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Abstract: The composition and activity of the intestinal microbial community structures can be
beneficially modulated by nutritional components such as non-digestible oligosaccharides and
omega-3 poly-unsaturated fatty acids (n-3 PUFAs). These components affect immune function,
brain development and behaviour. We investigated the additive effect of a dietary combination of
scGOS:IcFOS and n-3 PUFAs on caecal content microbial community structures and development
of the immune system, brain and behaviour from day of birth to early adulthood in healthy mice.
Male BALB/cBy]J mice received a control or enriched diet with a combination of scGOS:1cFOS
(9:1) and 6% tuna oil (n-3 PUFAs) or individually scGOS:IcFOS (9:1) or 6% tuna oil (n-3 PUFAs).
Behaviour, caecal content microbiota composition, short-chain fatty acid levels, brain monoamine
levels, enterochromaffin cells and immune parameters in the mesenteric lymph nodes (MLN) and
spleen were assessed. Caecal content microbial community structures displayed differences between
the control and dietary groups, and between the dietary groups. Compared to control diet, the
5¢GOS:IcFOS and combination diets increased caecal saccharolytic fermentation activity. The diets
enhanced the number of enterochromaffin cells. The combination diet had no effects on the immune
cells. Although the dietary effect on behaviour was limited, serotonin and serotonin metabolite levels
in the amygdala were increased in the combination diet group. The combination and individual
interventions affected caecal content microbial profiles, but had limited effects on behaviour and the
immune system. No apparent additive effect was observed when scGOS:1cFOS and n-3 PUFAs were
combined. The results suggest that scGOS:IcFOS and n-3 PUFAs together create a balance—the best
of both in a healthy host.

Keywords: behaviour; galacto-oligosaccharide; fructo-oligosaccharide; prebiotics; omega-3 fatty
acids; PUFA; intestinal microbiota; SCFA; healthy mice; early life

1. Introduction

The gut microbiota is the total collection of microbial organisms within a community.
The microbiota evolves and adapts to its host over a lifetime and microbiota activities have
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significant consequences for the host in terms of health and disease. The development of
the intestinal microbiota during early life appears to be essential in the maturation of the
immune system, adaptation of intestinal tissue morphology, as well as the development
of the brain and behaviour [1-3]. In the first phase of life, microbiota development can be
modified by several factors, such as mode of delivery (caesarean section versus vaginal
delivery), antibiotic use and mode of feeding (formula versus breastfeeding) [4]. Conse-
quently, impaired early-life development of the gut microbiota could lead to a disturbed
maturation of the immune system and brain, possibly resulting in increased risk of devel-
oping immune and brain disorders, respectively [1]. Therefore, healthy development of the
intestinal microbiota is important.

For the maturation of the immune system, exposure to environmental factors such
as food antigens is essential. This environmental exposure is necessary for the immune
system to develop tolerance towards harmless components. The precise mechanism of
tolerance development is unknown, but the differentiation of regulatory T cells (Tregs) in
Peyer’s patches and mesenteric lymph nodes (MLNs) could play an important role [5]. As
mentioned above, the maturation of the immune system is also influenced by the intestinal
microbiota. Short-chain fatty acids (SCFAs) play a role in the development of mucosal
tolerance of food antigens. The SCFAs are metabolites from the intestinal microbiota
fermentation of carbohydrates. They have immunomodulatory capacities and are able
to induce the differentiation and activity of Tregs, which in turn can result in tolerance
development [6,7]. In the absence of an intestinal commensal microbiota, the immune
system is deprived. This deprivation is manifested by functional defect Tregs and an
exaggerated systemic type-2 immune response [8,9]. These data indicate the essential role
of the intestinal microbiota in immune system development.

It is widely accepted that the intestinal microbiota plays an important role in the
development of the brain and behaviour. Animals without intestinal microbes, such as
germ-free mice and antibiotic-treated animals, have shown reduced anxiety-like behaviour
and impaired social behaviour [10-12]. These altered behaviours in germ-free mice are ac-
companied by disturbed neurotransmission in the central nervous system, where serotonin
levels are increased compared to conventional mice [12,13]. To emphasise the importance
of the intestinal microbiota in behaviour, these behavioural deficits were alleviated after
microbial re-colonisation [10-12]. To imply causality of the modulation of behaviour by
intestinal microbiota in neurobehavioural disorders, faecal microbiota transplant (FMT)
has been used. FMT from attention-deficit hyperactivity disorder and autism spectrum
disorder (ASD) individuals into germ-free mice resulted in increased anxiety, repetitive
and impaired social behaviour [14,15]. Transfer of anxiety and depression behavioural
traits also occurred via the intestinal microbiota in both mice and rats [16]. Moreover, in
preclinical models of autism spectrum, depression and anxiety disorders, administration of
specific bacteria restored the behavioural deficits [16].

Tryptophan is an essential amino acid that is metabolised into indole, serotonin
(5-HT) and kynurenine. In the intestine, tryptophan first encounters bacteria, some of these
bacteria are tryptophan utilising and metabolise tryptophan into 5-HT and /or indole [17,18].
Indole is able to modulate host physiology, for example integrity of intestinal epithelial
barrier [19]. Then, tryptophan encounters intestinal epithelial cells, where tryptophan
in enterochromaffin cells is converted into 5-HT. The basolateral released 5-HT interacts
with the enteric nervous system and, through vagal afferent nerve signalling, reaches
the central nervous system [17]. The secretion of 5-HT from enterochromaffin cells can
be mediated by SCFA and thus indirectly by intestinal bacteria [20]. Lastly, most of
the tryptophan available is metabolised through the kynurenine pathway. Kynurenine is
further metabolised into neuroprotective kynurenic acid and neurotoxic quinolinic acid [18].
The intestinal microbiota might indirectly affect the kynurenine pathway [19]; for example,
L. reuteri was associated with decreased circulating kynurenine and normalised stress-
induced behaviour [21]. In germ-free mice, the levels of plasma 5-HT and tryptophan are
elevated, indicating the reduced metabolism of tryptophan [18,19].
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It is well acknowledged that diet plays a significant role in shaping the intestinal
microbiota. Microbial community structures can be beneficially modulated by nutritional
components such as non-digestible oligosaccharides (NDOs) with prebiotic function and
omega-3 poly-unsaturated fatty acids (n-3 PUFAs) [22-26]. These dietary components
have been shown to be important in immune function as well as brain development and
behaviour [27-31].

Specific NDOs in human breast milk, called human milk oligosaccharides (HMOs),
are the third-most abundant milk solid component in human breast milk. These prebiotics
are essential in the development of the immune system [32]. In infant formula, which is the
alternative to breastfeeding, NDOs such as a mixture of short-chain galacto-oligosaccharide
(scGOS) and long-chain fructo-oligosaccharide (IcFOS) are added to mimic the modulatory
effects of HMOs. scGOS:1cFOS modulates the activity and growth of intestinal bacteria
to shape a healthy intestinal microbiota [23,26,33]. Additionally, scGOS:1cFOS modulates
the immune system directly, i.e., by upregulating IL-10 generation by DCs and inducing
Tregs [34,35]. This is important to stimulate development of tolerance and for skewing from
a Th2 response at birth towards a Th1 response [36,37]. This skewing might decrease the
risk of developing chronic inflammatory diseases such as allergies. Prebiotics also have the
capacity to influence brain development and behaviour [31,38-40]. Specific prebiotics are
indicated to affect the serotonergic system and to modulate behaviour in in vivo models,
where social behaviour is improved and anxiety-like and depression-like behaviour are
reduced [31,38,40].

n-3 PUFAs play an important role in the development of the immune system and
the brain and, according to ISAPP, are prebiotic candidates [41]. These fatty acids are
known to exert anti-inflammatory effects and also induce the skewing from a Th2 to a
Th1l immune response early in life, which, as mentioned above, is important to reduce
the risk of developing allergies [42—44]. n-3 PUFAs are essential in the development of
the brain. They are incorporated in the neuronal cell membrane and play an essential
role in supporting brain function throughout life [45,46]. Two of the most important n-3
PUFAs are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Deficiencies
in n-3 PUFAs in mice have resulted in depression-like behaviour and impaired social
behaviour [25,47]. Moreover, both EPA and DHA supplementation in rats have led to
reduced anxiety-like behaviour [48]. Although there is limited evidence, n-3 PUFAs are
probably able to modulate intestinal microbiota composition. Dietary supplementation
with n-3 PUFAs resulted in changed faecal bacterial taxa, depicting lower abundances of
the genus Coprococcus and higher abundances of the genera Bifidobacterium, Oscillospira and
Lactobacillus [25,49]. These data might indicate that, in addition to affecting the immune
system and brain development directly, n-3 fatty acids are able to influence these systems
through microbial modulation of the intestinal microbiota [25,49].

