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Abstract
Land-use change (LUC)-related greenhouse gas (GHG) emissions determine 
largely whether bioenergy is a suitable option for climate change mitigation. This 
study assesses how LUC emissions influence demand for bioenergy to mitigate 
GHG emissions, and how this affects the energy mix, using Brazil as a case study. 
A methodological framework is applied linking bioenergy supply curves, with 
associated costs and spatially explicit LUC emissions, to a bottom-up energy sys-
tem model. Furthermore, the influence of four key determining parameters is as-
sessed: agricultural productivity, time horizon, natural succession (NS), and the 
use of dynamic emission factors (EFs). Demand for new bioenergy plantations 
range from 0.5 to 6.7 EJ in 2050, and is avoided when its EF reaches above 15 kg 
CO2/GJbiomass. Dynamic EFs result in earlier and larger use of bioenergy. Static 
EFs attenuate all emissions evenly over time, resulting in relative high emissions 
around 2050 when the carbon budget is most stringent. This in contrast to dy-
namic EFs, having early high peaks because of clearance of natural vegetation, 
but relatively small long-term emissions when the carbon budget is most strin-
gent. Exclusion of NS, in combination with spared agricultural land, results in 
a demand of 6.7 EJ, because of its low carbon penalty. Assuming that land is 
spared due to continuous yield increase (which is the reason to include NS as 
and EF component), bypasses the fact that yield improvements (that make those 
lands available) take place because of demand for bioenergy. When low-carbon 
biomass is in limited availability, increasing electrification is observed, leading to 
electric capacity increase of 62% (mainly wind and solar energy), and a 12% en-
ergy system costs increase. Inclusion of spatiotemporal explicit supply potential 
and LUC emissions leads to improved bioenergy deployment pathways that come 
closer to the real situation as the dynamic nature of LUC emissions is included.
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1   |   INTRODUCTION

To prevent mean global temperatures from surpassing 
2°C above pre-industrial levels, biomass is regarded as an 
important climate change mitigation option (IPCC, 2018). 
The potential role of bioenergy in a low-carbon energy 
system depends mainly on the costs and the greenhouse 
gas (GHG) emission reduction potential of bioenergy in 
comparison to other low-carbon energy sources (Creutzig 
et al., 2015). The majority of these emissions are related 
to land-use change (LUC) induced by the cultivation of 
energy crops. In general, the effectiveness of the use of 
biomass as climate mitigation option is assessed by com-
paring the associated GHG emission factor (EF) per unit 
of energy, with the avoided fossil counterpart (Plevin 
et al., 2015). However, key parameters affecting the EF 
for bioenergy such as, for example, agricultural yields and 
(soil) carbon stocks are spatially heterogeneous (Albanito 
et al., 2016; Doelman et al., 2018), while methodological 
choices such as the selection of the time horizon (TH) 
(Plevin et al., 2015) and accounting for natural succes-
sion (NS) (Kalt et al., 2019) heavily influences bioenergy 
EFs. Therefore, a spatially temporal explicit method is re-
quired to quantify the EFs of bioenergy, and additionally 
its spatial-explicit costs.

The demand for bioenergy is driven by the associated 
EFs due to decarbonization policies. In principle, there will 
be higher or lower demand for bioenergy, dependent on 
its EF. When analyzing low-carbon energy system trajec-
tories, the dynamic interaction between low-carbon sup-
ply and demand for bioenergy is required to obtain more 
precise modeling results (Gambhir et al., 2019), together 
with an improved model representation of the interaction 
between land and energy systems (Creutzig et al., 2015). 
This dynamic interaction is typically well studied with the 
so-called integrated assessment models (IAMs). However, 
their global scale usually comes with low spatial resolu-
tion (Wicke et al., 2015; Woltjer et al., 2017), and individual 
countries are modeled in a simplified way (Fragkos et al., 
2018). It also contradicts with the strategy proposed in the 
Paris Agreement, calling for national climate mitigation 
strategies (UNFCCC, 2015). As climate policy and techno-
economic performance of technologies, capital dynamics 
and constraints, and energy demand vary widely per coun-
try, national models can be preferred above global models 
to assess the transition toward low-carbon energy systems 
(Fragkos et al., 2018; Krey et al., 2018).

Limited studies have investigated the dynamic link be-
tween spatially explicit GHG quantification of bioenergy 
and national energy systems, which is recommended by 
Köberle (2018) for assessing GHG mitigation strategies. 
Czyrnek-Delêtre et al. (2016) claim to be the first to as-
sess the impact of LUC emissions on the demand for 

bioenergy in a low-carbon energy system. They show that 
the total primary bioenergy demand reduces with approx-
imately 70% when LUC emissions are included, compared 
to a scenario excluding LUC emissions, resulting in rad-
ical changes especially in a low-carbon transport sector. 
However, they only use bioenergy EFs that are static over 
time, and constant over space.

Daioglou et al. (2017) and more recently Kalt et al. 
(2020) developed a spatiotemporal method to quantify the 
EFs related to bioenergy production (BP). They show the 
global supply potential of bioenergy per unit of associated 
GHG emissions, resulting in the so-called emission supply 
curves, as originally proposed by Haberl (2013). However, 
both studies do not assess the dynamic interaction for 
multiple end-use application for biomass (e.g., electricity 
production, renewable heat for the industry, feedstock for 
bio-chemical production), as they only assess the impact 
for biomass and BP. Furthermore, they did not investigate 
how these EFs affect bioenergy deployment strategies 
when trying to meet strict GHG constraints. Linking an 
energy system model to the emission supply curves, as 
developed by Daioglou et al. (2017), allows for the assess-
ment of impact of LUC emission on biomass as climate 
change mitigation option because (1) it includes the spa-
tial heterogeneity of LUC, (2) the dynamic interaction be-
tween supply and demand for bioenergy can be assessed, 
and (3) the competition between various end-uses for bio-
energy can be assessed.

The aim of this study is to assess how LUC-related 
GHG emissions (hereafter LUC emissions) influence the 
demand for bioenergy as an option for climate change 
mitigation, and how this affects domestic final energy 
mix, within the time frame 2010–2050. A framework of a 
linear optimization energy system model, combined with 
a stylized representation of marginal LUC emissions from 
biomass production, is used to analyze this. Brazil is cho-
sen as case study because the country has globally one of 
the largest biomass potentials (IRENA, 2014; Welfle, 2017) 
and is currently the second biggest biofuel producer (IEA, 
2019). Furthermore, studies that analyze low-carbon en-
ergy pathways show that bioenergy is expected to be the 
prime source of energy for the Brazilian energy system by 
2050 (Lap et al., 2019; P. Rochedo, 2016). However, histori-
cally the majority of the Brazilian GHG emissions is related 
to land use (Ministerio de Estado da Ciencia, Technologia, 
Inovacoes e Comunicacoes, 2017). This raises the question 
whether or not Brazil can produce bioenergy while also 
contributing to net GHG emission reduction strategies. 
Furthermore, this methodological framework is used to 
evaluate key parameters that influence the supply poten-
tial and/or the EF of bioenergy as climate mitigation op-
tion: agricultural productivity, selection of TH, accounting 
for NS, and the use of temporal dynamic EFs.
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2   |   INTRODUCING KEY 
DETERMINING PARAMETERS

Quantification of bioenergy supply potential and related 
LUC emissions depends on multiple parameters. The in-
fluence on the demand for bioenergy as an option for cli-
mate change mitigation of four key determining factors is 
assessed in this study. These factors are introduced below, 
also in relation to how bioenergy is modeled in energy sys-
tem models.

2.1  |  Agricultural productivity

Agricultural productivity shows how much agricultural 
products can be produced per unit of land. Over the past 
60 years, global trends show increasing productivity for the 
major agricultural products (FAOSTAT, 2020; Gerssen-
Gondelach et al., 2015). Forecasts toward 2050 show in-
creasing productivity (Alexandratos & Bruinsma, 2012), 
mainly because there is still a yield gap, which can be 
overcome by, for example, improvements in agricultural 
management and better use of fertilizer (Lobell et al., 
2009).

Increasing agricultural productivity can result in aban-
donment of agricultural land, which can become available 
for BP. The carbon debt on abandoned agricultural lands 
is relatively low because of limited vegetation (Fargione 
et al., 2008). Agricultural productivity influences the sup-
ply potential for bioenergy on abandoned agricultural 
lands with a relative low carbon footprint.

