set to force these types of
models would most likely result in similar trends, however, it
could narrow down the uncertainty resulting from the climate
model ensemble range and lead to more robust projections.

FIGURE 9 Median climate change of PR for JJAS (left column) under the RCP4.5 (top) and the RCP8.5 (bottom) scenario until the end of the
century ((X2071 − 2100/X1981 − 2010 − 1) * 100) and the respective levels of agreement between the models (right column; “unreliable”: ≥50% of
models show significant changes but agree with <80% on the sign of change; “not significant”: <50% of models show significant changes;
“significant”: ≥50% of models show significant changes and agree with ≥80% on the sign of change; significance has been derived using the
Wilcoxon-Mann–Whitney test)
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4.2 | Projected changes in EDW signals

Figure 12 shows the evolution of mean DJF TAS trends for
all evaluation grid-points (white and red boxes in Figure 1)
and differences in trends between grid-points above
3,000 m a.s.l. and below 2000 m a.s.l. of all models, models
that have and models that have not been excluded during the
EDW evaluation. RCP4.5 TAS trends remain virtually con-
stant over the first half of the 21st century and with stabiliz-
ing CO2 concentrations converge towards zero towards the
end of the century. Conversely, RCP8.5 TAS trends show a
steady increase until 2050 and remain virtually constant
afterwards (Figure 12 left). At the same time trend differ-
ences between low lying areas and the high mountain envi-
ronment (i.e., our evaluation criterion of EDW) reflect the
additional warming under RCP8.5 and hence higher EDW
by higher trend differences in comparison to RCP4.5 in par-
ticular from 2020 onward until the end of the century
(Figure 12 right).

Excluded models in Figure 12 are models that did not
show positive trend differences during DJF over the evalua-
tion period (; 1981–2010), where our observational data sets
indicated trend differences between 0.07 and 0.32�C per
decade (see Subsection 3.2). Notably, the mean EDW signal
of not excluded (i.e., included in Figure 12) models stays
well above the mean EDW signal of excluded models until
around 2010 (; 1996–2024). Contrastingly, thereafter and
until around 2020 excluded models indicate slightly higher

EDW than included models. Even though excluded models
show EDW, this later EDW onset suggests a mistiming of
EDW relevant processes in the excluded models. From 2020
onwards the two ensembles (included and excluded) show
similar EDW signals for RCP4.5 with a tendency of higher
EDW reported by the included models, EDW signals of the
two ensembles differ stronger for RCP8.5 also with higher
EDW shown by the included models. In addition to the
mean negative DJF EDW signal of excluded models until
the beginning of the 21st century, there are episodes of nega-
tive EDW signals under the forcing of both emission scenar-
ios around 2070.

Also, the two ensembles show differences in absolute
TAS trends. Models that did show higher rates of EDW also
report higher rates of warming throughout the 21st century.
Differences are larger for the high emission scenario
RCP8.5. While there is some similarity between the curves
of TAS trends and TAS trend differences, the very large dif-
ferences in the EDW signal until 2010 between the two
ensembles is not strongly reflected in the TAS trends.

5 | SUMMARY AND CONCLUSIONS

In this study, we have combined GCMs and RCMs to one
consistent climate model ensemble, and downsized this
ensemble by removing models that were not able to repro-
duce important weather features over the HKKH region and

FIGURE 10 Same as Figure 9 but for projected PR changes for DJFMA
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a simplified form of EDW. We subsequently bias corrected
the remaining models with a trend preserving error correc-
tion method to provide climate scenarios over the Indus,
Ganga and Bramaputhra river catchments. As glaciers play a

key role in hydrological modelling efforts over high moun-
tain environments, presented results have been focusing on
changes in PDD and SAC in addition to TAS and PR. The
resulting data set can be used as forcing for glacio-

FIGURE 11 Median climate change of SAC (left column) under the RCP4.5 (top) and the RCP8.5 (bottom) scenario until the end of the century
((X2071 − 2100/X1981 − 2010 − 1) * 100) and the respective levels of agreement between the models (right column; “unreliable”: ≥50% of models show
significant changes but agree with <80% on the sign of change; “not significant”: <50% of models show significant changes; “significant”: ≥50% of
models show significant changes and agree with ≥80% on the sign of change; significance has been derived using the Wilcoxon-Mann–Whitney test)
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hydrological modelling to generate region-specific robust
projections of glacier change and hydrological changes
which can inform on climate change impacts in a wide range
of sectors, and is available upon request.