Based on the data that both scGOS:1cFOS and n-3 PUFAs modulate the intestinal
microbiota and beneficially affect both the immune system and brain development, we
hypothesised that a combination of scGOS:IcFOS and n-3 PUFAs can result in an addi-
tive effect. To evaluate this hypothesis, we investigated the effect of a combined dietary
mixture of scGOS:IcFOS and n-3 PUFAs on caecal content microbiota and activity and
the development of the immune system, the brain and behaviour from day of birth in
healthy mice.

2. Materials and Methods
2.1. Animals

Sixteen-day pregnant BALB/cBy] were purchased from Charles River Laboratories
(Maastricht, The Netherlands) and housed individually. The dams were allocated to the
control (n = 3, male pups n = 8), scGOS:IcFOS (n = 4, male pups n = 10), n-3 PUFAs
(n = 3, male pups #n = 11) or combination (1 = 4, male pups n = 15) diet groups on the day
their pups were born (postnatal day 0). The male mice were weaned on postnatal day
21 and continued the same diet as their mother until the end of the experiment (control
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n = 8, the supplementary diet groups n = 10, n = 1-5 from each litter). Fourteen age-
matched male BALB/cBy] were purchased from Charles River to be used as interaction
mice in the social interaction behavioural test (see behavioural tests). The male mice were
housed in groups after weaning. All mice were housed in Makrolon IIL cages and had
ad libitum access to food and water. A light/dark cycle of 12 h was followed and the
experimental procedures, including the behavioural tests, were performed during the light
phase. All animal experimental procedures were carried out in compliance with national
legislation following the EU Directive for the protection of animals used for scientific
purposes and were approved by the Ethical Committee for Animal Research of Utrecht
University (Approval number DEC 2014.1.12.090).

2.2. The Diets

The enriched diets were based on AIN-93G diets with a fat percentage of 10%. The
scGOS:1cFOS diet consisted of 3% scGOS (degree of polymerisation 2-8, Friesland Campina,
The Netherlands) and IcFOS (degree of polymerisation on average >23, Orafti, Wijchen,
The Netherlands) in a 9:1 (w/w) ratio. In the n-3 PUFA diet, 6% of the soybean oil was
substituted with 6% tuna oil. The composition of the experimental diets is shown in
Table S1. The tuna oil was a kind gift from Bioriginal (Den Bommel, The Netherlands).
The combination diet contained 3% of the scGOS:IcFOS mixture and 6% tuna oil. The
supplementations were added in an isocaloric manner. The diets were obtained from Ssniff
Spezialdidten gmbH (Soest, Germany).

2.3. Experimental Design

A schematic overview of the experimental design is illustrated in Figure 1. Behavioural
tests for social, explorative, stereotypic and anxiety-like behaviour were conducted during
adolescence (6 weeks old) and early adulthood (8 weeks old). After decapitation, the
brain, intestines, caecum content, MLNs and spleen were isolated for further analysis. For
MLN isolation, the abdominal cavity was opened, the caecum was lifted, and the superior
mesenteric lymph nodes were isolated. Working towards the middle of the mesentery, the
inferior lymph nodes were isolated.

Adolescence Early adulthood
GB—SI- OF- MB SI-OF-MB-GB
Weaning
Age 4
(weeks) o 3 a 5 6 7 8

1
—

Dietary intervention

Y

Isolation of organs

Figure 1. Schematic overview of the experimental protocol and the executed behavioural tests. From
day of birth, the dams received a control diet, a 3% scGOS:IcFOS (9:1)-enriched diet, a n-3 PUFA diet
or a combination diet containing 3% scGOS:1cFOS and n-3 PUFAs. The pups were weaned when
3 weeks old and continued on the allocated diet to the end of the experiment. During adolescence
and early adulthood, a battery of behavioural tests was conducted. Organs were collected after the
last behavioural test. GB: grooming behaviour, SI: social interaction test, OF: open field test, and MB:
marble burying test.

2.4. Microbiota Profiling and Bioinformatics Analyses

Total DNA was extracted from mice caecal contents utilising the FastDNA bead-
beating Spin Kit for Soil (MP Biomedicals, Solon, OH, USA), and DNA concentrations
were measured via fluorometric quantitation (Qubit 1.0, Life Technologies, Grand Island,
NY, USA). Primers 515F (Caporaso)-806R (Caporaso) targeting the variable region four
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(V4) of microbial small subunit (SSU or 16S) ribosomal RNA (rRNA) genes were used
for PCR [50], and prepared for high-throughput amplicon sequencing using a modified
two-step targeted amplicon sequencing (TAS) approach [51]. Negative controls were used
with each set of amplifications, which indicated no contamination. Samples were pooled
in equal volume using an EpMotion5075 liquid handling robot (Eppendorf, Hamburg,
Germany). The library pool was purified using an AMPure XP cleanup protocol (0.6x,
v/v; Agencourt, Beckmann-Coulter) to remove fragments smaller than 300 bp. The pooled
libraries, with a 20% phiX spike-in, were loaded onto an Illumina MiniSeq (Illumina, San
Diego, CA, USA) mid-output flow cell (2 x 153 paired-end reads) and sequenced using
Fluidigm sequencing primers. Based on the distribution of reads per barcode, the ampli-
cons (before purification) were re-pooled to generate a more balanced distribution of reads.
The re-pooled and re-purified libraries were then sequenced on a high-output MiniSeq run
(2 x 153 paired-end reads). Library preparation, pooling, and sequencing were performed
at the Genome Research Core (GRC) at the University of Illinois at Chicago (UIC). Raw
sequence data (FASTQ files) were deposited in the National Center for Biotechnology Infor-
mation (NCBI) Sequence Read Archive (SRA), under the BioProject identifier PRINA701436.

Raw FASTQ files for each sample were merged using the software package PEAR
(Paired-end-read merger) (v0.9.8) (Dalhousie University, Halifax, Nova Scotia, NS, Canada)
(http:/ /www.exelixis-lab.org /web /software/ pear (accessed on 28 December 2021)) [52,53].
Merged reads were quality trimmed, and primer sequences removed. Sequences shorter
than 250 bases were discarded (CLC Genomics Workbench, v10.0, CLC Bio, Qiagen, Boston,
MA, USA). Sequences were screened for chimeras (usearch8.1 algorithm) [54], and putative
chimeric sequences were removed from the dataset (QIIME v1.8, Quantitative Insights
Into Microbial Ecology, Knight Lab at the University of Colorado at Boulder, Boulder, CO,
USA) [55]. Each sample was rarefied (45,000 sequences/sample) and data were pooled,
renamed, and clustered into operational taxonomic units (OTU) at 97% similarity (use-
arch8.1 algorithm). Representative sequences from each OTU were extracted and classified
using the uclust consensus taxonomy assigner (Greengenes 13_8 reference database). A
biological observation matrix (BIOM) [56] was generated at each taxonomic level from
phylum to species (“make OTU table” algorithm) and analysed and visualised using the
software packages Primer7 [57] (PRIMER-E Ltd., Lutton, UK) and the R programming
environment [58].

2.5. Caecum Short-Chain Fatty Acid Levels

The levels of SCFAs were analysed as previously described [59]. In short, the caecal
contents were stored at —80 °C until analysis. After being defrosted on ice, the samples
were diluted in PBS and homogenised followed by centrifugation for 10 min at 14,000 g.
Next, the supernatant was heated for 10 min at 100 °C to inactivate all enzymes and
centrifuged again. The SCFAs acetic, propionic, butyric, iso-butyric, valeric and iso-valeric
acids were quantitatively determined by gas chromatography using a Shimadzu GC2010
gas chromatograph (Shimadzu Corporation, Kyoto, Japan) as described previously [59].

2.6. Immunohistochemistry Analysis of 5-HT-Positive Cells in Jejunum, Ileum and Colon

The intestinal 5-HT-positive cells were determined following the protocol previously
described [60]. After isolation jejunal, ileal and colonic tissue (1 = 6 of each tissue) were
opened longitudinally, rolled in the direction from distal to proximal and fixed in 10% for-
malin for at least 24 h and embedded in paraffin. The 5 um tissue sections (8 tissue sections
from each swiss roll) were incubated in 0.3% H,O, in methanol for 30 min to block en-
dogenous peroxidase activity. Sections were rehydrated in ethanol and incubated with
Proteinase K (DAKO, Code S3020). Non-specific staining was blocked with 5% goat serum,
and sections were incubated overnight at 4 °C with the primary antibody mouse anti-5-HT
(DAKO, Code M0758) 1:100. The following day, sections were incubated with biotinylated
goat anti-mouse (DAKO, Code E0433) 1:200, followed by incubation with sABC complex
1:100. Staining was visualised by incubating the sections in the dark with 1x DAB solution
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for 10 min at room temperature. Nuclear staining with Mayer’s haematoxylin has been
performed for 10 s. Digital images were captured using the software Image Pro (Media
Cybernetics, Rockville, MD, USA) and an Olympus BX50 light microscope with a Leica
DEFC 320 digital camera. In colonic tissue, sections in the epithelial layer were counted
in 10 consecutive crypts on five different places per tissue section. These colonic crypts
covered 461 x 187 um (8.6 x 104 um?). For tissue sections of the jejunum and ileum,
5-HT-positive cells were counted in the same area size of 461 x 187 um (8.6 x 104 um?) on
five different places per section. Due to differences in crypt sizes, using a consistent area
size was the most practical way to make comparable measurements.