2.2  |  Time horizon

The selection of a TH over which LUC emissions are am-
ortized influences the EF of bioenergy (Plevin et al., 2010). 
In general, the majority of the LUC emissions occur dur-
ing the conversion from one land type to another, due to 
clearings of the living biomass (Wise et al., 2015). When 
this spike in emissions is amortized over a longer TH, 
the EF per unit of produced energy is lower. The effect of 
choosing a specific TH will have large influence on the bi-
oenergy EF as carbon stocks change over time (Koponen 
et al., 2018).

2.3  |  Natural succession

When agricultural lands become abandoned in the future, 
the natural vegetation (NV) can grow back. Regrowth of 
NV is called NS. Accounting for NS on abandoned agricul-
tural land (Kalt et al., 2019) affects bioenergy EFs. While 

the accounting for NS is usually not included in bioenergy 
GHG assessments (Searchinger et al., 2017), a growing 
number of studies highlight the importance of account-
ing for NS as an EF component. By including NS as an 
EF component in bioenergy GHG accounting methods, it 
is assumed that land is spared, because of yield increase 
(Albanito et al., 2016).

However, the reason this land can be spared is not di-
rectly due to yield increases as such, but because of cli-
mate mitigation policy: there is a demand for low-carbon 
energy carriers. This demand can create incentives to 
spare agricultural land since this has a high potential for 
low-carbon bioenergy and does not result in indirect LUC 
(Wicke et al., 2012). Therefore, NS does (in many settings) 
not happen automatically, but because the land is spared 
with a very specific goal: provide low-carbon bioenergy 
to fulfill energy demand. Without this demand, it is less 
likely that land is spared and NS will occur.

Furthermore, the impact of NS on carbon stocks is 
steadily decreasing over time since it will reach an equi-
librium. The annual carbon savings therefore decrease 
over time, while the carbon savings from BP remain and 
accumulate. From a farmers’ perspective, a stable long-
term economic prospective is important in the decision to 
switch to another type of farming. The fact that the NS 
EF component should be included in bioenergy GHG ac-
counting methods, does therefore not necessarily stand 
ground and is transparently investigated here.

2.4  |  Dynamic emissions

In energy system models, the emissions from energy carri-
ers are based on the consumption of energy carriers (e.g., 
coal, diesel, and natural gas). The fixed carbon content of 
these carriers causes fixed emissions when combusted. To 
calculate the GHG emissions, a fixed EF is linked to the 
consumption of an energy carrier. For bioenergy, this is 
different. First of all, the carbon content of the bioenergy 
is short cyclic. The source of the carbon is atmospheric 
CO2 embodied in the biomass by photosynthesis. When 
the bioenergy is combusted, that same CO2 is emitted into 
the atmosphere again; in other words, the bioenergy is 
CO2 neutral. In simplified models, this is also how bio-
energy emissions are defined. However, this does not ac-
count for LUC emissions. LUC emissions happen during 
different stages of the production of bioenergy. Emissions 
from clearing NV for new bioenergy plantations happen 
instantly, while emissions from decreasing soil organic 
carbon occur over a longer period, just like emissions re-
lated to bioenergy cultivation. The temporal dimension of 
LUC emissions is dynamic, in contradiction to the static 
emissions of conventional hydrocarbon fuels.
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Lifecycle assessments present LUC EFs normally as 
one single EF. This can be done when choices are made 
with respect to system boundaries (e.g., TH, allocation as-
sumptions, carbon stock changes). This single bioenergy 
EF can be used in energy system models just like con-
ventional hydrocarbon fuels (as done in Czyrnek-Delêtre 
et al., 2016). However, by including those (static) EFs, the 
temporal dynamic nature of short-  and long term LUC 
emissions is not captured.

2.5  |  Influence of key determining 
factors on modeling bioenergy

Bioenergy is included in energy system models on the 
supply side of the model per type of feedstock with the 
associated roadside costs, its EF, restricted by its supply 
potential. In Table 1, an overview is given how the key 
determining factors influence the way bioenergy is mod-
eled in ESMs, and how it affects the results of low-carbon 
energy system assessments.

3   |   MATERIALS AND METHODS

To assess the impact of LUC emissions on the demand for 
bioenergy in a Brazilian low-carbon energy system, two 
main approaches are combined, as illustrated in the frame-
work of this assessment (Figure 1). First, the spatially 
explicit supply potential of biomass with the associated 

GHG emissions is calculated: the biomass GHG supply 
curves (see Section 3.4 for details). These show how much 
biomass can be supplied given the associated GHG emis-
sions and costs for each potentially available location in 
Brazil, on lands with NV and on abandoned agricultural 
land. Agricultural lands are excluded as a location as a 
“food first” principle is applied to avoid competition with 
food production and indirect LUC.

Scenario analysis is used to assess the key determining 
parameters of the bioenergy supply potential and EFs. The 
developed bioenergy GHG supply curves are linked to the 
least-cost optimization model TIMBRA (The Integrated 
Market allocation Energy flow optimization System—
BRAzil), showing the lowest cost solution to meet the 
demand for energy under a strict carbon budget. Within 
TIMBRA, an extensive portfolio of (low-carbon) energy 
carriers and conversion technologies is assessed based 
on costs and GHG emissions. The economic competition 
between different low-carbon energy sources is assessed, 
given a specific carbon budget. Therefore, this framework 
allows to analyze how much biomass will be used given its 
GHG emissions and costs, in relation to other low-carbon 
technologies, and when biomass (and other energy carri-
ers) is used within the timeframe 2010–2050.

3.1  |  TIMBRA

The Integrated Market allocation Energy flow optimi-
zation System—BRAzil is a linear optimization energy 

T A B L E  1   Overview of key determining factors, and how they affect the modeling of bioenergy in energy system models

Key determining 
factor

Bioenergy 
parameter ESM 
affected Description: effect on modeling results

Agricultural 
productivity

Supply potential 
and EF

Agricultural productivity determines how much land is available for each biome type and what 
is the productivity of the bioenergy crop, leading to the supply potential of bioenergy

Furthermore, it determines abandonment of agricultural land. Due to the low carbon debt of 
those lands, agricultural productivity influences this low-carbon supply potential. In ESMs 
with GHG targets, this low-carbon supply potential is favored above bioenergy with high EFs

Time horizon EF The higher the time horizon, the lower the total EF of the bioenergy. In GHG-restricted energy 
system assessments, this plays an important role whether or not biomass is selected as a 
cost-effective low-carbon energy option, above other options

Natural succession EF When included, the EFs of bioenergy from abandoned agricultural lands increase, and the 
bioenergy become less attractive as a low-carbon source in ESMs with GHG targets

The effect of natural succession only appears when agricultural land is abandoned, driven by 
agricultural productivity

Dynamic emissions EF Modeling bioenergy with dynamic EFs does influence the temporal deployment prospective of 
bioenergy. Higher short-term EFs (which are attenuated, because spread out over time when 
static EFs are used) can weaken the demand when carbon restrictions become stringent, 
resulting in shifting strategies (other low-carbon technologies, and/or different timing of 
bioenergy deployment) to meet both energy demand and GHG emission restrictions

Abbreviations: EF, emission factor; GHG, greenhouse gas.
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F I G U R E  1   Overview of the methodological framework. Including the methodological approach for the GHG supply curves (on top), the 
methodological framework of TIMBRA (bottom), and how they are linked (middle). The timeframe of the study is from 2010 to 2050, with 
time slices each 5 years. TIMBRA makes a consideration between the supply of biomass (to fulfill energy demand), and the accompanying 
LUC emissions that needs to fit into the carbon budget. In the hypothetical situation there is a demand of 140 EJ for bioenergy, which comes 
with a total of 2.2 Gt CO2-eq. (40 EJ with an EF of 5 kg CO2-eq./GJ, and 100 EJ with an EF of 20 kg CO2-eq./GJ). GHG, greenhouse gas; LUC, 
land-use change; TIMBRA, The Integrated Market allocation Energy flow optimization System—BRAzil
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system model which is used to minimize energy system 
costs for Brazil under a set of user-defined restrictions for 
the period 2010–2050 (Nogueira, 2016). TIMBRA is used 
to assess the dynamic interaction between primary energy 
carriers, a list of conversion technologies and end-use de-
mand in the main sectors (industry, transportation, resi-
dential & commercial, agriculture, and non-energy).