TAS is projected to rise robustly by about ~2.5�C under
RCP4.5 and ~5�C under RCP8.5 until the end of the cen-
tury, while we found an intensified warming for higher alti-
tudes. At the same time also PDD is robustly projected to
increase, with opposite effects for higher altitudes.
Chaturvedi et al. (2012) reported similar findings over India.
In addition, our model ensemble indicates a robust rise of
PR connected to the ISM over the entire research domain,
while PR connected to WDs is projected to decrease over
the southern Himalayan foreland and the Ganga catchment
for high elevations. Projections for PR are in general found
to be both, more robust and stronger for the higher emission
scenario. The intensifications shown by the ensemble mean
in terms of ISM PR are in agreement with remarks in litera-
ture (Chaturvedi et al., 2012; Sharmila et al., 2015). Regard-
less of the overall increase in PR, SAC is projected to
decrease robustly.

Since we evaluated models in terms of their representa-
tion of EDW, and included models are found to exhibit a
stronger climate sensitivity, our downsized ensemble shows
higher warming rates, than the mean over all models
(included and excluded). While it certainly is possible to
argue that this approach disagrees with the often applied
one-model-one-vote practice, we find it fitting to exclude
models for the generation of user-focused impact scenarios
that do not feature observable phenomena correctly. In addi-
tion, the onset, timing and perpetuation of EDW can be seen
in agreement with the concept of emergent constraints
(Collins et al., 2012).
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ENDNOTES [Correction added on 30 January 2020, after
first online publication: Endnote 4 has been deleted in this
version.]

1 Some of the SA-CORDEX are not limited area RCMs per definition.
The Conformal Cubic Atmospheric Models (CCAMs) were devel-
oped by the Commonwealth Scientific and Industrial Research Orga-
nization (CSIRO), Australia. The CCAM is a variable–resolution
global atmospheric model with enhanced resolution over specific
regions to simulate the regional scenarios not using lateral boundary
conditions. Bias and variance corrected sea surface temperatures
(SSTs) of global climate projections were used to simulate the
regional atmosphere by the CCAMs. Five regional simulations of
CCAM-1391 M were used in this study.

2 The elevation for the evaluated grid points was calculated using the
DEM of IGB (SRTM DEM, Farr et al., 2007), although inter-model
spread of underlying elevation data between models is substantial,
sometimes even as high as 500 m (cf. Kotlarski et al., 2015; Palazzi
et al., 2017). We justify this generalization of model height because
our compared evaluation grid points for high and low elevations dif-
fer by at least 1,000 m.

3 Including 4 realizations of the CCAM-1391 M model.

REFERENCES

Addor, N., Rohrer, M., Furrer, R. and Seibert, J. (2016) Propagation of
biases in climate models from the synoptic to the regional scale:
implications for bias adjustment. Journal of Geophysical Research-
Atmospheres, 121(5), 2075–2089. https://doi.org/10.1002/2015JD
024040.

Asharaf, S. and Ahrens, B. (2015) Indian summer monsoon rainfall
processes in climate change scenarios. Journal of Climate, 28(13),
5414–5429. https://doi.org/10.1175/JCLI-D-14-00233.1.

Bengtsson, L., Hagemann, S. and Hodges, K.I. (2004) Can climate
trends be calculated from reanalysis data? Journal of Geophysical
Research, D: Atmospheres, 109(11), 1–8. https://doi.org/10.1029/
2004JD004536.

JURY ET AL. 1751

https://orcid.org/0000-0003-0590-7843
https://orcid.org/0000-0003-0590-7843
https://orcid.org/0000-0002-4076-0456
https://orcid.org/0000-0002-4076-0456
https://doi.org/10.1002/2015JD024040
https://doi.org/10.1002/2015JD024040
https://doi.org/10.1175/JCLI-D-14-00233.1
https://doi.org/10.1029/2004JD004536
https://doi.org/10.1029/2004JD004536


Beniston, M. (2003) Climatic change in mountain regions: a review of
possible impacts. Climatic Change, 59(1–2), 5–31. https://doi.org/
10.1023/A:1024458411589.