2.7. Cell Isolation from MLNs and Spleen

Single-cell suspensions of the MLNs and spleen were obtained by crushing the or-
gans through a 70 pm cell strainer. The splenocytes were incubated with a lysis buffer
(8.3 g/L NH4Cl, 1 g/L KHCO3, and 37.2 mg/L EDTA) to lyse the red blood cells. The cell
suspensions were resuspended in PBS + 1% BSA (Sigma-Aldrich, St. Louis, MO, USA).

2.8. Flow Cytometry Analysis of the Immune Cells of MLNs and Spleen

MLN and spleen single-cell suspensions were prepared for flowcytometry analy-
sis as previously described [61]. The cell suspensions were incubated with anti-mouse
CD16/CD32 (Mouse BD Fc Block; BD Biosciences, Franklin Lake, NJ, USA) in PBS +
1% BSA for 15 min on ice to block unspecific binding sites. Afterwards, cells were stained
with the following surface markers CD4-PerCp-Cy5.5, CD69-PE-Cy7, CXCR3-PE, CD25-
AlexaFluor488, CD25-PE, (all purchased from eBioscience, San Diego, CA, USA) or T1ST2-
FITC (MD Bioproducts, St. Paul, MN, USA) for 30 min on ice. Fixable Viability dye eFluor
780 (eBioscience) was used to exclude non-viable cells. Next, the cells were fixed and
permeabilised with the Foxp3 Staining Buffer Set (eBioscience) according to the manufac-
turer’s protocol and then stained with the intracellular markers Foxp3-PE-Cy7, RORy-PE,
IRF4-FITC, Tbet-eFluor660 or Gata3-eFluor660 (all purchased from eBioscience). Cells were
measured on BD FACSCanto II flow cytometer, and results were analysed with FlowLogic
software (Inivai Technologies, Mentone, Vic, Australia). The used gating strategy is shown
in Figure S1.

2.9. Monoamine Levels in the Amygdala, Dorsal Hippocampus and Prefrontal Cortex

The levels of the monoamines noradrenaline (NA), dopamine (DA), 3,4-dihydroxyphenylacetic
acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine (3-MT), serotonin (5-HT),
5-hydroxyindoleacetic acid (5-HIAA), and tryptophan (TRP) were measured in the amyg-
dala, prefrontal cortex (PFC) and dorsal hippocampus (DH) by HPLC with electrochemical
detection as previously described [60,62]. In these brain regions, 5-HT has a role in regulat-
ing anxiety and social behaviour [63,64]. Samples were pooled in pairs to reach detection
minimum. Each sample contained two left brains (n = 4-5 per group). The frozen tissue
samples were homogenised in an ice-cold solution containing 5 uM pargyline and 0.6 uM
N-methylserotonin (NMET, internal standard). To 50 uL homogenate, 12.5 L 2 M HCIO4
was added, mixed, and placed in ice water. Thereafter, the homogenates were centrifuged
for 15 min at 15,000 x g (4 °C). The supernatants were diluted 10 times with mobile phase,
which contained 50 mM citric acid, 50 mM phosphoric acid, 0.1 mM EDTA, 45 uL./L dibutyl
amine, 77 mg/L 1-octanesulfonic acid sodium salt, 10% methanol. The pH of the buffer was
adjusted to 3.4 with NaOH. The settings of the HPLC system were previously described in
de Theije et al. [60]. Separation was performed at 40 °C using a flow rate of 0.8 mL/min.
The concentration of each compound was calculated by comparison with both the internal
and the external standards. The detection limit was 0.9 nM (signal /noise ratio 3:1). The
turnovers were calculated by dividing the metabolite concentration by the monoamine
concentration (5-HIAA /5-HT and (DOPAC + 3-MT + HVA)/DA).
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2.10. Behavioural Tests

Anxiety-like and repetitive behaviours were assessed by the marble burying test as
previously described [31,65]. Briefly, twenty black marbles were placed on the bedding
in a cage (L35 x W20 x H15 cm) and the mice were placed individually. After 30 min,
the number of marbles buried for 2/3 in the bedding was counted. Self-grooming was
determined as previously described [66]. To measure self-grooming, in short, each mouse
was placed individually in an empty cage for 10 min (first 5 min were considered as
habituation period) and the cumulative time spent grooming and the frequency of grooming
were analysed. Social behaviour was determined as previously described [66]. In brief,
in an open field of L45 x W45 cm, a perforated plexiglass cage allowing visual and
olfactory interaction was placed against a side. The mice were habituated for 5 min in
the open field, followed by 5 min with an age- and sex-matched unfamiliar mouse in the
plexiglass cage. Time in interaction zone and distance moved were analysed. The open
field test was used to evaluate explorative behaviour, and the procedure was adapted from
Seibenhener et al. [67,68]. The mice were individually placed in the centre of an open field
(L45x W45 cm), cleaned with 70% alcohol, and recorded for 5 min with a Sony Handycam
DCR-SR72 video camera. The time spent in the open field and locomotor activity were
blindly analysed using the tracking software (Ethovision 3.1.16; Noldus, Wageningen,
The Netherlands).

2.11. Statistical Analysis

Alpha-diversity indices (within-sample) and beta-diversity (between-sample) were
used to examine changes in microbial community structures between control and dif-
ferent dietary mice samples. Alpha-diversity metrics (i.e., Shannon index, richness and
evenness) were calculated from rarefied datasets (45,000 sequences/sample) using the
package ‘'vegan’ implemented in the R programming language (https://cran.r-project.org
(accessed on 28 December 2021), https://github.com/vegandevs/vegan (accessed on
28 December 2021)). Differences in alpha-diversity indices between groups were assessed
for significance using one-way analysis of variance (ANOVA) test and Sidak’s post hoc
test. To examine beta-diversity differences in microbial community composition between
samples, the pairwise Bray—Curtis dissimilarity (non-phylogenetic) metric was generated
using the Primer7 software package and used to perform analysis of similarity (ANOSIM)
calculations. ANOSIM was performed at the taxonomic level of genus, using square root
transformed data, with 999 permutations, and data were visualised using non-multi-
dimensional scaling (nMDS) incorporating taxa with strong Pearson’s correlation (R > 0.6).

Beta-diversity differences in relative abundance of individual taxa, between mice
group samples, were assessed for significance using Kruskal-Wallis test controlling for
false-discovery rate (FDR) using the Benjamini-Hochberg correction, implemented within
the software package QIIME1.8. Taxa with an average abundance of (<1%) across the sam-
ple set were removed from the analysis. Furthermore, microbial relative abundances and
Firmicutes-to-Bacteroidetes (F/B) ratios between conditions were studied. Additionally, an
inferred 165 rRINA bacterial taxa model of the caecal content SCFA metabolite measure-
ments were examined depicting the percent relative abundances of acetate, propionate, and
butyrate-producing genera taxa [69,70], as well as the SCFAs and branch-chain fatty acids
(BCFAs). Based on the Shaprio-Wilks normality test, these analyses used either the para-
metric one-way ANOVA and Sidak’s post hoc test or the non-parametric Kruskal-Wallis
and Dunn’s post hoc tests.

Furthermore, statistical analysis was performed by comparing the control diet group
to the enriched diets and by comparing the scGOS:1cFOS and the n-3 PUFA groups to the
combination diet group. All data except the behavioural data were analysed using one-way
ANOVA and Sidak’s multiple comparison post hoc test for selected comparisons. When
not normally distributed or unequal variances, the data were transformed; if this failed, the
non-parametric Kruskal-Wallis test was applied followed by Dunn’s multiple comparison
post hoc test for selected comparisons. Marble burying, open field, self-grooming and
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social interaction were analysed using mixed models, controlled for repeated measures,
litter effect and Sidak’s multiple comparisons test as post hoc analysis. Only grooming
duration is not corrected for litter effect as the variance between dams is larger than the
variance of the data. These data were considered statistically significant at p < 0.05.