The three types of biomass supply potentials are input 
data for TIMBRA: current energy crops, residues, and 
new bioenergy plantations (see Section 3.2 for details). 
Bioenergy can be used in the following end-use sectors: in-
dustry, transportation, residential & commercial, and non-
energy. The possible pathways for biomass to fulfill energy 
demand from the bioenergy crops, via conversion technol-
ogies, to end-use applications is depicted in Figure A1-1 
(Appendix S1). The technology portfolio also includes (bio-
energy) carbon capture technologies. The supply potential 
other than biomass is obtained from scientific literature for 
fossil (Saraiva et al., 2014), nuclear (Deutch et al., 2009), hy-
dropower (Empresa de Pesquisa Energética, & Ministério 
de Minas e Energia, 2007), wind (Lap et al., 2020), and solar 
(Malagueta et al., 2014; Miranda et al., 2015) resources.

The techno-economic characteristics of the conversion 
technologies (bio-based, fossil, and renewables) are found 
in Lap et al. (2019). The cost assessment in TIMBRA is 
based on capital costs (CAPEX) and operational costs 
(OPEX) of energy conversion technologies, and on fuel 
costs (Loulou et al., 2005) and changes over time. The 
annual supply cost of the entire energy system cover the 
same cost categories and exclude costs on the demand side 
that convert final energy to useful energy. The demand 
for energy is an exogenous input for TIMBRA, and is ob-
tained from demand projections for Brazil based on future 
estimates on demographics and GDP statistics (Nogueira, 
2016; P. Rochedo, 2016).

3.1.1  |  GHG emission budget

Climate policy is included in TIMBRA by applying a car-
bon budget. The carbon budget is the volume of GHG 
emissions that Brazil may emit (for the period: 2010–2050) 
to prevent global warming from surpassing the two degree 
Celsius limit, and is set to 16 Gt CO2-eq. in this study ac-
cording to estimates from Rochedo et al. (2018). In this 
study, the carbon budget is associated only to the energy 
system (see Figure 2). The emissions from LUC for BP, 
and the emissions related to the cultivation of those bioen-
ergy crops are thus included in the carbon budget for the 
energy system. The accumulated GHG emissions of new 
bioenergy plantations can be compared with the carbon 
budget to analyze the allowable GHG emissions of those 
plantations.

Although the LUC emissions from the bioenergy plan-
tations are in principle regarded as emissions related to 
the Agriculture, Forestry and Other Land Use (AFOLU) 
sector, they are in this study explicitly assigned to the en-
ergy sector. This is because bioenergy is regarded as a de-
carbonization option for the energy sector. Since the aim 
of this study is to investigate the potential of bioenergy as 
a decarbonization option, the LUC emissions are explic-
itly assigned to the energy sector.

Additional land-use-related GHG emissions (i.e., from 
deforestation, enteric fermentation, nitrogen fertiliza-
tion) that are not directly associated with energy produc-
tion are therefore excluded from the carbon budget for 
the energy system as used in this study. This distinction 
is made because the primary drivers for GHGs from the 
agricultural sector are related to agricultural demand in 
general (Câmara et al., 2015), and more specifically to beef 
production (Cohn et al., 2014) and soybean cultivation 
(Nepstad et al., 2014). By decoupling the carbon budget, 

F I G U R E  2   Carbon budget as used in this study for Brazil during the period 2010–2050. GHG, greenhouse gas; LUC, land-use change
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specific emphasis is put on energy-related LUC emissions 
within a defined energy-related carbon budget.

GHG emissions of the energy sector are included in 
TIMBRA by multiplying primary energy consumption 
with the associated EFs (Lap et al., 2019). This includes 
also upstream GHG emissions for both fossil and renew-
able energy.

3.2  |  Bioenergy supply potential and EFs

In this study, three different types of bioenergy supply po-
tential are distinguished. Supply potential from:

1.	 New bioenergy plantations
2.	 Current bioenergy crops
3.	 Agricultural residues

The supply potential of new bioenergy plantations is 
described in Section 3.4. The supply potential of current 
bioenergy crops consists of the supply potential from land 
cultivated with energy crops in 2015. It is assumed that 
the area of energy crops under cultivation in 2015 already 
affected the carbon stocks. This supply potential relates to 
sugarcane, oil from soybeans (excluding the use of soybean 
oil for human consumption and other non-energy use in 
Brazil, based on food supply and for other use than food 
or energy, FAOSTAT, 2020; MME, 2016), and wood planta-
tions for industry. This supply potential can increase over 
time due to yield improvements (dependent on the sce-
nario), given the fixed acreage in 2015. As the demand for 
sugar is assumed to be a non-energy commodity, growth 
in demand for land that is required to meet the demand for 
sugar is assumed to be used for food production. No EF is 
associated with the growth of sugarcane production area 
due to demand increase for sugar production, although 
the co-products are used for energy purposes.

The supply potential of agricultural residues consists 
of rice husk, soybean straw, maize stover, and sugarcane 
straw in this study. These crops are selected because they 
represent the majority of the total crop production in 
Brazil (FAOSTAT, 2020), and have a high crop-to-residue 
potential (Portugal-Pereira et al., 2015), subsequently 
showing the highest potential for energy production from 
agricultural residues. The supply potential in this study 
relates to the sustainable available potential, assuming 
part of the residues is used as feed (Portugal-Pereira et al., 
2015), and approximately 70% is left on the field to sustain 
ecological functioning of the soil, including a stable soil 
carbon stock (Carvalho et al., 2017; Daioglou et al., 2016).

For rice husk, soybean straw, and maize stover, an EF 
is added for carbon losses due to removal of residues, 
based on Mouratiadou et al. (2020). No EF is added for 

sugarcane straw. Recent studies show that the soil carbon 
stocks remain stable when 30% of the sugarcane straw is 
removed (Carvalho et al., 2017; Cherubin et al., 2018). The 
EF used for soybean oil is obtained from Hoefnagels et al. 
(2010). The supply potential of the mentioned residues is 
directly linked to the demand for food (see Section 3.4). 
For existing energy plantations, an EF is added for NS, 
based on carbon sequestration rates for regrowth of NV as 
described in Appendix S5.

3.3  |  Cost–supply curves

The costs of biomass are incorporated in this study as 
cost–supply curves, where the supply potential of biomass 
crops is given in relation to the associated costs. The bioen-
ergy cost–supply curves are obtained from Daioglou et al. 
(2016) for residues and Daioglou et al. (2019) for energy 
crops. Considered cost factors are cultivation, harvest, col-
lection, storage, drying, and transport costs. Detailed in-
formation on the methods of the cost-supply curves can be 
found in Daioglou et al. (2016).

3.4  |  GHG supply curves of new 
bioenergy plantations

The bioenergy GHG supply curves show the potential 
supply of new bioenergy plantations, with the associated 
GHG emissions (soil organic carbon, living biomass, and 
crop cultivation). The quantification of both supply poten-
tial and LUC emissions on a spatiotemporal level allows 
to assess the GHG mitigation potential of biomass in com-
parison to other energy carriers.

The bioenergy GHG supply curves are calculated using 
the dynamic interlinked IMAGE-LPJmL model. The latter 
model calculates the yield of crops by incorporating all bi-
otic and abiotic factors. More details of the LPJmL model 
are found in Müller et al. (2016). Details about the integra-
tion of LPJmL in IMAGE to derive GHG supply curves are 
found in Daioglou et al. (2017). Per grid cell (30 × 30 arc-
minutes, circa 50 km at the equator), the potential supply 
of a type of biomass is calculated using the dynamic veg-
etation model LPJmL. The yield calculated by the LPJmL 
model is the attainable yield (benchmark for rain-fed crops; 
Fischer et al., 2012). The considered crop is sugarcane, as 
this crop shows the highest energy potential (Gerssen-
Gondelach et al., 2014), and is currently among the most 
cultivated crops in Brazil (FAOSTAT, 2020). Miscanthus or 
eucalyptus can potentially be important energy crops. Due 
to differences in biophysical properties, growing locations 
(with different soil carbon stocks) can change, potentially 
resulting in better EFs. The difference between those three 



      |  117LAP et al.

crops is discussed in Appendix S4. The biomass from clear-
ing NV for new bioenergy plantations is not used as bioen-
ergy feedstock in this study, mainly because of concerns 
with quality (Daioglou et al., 2017).