Chang, E.K.M., Guo, Y. and Xia, X. (2012) CMIP5 multimodel
ensemble projection of storm track change under global warming.
Journal of Geophysical Research-Atmospheres, 117(23), 1–19.
https://doi.org/10.1029/2012JD018578.

Chaturvedi, R.K., Joshi, J., Jayaraman, M., Bala, G. and
Ravindranath, N.H. (2012) Multi-model climate change projections
for India under representative concentration pathways. Current Sci-
ence, 103(7), 791–802.

Christensen, J.H., Krishna Kumar, K., Aldria, E., An, S.-I.,
Cavalcanti, I.F.A., De Castro, M., Dong, W., Goswami, P.,
Hall, A., Kanyanga, J.K., Kitoh, A., Kossin, J., Lau, N.-C.,
Renwick, J., Stephenson, D.B., Xie, S.-P. and Zhou, T. (2013)
Climate Phenomena and their Relevance for Future Regional Cli-
mate Change. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor,
M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and
Midgley, P.M. (Eds.) Climate Change 2013: The Physical Sci-ence
Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change.
Cambridge, United Kingdom and New York, NY: Cambridge Uni-
versity Press. https://doi.org/10.1017/CBO9781107415324.028
Available at: www.climatechange2013.org.

Collins, M., AchutaRao, K., Ashok, K., Bhandari, S., Mitra, A.K.,
Prakash, S., Srivastava, R. and Turner, A. (2013) Observational
challenges in evaluating climate models. Nature Climate Change, 3
(11), 940–941. https://doi.org/10.1038/nclimate2012 Available at:
http://www.nature.com/doifinder/10.1038/nclimate2012.

Collins, M., Chandler, R.E., Cox, P.M., Huthnance, J.M., Rougier, J.
and Stephenson, D.B. (2012) Quantifying future climate change.
Nature Climate Change, 2(6), 403–409. https://doi.org/10.1038/
NCLIMATE1414 Available at: http://www.nature.com/nature
climatechange.

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L.,
Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M.,
Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.
P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de
Rosnay, P., Tavolato, C., Thépaut, J.N. and Vitart, F. (2011) The
ERA-interim reanalysis: configuration and performance of the data
assimilation system. Quarterly Journal of the Royal Meteorological
Society, 137(656), 553–597. https://doi.org/10.1002/qj.828.

Di Luca, A., de Elía, R. and Laprise, R. (2013). Potential for added
value in temperature simulated by high-resolution nested RCMs
in present climate and in the climate change signal. Climate
Dynamics, 40(1), 443–464. https://doi.org/10.1007/s00382-012-
1384-2.

Dimri, A.P., Mohanty, U.C., Azadi, M. and Rathore, L.S. (2006)
Numerical study of western disturbances over western Himalayas
using mesoscale model. Mausam, 57, 579–590.

Dimri, A.P., Niyogi, D., Barros, A.P., Ridley, J., Mohanty, U.C.,
Yasunari, T. and Sikka, D.R. (2015) Western disturbances: a
review. Reviews of Geophysics, 53(2), 225–246. https://doi.org/10.
1002/2014RG000460.

Dimri, A.P., Yasunari, T., Wiltshire, A., Kumar, P., Mathison, C.,
Ridley, J. and Jacob, D. (2013) Application of regional climate

models to the Indian winter monsoon over the western Himalayas.
Science of the Total Environment, 468-469, S36–S47. https://doi.
org/10.1016/j.scitotenv.2013.01.040.

Evans, J.P. (2011) CORDEX – An international climate down scaling
initiative. In: Chan, F., Marinova, D. and Anderssen, R.S. (Eds.)
MODSIM 2011: 19th International Congress on Modelling and
Simulation. Modelling and Simulation Society of Australia and
New Zealand, December 2011, pp. 2705–2711.