2.12. Recursive Ensemble Feature Selection

In order to achieve insight into which microbial and immune features influence specific
behaviours, we have analysed the whole dataset (38 samples and 87 features) regarding
the marble burying (number of marbles buried) and open field (frequency in zone) tests at
the age of 8 weeks (early adulthood). For marble burying data, we assigned the label ‘0’
for <10 and ‘1’ for >10 number of buried marbles. For the open field data, we assigned
the label ‘0’ for >10 and ‘1’ for <10 number of entries into the zone. A feature selection
algorithm for recursive ensemble feature selection (REFS) algorithm [71] was run based on
the Borda Method [72]. In this algorithm, 8 different classifiers were used from the sci-kit
learning toolbox [73]: Bagging, Random Forest, Logistic Regression, Gradient Boosting,
Support Vector, Stochastic Gradient Descent, Passive Aggressive and Ridge. The algorithm
assigns rankings to the features, depending on how they are used by the classifiers. Finally,
this procedure was repeated in 10 cycles, where, at each run, we reduce the number of
features to 80%.

3. Results
3.1. Caecum Microbiota Profiling and Short-Chain Fatty Acid Concentrations

Analysis of caecum content microbial communities at 8 weeks, using 16S ribosomal
RNA gene amplicon sequencing, revealed that the microbial alpha-diversity indices were
not significantly different between the control and three dietary groups, at the taxonomic
level of genus (Shannon index: Figure 2A; evenness: Figure 2B). However, alpha-diversity
was significantly higher in the combination diet mice compared to the scGOS:1cFOS mice
(Shannon index (p < 0.05): Figure 2A) and (evenness (p < 0.01): Figure 2B). No significant
differences in richness (observed species in a sample) between the four mice groups were
observed (Figure 2C).

Significant differences in caecum content microbial community structure were ob-
served between the control and each of the three dietary mice groups in beta-diversity
analyses conducted on bacteria genera (ANOSIM (p = 0.001): Table 1). Additionally, the
microbial communities differed between each dietary group (scGOS:1cFOS vs. combination,
p = 0.002; and n-3 PUFA vs. combination, p = 0.001) (ANOSIM: Table 1). By incorporating
Pearson’s correlation, this analysis indicated individual genera that are strongly associated
(R > 0.6) to either the microbial communities of the control group or the three dietary
groups (nMDS: Figure 3). These results indicate that scGOS:1cFOS, n-3 PUFAs and the
combination significantly altered the intestinal microbiota profiles.

Table 1. Group analysis of similarity (ANOSIM) results for mouse cecum content microbiota compositions.

Comparison—Genus Level n Global R p-Value ?
Control vs. scGOS:1cFOS 8 0.600 0.001
Control vs. n-PUFA 10 0.518 0.001
Control vs. Combination 10 0.817 0.001
scGOS:IcFOS vs. Combination 10 0.366 0.002
n-PUFA vs. Combination 10 0.573 0.001

2 =p <0.05; global R comparison was based on ANOSIM performed within the software package Primer7; p-values
were calculated based on a permutational analysis, employing 999 permutations; square root transformation.
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Figure 2. Caecum content alpha-diversity and Firmicutes-to-Bacteroidetes ratio for the control
and dietary mice groups. Alpha-diversity indices were examined at the taxonomic level of genus.
Alpha-diversity indices rarefied to 45,000 sequences per sample. Analysis of the (A) Shannon index
and (B) evenness both indicated a significant dietary effect across all groups, with the combination
diet diversity significantly higher than scGOS1cFOS. (C) Richness diversity was not significantly
different across groups. At the taxonomic level of phylum, the (D) Firmicutes-to-Bacteroidetes ratio
significantly decreased in the combination diet mice compared to the control mice. Data were square
root transformed for statistics. (A-D): Data shown as the mean +/— SEM. Analysed by one-way
ANOVA and Sidak’s multiple comparisons post hoc test. * p < 0.05, ** p < 0.01. n = 8-10 mice per group.
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Figure 3. Visual of the non-multi-dimensional scaling (nMDS) plot depicting caecum content microbial
community structures between control and dietary mice samples. A significant microbial community
structure was observed between the control mice and the three dietary treatments. For statistical
details, reference the analysis of similarity (ANOSIM) calculations in Table 1. Identified taxa with
Pearson’s correlation (>0.6) were strongly associated with either the control or dietary interventions.
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At the taxonomic level of phylum, the Firmicutes-to-Bacteroidetes ratio was sig-
nificantly decreased (p < 0.05) in the combination diet group compared to the control
group (Figure 2D). At the taxonomic level of genus, eight microbial features were signifi-
cantly different (FDR-P < 0.05) between groups, including Allobaculum, S24-7 Unclassified,
Oscillospira, Ruminococcaceae Unclassified, Turicibacter, Akkermansia, Lachnospiraceae Unclas-
sified and Rikenellaceae Unclassified (Figure 4). In comparison to the control mice, the
relative abundances of Allobaculum and 524-7 Unclassified were higher (Figure 4A,B), and
butyrate-producing Oscillospira lower in the scGOS:1cFOS mice (Figure 4C). Both the rela-
tive abundances of propionate-producing genera Turicibacter (Figure 4E) and Akkermansia
(Figure 4F) were increased in n-3 PUFA mice, compared to control mice. Furthermore, the
microbial composition in the combination diet mice indicated similar significant relative
abundance bacterial alterations as scGOS:IcFOS, in comparison to the control mice. How-
ever, the combination diet mice also had a significant decrease in the relative abundances
of acetate-producing Ruminococcaceae Unclassified (Figure 4D) and butyrate-producing
Lachnospiraceae Unclassified (Figure 4G), with a significant relative abundance increase in
propionate-producing Akkermanisa (Figure 4F) in comparison to the control mice.

Upon examining the microbial alterations between the dietary groups, n-3 PUFA
mice had significantly higher relative abundances of acetate-producing Ruminococcaeae
Unclassified, propionate-producing Turicibacter, and Rikenellaceae Unclassified, but lower
relative abundance of propionate-producing Akkermansia, when compared to the combina-
tion diet mice (Figure 4D-FH). Lastly, the combination diet mice had a significantly higher
relative abundance of propionate-producing Akkermansia, assessed to the scGOS:IcFOS
mice (Figure 4F).

Intestinal bacteria ferment carbohydrates and proteins into the different SCFAs and
BCFAs. Using our inferred SCFA metabolite 165 rRNA bacterial taxa model, the per-
cent relative abundances of putative bacteria that ferment carbohydrates and produce
acetate, propionate and butyrate differed between the control and dietary mice groups.
The genera examined as inferred SCFA-producing bacterial metabolites included acetate
(Ruminococcaceae Unclassified, Lactobacillus, Ruminococcus, Parabacteroidetes, Dorea, Strepto-
coccus, and Bifidobacterium); propionate (Bacteroides, Akkermansia, Turicibacter, and Prevotella);
and butyrate (Lachnospiraceae Unclassified, [Ruminococcus], Oscillospira, Lachnospiraceae
Other, Coprococcus, Roseburia, Anaerofustis, Butyrivibrio, Anaerostipes, and Anaerotruncus).

The combination diet mice significantly lowered the percent relative abundance of
putative genera acetate-producing bacteria, compared to the n-3 PUFA mice (Figure 5A).
Additionally, the combination diet mice had a significantly higher relative abundance of
putative genera propionate-producing bacteria than the control mice (Figure 5B). Finally,
only the n-3 PUFA mice significantly lowered the percent relative abundance of putative
genera butyrate-producing bacteria compared to the control mice (Figure 5C). Interestingly,
these inferred bacterial genera metabolomics data were approximately mirrored by the
actual targeted SCFA metabolomics concentrations levels in the caecum content.
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Figure 4. Significant genera taxa-specific relative abundances across mice groups (caecum content).

The abundances of eight significant genera across mice groups are identified as: (A) Allobacu-
lum, (B) S24-7 Unclassified, (C) Oscillospira, (D) Ruminococcaceae Unclassified, (E) Turicibacter,
(F) Akkermanisa, (G) Lachnospiraceae Unclassified, and (H) Rikenellaceae Unclassified. (A-H): Data
shown as individual data points and median. Assessed for significance using Kruskal-Wallis test
controlling for false-discovery rate (FDR): * FDR-P < 0.05, ** FDR-P < 0.01. n = 8-10 mice per group.
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Figure 5. Caecum content predicted and targeted short-chain fatty acids metabolite concentrations
between mice groups. Genera taxa metabolite predictive models depicting the relative abundances
of (A) acetate- (B) propionate- and (C) butyrate-producing taxa were examined in the control and
dietary mice groups. Targeted SCFA and BCFA graphs depict (D) total SCFA (mM/kg); (E) acetate
(mM/kg); (F) propionate (mM/kg); (G) butyrate (mM/kg); (H) valerate (mM/kg); (I) iso-butyrate
(mM/kg) and (J) iso-valeric acid (mM/kg) in the mice groups. (A-C): Data shown as individual data
points and median. (D,E,G): Data shown as the mean +/— SEM. (F,H-J): Data shown as box-and-
whiskers Tukey plots. (A-C,F,H-J): Analysed by Kruskal-Wallis and Dunn’s multiple comparisons
post hoc tests. (D,E,F): Analysed by one-way ANOVA and Sidak’s multiple comparisons post hoc test.
*p <0.05,*p <0.01, *** p < 0.001. (A-J): n = 8-10 mice per group. SCFA: short-chain fatty acids.