For each grid cell assigned to Brazil, the biomass produc-
tion and associated EF are calculated within the IMAGE 
model. Finally, by ordering the grid cells according to their 
EF, and cumulating their potentials, the GHG supply curve 
is created. As the supply potential for entire Brazil is calcu-
lated, a distinction is made in the results between full sup-
ply potential and low-carbon supply potential. Low-carbon 
supply potential is defined in this study as the supply poten-
tial with an EF below 15 kg CO2/GJprimary biomass. This value 
is in line with standards set in the renewable energy direc-
tive (RED) of the EU (European Parliament, 2018), which 
defines that bioenergy should have a 70% reduction in terms 
of GHG emissions compared to its fossil counterpart. The 
GHG supply curves are obtained from analyses of Daioglou 
et al. (2017) and are adjusted (see Appendix S2) to be used 
as input data for the TIMBRA model.

Land is classified into agricultural lands and NV for all 
time steps. The NV is further differentiated by the LPJmL 
model into biome types: tropical forests, temperate for-
ests, and savannah. In this study, it is assumed that the 
potential production of bioenergy will take place on land 
with NV or on abandoned agricultural land. Abandoned 
agricultural land is land that becomes available when 
land demand for crops or livestock systems decreases due 
to either reallocation of crops to more suitable locations 
or yield increases, which is calculated within the LPJmL 
model. Urban areas and water areas are excluded from 
this study for energy crop production.

The yield developments and demand for agricultural 
products are based on the shared socio-economic pathway 
(SSP) scenarios as used in Doelman et al. (2018). The area 
of agricultural land that becomes abandoned, or expands 
over time is obtained from Daioglou et al. (2019) which 
uses the same input data from Doelman et al. (2018). 
When the agricultural area expands (at the expense of nat-
ural land), this area is still classified as agricultural land 
that is not available for BP (food-first principle). The ma-
jority of the spared land in the future is a result of inten-
sification of low-intensity pastures (Doelman et al., 2018).

3.4.1  |  EFs for GHG supply curves

The GHG emissions accounted for are (1) the emissions 
related to changes in soil carbon stocks and living biomass 
and (2) the associated emissions for the cultivation of the 
energy crops: fuel use for machinery and nitrogen applica-
tion (see Daioglou et al., 2017 for more information). All 
EF components are described in Table 2.

For spatiotemporal quantification of LUC emissions, 
the dynamics over time and space should be incorporated. 
Therefore, two different cases are modeled within IMAGE-
LPJmL: a NV case where no bioenergy is produced, and a 
BP case. The difference in carbon stock change between 
both cases gives the GHG emissions related to carbon 
stocks. The EF per unit of energy produced is calculated 
for each grid cell g using Equation (1) (after Daioglou 
et al., 2017). The EF components are described in Table 2.

To assess the effect of the dynamic LUC emissions, the 
static EFs from Daioglou et al. (2017) are split into short-
term EFs (from clearing NV), and long-term EFs (for 
gradual changes over the entire TH), using the fraction 

(1)

EFg =
(C stocknv−C stockbp)+C stockliving bm+C stock AALnv

∑thorizone
2015

Biomass potentialg
+BPcultivation.

T A B L E  2   Emission factor (EF) components for the GHG 
emission supply curves

GHG EF 
components Equation part

Description GHG EF 
component

Soil carbon 
stock 
changes

(

C stocknv − C stockbp
)

The difference between 
changes in carbon 
(C) stocks (included 
are litter and soil 
organic carbon) for 
the NV and BP case. 
Calculated for each 
grid cell

Embodied 
carbon

C stockliving bm Losses due to LUC as a 
result of removing 
carbon embodied 
in living biomass 
(above and below 
ground) from the 
existing NV

Emissions 
cultivation 
energy crops

BPcultivation •	 Fuel consumption 
machinery use

•	 Nitrous oxide 
emissions from 
fertilizer application

Forgone 
emissions 
from natural 
succession

C stock AALnv Abandoned agricultural 
land (AAL) is 
assumed to return 
to the NV: natural 
succession. Over 
time carbon stocks 
(soil and living 
biomass) will 
increase on these 
lands

Abbreviations: BP, bioenergy production; GHG, greenhouse gas; LUC, land-
use change; NV, natural vegetation.
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between short-  and long-term EFs (Equation 2). The 
short-term EF is allocated to the first TIMBRA time slice 
(of 5 years), while the long-term EF lasts for the entire TH.

EF (short-term)  =  the short-term EF (kg CO2-eq./
GJ(prim. biomass)) of the selected bioenergy crop c, of biome 
b, at year y for the selected yield scenario s. SP = supply 
potential (GJ) of the selected bioenergy crop c, of biome b, 
for grid cell g, at year y for the selected yield scenario s. EF 
(static) = the static EF (kg CO2-eq./GJ(prim. biomass)) of the 
selected bioenergy crop c, of biome b, for the selected yield 
scenario s. EF fraction = the fraction (%) of the short- or 
long-term EF from the static EF of the selected bioenergy 
crop c, of biome b, for the selected yield scenario s.

3.4.2  |  Temporal dimension of the GHG 
supply curves

The development of demand for agricultural land over 
time depends (among others) on demand for agricul-
tural products (food, feed, forestry products, and live-
stock) and yields. The agricultural land area (including 
the area that becomes abandoned over time), yields 
and demand for agricultural products are obtained 
from Doelman et al. (2018), and are based on the SSP 
scenarios. The majority of the spared land in the future 
is a result of intensification of low-intensity pastures 
(Doelman et al., 2018). The second reason is due to 
yield development over time of the selected bioenergy 
crop. In this analysis, it is assumed that bioenergy can 

be produced on abandoned agricultural lands and other 
natural lands (excluding forests and water stressed 
areas), in line with Daioglou et al. (2019).

The bioenergy GHG supply curves are time dependent 
because it is assumed the yield, and land availability of 
the bioenergy crops develops over time. The relation be-
tween supply potential, yield and land availability is given 
in Equation (3).

SP = supply potential (GJ) of the selected bioenergy crop c, 
of biome b, for grid cell g, at year y for the selected yield sce-
nario s. Y = yield (GJ/ha) of bioenergy crop c, for biome b, at 
year y, for grid cell g, at year y for the selected yield scenario 
s. A = area (ha) of biome b, at year y, for the selected yield 
scenario s.

3.5  |  Scenarios

The TIMBRA model is used to assess the impact of GHG 
emissions on the demand for bioenergy in a Brazilian low-
carbon energy system across five scenarios: a reference 
scenario (REF) and one scenario per key determining fac-
tor (see Table 3 for an overview): low agricultural produc-
tivity (AP-L), short TH (TH-S), excluding NS (NS-Ex), and 
static EFs (EF-S).

For the reference scenario, a default representation is 
chosen for agricultural productivity, NS, TH, and the bio-
energy EF. Agricultural productivity is set to high, the TH 
is set to 85 years, NS is included and EFs are dynamic. 
Agricultural productivity is set to high because this al-
lows to explore the differences between the other factors. 

(2)
EF(dynamic)c,b,y,s=SPc,b,y,g,s×EF(static)c,b,s

×EFfractionc,b,s,

(3)SPc,b,g,y,s = Yc,b,y,g,s × Ab,y,s,

T A B L E  3   Overview of the scenarios as used in this study, categorized by the parameter sets

Scenario REF AP-L TH-S NS-Ex EF-S

Agricultural productivity High Low High High High

Demand agricultural productsa SSP1 SSP3 SSP1 SSP1 SSP1

Technological developmentb Progressive Conservative Progressive Progressive Progressive

Carbon budgetc 16 Gt CO2-eq. (for Brazil in the period 2010–2050)

Time horizond Long Long Short Long Long

Natural succession Included Included Included Excluded Included

Bioenergy EF Dynamic Dynamic Dynamic Dynamic Static

Abbreviations: AP-L, low agricultural productivity; EF, emission factor; EF-S, static EFs; NS-Ex, excluding natural succession; REF, reference scenario; TH-S, 
short time horizon.
Bold scenario settings are parameter changes, compared to the settings of the reference scenario.
a The demand for agricultural products is based on the shared socio-economic pathway (SSP) scenarios as used in Doelman et al. (2018).
b Technological development of energy conversion technologies follows the SSP trajectory as used in Lap et al. (2019).
c See Section 3.1.1 for detailed information.
d The time horizon is either long (85 years) or short (20 years).
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Since climate mitigation is a long-term goal, it is argued 
that a TH up to 100 years may be appropriate (Fearnside, 
2002). Furthermore, the longer TH helps to account for 
gradual carbon fluxes which can be presented better 
using a longer time frame (Daioglou et al., 2017). Since 
NS may potentially play an important role in bioenergy 
EFs (Kalt et al., 2019), this is by default included for new 
bioenergy plantations. Bioenergy EFs are set to dynamic, 
to represent the natural dynamics of LUC emissions.