Farr, T., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., et al. (2007) The
shuttle radar topography mission. Reviews of Geophysics, 45, 1–33.
https://doi.org/10.1029/2005RG000183.1.INTRODUCTION.

Gardelle, J., Berthier, E., Arnaud, Y. and Kääb, A. (2013) Region-wide
glacier mass balances over the Pamir-Karakoram-Himalaya during
1999-2011. The Cryosphere, 7(4), 1263–1286. https://doi.org/10.
5194/tc-7-1263-2013.

Ghimire, S., Choudhary, A. and Dimri, A.P. (2018) Assessment of the
performance of CORDEX-South Asia experiments for monsoonal
precipitation over the Himalayan region during present climate: part
I. Climate Dynamics, 50(7–8), 2311–2334. https://doi.org/10.1007/
s00382-015-2747-2.

Giorgi, F., Hurrell, J.W., Marinucci, M.R. and Beniston, M. (1997) Ele-
vation dependency of the surface climate change signal: a model
study. Journal of Climate, 10(2), 288–296. https://doi.org/10.1175/
1520-0442(1997)010<0288:EDOTSC>2.0.CO;2.

Giorgi, F., Jones, C. and Asrar, G.R. (2009) Addressing climate infor-
mation needs at the regional level: the CORDEX framework. Bulle-
tin - World Meteorological Organization, 58(3), 175–183.

Giorgi, F., Torma, C., Coppola, E., Ban, N., Schär, C. and Somot, S.
(2016) Enhanced summer convective rainfall at Alpine high eleva-
tions in response to climate warming. Nature Geoscience, 9,
584–589. doi:10.1038/NGEO2761

Hall, A. (2014) Projecting regional change. Science, 346, 1460–1462.
https://doi.org/10.1126/science.aaa0629.

Harada, Y., Kamahori, H., Kobayashi, C., Endo, H., Kobayashi, S. and
Ota, Y. (2016) The JRA-55 reanalysis: representation of atmo-
spheric circulation and climate variability. Journal of the Meteoro-
logical Society of Japan, 94(3), 269–302. https://doi.org/10.2151/
jmsj.2016-015J-STAGE.

Huss, M. and Hock, R. (2018) Global-scale hydrological response to
future glacier mass loss. Nature Climate Change, 8, 135–140.
https://doi.org/10.1038/s41558-017-0049-x.

Immerzeel, W.W. and Bierkens, M.F.P. (2012) Asia's water balance.
Nature Geoscience, 5, 841–842. https://doi.org/10.1038/ngeo1643.

Immerzeel, W.W., van Beek, L.P.H., Konz, M., Shrestha, A.B. and
Bierkens, M.F.P. (2012) Hydrological response to climate change
in a glacierized catchment in the Himalayas. Climatic Change, 110
(3–4), 721–736. https://doi.org/10.1007/s10584-011-0143-4.

Immerzeel, W.W., Wanders, N., Lutz, A.F., Shea, J.M. and
Bierkens, M.F.P. (2015) Reconciling high-altitude precipitation in
the upper Indus basin. Hydrology and Earth System Sciences, 19
(11), 4673–4687. https://doi.org/10.5194/hess-19-4673-2015.

Jain S.K., Agarwal P.K. and Singh V.P. (2007) Indus Basin. Hydrology
and Water Resources of India. Water Science and Technology
Library (vol.57, pp. 473–511). Dordrecht, Netherlands: Springer.
https://doi.org/10.1007/1-4020-5180-8_10.

Jones, R.G., Murphy, J.M. and Noguer, M. (1995) Simulation of cli-
mate change over Europe using a nested regional-climate model. I:
assessment of control climate, including sensitivity to location of