Next, the targeted SCFA and BCFA metabolomics concentrations were examined us-
ing gas chromatography (Figure 5D-I). When compared to the control mice, the caecum
content total SCFA and propionate concentration levels were significantly increased in the
scGOS:1cFOS mice (Figure 5D,F). Additionally, the propionate concentration level was sig-
nificantly increased in the combination diet mice, compared to the control mice (Figure 5F).
Although not significantly different across all four mice groups, the scGOS:1cFOS mice
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concentration levels suggest that both acetate and butyrate are trending higher, compared
to the other mice groups (Figure 5E,G). Finally, the concentration levels of the BCFAs for
valerate, isobutyrate and isovalerate were affected by the different diets, with a significant
decrease in valerate, iso-butyrate, and iso-valerate in the combination mice, compared to
the n-3 PUFA mice (Figure 5H-J).

3.2. Intestinal Serotonin-Producing Cells

Serotonin is a key neurotransmitter in the bidirectionally communication between the
enteric and the central nervous system. To assess the effect of the diets on the intestinal
serotonin-producing cells, the number of enterochromaffin cells was measured in the
intestine. The number of these cells was significantly increased in the jejunum of the
mice receiving a diet supplemented with scGOS:IcFOS, n-3 PUFAs or the combination
compared to mice receiving the control diet (Figure 6A). The number of enterochromaffin
cells in the ileum was unaffected by the different diets (Figure 6B). The cell number in the
colon was significantly lower in the combination diet group than in the n-3 PUFA group.
However, no differences were observed compared to the control (Figure 6C). Figure 6
contains representative pictures of 5SHT + enterochromaffin cells the jejunum (D), ileum (E)
and colon (F) of control mice.
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Figure 6. Serotonin-producing cells in the jejunum, ileum and colon. (A) In the jejunum, the number
of serotonin-producing cells increased in the scGOS:1cFOS, n-3 PUFA and the combination diet groups
compared to control. (B) In the ileum, the diets did not affect the serotonin-producing cells. (C) In
the colon, the number of serotonin-producing cells was significantly decreased in the combination
diet group compared to the n-3 PUFA group. (D-F) Representative pictures (control group) of the
jejunum (D), ileum (E) and colon (F). (A—C): Data shown as the mean +/— SEM. Analysed by one-way
ANOVA and Sidak’s multiple comparisons post hoc test. * p < 0.05, ** p < 0.01, **** p < 0.0001. n = 6
mice per group.

3.3. Immune Modulation

The n-3 PUFA diet significantly increased the percentage of total activated T cells
(CD69* of CD4* cells) compared to the control group in the MLNs (Figure 7A). This n-
3 PUFA-induced increase was not due to more activated Thl or Th2 cells in the MLN
(Figure S2A,B). In the MLN, the Th1l (CXCR3* CD4*) and the Th2 (T1ST2* CD4") cell
response tended towards an increase in, respectively, the scGOS:1cFOS group and the n-3
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PUFA group compared to the combination diet (Figure 7B,C). Representative flowcytometry
plots and histograms are shown in Figures S3-55. These analyses were also performed in
the spleen, but no significant differences were observed (Figure S2C-G).
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Figure 7. The dietary effect of scGOS:IcFOS, n-3 PUFAs and the combination of scGOS:1cFOS and n-3
PUFAs on activated CD4 cells, Th1 cells and Th2 cells in the MLN. (A) The percentage of activated
CD4 (CD69* CD4%) cells is significantly increased in the n-3 PUFA group compared to control.
(B) The percentage of Th1 cells (CXCR3* CD4") tended to a decrease in the combination diet group
compared to the scGOS:1cFOS group. (C) The percentage of Th2 cells (T1ST2* CD4%) tended to a
decrease in the combination diet group compared to the n-3 PUFA group. An outlier in the control
group was excluded by use of ROUT analysis. (A-C): Data shown as the mean +/— SEM. Analysed
by one-way ANOVA and Sidak’s multiple comparisons post hoc test. ** p < 0.01. n = 5-10 mice
per group, 2 samples in the control group, 3 samples in the n-3 PUFA group and 2 samples in the
combination diet group were excluded due to low number of viable cells. Thl: T helper 1 cells.
Th2: T helper 2 cells.

In this study, the percentage of Tregs (CD25* Foxp3™ CD4") was unaltered by the
dietary interventions in the MLN as well as in the spleen (Figure S6A,C). Additionally, the
percentage Th17 cells (RORyt" CD4") was unaffected by the different diets (Figure S6B,D).

3.4. Monoamines Levels in Brain Regions

Several monoamines were measured in the amygdala, prefrontal cortex and hippocam-
pus. In the amygdala, the 5-HT (serotonin) and the 5-HIAA (serotonin metabolite) levels
were significantly increased in the combination diet group compared to the scGOS:IcFOS
group (Figure 8B,C). However, tryptophan levels as well as serotonin turnover were not
significantly changed by the different diets compared to the control diet (Figure 8A,D).
Except for the level of DOPAC, which tended towards an increase in the combination diet
group compared to the n-3 PUFA group, the levels of noradrenaline, dopamine and the
dopamine metabolites were unaltered as well as the turnover of dopamine (Figure S7). In
the prefrontal cortex and dorsal hippocampus, no significant effects of the different diets
were observed (Figures S8 and S9, respectively).

3.5. Behavioural Modulation

During adolescence and early adulthood anxiety-like, self-grooming, explorative and
social behaviour were assessed.

3.5.1. Marble Burying and Self-Grooming

Opverall, the number of marbles buried was unaffected by diet (F (3,10.204) = 1.640,
p > 0.05) but tended towards an effect by age (F (1,34) = 3.323, p = 0.077), and the change in
number of buried marbles over time was independent of the diet (interaction effect between
diet and age (F (3,34) = 2.198, p > 0.05)) (Figure 9A). The mice receiving the control diet
buried significantly more marbles in early adulthood compared to adolescence (p < 0.05).
The number of buried marbles in the dietary groups was unchanged over time. During
adolescence the number of buried marbles was unaffected by the diets. However, in early
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adulthood the mice receiving the scGOS:1cFOS diet tended to bury less marbles compared
to the control group (p = 0.095). One might be doubtful that the number of buried marbled
is not significantly different between the control and scGOS:1cFOS group in early adulthood.
These data are controlled for litter effect and can lead to the fact that visuals and statistics
are not completely aligned.

Grooming duration was overall affected by age (F (1,33381) = 6.502, p < 0.05) and diet
(F (3,33.222) = 3.387, p < 0.05). The change in grooming duration over time was independent
of the diet (F (3 33388) = 0.629, p > 0.05) (Figure S10B). Grooming duration tended towards a
decrease over time in the control (p = 0.079) as well as in the scGOS:1cFOS group (p = 0.058).
In early adulthood, grooming duration showed an increasing trend in the combination
group compared with the scGOS:1cFOS group (p = 0.074). The frequency of grooming was
neither affected by age nor diet (Figure S10C).
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Figure 8. The amygdala levels of tryptophan, 5-HT, 5-HIAA and the serotonin turnover. (A) The
tryptophan level did not differ between the dietary groups. (B,C) The 5-HT and 5-HIAA levels were
significantly increased in the combination diet group compared to the scGOS:IcFOS group. (D) The
serotonin turnover was unchanged in the dietary groups. (A-D): Data shown as the mean +/— SEM.
Analysed by one-way ANOVA and Sidak’s multiple comparisons post hoc test. * p < 0.05,
** p < 0.01. n =4-5 samples per group, samples were pooled in pairs, in order to reach detection
minimum, each sample contained two left brains. 5-HT: serotonin. 5-HIAA: 5-hydroxyindoleacetic

acid (serotonin metabolite).
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Figure 9. Anxiety-like behaviour assessed by marble burying and explorative behaviour in the
open field. (A) Number of buried marbles by mice receiving the control, scGOS:1cFOS, n-3 PUFA or
combination diet in adolescence and early adulthood (B) Explorative behaviour, the frequency the
mice receiving the control, scGOS:1cFOS, n-3 PUFA or combination diet entered the centre of the open
field in adolescence and early adulthood. (C) Explorative behaviour, the time the mice receiving the
control, scGOS:1cFOS, n-3 PUFA or combination diet spent in the centre of the open field. (A—-C): Data
shown as the mean +/— SEM. Analysed with mixed models, controlled for repeated measures, litter
effect and Sidak’s multiple comparisons post hoc test. a = * p < 0.05 compared with early adulthood
within diet group, b = ** p < 0.01 compared with early adulthood within diet group, ¢ = *** p < 0.001
compared with early adulthood within diet group. (A—C): n = 8-10 mice per group.