The differences within the scenarios for the key de-
termining factors are discussed below. To prevent other 
parameters from influencing the results of that specific 
scenario, just one key determining factor is changed, 
rather than the whole set of possible interactions.

3.5.1  |  Agricultural productivity

Agricultural productivity is a key driver that influences 
the supply potential of bioenergy (Gerssen-Gondelach 
et al., 2015). In this study, two different yield projections 
are analyzed: high and low. The projections encompass 
bioenergy crops as well as all major agricultural prod-
ucts. The yields of the bioenergy crops and the major ag-
ricultural products for the three scenarios are shown in 
Appendix S2.

3.5.2  |  Time horizon

The bioenergy EF is calculated by dividing the LUC emis-
sions by the BP over the selected TH (see Section 3.4.1 for 
details). In this study, a 20-year TH and an 85-year TH 
are used. IPCC (2014) and the EU (European Parliament, 
2018) use the short TH because of the supposed lifespan of 
bioenergy plantation facilities and biofuel policy, while a 

longer TH is more appropriate for GHG emission mitiga-
tion strategies with a long-term emission target (Daioglou 
et al., 2017).

3.5.3  |  Natural succession

Two options for NS are assessed for new bioenergy plan-
tations: inclusion and exclusion. The sequestered carbon 
(both in soil and living biomass) over the assessed TH for 
the NV is calculated with the LPJmL model (see Krause 
et al., 2017, for more information), and is added to the GHG 
supply curves as an EF component by dividing the carbon 
by the bioenergy yield (see Section 3.4.1 for detailed infor-
mation). The sequestered carbon for AAL (and the other 
biomes) is found in Appendix S5. In this scenario, NS is 
also excluded for existing sugarcane plantations.

3.5.4  |  Bioenergy EFs

The GHG supply curves distinguish between LUC emis-
sions from embedded carbon of clearing NV, gradual 
emissions from soil carbon stock changes, and bioenergy 
cultivation (see Section 3.4). The total bioenergy EFs, as 
shown in Daioglou et al. (2017), are split into the three 
abovementioned fractions. From these fractions, the LUC 
emissions from clearing NV (short-term EF) are allocated 
to the first time slice within TIMBRA. When TMBRA 
decides to use this biomass from a new bioenergy plan-
tation, these emissions occur directly in that first period. 
The other two types of LUC emissions occur on a longer 
timeframe (long-term EF), and occur during the full TH 
of the bioenergy plantation (see Figure 3). The distinc-
tion between short- and long-term EFs is made for each 
biome. This allows to investigate the differences between 

F I G U R E  3   Simplified temporal 
representation of static bioenergy EFs 
(grey line) and dynamic bioenergy EFs 
(combination of the blue lines). The total 
EF over the entire time horizon of both 
the static and the dynamic EFs is the 
same. EF, emission factor
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the biomes. To investigate the impact of dynamic EFs, the 
results are compared to a model run using static EFs.

4   |   RESULTS

The results are shown in two different sections. The first 
section focuses on the interaction between the supply of 
low-carbon bioenergy and the demand, in relation to the sce-
narios. The second section focuses on the tradeoffs in the en-
ergy system with respect to variable demand for bioenergy.

4.1  |  Demand for biomass

4.1.1  |  General findings

The demand for bioenergy from new bioenergy planta-
tions range from 0.5 to 6.7 EJ in 2050, dependent on the 
scenario (Figure 4). The differences between the scenarios 
are large, not only in demand for bioenergy, but also the 
growth in demand over time and in the associated LUC 
emissions. The main reason for these differences is the in-
teraction between CO2 restrictions from the carbon budget 
that becomes more stringent toward 2050, bioenergy LUC 
emissions, their dynamics over time, and the demand for 
low-carbon energy.

From new bioenergy plantations, there is demand 
for bioenergy with an EF below 15 kg CO2/GJ, with the 
low TH scenario as an exception. The associated low-
carbon supply potential ranges from 0 to 159 EJ in 2050 
dependent on the scenario (see Appendix S3). Although 
in most scenarios, there is a significant higher supply 
potential with a similar EF from new bioenergy crops, 
this potential is not fully utilized because the demand for 
low-carbon energy is lower, and because of the carbon 
budget. In 2050, the annual emissions that are allowed 
within the budget, are just 5% of the emissions in 2015. 
Bioenergy plantations come with GHG emissions. Even 
when GHG emissions related to carbon stocks (soil and 
aboveground biomass) are small, those related to fertil-
izer application and fuel use for harvest and transport 
of the biomass still occur. As the total demand is in the 
order of exajoules, the absolute amount of emissions is 
also large and forms a significant proportion of the al-
lowable emissions in 2050.

The dynamics of short- and long-term emissions over 
time is also visible in Figure 4. In general, LUC emissions 
peak around 2030, due to high short-term EFs from clear-
ance of NV, and stabilize toward 2050. In 2050, the CO2 
emissions from new bioenergy plantations peak in 2030 
with a maximum of 150 Mt CO2 for the low agricultural 
productivity scenario. After 2030, they decrease and level 

off to 15%–20% of the peak, with exceptions for the NS and 
EF scenarios (see below for explanation).

The potential for existing energy crops and residues dif-
fer per scenario (see Appendix S3 for details). In general, 
the demand grows until 2040 for both sources. However, 
in the final years toward 2050, demand for soybean oil and 
residues (other than sugarcane straw) decrease drastically, 
and demand from existing energy crops remain around the 
same level as in 2040. Especially soybean oil and residues 
(other than sugarcane straw) are seen as transition fuels. 
They have a better GHG performance than fossil fuels, but 
when the carbon budget becomes stringent, other low-
carbon sources substitute them, such as hydrogen (from 
solar energy and wind energy).

4.1.2  |  Influence of key determining parameters

Agricultural productivity
The difference in demand for bioenergy is not directly 
visible when comparing the reference scenario (with 
high agricultural productivity) to the low agricultural 
productivity scenario (see Figure 4b). A small decrease 
in demand is visible, mainly because of less productive 
energy crops. The major difference between those two 
scenarios is in the supply potential of abandoned agricul-
tural land. The supply potential from AAL in the category 
below 15 kg CO2/GJ is 71 EJ for the reference scenario, 
compared to 8 EJ when the agricultural productivity is 
low (Appendix S3).

Although there is low-carbon supply potential on AAL 
in the reference scenario, this is not utilized. That is be-
cause of its long-term emissions, mainly consisting of for-
gone emissions from NS. Because these forgone emissions 
occur during the entire TH (the new NV—and its embodied 
carbon—continuously grows), the total LUC emissions of 
bioenergy from AAL are relatively high on the long term, 
in comparison to bioenergy from NV (which have their 
carbon penalty right after the clearance of the NV). As the 
carbon budget is stricter toward the end of the TIMBRA 
modeling horizon, bioenergy from AAL is less attractive 
as a low-carbon energy source in comparison to bioenergy 
from NV. Mainly because the spike in LUC emissions from 
initial clearance happens earlier in time, when the carbon 
budget is less strict, compared to relatively high emissions 
from embodied carbon throughout the longer TH, when 
the carbon budget becomes more strict.

Time horizon
With a TH of 20 years, the demand from new bioenergy 
plantations is below 0.5 EJ in 2050, significantly lower 
than the 4.7 EJ in the reference scenario (see Figure 4). 
High bioenergy EFs cause this low demand. The major 
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share of that biomass had an average EF between 15 and 
20 kg CO2/GJ. The total LUC emissions from new bioen-
ergy plantations in 2050 reach to 5 Mt in 2050. This small 

share of biomass is regarded as a cost-effective GHG miti-
gation option for sectors which are difficult to decarbonize 
with other low-carbon alternatives.