1752 JURY ET AL.

https://doi.org/10.1023/A:1024458411589
https://doi.org/10.1023/A:1024458411589
https://doi.org/10.1029/2012JD018578
https://doi.org/10.1017/CBO9781107415324.028
http://www.climatechange2013.org
https://doi.org/10.1038/nclimate2012
https://doi.org/10.1038/NCLIMATE1414
https://doi.org/10.1038/NCLIMATE1414
http://www.nature.com/natureclimatechange
http://www.nature.com/natureclimatechange
https://doi.org/10.1002/qj.828
https://doi.org/10.1007/s00382-012-1384-2
https://doi.org/10.1007/s00382-012-1384-2
https://doi.org/10.1002/2014RG000460
https://doi.org/10.1002/2014RG000460
https://doi.org/10.1016/j.scitotenv.2013.01.040
https://doi.org/10.1016/j.scitotenv.2013.01.040
https://doi.org/10.1029/2005RG000183.1.INTRODUCTION
https://doi.org/10.5194/tc-7-1263-2013
https://doi.org/10.5194/tc-7-1263-2013
https://doi.org/10.1007/s00382-015-2747-2
https://doi.org/10.1007/s00382-015-2747-2
https://doi.org/10.1175/1520-0442(1997)010%3C0288:EDOTSC%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010%3C0288:EDOTSC%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010%3C0288:EDOTSC%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010%3C0288:EDOTSC%3E2.0.CO;2
https://doi.org/10.1126/science.aaa0629
https://doi.org/10.2151/jmsj.2016-015J-STAGE
https://doi.org/10.2151/jmsj.2016-015J-STAGE
https://doi.org/10.1038/s41558-017-0049-x
https://doi.org/10.1038/ngeo1643
https://doi.org/10.1007/s10584-011-0143-4
https://doi.org/10.5194/hess-19-4673-2015
https://doi.org/10.1007/1-4020-5180-8_10


lateral boundaries. Quarterly Journal of the Royal Meteorological
Society, 121(526), 1413–1449. https://doi.org/10.1002/qj.
49712152610.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D.,
Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., et al.
(1996) The NCEP/NCAR 40-year reanalysis project. Bulletin of the
American Meteorological Society, 77(3), 437–471. https://doi.org/
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Karmacharya, J., New, M., Jones, R. and Levine, R. (2016) Added
value of a high-resolution regional climate model in simulation of
intraseasonal variability of the south Asian summer monsoon. Inter-
national Journal of Climatology, 1116, 1100–1116. https://doi.org/
10.1002/joc.4767.

Knutti, R. (2010) The end of model democracy? Climatic Change, 102
(3), 395–404. https://doi.org/10.1007/s10584-010-9800-2.

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H.,
Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K.
and Takahashi, K. (2015) The JRA-55 reanalysis: general specifica-
tions and basic characteristics. Journal of the Meteorological Soci-
ety of Japan. Ser. II, 93(1), 5–48. https://doi.org/10.2151/jmsj.
2015-001.

Kotlarski, S., Lüthi, D. and Schär, C. (2015) The elevation dependency
of 21st century European climate change: An RCM ensemble per-
spective. International Journal of Climatology, 35(13), 3902–3920.
https://doi.org/10.1002/joc.4254.

Kraaijenbrink, P.D.A., Bierkens, M.F.P., Lutz, A.F. and Immerzeel, W.
W. (2017) Impact of a global temperature rise of 1.5 degrees Cel-
sius on Asia's glaciers. Nature, 549(7671), 257–260. https://doi.
org/10.1038/nature23878.

Krishnan, R., Sabin, T.P., Madhura, R.K., Vellore, R.K.,
Mujumdar, M., Sanjay, J., Nayak, S. and Rajeevan, M. (2018)
Non-monsoonal precipitation response over the Western Himalayas
to climate change. Climate Dynamics, 52(7–8), 4091–4109. https://
doi.org/10.1007/s00382-018-4357-2.

Lee, J.Y. and Wang, B. (2014) Future change of global monsoon in the
CMIP5. Climate Dynamics, 42(1–2), 101–119. https://doi.org/10.
1007/s00382-012-1564-0.

Lutz, A.F., Immerzeel, W.W., Kraaijenbrink, P.D.A., Shrestha, A.
B. and Bierkens, M.F.P. (2016) Climate change impacts on the
upper Indus hydrology: sources, shifts and extremes. PLoS
One, 11(11), e0165630. https://doi.org/10.1371/journal.pone.
0165630.