3.5.2. Open Field

The explorative behaviour was measured by frequency and time in the centre of the
open field. The frequency in the centre was significantly affected by age (F (1,34) = 12.558,
p <0.01), but not by diet (F (3,10.935) = 1.519, p > 0.05) and the frequency in the centre over
time was dependent on the diet (interaction effect between diet and age (F (3,34) = 5.820,
p < 0.01)) (Figure 9B). Over time, the number of entries was significantly reduced in
the control group and in the scGOS:1cFOS group (p < 0.001, p < 0.05, respectively). In
adolescence, the number of entries tended towards a reduction in the combination diet
group compared to the scGOS:1cFOS group (p = 0.088). The time spent in the centre of the
open field tended towards an overall effect by age (F (1,34) = 3.025, p = 0.0951) but no overall
effect by diet (F (3,11.042) = 1.409, p > 0.05). The time spent in the centre over time depended
on the diet (interaction effect between diet and age (F (3 34) = 4.414, p < 0.05)). The statistical
effects for time in centre were similar to frequency in centre (Figure 9C). Locomotor activity
(total distance moved) also showed the same pattern (Age: F (1,34) = 2.932, p = 0.096. diet:
F 3,11.762) = 1.545, p > 0.05, interaction: F 3 34) = 3.828, p < 0.05) (Figure S10A).

3.5.3. Social Interaction

Social interaction, shown as relative time in zone (target/no target), was neither
affected by age (F (1,32.933) = 0.997, p > 0.05) nor diet (F (3, g300) = 0.576, p > 0.05) (interaction
(F (3,32.827) = 0.086, p > 0.05)) (Figure S10D). However, overall, locomotor activity (distance
moved) was significantly affected by age and unaffected by diet (Age: F (1,34) = 7.425,
p <0.05, diet: F (3 34) = 1.231, p > 0.05, interaction: F (3 34) = 2.343, p > 0.05). Locomotor
activity in the control and scGOS:1cFOS-receiving mice was significantly decreased over
time (p < 0.05 for both groups) (Figure S10E). In adolescence, locomotor activity tended
towards a reduction in the combination diet group compared to the scGOS:IcFOS group
(p =0.076).

3.6. Feature Selection Regarding Repetitive and Explorative Behaviour

Though the effects of the different early-life dietary interventions on repetitive and
explorative behaviour of healthy adolescent and early adult mice are not very clear, we
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have analysed the whole dataset regarding marble burying (anxiety-like and repetitive
behaviour) and open field (explorative behaviour) tests in early adulthood to achieve insight
into which microbial, immune and monoamine features influence the two behavioural
outcomes independent on the dietary intervention. After running the REFS algorithm
10 times, for marble burying behaviour, the best signature is at 9 features, with an average
global accuracy of all classifiers of 0.73 (Figure 10A). The optimal associated receiver-
operating characteristic (ROC) curve for the best-performing classifier Ridge is shown
in Figure 10B that demonstrates an area under the curve (AUC) of 0.84 &+ 0.17, which is
considered good to outstanding [74,75]. The magnitudes of the 9 features separating the
two groups are presented in Figure 10C. In Table 2, the direction of change comparing
the groups >10 (label 1) with <10 (label 0) number of buried marbles of the 9 features are
presented. A reduction in marble burying (associated with reduced repetitive or anxiety-
like behaviour) was associated with reductions in the caecal content relative abundance
of the genus Adlercreutzia, the alpha-diversity Shannon index, and tryptophan levels in
dorsal hippocampus; upregulation of the caecal content relative abundance of the genus
Dehalobacterium, percentages of Th1 (CXCR3* CD4*) and Th17 (RORyt" CD4") cells in MLN,
and percentage of activated Th2 splenocytes (CD69* T1ST2* CD4") (Figure 10C; Table 2).
An overview of the involved features and their connection is depicted in Figure 11A.
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Figure 10. The datasheet of the entire study was analysed regarding marble burying (number of
marbles buried) at 8 weeks of age (early adulthood). (A) After running the REFS algorithm 10 times,
the best signature is at 9 features, with an average global accuracy of all classifiers of 0.73. (B) The
optimal associated receiver-operating characteristic (ROC) curve for the best-performing classifier
Ridge demonstrates an area under the curve (AUC) of 0.84 & 0.17. (C) The 9 features separat-
ing the two labels: 0 = Adlercreutzia, 1 = DH: tryptophan (nmol/gr), 2 = Lachnospiraceae Other,
3 = Dehalobacterium, 4 = Th17 cells in MLN, 5 = Activated Th2 cells in spleen, 6 = x-diversity
(Shannon index), 7 = PFC: noradrenaline (nmol/gr), 8 = PFC: noradrenaline (nmol/gr), and 9 = Thl
cells in MLN. Label 0: number of buried marbles < 10. Label 1: number of buried marbles > 10.
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Table 2. Feature reduction in marble burying test (repetitive /anxiety-like behaviour).

Feature Label 1 vs. Label 0

Coriobacteriaceae Adlercreutzia
DH: tryptophan (nmol/gr) 1]
Lachnospiraceae Other -

Dehalobacteriaceae Dehalobacterium

Th17 cells in MLN 1
Activated Th2 cells in spleen t
a-diversity (Shannon index) i |
PFC: noradrenaline (nmol/gr) -
Th1 cells in MLN 1

Label 0: number of buried marbles <10. Label 1: number of buried marbles >10. Arrow indicates if the feature is
reduced or enhanced when the number of buried marbles is reduced. DH: dorsal hippocampus; MLN: mesenteric

lymph nodes; PFC: prefrontal cortex; Th: Thelper: 1. increase; ¥: decrease.

A
Th2
spleen £ \‘\
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Figure 11. Indications of which feature combination significantly influence repetitive and anxiety-like
behaviour and explorative behaviour evaluated by marble burying (A) and open field behaviour
(B) tests, respectively. (A) The alpha-diversity and relative abundances of the genera Adlercreutzia
and Dehalobacterium, changes in Thl and Th17 cells in MLN, changes in activated Th2 cells in
spleen, and tryptophan levels in dorsal hippocampus significantly predict changes in repetitive
behaviour. (B) The relative abundances of the genera Oscillospira, Ruminococcus, Odoribacter,
Turibacter, Lachnospiraceae other/Unclassified and Adlercreutzia and changes in serotonin and
dopamine metabolism in PFC and amygdala significantly predict changes in explorative behaviour.
DA: dopamine; 5HT: serotonin; NA: noradrenaline; Th: Thelper; TRP: tryptophan.
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For open field behaviour, after running the REFS algorithm 10 times, the best signature
is at 16 features with average accuracy of all classifiers of 0.77 (Figure 12A). The ROC curve
for the best-performing classifier Support Vector is shown in Figure 12B that demonstrates
an area under the curve (AUC) of 0.82 £ 0.20. The magnitudes of 16 features separating the
two groups are presented in Figure 12C. In Table 3, the direction of change comparing the
groups >10 (label 0) with <10 (label 1) number of entries into the centre of the open field of
16 features is presented. Increased entry into the centre of the open field (more explorative
behaviour) is associated with an increase in the caecal content relative abundance of the
genera Odoribacter and Turibacter, dopamine and serotonin turnover in the amygdala and
prefrontal cortex, respectively, and 5-HIAA levels in the prefrontal cortex. A reduction
in the caecal content relative abundances of the phyla Cyanobacteria (class 4C0d; order
YS2; unclassified family and genus), genera Oscillospira, Ruminococcus, Lachnospiraceae
Other;Unclassified and Adlercreutzia as well as reduced levels of HVA in the prefrontal
cortex are associated with enhanced explorative behaviour (Figure 12C; Table 3). An
overview of the involved features and their connection is depicted in Figure 11B.
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Figure 12. The datasheet of the entire study was analysed regarding the open field test (number of
entries in the open field) at 8 weeks of age (early adulthood). (A): After running the REFS algorithm
10 times, the best signature is at 16 features with average accuracy of all classifiers of 0.77. (B): The
optimal associated ROC curve for the best-performing classifier Ridge demonstrates an area under
the curve (AUC) of 0.82 % 0.20. (C): The 16 features separating the two labels: 0 = Cyanobacteria Un-
classified, 1 = Oscillospira, 2 = Odoribacter, 3 = Turicibacter, 4 = AM: (DOPAC + HVA)/DA, 5 = PFC:
5HIAA/5HT, 6 = Lachnospiraceae Unspecified, 7 = Allobaculum, 8 = DH: noradrenaline (nmol/gr),
9 = Lactobacillus, 10 = PFC: 5-HIAA (nmol/gr), 11 = Lachnospiraceae Other, 12 = Ruminococcus,
13 = Adlercreutzia, 14 = PFC: HVA (nmol/gr), and 15 = AM: (DOPAC + HVA + 3MT)/DA. Label 0:
number of entries to open field > 10. Label 1: number of entries to open field < 10.
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Table 3. Feature reduction open field test (explorative behaviour).