F I G U R E  4   Bioenergy production (the solid areas, left axis) and its associated GHG emissions (bars, right axis) from new bioenergy 
plantations for the period 2010–2050, shown for the five scenarios. Scenario (a) Reference, (b) Agricultural productivity, (c) Low time 
horizon, (d) Excluding natural succession, (e) Static emission factor. GHG, greenhouse gas; LUC, land-use change
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Natural succession
The effect of forgone emissions from NS is visible in the 
long-term EF of bioenergy from abandoned agricultural 
land. When excluded, the demand for bioenergy from 
abandoned agricultural land reaches 6.7 EJ in 2050 (Figure 
4d). The demand for bioenergy is doubling from 2030 to 
2050, apart from all other scenarios where the demand is 
levelling off after 2030. This is related to the fact that there 
are just marginal short-term emissions, since no NV needs 
to be cleared, in combination with the absence of forgone 
emissions from NS which leads to low long-term emis-
sions, basically only from the cultivation of the sugarcane.

The average carbon sequestration due to NS on aban-
doned agricultural land ranges from 80 to 125 t C/ha, depen-
dent on the agricultural productivity (see Appendix S5). This 
leads to an EF of NS of 8–13 kg CO2/GJbioenergy. This high-
lights the fact that the supply potential from abandoned ag-
ricultural lands is not utilized when NS is included, because 
this would lead to high forgone emissions toward 2050.

Dynamic EFs
When static EFs are used, in comparison to the dynamic 
EFs in the reference scenario, the demand for bioenergy is 
lower in 2050 with, respectively, 3.5 and 4.7 EJ (see Figure 
4e). This is related to the fact that emissions from the ini-
tial clearance of the NV are attenuated over the entire TH, 
ultimately resulting in higher long-term EFs. Due to an 
increasingly stringent carbon budget toward 2050, the de-
mand for biomass from new bioenergy plantations is tem-
pered in the static EF scenario.

Another effect of dynamic EFs is that utilization of 
new bioenergy plantations happens earlier, compared to 
similar model runs with static EFs, since the carbon bud-
get is less strict at those times which allows a high spike in 
LUC emissions from clearing NV.

4.2  |  Final energy

4.2.1  |  Final energy and costs

The final energy mix in shown in Figure 5, per prime en-
ergy carrier and per sector. Biomass is mainly consumed 
in both the transport sector and in the industry, and is 
the largest energy carrier. The variety between scenarios 
is small as the total final energy consumption reaches 
around 12–15 EJ in all scenarios. When a short TH is used, 
the bioenergy consumption is lower in the transport sec-
tor in comparison to the other scenarios, and less hydrogen 
in the industry. This is compensated by consuming more 
electricity in those sectors, and slightly more fossil fuels in 
the industry. In the scenario without NS, more biomass is 
used to fulfill energy demand in the transport sector. This 
leads to less use of electricity and hydrogen in the transport 
sector. The lower final energy use in both the TH and EF 
scenario is because the conversion efficiency of electricity 
and hydrogen per unit of energy is higher than bioenergy.

The annual costs of the energy system for 2050 range 
between 361 and 389 bn $, with the lowest cost related to 
the case that excludes NS while all other explored cases are 

F I G U R E  5   Total final energy consumption in 2050 for Brazil per sector and prime energy carrier. Biomass encompasses all three types 
of feedstock. AP-L, low agricultural productivity; EF-S, static emission factors; NS-Ex, excluding natural succession; REF, reference scenario; 
TH-S, short time horizon
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above 380 bn $. The difference in costs between excluding 
NS and the other cases is due to the use of biomass. Higher 
shares of biomass lead to higher supply costs, but less ad-
ditional costs are required to produce additional electric-
ity and hydrogen for the transport sector. The latter rise 
significantly and lead to substantial higher costs.

Bioenergy carbon capture and storage (BECCS) is pres-
ent in all cases. The full storage potential for storing car-
bon below the subsurface is utilized by captured CO2 from 
bioenergy, rather than from fossil origin.

4.2.2  |  Transport sector

The general trend shows that when less low-carbon bio-
mass is available, electricity for private transportation and 
hydrogen (from electrolysis of solar and wind energy) for 
freight transport become low-carbon alternatives to meet 
the transport demand (Figure 6). The preferred order 
to fulfil the demand for passenger transport with a low-
carbon profile is (1) bioenergy (both for passenger and 
freight transport), (2) passenger transport by electric vehi-
cles, and (3) freight transport on hydrogen. When biomass 
demand is at its lowest (0.5 EJ in the low TH scenario), 
one-third of the final demand is supplied by hydrogen and 
electricity, while this is just 10% in the scenario without 
NS with demand for bioenergy of over 7 EJ.

Differences per transport mode also occur. In the 
majority of the scenarios, buses run with ethanol and/
or renewable diesel, while electric buses enter the mar-
ket in the short TH scenario. For freight transport, in the 

scenario without NS still a share of the trucks drive on 
biodiesel. Since there is abundant low-carbon bioenergy, 
no further investments are done to use the biodiesel in a 
more efficient (but more expensive) way. In that scenario, 
the same effect is noticed for private transportation as eth-
anol is the main fuel for cars, and no investments need to 
be made for more expensive electric cars.

4.2.3  |  Power sector

Next to the transport sector, the power sector is also af-
fected by the impact of LUC emissions of biomass produc-
tion. When the supply potential of low-carbon biomass 
becomes scarce, hydrogen and electricity are used as 
low-carbon alternatives to meet transport demand. While 
electricity is directly consumed by electric cars, hydrogen 
is produced from electrolysis of renewable electricity. The 
additional electricity production to meet the demand for 
electric cars and hydrogen ranges from 660 to 870 TWh 
in 2050. In comparison to the total electricity demand for 
the other sectors (1200 TWh), this additional demand re-
quires 56%–75% more electricity in 2050. This additional 
electricity production is delivered with offshore wind, 
utility scale PV parks, and concentrated solar power.

Although electric cars and hydrogen trucks form a 
relative small share in the transport sector (see Figure 
6), the effects on the future power sector are large. 
Decarbonization of the industry and transport sector 
based on low-carbon electricity will require extensive ex-
pansions within the power sector.

F I G U R E  6   Relation between bioenergy demand in 2050 from new bioenergy plantation (EJ) on the right axis (in red white dots) and the 
total final energy consumption in the transport sector for 2050 per fuel type (EJ) on the left axis. AP-L, low agricultural productivity; EF-S, 
static emission factors; IND, industry; NS-Ex, excluding natural succession; R&C, residential and commercial; REF, reference scenario; TH-
S, short time horizon; TR, transport
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On average, the total electricity is produced from 
burning biomass in a combined cycle power plant with 
carbon capture facilities (BIGCC-CCS) is 250  TWh. 
Apart from its cost-effective GHG mitigation, this op-
tion is selected because it provides a baseload power 
production, which is required for grid stabilization to 
balance the variability of solar and wind energy. In the 
scenario with a low TH (50 TWh), and for the scenario 
excluding NS (no production) BIGCC-CCS plays a lim-
ited role, mainly because low-carbon bioenergy is very 
limited available and more suitable as decarbonization 
option in other sectors (THL scenario), or there is abun-
dant low-carbon bioenergy available and BIGCC-CCS 
is not an cost-effective GHG mitigation option (NSE 
scenario).

5   |   DISCUSSION

5.1  |  Key determining factors

5.1.1  |  Agricultural productivity

The results of this study show that high yield projections 
do not necessarily lead to higher demand for bioenergy. 
Although abandoned agricultural land is often regarded 
as promising options to cultivate biomass for BP, without 
the carbon penalty from clearing NV (e.g., by Fargione 
et al., 2008), the effect of including NS leads to higher for-
gone emissions on the long term. However, high yield pro-
jections have the potential to free agricultural land with 
high low-carbon supply potential of bioenergy. When NS 
is excluded, BP on abandoned agricultural land shows to 
be a cost-effective low-carbon source, which is preferred 
above lands with NV.