Lutz, A.F., Immerzeel, W.W., Shrestha, A.B. and Bierkens, M.F.P.
(2014) Consistent increase in high Asia's runoff due to increasing
glacier melt and precipitation. Nature Climate Change, 4(7),
587–592. https://doi.org/10.1038/nclimate2237.

Lutz, A.F., ter Maat, H.W., Wijngaard, R., Biemans, H., Syed, A.,
Shrestha, A.B., Wester, P. and Immerzeel, W.W. (2018) South
Asian river basins in a 1.5 �C warmer world. Regional Environmen-
tal Change, 19, 833–847. https://doi.org/10.1007/s10113-018-
1433-4.

Maraun, D. (2016) Bias correcting climate change simulations - a criti-
cal review. Current Climate Change Reports, 2(4), 211–220.
https://doi.org/10.1007/s40641-016-0050-x.

May, W. (2011) The sensitivity of the Indian summer monsoon to a
global warming of 2�C with respect to pre-industrial times. Climate
Dynamics, 37(9–10), 1843–1868. https://doi.org/10.1007/s00382-
010-0942-8.

McSweeney, C.F., Jones, R.G. and Booth, B.B.B. (2012) Selecting
ensemble members to provide regional climate change information.
Journal of Climate, 25(20), 7100–7121. https://doi.org/10.1175/
JCLI-D-11-00526.1.

Menon, A., Levermann, A. and Schewe, J. (2013) Enhanced future var-
iability during India's rainy season. Geophysical Research Letters,
40(12), 3242–3247. https://doi.org/10.1002/grl.50583.

Palazzi, E., Filippi, L. and von Hardenberg, J. (2017) Insights into
elevation-dependent warming in the Tibetan Plateau-Himalayas
from CMIP5 model simulations. Climate Dynamics, 48(11), 3991–
4008. https://doi.org/10.1007/s00382-016-3316-z.

Pepin, N., Bradley, R.S., Diaz, H.F., Baraer, M., Caceres, E.B.,
Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M.Z., Liu, X.D.,
et al. (2015) Elevation-dependent warming in mountain regions of
the world. Nature Climate Change, 5(5), 424–430. https://doi.org/
10.1038/nclimate2563.

Prein, A.F., Langhans, W., Fosser, G., Ferrone, A., Ban, N.,
Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F.,
Brisson, E., Kollet, S., Schmidli, J., Van Lipzig, N.P.M. and
Leung, R. (2015) A review on regional convection-permitting cli-
mate modeling: demonstrations, prospects, and challenges. Reviews
of Geophysics, 53(2), 323–361. https://doi.org/10.1002/
2014RG000475.

Ragettli, S., Pellicciotti, F., Immerzeel, W.W., Miles, E.S., Petersen, L.,
Heynen, M., Shea, J.M., Stumm, D., Joshi, S. and Shrestha, A.
(2015) Unraveling the hydrology of a Himalayan catchment
through integration of high resolution in situ data and remote sens-
ing with an advanced simulation model. Advances in Water
Resources, 78, 94–111. https://doi.org/10.1016/j.advwatres.2015.
01.013.

Rangwala, I., Sinsky, E. and Miller, J.R. (2016) Variability in projected
elevation dependent warming in boreal midlatitude winter in
CMIP5 climate models and its potential drivers. Climate Dynamics,
46(7–8), 2115–2122. https://doi.org/10.1007/s00382-015-2692-0.

Ridley, J., Wiltshire, A. and Mathison, C. (2013) More frequent occur-
rence of westerly disturbances in Karakoram up to 2100. Science of
the Total Environment, 468, S31–S35. https://doi.org/10.1016/j.
scitotenv.2013.03.074.

Schaner, N., Voisin, N., Nijssen, B. and Lettenmaier, D.P. (2012) The
contribution of glacier melt to streamflow. Environmental Research
Letters, 7(3), 034029. https://doi.org/10.1088/1748-9326/7/3/
034029.

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M.
and Rudolf, B. (2013) GPCC's new land surface precipitation clima-
tology based on quality-controlled in situ data and its role in quanti-
fying the global water cycle. Theoretical and Applied Climatology,
115, 1–2, 15–1–40. https://doi.org/10.1007/s00704-013-0860-x.