Feature Label 0 vs. Label 1

Cyanobacteria (c_4C0d; 0_YS2)
Ruminococcaceae Oscillospira

Odoribacteraceae Odoribacter

Turicibacteraceae Turicibacter

AM: (DOPAC + HVA)/DA
PFC: 5SHIAA /5HT

Lachnospiraceae Unspecified
Erysipelotrichaceae Allobaculum -
DH: noradrenaline (nmol/gr)

Lactobacillaceae Lactobacillus

PFC: 5-HIAA (nmol/gr)
Lachnospiraceae Other

- ) ) )

Ruminococcaceae Ruminococcus
Coriobacteriaceae Adlercreutzia
PFC: HVA (nmol/gr)

AM: (DOPAC + HVA + 3MT)/DA

Label 0: number of entries to open field >10. Label 1: number of entries to open field <10. Arrow indicates if
the feature is reduced or enhanced when the number of entries to open field is enhanced. AM: amygdala; DA:
dopamine; DH: dorsal hippocampus; DOPAC: 3,4-dihydroxyphenyl-acetic acid; 5-HIAA: 5-hydroxyindoleacetic
acid; 5SHT: serotonin; HVA: homovanillic acid; MLN: mesenteric lymph nodes; 3-MT: 3-Methoxytyramine; PFC:

- -

prefrontal cortex; 1. increase; ¥ decrease.

4. Discussion

The present study demonstrates that dietary supplementation with the combination
of scGOS:IcFOS and n-3 PUFAs leads to a distinct caecal content microbiota composition
and indicates a balanced immune response compared to the individual food components.
In our previous work [31], scGOS:1cFOS effects on the in intestinal microbiota were associ-
ated with improved social behaviour and reduced anxiety-like and stereotypic behaviour
assessed by marble burying and self-grooming behavioural tests. In this study, the effects
of scGOS:1cFOS on these behaviours are less clear.

All three diets modulated caecal content microbial community structures. The distinct
caecal content microbial profile alterations were significant comparing the control mice to
the three dietary mice groups. Further, caecal content bacterial composition in the combina-
tion group was different from both scGOS:1cFOS and n-3 PUFAs. These results indicate
that the NDO diets modulated the caecal content microbial community structures uniquely,
which is in line with other studies [23,24,31,38]. Based on the relative abundances of indi-
vidual bacteria at the taxonomic level of genus, the combination diet induced a microbial
profile similar to the profile induced by scGOS:1cFOS. Interestingly, scGOS:1cFOS and the
combination diet interventions increased the relative abundances of genera Allobaculum
and $24-7 Unclassified, while reducing the abundance of the genera Oscillospira and Ru-
minococcaceae Unclassified. The genera Allobaculum and 524-7 Unclassified have both been
reported to be involved in the fermentation of fibres and to be putative SCFA-producing
bacteria [31,76-78]. The genus Oscillospira has been linked to slow faecal transit, which
could lead to more water absorption from the stool and eventually result in constipation.
scGOS:IcFOS has been reported to affect stool consistency, decrease transit time [79] and
increase defecation frequency [80]. Thus, these functions of scGOS:1cFOS could be due
to the lower relative abundance of the genus Oscillospira. The relative abundance of the
genus Ruminococcaceae Unclassified has been described to be positively correlated with
plasma levels of serotonin [81]. This might indicate that taxa associated with the family of
Ruminococcaceae could play a role in tryptophan metabolism, converting tryptophan into
serotonin [82].
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To date, intestinal microbiota modulation by n-3 PUFAs has been less defined. In
this study, the n-3 PUFA diet induced changes to the relative abundances of the genera
Turicibacter and Akkermansia. Since Turicibacter has been shown to enhance the levels of
poly-unsaturated fatty acids [83], this could be a positive feedback mechanism, where
enhanced availability of lipids such as n-3 PUFAs increased the abundance of Turibacter.
Akkermansia is induced by n-3 PUFAs, as mentioned above, but Akkermansia is induced
significantly more by the combination diet group, indicating an additive effect on the
induction of Akkermansia when scGOS:1cFOS and n-3 PUFAs are combined. Akkermansia has
been reported to be a propionate-producing bacteria [84] which could explain the increased
caecal content propionate levels in the combination diet group. Akkermansia has been
reported to communicate with the immune system of the host and, i.e., induce regulatory T
cells [85] and reduce inflammation [86]. With regard to the F:B ratio, an increase in this ratio
has been associated with high-fat diets (Westernised diets) [87] and obesity [88]. Moreover,
the F:B ratio in mice receiving a n-3 PUFA-rich diet was decreased [89], which is in line with
our findings, indicating a positive effect on the F:B ratio by scGOS:1cFOS and n-3 PUFAs.

As expected and observed before [31], the absolute SCFA levels in the scGOS:1cFOS
group were increased indicating a saccharolytic fermentation profile. We expected the
effects of scGOS:1cFOS on the SCFA levels to be visible in the combination group, however,
that was not the case, except for propionate. Both caecal content inferred propionate-
producing genera and propionate metabolite measurements were significantly enhanced in
the combination diet group, compared to the control group. Based on the acetate producers,
one would expect less acetate in the combination diet group than in the n-3 PUFA group, but
the acetate levels in these groups were similar. This could be due to overlapping function of
other bacteria compensating for decreased relative abundance of acetate-producing bacteria
in the combination group. Concerning SCFA levels, this might indicate that the n-3 PUFAs
in some way influence the fermentation of scGOS:1cFOS, which leads to less pronounced
effects in SCFA levels in the combination diet group. The other possibility is the impact
of n-3 PUFAs and scGOS:1cFOS on intestinal epithelial cell uptake of SCFA. If n-3 PUFAs
and scGOS:IcFOS improve intestinal epithelial function and increase their ability to uptake
more SCFAs, then luminal SCFA levels would remain unchanged in spite of increased
production by the SCFA-producing bacteria.

SCFAs and intestinal bacteria have the capacity to influence the immune system [90,91].
Therefore, modulation of intestinal microbiota composition and/or activity might even-
tually lead to immune modulation. SCFAs can act both pro-and anti-inflammatory de-
pendending on the kind and state of the immune cell [90]. They influence the immune
system through inhibition of HDAC activity and the GPCRs GPR41, GPR43 and GPR109.
Among others, SCFAs induce genes that maintain intestinal barrier function and induce
differentiation and function of T cell subsets into Th1, Th17 and Tregs [92]. These intestinal
microbial and SCFA data indicate that as, individual components, scGOS:1cFOS and n-3
PUFAs influence the intestinal microbiota and it seems that the combination of scGOS:1cFOS
and n-3 PUFAs balances intestinal microbiota composition—the best of both.

Previous studies have shown that scGOS:1cFOS is able to induce a Th1 response [93,94]
and stimulate the secretion of IL-10 from DCs, which eventually results in upregulation
of the number of suppressive Tregs [34,35]. Although in this study the T cell subsets
were unaffected by scGOS:IcFOS and n-3 PUFAs, Thl and Th2 response tended towards
a decrease in the combination diet group compared with scGOS:IcFOS and n-3 PUFAs,
respectively. Considering that this study takes place in healthy mice, one could argue that
a pronounced immune response is undesired. Therefore, these data might indicate that
the combination of scGOS:1cFOS and n-3 PUFAs leads to a balanced immune response.
Both scGOS:IcFOS and n-3 PUFAs can induce Tregs. A reduced Treg response plays
an essential role in preventing diseases such as food allergies [35,44]. It is most likely
considered acceptable that the percentages of Tregs and Th17 were unaffected by the
dietary interventions as significant changes may be undesired in a healthy host. N-3 PUFAs
are known to be health promoting because of their anti-inflammatory potential. However,
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in this study, n-3 PUFAs induced the activated CD4" cells in the MLN, which was not in
line with other studies [44,95]. Since the n-3 PUFA-induced increase in CD69 * CD4™ cells
was not caused by enhanced activation of Thl or Th2 cells, another explanation could be
that n-3 PUFAs induce memory T cells, as CD69 can also be expressed by these cells [96].
However, in the combination diet group, this increase in activated CD4" cells was no longer
observed. This might indicate that the induction of activated CD4" cells is hampered
by scGOS:IcFOS. All the immunological findings were only observed in the MLN. The
diets had no pronounced effects in the spleen, suggesting that the diets might exert their
modulatory effects locally in the intestine.