The demand for agricultural products and technolog-
ical development have little impact on the final results. 
Demand for agricultural products influences the availabil-
ity of agricultural residues, but the use of this bioenergy 
source is limited because of its EF. Additionally, in the 
SSP3 pathway, the demand for animal products is higher 
in comparison to the reference SSP1 pathway, leading to 
differences in abandonment of agricultural land. In the 
shown scenarios, this factor is not of influence on the 
results, because the bioenergy supply potential on AAL 
is unused because of NS (see Section 4.1.2 for details). 
However, in the scenario excluding NS, AAL is used. 
Thus, an SSP3 pathway with higher demand for animal 
products will reduce the low-carbon supply potential of 
AAL. Low technological development has negligible ef-
fects on the results, as it results in slightly higher system 
costs because of more expensive and less efficient conver-
sion technologies.

Intensification of cattle farming is mentioned as a 
prime solution to reduce GHG emissions from defor-
estation of the Amazon (Cohn et al., 2014). However, it 
remains uncertain if high yield projections will lead to a 
decrease in the total agricultural area. Past records show 
that yield increase in the Cerrado biome did not result 
in a reduction of total agricultural area (Goulart et al., 
2016). The correct implementation of agricultural policy, 
aiming at increasing the intensity of beef production, by 
means of the Forest Code, has shown that deforestation 
can decrease (Phalan et al., 2016). Full implementation, 
and strict compliance of the Forest Code (Câmara et al., 
2015), and policy aiming at increasing agricultural pro-
ductivity are necessary to reduce LUC emissions (Garrett 
et al., 2018).

5.1.2  |  Time horizon

For calculating bioenergy EFs, acknowledged institu-
tions like the IPCC and the European Commission rec-
ommend the use of a 20-year TH. The results of this study 
show that this affects the supply potential of low-carbon 
bioenergy substantially. However, when the penalty of 
the lost carbon stocks (soil- and living biomass) due to 
land conversion is fully accounted to the 20-year period, 
after that period the GHG savings from these lands can 
be very high as only the emissions related to the cultiva-
tion and transportation of the biomass are incorporated 
in the bioenergy EFs. As our results show that there is 
demand for bioenergy with a short TH, on the longer 
run the GHG savings can be much higher beyond 2050. 
Moreover, as mitigating climate change is a long-term 
effort, the use of a longer TH for calculating EFs may be 
reasonable (Fearnside, 2002).

In life cycle assessments, quantification to a single EF 
requires a chosen TH. However, this single EF can be per-
ceived as real-time emissions that occur constant over the 
chosen TH, which deviates from reality. When incorporat-
ing real-time emissions (though modeled estimates), there 
is no need to define a specific TH for biomass from new 
bioenergy plantations, because the dynamic fluxes of LUC 
emissions are incorporated.

5.1.3  |  Natural succession

Natural succession can be perceived as a GHG mitigation 
option as it accumulates atmospheric carbon and fixes it 
into the biomass. However, the buildup of carbon stocks 
of NS will slow down, and on the long run it will reach 
an equilibrium stage. There is also the risk that this se-
questered carbon is lost due to fires, diseases, and other 
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land-use claims. In comparison to carbon savings from re-
placing fossil fuels with biofuels, carbon savings from NS 
will fade out on the longer run making it less suitable as a 
GHG mitigation option since mitigating global warming is 
a long-term goal (IPCC, 2014). Furthermore, as NS can be 
seen as reforestation, it is related to AFOLU mitigation op-
tions. Therefore, it should be assessed in competition with 
similar mitigation options to assess its potential as a cli-
mate mitigation option. This requires a different method-
ology that can assess land-use-related mitigation options 
in combination with energy-related mitigation options.

This study highlights the importance of NS as a bio-
energy EF component. Assuming that NS will occur 
when land is spared from an ecological perspective true. 
However, the drivers that will influence land sparing are 
much more complex, especially if GHG mitigation via land 
systems is incentivized. Yield increases happen as a result 
of demand for food, and a shortage of fertile land. The as-
sumption that spared land is simply a result of continu-
ous yield increase, does not do justice to the complexity 
of this problem, because only with demand for bioenergy, 
yield improvements that make land available actually take 
place. From a modeling perspective, defining a new coun-
terfactual scenario might solve this issue. In this new NV 
case, no agricultural land is assumed to be freed from agri-
cultural production. Agricultural productivity is likely less 
intensive in comparison to the bioenergy case. The new 
bioenergy scenario should account for increasing GHG 
emissions (because of higher GHG emissions due to more 
intense land use), but NS can be excluded as an EF com-
ponent of bioenergy plantations.

The complexity around GHG mitigation options using 
terrestrial ecosystems, in relation to low-carbon energy 
demand, requires more research. A potential interesting 
approach would be to analyze stakeholder behavior (es-
pecially farmers and forestry companies) by agent-based 
modeling, as also discussed by Meyfroidt et al. (2018). By 
doing so, analyses can be made whether stakeholder in-
tensify their agricultural activities, and spare parts of their 
own agricultural land for BP and/or reforestation to miti-
gate GHG emissions.

5.1.4  |  Dynamic EFs

Modeling bioenergy with dynamic EFs comes closer to 
the real situation as the dynamic nature of GHG emis-
sions from LUC is incorporated. The results show that 
there is a clear relation between starting-up plantations, 
its related LUC emissions and carbon constraints, espe-
cially from a temporal point of view. Not only the timing 
is elucidated, the demand for bioenergy is also affected. By 
using dynamic bioenergy EFs, improvements can be made 

in assessing the potential for bioenergy. While some poli-
cies depend on static EFs for bioenergy (e.g., the RED II of 
the European Union, European Parliament, 2018), the use 
of dynamic EFs, in combination with integrated land- and 
energy system modeling, might result in better bioenergy 
deployment estimates.

5.2  |  Model improvements

5.2.1  |  GHG supply curves

The use of LPJmL for deriving the GHG supply curves has 
some limitations. First of all, one particular energy crop 
needs to be selected. In reality, a particular site might 
be more suitable for a different energy crop. Second, the 
model assumes that the production of both food and en-
ergy takes place in the most suitable location. The suitabil-
ity is mostly based on biophysical conditions. However, 
socio-economic conditions also affect land allocation to a 
large extent (Verstegen, 2016). Third, a “food-first” prin-
cipal is applied assuming that new bioenergy plantations 
will not be produced on agricultural land. In practice 
however, this can be different. Past sugarcane expansions 
replaced mainly pasture lands (Adami et al., 2012), which 
potentially caused indirect LUC. Fourth, the spatial reso-
lution of this study is rather coarse in comparison to, for 
example, PLUC (Verstegen, 2016), leading to uncertainty 
in the modeling results (Panichelli & Gnansounou, 2015). 
Fifth, the calculations of the EFs related to bioenergy cul-
tivation are assumed to be constant over time. Therefore, 
emission reduction options for fuel use for machineries, 
chemicals, and artificial fertilizers are not part of this as-
sessment. Including those options (e.g., drop-in biofuels 
to meet agricultural fuel demand and ammonia from bio-
mass) can result in lower EFs for bioenergy. Furthermore, 
the GHG supply curves can provide more detail once grid-
cell-based raw data can be used in energy system models, 
leading to a smoother GHG–supply curve. Improvements 
spatial visualization and separation of EF components can 
result in more accurate modeling results, and better un-
derstanding of the raw data which, in turn, can lead to 
improvements of the overlying models as well.

In summary, the used methodology is a stylized rep-
resentation of land allocation with limitations. Though 
this is appropriate for the aim of this study, it is not ideal 
to study LUC in detail. More detailed land-use alloca-
tion models like PLUC (Verstegen et al., 2014) or CLUE 
(Verburg & Overmars, 2009) are more appropriate, al-
though the higher resolution may be unsuitable for precise 
projections over a longer time frame (Verstegen, 2016). To 
cross-check the results from this study, the demand for 
bioenergy, as calculated in this study, can be used as input 
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for detailed land allocation models. By doing so, the devia-
tion between direct and indirect LUC can be observed and 
a comparison can be made between LUC emissions based 
on suitable locations versus more realistic locations.