Sharmila, S., Joseph, S., Sahai, A.K., Abhilash, S. and
Chattopadhyay, R. (2015) Future projection of Indian summer
monsoon variability under climate change scenario: an assessment
from CMIP5 climate models. Global and Planetary Change, 124,
62–78. https://doi.org/10.1016/j.gloplacha.2014.11.004.

Shepherd, T.G. (2014) Atmospheric circulation as a source of uncer-
tainty in climate change projections. Nature Geoscience, 7(10),
703–708. https://doi.org/10.1038/ngeo2253.

Sperber, K.R., Annamalai, H., Kang, I.S., Kitoh, A., Moise, A.,
Turner, A., Wang, B. and Zhou, T. (2013) The Asian summer mon-
soon: an intercomparison of CMIP5 vs. CMIP3 simulations of the

JURY ET AL. 1753

https://doi.org/10.1002/qj.49712152610
https://doi.org/10.1002/qj.49712152610
https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2
https://doi.org/10.1002/joc.4767
https://doi.org/10.1002/joc.4767
https://doi.org/10.1007/s10584-010-9800-2
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1002/joc.4254
https://doi.org/10.1038/nature23878
https://doi.org/10.1038/nature23878
https://doi.org/10.1007/s00382-018-4357-2
https://doi.org/10.1007/s00382-018-4357-2
https://doi.org/10.1007/s00382-012-1564-0
https://doi.org/10.1007/s00382-012-1564-0
https://doi.org/10.1371/journal.pone.0165630
https://doi.org/10.1371/journal.pone.0165630
https://doi.org/10.1038/nclimate2237
https://doi.org/10.1007/s10113-018-1433-4
https://doi.org/10.1007/s10113-018-1433-4
https://doi.org/10.1007/s40641-016-0050-x
https://doi.org/10.1007/s00382-010-0942-8
https://doi.org/10.1007/s00382-010-0942-8
https://doi.org/10.1175/JCLI-D-11-00526.1
https://doi.org/10.1175/JCLI-D-11-00526.1
https://doi.org/10.1002/grl.50583
https://doi.org/10.1007/s00382-016-3316-z
https://doi.org/10.1038/nclimate2563
https://doi.org/10.1038/nclimate2563
https://doi.org/10.1002/2014RG000475
https://doi.org/10.1002/2014RG000475
https://doi.org/10.1016/j.advwatres.2015.01.013
https://doi.org/10.1016/j.advwatres.2015.01.013
https://doi.org/10.1007/s00382-015-2692-0
https://doi.org/10.1016/j.scitotenv.2013.03.074
https://doi.org/10.1016/j.scitotenv.2013.03.074
https://doi.org/10.1088/1748-9326/7/3/034029
https://doi.org/10.1088/1748-9326/7/3/034029
https://doi.org/10.1007/s00704-013-0860-x
https://doi.org/10.1016/j.gloplacha.2014.11.004
https://doi.org/10.1038/ngeo2253


late 20th century. Climate Dynamics, 41(9–10), 2711–2744. https://
doi.org/10.1007/s00382-012-1607-6.

Switanek, M.B., Troch, P.A., Castro, C.L., Leuprecht, A., Chang, H.-I.,
Mukherjee, R. and Demaria, E.M.C. (2017) Scaled distribution
mapping: a bias correction method that preserves raw climate
model projected changes. Hydrology and Earth System Sciences,
21(6), 2649–2666. https://doi.org/10.5194/hess-21-2649-2017.

Taylor, K.E., Stouffer, R.J. and Meehl, G.A. (2012) An overview of
CMIP5 and the experiment design. Bulletin of the American Meteo-
rological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-
D-11-00094.1.

Torma, C., Giorgi, F. and Coppola, E. (2015) Added value of regional
climate modeling over areas characterized by complex terrain-
precipitation over the Alps. Journal of Geophysical Research-
Atmospheres, 120, 3957–3972. https://doi.org/10.1002/2014JD
022781.Received.

Turner, A.G. and Annamalai, H. (2012) Climate change and the south
Asian summer monsoon. Nature Climate Change, 2(8), 587–595.
https://doi.org/10.1038/nclimate1495.

Weedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J. and
Viterbo, P. (2014) Data methodology applied to ERA-interim
reanalysis data. Water Resources Research, 50(9), 7505–7514.
https://doi.org/10.1002/2014WR015638.Received.

Weedon, G.P., Gomes, S., Viterbo, P., Shuttleworth, W.J., Blyth, E.,
Österle, H., Adam, J.C., Bellouin, N., Boucher, O. and Best, M.
(2011) Creation of the WATCH forcing data and its use to assess
global and regional reference crop evaporation over land during the
twentieth century. Journal of Hydrometeorology, 12(5), 823–848.
https://doi.org/10.1175/2011JHM1369.1.

Wijngaard, R.R., Biemans, H., Lutz, A.F., Shrestha, A.B., Wester, P.
and Immerzeel, W.W. (2018) Climate change vs. socio-economic
development: understanding the future South Asian water gap.

Hydrology and Earth System Sciences, 22(12), 6297–6321. https://
doi.org/10.5194/hess-22-6297-2018. Available at: https://www.
hydrol-earth-syst-sci.net/22/6297/2018/.

Yan, L. and Liu, X. (2014) Has climatic warming over the Tibetan pla-
teau paused or continued in recent years? Journal of Earth Ocean
and Atmospheric Sciences, 1(1), 13–28.

Yasutomi, N., Hamada, A. and Yatagai, A. (2011) Development of a
long-term daily gridded temperature dataset and its application to
rain/snow discrimination of daily precipitation. Global Environ-
mental Research, 15(2011), 165–172.

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N.
and Kitoh, A. (2012) Aphrodite constructing a long-term daily
gridded precipitation dataset for Asia based on a dense network
of rain gauges. Bulletin of the American Meteorological Society,
93(9), 1401–1415. https://doi.org/10.1175/BAMS-D-11-00122.1.

Zheng, H., Chiew, F.H.S., Charles, S. and Podger, G. (2018) Future climate
and runoff projections across South Asia from CMIP5 global climate
models and hydrological modelling. Journal of Hydrology: Regional
Studies, 18, 92–109. https://doi.org/10.1016/j.ejrh.2018.06.004.

SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of this article.

How to cite this article: Jury MW, Mendlik T,
Tani S, et al. Climate projections for glacier change
modelling over the Himalayas. Int J Climatol. 2020;
40:1738–1754. https://doi.org/10.1002/joc.6298

1754 JURY ET AL.

https://doi.org/10.1007/s00382-012-1607-6
https://doi.org/10.1007/s00382-012-1607-6
https://doi.org/10.5194/hess-21-2649-2017
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1002/2014JD022781.Received
https://doi.org/10.1002/2014JD022781.Received
https://doi.org/10.1038/nclimate1495
https://doi.org/10.1002/2014WR015638.Received
https://doi.org/10.1175/2011JHM1369.1
https://doi.org/10.5194/hess-22-6297-2018
https://doi.org/10.5194/hess-22-6297-2018
https://www.hydrol-earth-syst-sci.net/22/6297/2018/
https://www.hydrol-earth-syst-sci.net/22/6297/2018/
https://doi.org/10.1175/BAMS-D-11-00122.1
https://doi.org/10.1016/j.ejrh.2018.06.004
https://doi.org/10.1002/joc.6298

	Climate projections for glacier change modelling over the Himalayas
	1  INTRODUCTION
	2  DATA AND METHODS
	2.1  Variables and indices
	2.2  Observational data sets
	2.3  Climate models
	2.4  Bias correction

	3  PROCESS-BASED MODEL EVALUATION
	3.1  Circulation-based phenomena
	3.1.1  Selection of climate models based on the representation of large-scale climate phenomena

	3.2  Elevation-dependent warming
	3.2.1  Selection of climate models based on the representation of elevation-dependent warming during winter


	4  RESULTS AND DISCUSSION
	4.1  Projected climate change
	4.2  Projected changes in EDW signals

	5  SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	Endnotes [Correction added on 30 January 2020, after first online publication: Endnote 4 has been deleted in this version.]
	REFERENCES