As mentioned earlier, n-3 PUFAs and scGOS:1cFOS can modulate the intestinal micro-
biota, the immune system, and also brain development and behaviour [25,31,38,40,45,46,48].
Opverall, the change in behavioural parameters in this study mainly occurred over time: less
repetitive and explorative behaviour and more anxiety-like behaviour. The scGOS:1cFOS be-
havioural effects are in line with previous studies, where scGOS:1cFOS modulated repetitive
and anxiety-like behaviour in healthy mice [31,38]. Additionally, in a mouse model of stress-
induced anxiety, prebiotics improved or prevented the anxiety-like behaviour (assessed by
light/dark preference and open field tests) [97]. n-3 PUFAs have been shown to improve
anxiety-like and social behaviour in healthy and allergic rodents, respectively [47,48]; this
is not in line with our observations. However, Robertson et al. reported no effects of n-3
PUFAs on repetitive and anxiety-related behaviour (assessed by marble burying, light/dark
preference and elevated plus maze tests) in healthy mice [25] and this matches our data.
Robertson et al. also reported the importance of n-3 PUFAs; n-3 PUFA deficiency in healthy
mice led to impaired behaviour in adolescence and later in life [25]. This indicates that
n-3 PUFAs are an essential dietary component; but to observe behavioural improvements,
maybe the window of opportunity is too small in a healthy host.

Behavioural changes are often accompanied by alterations in neurochemical mediators
such as serotonin in the brain. Serotonin is a metabolite from tryptophan, and tryptophan
is an essential amino acid that needs to be obtained from the diet. Serotonin is able to mod-
ulate anxiety and social behaviour [64,98]. Although not significantly lower, tryptophan
levels in the brain regions investigated in this study show a similar pattern. Tryptophan
levels seemed lower in the scGOS:1cFOS group and might indicate a lower availability of
tryptophan. As tryptophan enters the body through the stomach and intestine, it could be
that tryptophan-utilising intestinal bacteria use some of the tryptophan. Another option is
that serotonin production by specific epithelial cells called enterochromaffin cells increases
by scGOS:1cFOS stimulation. Indeed, the number of serotonin-positive cells in the jejunum
was significantly increased compared with the control group. For this boost of serotonin
secretion, tryptophan is essential and consequently less tryptophan is available for the
brain. Intriguingly, this phenomenon was only observed in the scGOS:1cFOS group. All
three dietary interventions increased serotonin-positive cells in the jejunum, but no changes
in tryptophan levels in the brain were observed in the combination and n-3 PUFA diet
groups compared to the control group. The reason for this discrepancy remains unclear. En-
terochromaffin cells are located throughout the intestinal tract [99], and the reason that the
dietary effect is only observed in the jejunum and not in the ileum and colon is unknown.
The analysis of goblet and Paneth cell counts would provide a more complete picture;
however, these analyses are missing in this study. Intestinal bacteria associated with the
family Ruminococcaceae possibly play an additional role. A recent study showed that the
enhanced abundance of the family Ruminococcaceae correlated significantly with increased
5-HT)a receptor density in the PFC in a maternal activation (MIA) murine model [100].
The fact that MIA offspring mice show impaired behaviour and that the abundance of
faecal family Ruminococcaceae is increased in young children diagnosed with autism
spectrum disorder might explain why scGOS:1cFOS improves behaviour via a reduction in
Ruminococcaceae in the intestines of healthy mice [31,100-102]. More studies are needed
to elucidate a more detailed mechanism.
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Serotonin and serotonin metabolite levels in the investigated brain regions approxi-
mately follow the same pattern in the dietary groups. The combination diet group increased
serotonin and serotonin metabolite levels compared with the scGOS:1cFOS group in the
amygdala brain region. In general, more serotonin is desirable according to the litera-
ture. However, in our previous paper, scGOS:IcFOS led to improved behaviour, but lower
serotonin levels [31]. Noticeable, in this study, we observed no significant differences
between the dietary groups in the other monoamines. The monoamines do follow the
same pattern; the levels in the scGOS:1cFOS and n-3 PUFA groups are lower than in the
control and the levels in the combination diet group approximated to the levels in control.
This again indicates that the combination diet balances the effects of scGOS:1cFOS and
n-3 PUFAs, which might be of valuable interest when combining these components in a
healthy host or in models of disease. The main impact of n-3 PUFAs in this study was
the modulated intestinal microbiota, which match finding of other studies [89,103]. To be
able to explain the results, data on the n-3 PUFA metabolites in blood and/or brain tissues
might have been useful. Overall, regarding the effects of scGOS:1cFOS with or without n-3
PUFAs on microbial composition and monoamine levels in different brain areas, it can be
hypothesised that scGOS:IcFOS is influencing explorative behaviour either directly in the
brain or indirectly through the microbe-brain axis. Future studies are essential to further
elaborate on these hypotheses.

Finally, we implemented the REFS algorithm on all microbial, immune (MLN and
spleen) and monoamine (brain) data and found 8 and 16 features, whose changes sig-
nificantly seem to predict changes in repetitive and explorative behaviour with a global
accuracy of 73% and 77%, respectively. Predictive changes for repetitive behaviour are
mostly influenced by the composition of certain intestinal bacteria, which might in turn
affect local and system immune balance, resulting in modified tryptophan levels in the
dorsal hippocampus. Comparable to our findings, low hippocampal tryptophan levels are
associated with an anxiolytic effect in BALB/c mice [104]. A previous study has shown that
enhanced intestinal abundance of Adlercreutzia is associated with inflammation-induced
depressive-like behaviour in mice [105]. Increased expression of the genus Dehalobacterium
in mice is associated with ageing and food intervention-induced anti-inflammatory ef-
fects [106,107]. Moreover, reduced levels of intestinal Dehalobacterium observed in BTBR
mice that have an autistic phenotype are associated with enhanced marble burying [108].
Taken together, our finding that reduced marble burying is associated with reduced Adler-
creutzia and increased Dehalobacterium abundance seems to be compatible with previous
murine behavioural studies. Unlike repetitive behaviour, explorative behaviour was not as-
sociated with either local or systemic T lymphocytes, but was significantly associated with
microbial alterations in the relative abundances of several bacterial genera plus changes
in serotonin and dopamine metabolism in PFC and amygdala. No specific reports on
the role of the genera Oscillospira, Ruminococcus, Odoribacter, Turicibacter, Lachnospiraceae
Other/Unclassified and Adlercreutzia on explorative behaviour are published [109].

In conclusion, both early-life dietary interventions with scGOS:1cFOS and/or n-3
PUFAs affected caecal content microbial profiles, but had limited effects on behaviour and
the immune system. No apparent additive effect was observed when scGOS:1cFOS and n-3
PUFAs were combined, as the data from the combination diet group show the same pattern
as scGOS:IcFOS for some parameters and the n-3 PUFA pattern for other parameters. All
parameters considered, the results suggest that these dietary components together create
a balance—the best of both in a healthy host. The limited effect on the immune system
and behaviour is considered acceptable as this study was carried out in healthy mice. It
may be concluded that improving intestinal microbiota composition by diet in a healthy
host, where SCFA production by bacteria and intestinal epithelial cells is normal, has no
functional impact. However, in a diseased situation (i.e., allergy, colitis or neurological
disease), where the microbiota is abnormal, improving the microbiota by diet might have a
positive impact.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu14010173/s1, Table S1: Diet composition of the experimental diets. Figure S1: Gating
strategy used in flowcytometry analysis. Figure S2: Representative dot plots of the CD69* population
from each diet group. Figure S3: Representative dot plots of the Th1 (CXCR3") and Th2 (T1ST2*) pop-
ulations of each diet group. Figure S4: Representative histograms of CXCR3 and T1ST2 of each diet.
Figure S5: Th1 and Th2 response in MLN and spleen. Figure S6: Treg and Th17 response in MLN and
spleen. Figure S7: Monoamine levels in the amygdala. Figure S8: Monoamine levels and turnovers in
the PFC. Figure S9: Monoamine levels and serotonin turnover in dorsal hippocampus. Figure S10:
Behavioural data locomotion activity in the open field test, self-grooming and social interaction.
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