5.2.2  |  Carbon budget

The selected carbon budget in this study is devoted to the 
GHG emissions only from the energy sector. As Rochedo 
et al. (2018) show, the total budget (between 2010 and 
2050) for Brazil is estimated to be around 23 Gt CO2 for 
the entire country, and the uncertainty related to that 
value is rather high. This implies that the budget chosen 
here might be too strict. However, as the LUC emissions 
related to the production of biomass for bioenergy can be 
linked directly to the production of energy, it is fair to link 
it to that budget. Additionally, the main drivers behind 
AFOLU emissions in Brazil are in general not directly 
linked to BP, but rather to the beef industry (both cattle 
farming and feed production from soybeans) (Nepstad 
et al., 2014), while also illegal logging (Azevedo et al., 
2017) and mining activities (Sonter et al., 2017) cause 
deforestation.

A different choice in the carbon budget would have 
led to different results. A lower carbon budget would have 
led to less demand for bioenergy, and demand would rise 
when the carbon budget was higher. However, the low-
carbon supply potential is already limited in most scenar-
ios. Therefore, the results would have been amplified, but 
the trends would not have differed drastically.

5.2.3  |  AFOLU mitigation options

The focus in this study is on the production of bioenergy for 
climate mitigation. However, afforestation can also result 
in carbon savings. The incorporation of afforestation as a 
GHG mitigation option within an energy system model re-
quires a different methodology that focuses on the forestry 
sector and its dynamics, like, for example, the MESSAGE-
GLOBIOM model (Havlík et al., 2011). Furthermore, 
growth in carbon stocks due to afforestation happens usu-
ally over a long period. It is difficult to assess this long-term 
mitigation from growing carbon stock within the platform 
of an energy system model (Köberle, 2018).

5.2.4  |  Export

In this study, the export of bioenergy is not included. It 
should be noted however that GHG mitigation strate-
gies for countries with low biomass potential advocate to 

use imported biomass to fulfil their own GHG mitigation 
strategies. Brazil is often mentioned as major exporting 
region of bioenergy. Daioglou et al. (2020) evaluated inter-
national bio-energy trade across eight IAMs in scenarios 
consistent with the Paris Agreement. The demand for 
Brazilian bioenergy to reach those targets varies between 
the models, ranging from 0 to 30 EJ of primary biomass 
per year. On top of the domestic demand for bioenergy, 
the total demand can reach nearly 50 EJ. Given the sce-
nario excluding NS, it might be possible to supply this 
quantity with low associated GHG emissions. However, if 
this is not the case exporting 30 EJ may lead to high LUC 
emissions.

5.2.5  |  Crop choice

Although sugarcane is often highlighted as the energy 
crop with the highest potential, other crops can also yield 
substantial amounts of energy. The analysis as shown 
here is also performed with two different crops: eucalyp-
tus and miscanthus. More details are shown in Appendix 
S4. The trends between the scenarios are comparable, al-
though eucalyptus yields are nearly half of those of sugar-
cane, and miscanthus is two-third of sugarcane. In some 
circumstances, miscanthus shows a higher low-carbon 
supply potential. This indicates that specific locations are 
favorable for miscanthus.

The demand for bioenergy from new sugarcane planta-
tions is substantially higher (see Figure A3-1 in Appendix 
S3) than for the other crops. The reason for this is not only 
a higher supply potential, but also that the sugarcane in-
dustry is a mature industry that exists already. Since ad-
vanced bio refineries (converting lingo-cellulosic biomass 
to advanced biofuels) are expected to phase in around 2040 
their GHG mitigation potential is limited to the relative 
short period 2040–2050. This especially because sugarcane 
ethanol options are so competitive when combined with 
BECCS, resulting in negative emissions. This is also the 
period where carbon restrictions become most stringent. 
These restrictions result in limited selection of supply po-
tential with lower EFs from eucalyptus and miscanthus, 
since they are still causing (limited) GHG emissions.

5.3  |  Final remarks

This study aimed to show how LUC emissions can influ-
ence the demand for bioenergy as an option for climate 
change mitigation, and how this affects national final en-
ergy consumption. Furthermore, it evaluates the effect of 
key parameters that affect the EFs and the supply poten-
tial of biomass.
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The demand for biomass is mainly influenced by its asso-
ciated EFs. While there is a relative high supply potential 
for biomass with an average EF above 15 kg CO2-eq./GJ, the 
demand for this biomass is negligible. Although supply po-
tential between 0 and 15 kg CO2-eq./GJ is relatively small, 
still the demand remains small, meaning that other low-
carbon options to fulfill demand for energy are more cost-
competitive. The low-carbon demand for biomass from 
new bioenergy plantations range from 0.5 to 6.7 EJ in 2050.

Natural succession plays a key role in demand for bio-
energy. When excluded, this demand is 6.7 EJ in 2050, 
compared to 5.2 EJ when included. High agricultural 
productivity is a pre-requisite to spare agricultural land. 
Inclusion of NS on those lands leads to relatively high 
long-term emissions due to forgone carbon sequestration 
in NV, compared to bioenergy produced on land with NV 
that have a high carbon penalty directly at the start due 
to clearing the NV. Exclusion of NS as an EF component 
from bioenergy produced on abandoned agricultural lands 
results in high supply potential with low associated GHG 
emissions. The assumption that spared land is simply a 
result of continuous yield increase (which is the reason to 
include NS as an EF component) does not do justice to the 
complexity of this problem, because only with demand 
for bioenergy, yield improvements that make those lands 
available actually take place.

Using dynamic instead of static EFs influences the tim-
ing of new bioenergy plantation as well as the demand for 
bioenergy. This is mainly caused by the interaction be-
tween dynamic LUC emissions and carbon constraints 
that become increasingly stringent toward 2050. The re-
sults show that LUC emission peaks around 2030 due to 
clearance of NV, before leveling off to 2050. In the static 
EF scenario, a more gradual trend is where LUC emissions 
top in 2050. The attenuated emissions due to clearance of 
NV result in a higher EF in 2050, in comparison to the ref-
erence scenario with dynamic EFs. Due to an increasing 
stringent budget in 2050, there is less demand for bioen-
ergy in the static EF scenario (3.5 EJ), compared to the 
reference scenario (4.7 EJ).

When low-carbon bioenergy demand from new bioen-
ergy plantations is below 1 EJ, on average 33% of the trans-
port energy demand is supplied by a mixture of electricity and 
hydrogen. Under limited low-carbon biomass availability, 
electric vehicles become a cost-competitive low-carbon al-
ternative for passenger transportation. Hydrogen (produced 
from electrolysis of renewable electricity) is seen as a cost-
competitive alternative for freight transportation. The de-
mand for electricity for electric transportation and hydrogen 
production for the industry reaches on average 720 TWh, an 
additional growth in demand for electricity of 62% in com-
parison to the standard demand. This can lead to a 12% in-
crease in the overall costs of the energy system. The increase 

in low-carbon electricity production, as shown in this study, 
is likely to cause problems, with, for example, transmission 
grid planning (Barbosa et al., 2017), grid stability (Lap et al., 
2020), and social acceptance (Brannstrom et al., 2017), and 
will lead to higher costs compared to energy systems with a 
larger share of bioenergy (Lap et al., 2020).

While low-carbon energy might serve as a cost-effective 
GHG mitigation option, producing low-carbon bioenergy 
should come with a set of restrictions that need careful con-
sideration. Mechanisms should (1) incentivize and protect 
production over a long TH, (2) carefully selected locations, 
(3) induce bioenergy producers to show their GHG per-
formance, and (4) allow for independent monitoring of 
GHG performance. Furthermore, strict policies like, for 
example, land zoning should be implemented to sustain 
valuable ecosystems, and provide insight in potential loca-
tions for BP. More research is needed to guide policymaker 
for concrete implementation of alike measures, which 
requires integrated modeling studies to understand the 
complexity between land and energy systems, and their 
economic and societal relations.

Bioenergy demand projections, as calculated in this 
study, can be used as input for land-allocation models to 
study spatial allocation, and subsequent LUC emissions 
in more detail. These land-allocation models can help to 
understand the interaction between land demand, spa-
tial allocation, and LUC. Thereafter, results from these 
land-allocation models can be used to refine low-carbon 
bioenergy supply potential as used in energy system opti-
mization models. Next, Brazil is seen as a potential export 
region for biofuel. By including export in this methodolog-
ical framework, the effects on the domestic energy system 
can be explored, and the emission profile of the exported 
bioenergy can be assessed.
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