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Augmenting zero-Kelvin qguantum mechanics with
machine learning for the prediction of chemical
reactions at high temperatures
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The prediction of temperature effects from first principles is computationally demanding and
typically too approximate for the engineering of high-temperature processes. Here, we
introduce a hybrid approach combining zero-Kelvin first-principles calculations with a
Gaussian process regression model trained on temperature-dependent reaction free energies.
We apply this physics-based machine-learning model to the prediction of metal oxide
reduction temperatures in high-temperature smelting processes that are commonly used for
the extraction of metals from their ores and from electronics waste and have a significant
impact on the global energy economy and greenhouse gas emissions. The hybrid model
predicts accurate reduction temperatures of unseen oxides, is computationally efficient, and
surpasses in accuracy computationally much more demanding first-principles simulations
that explicitly include temperature effects. The approach provides a general paradigm for
capturing the temperature dependence of reaction free energies and derived thermodynamic
properties when limited experimental reference data is available.
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ARTICLE

he decarbonization of chemical industry is a necessity for

the transition to a sustainable future!=3, but developing

alternatives for established industrial processes is cost
intensive and time consuming. Bottom-up computational process
design from first-principles theory, i.e., without requiring initial
input from experiment, would be an attractive alternative but has
so far not been realized. On the other hand, computational
materials design and discovery based on atomic-scale first-prin-
ciples calculations has already become commonplace and is a
powerful complement to experimental materials engineering®>.
Here, we demonstrate how first-principles quantum-mechanics
based theory can be supplemented with a machine-learning (ML)
model describing temperature dependence to enable the predic-
tion of chemical reactions at high temperatures.

Temperature effects are especially important for chemical and
electrochemical reactions that involve reactants and products in
different states of matter, such as corrosion reactions (i.e., the
binding of oxygen in a solid oxide)®” or the reverse, the extrac-
tion of metals from their oxides. As one example, we focus here
on the latter and consider the pyrometallurgical reduction of
metal oxides. In industry, many base metals, such as cobalt,
copper, and silver, are extracted from their ores via smelting,
using carbon as the reducing agent®®. Recycling of transition and
rare earth metals, e.g., from spent batteries and electronics waste,
also commonly involves pyrometallurgical processes!®!l. How-
ever, our findings apply more generally also to other classes of
reactions at high temperatures.

Given their relevance, an inexpensive computational method
for predicting the temperature dependence of oxidation or oxide
reduction reactions would be extremely attractive. Empirical
models based on the parametrization of experimental thermo-
dynamics data, such as the Calculation of Phase Diagrams
(CALPHAD) approach!213, have been used for the thermo-
dynamic characterization of materials at different temperatures
and for virtual process optimization'# but are limited by the
amount of available data from experiments. First-principles
(quantum-mechanics based) calculations provide efficient and
reliable estimates of ground-state materials properties at zero
Kelvin!>16, Introducing temperature effects increases the com-
putational cost of the simulations by several orders of magnitude,
which is not amenable for the screening of large numbers of
compositions and thermodynamic conditions required to aid
with process optimization!”. Hence, there is a need for compu-
tational methods that exhibit the computational efficiency of an
interpolation-based method such as CALPHAD and the trans-
ferability of first-principles methods. We will demonstrate in the
following that ML techniques can provide the missing link.

A growing body of literature evidences that first-principles
modeling can be greatly accelerated by training ML models on the
outcome of first-principles calculations!®-20. However, in many
cases, accurate data for high-temperature materials properties
cannot be readily generated from first-principles calculations, and
experimental thermochemical databases are much smaller in size.
For example, we were only able to compile a set of 38 metal oxide
reduction temperatures from public data sources that were
extracted from experimentally measured free energies of reaction
(see Supplementary Table 1). In the case of such data limitations,
it is crucial for the construction of accurate models to make use of
prior knowledge, for example, in the form of known laws of
physics or thermodynamics.

In the present work, we show that combining both information
from first-principles calculations and data from experiment can
enable the construction of quantitative models for the prediction
of temperature-dependent materials properties such as metal-
oxide reduction temperatures (Fig. 1a). The key novelty of our
approach is that it makes use of known thermodynamic

relationships (Fig. 1b). The predictions from an ML model based
on Gaussian process regression (GPR)2! and results from first-
principles calculations both enter the thermodynamic equations
that govern metal oxide reduction, enabling the quantitative
prediction of high-temperature materials properties of oxides that
were not included in the reference data set (Fig. 1d). Through this
thermodynamic underpinning, other temperature-dependent
physical properties can be accessed at no extra cost and with a
higher accuracy than when training ML models directly for
specific observables. In particular, we demonstrate that the zero
Kelvin first-principles calculations can be augmented with
machine-learned temperature effects to yield a physics-based ML
model for predicting high-temperature reaction free-energies with
great accuracy but at a low computational cost.

As a specific example, we consider the pyrometallurgical
reduction of metal oxides to their base metals, though our general
approach can be expected to be transferable also to other high-
temperature reactions. Specifically, we aim at predicting the
reduction temperature of metal oxides (M,Oy) using carbon coke
as a reducing agent, which corresponds to the chemical reaction

M,0,(5) + yC(s) = xM(, ) + yCO(g), )

where M is the base metal (or a mixture of multiple metal species)
of a given metal oxide MOy, CO is carbon monoxide, and x and
y are the corresponding stoichiometric reaction coefficients. In
general, the metal oxide and carbon are in their solid state, while
the reduced metal can be liquid (smelting) or solid and carbon
monoxide is in the gas phase.

The Gibbs free energy of reaction corresponding to Eq. (1) can
be expressed as

AGped(M,0,) = xA;G(M) + yAG(CO) — AG(M,O,) — yAG(C),

@
where AG(M), AG(CO), AG(MOy), and AG(C) denote the
Gibbs free energy of formation of M, CO, M;O,, and C,
respectively. At room temperature, most metal oxides are highly
stable and the equilibrium of reaction (1) is strongly tilted to the
left-hand side, i.e., A;Gea(MyOy) is positive. But at high-enough
temperatures, the greater entropy of gas phases compared to
solids shifts the equilibrium to the right-hand side of Eq. (1),
making the reduction energetically favorable, i.e., A;Grea(M,Oy)
becomes negative.

Our objective is the computational prediction of the reduction
temperature T,.q above which the sign of A,Geq(M;Oy) becomes
negative and reduction of the metal oxide occurs.

In the following, we will compare three different computational
approaches: (i) a fully non-empirical approximation of T,.q based
only on first-principles density-functional theory (DFT); (ii) a ML
model obtained from a direct fit of experimental reduction
temperatures; and (iii) a hybrid scheme that augments DFT zero-
Kelvin predictions with an ML model of the temperature-
dependent contributions.

A series of approximations is required to arrive at a purely
first-principles estimate of the reduction temperature. The tem-
perature dependence of the Gibbs free energy of formation of an
oxide compound X, AG(X) = AH(X) — TS, is partly due to the
temperature dependence of the enthalpy of formation A¢H but
mostly stems from the entropy term TS, where T is the tem-
perature and S is the overall entropy. At zero Kelvin, the entropy
term vanishes and the Gibbs free energy of formation is identical
to the enthalpy of formation, which can be directly obtained from
DFT calculations. For example, the zero-Kelvin formation
enthalpy of the metal oxide can be calculated as

AfHII\),[ETOy(T =0K) = nggy — xEQTT —
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Fig. 1 Hybrid model for predicting high-temperature properties of metal oxides. a Zero Kelvin first-principles calculations and finite-temperature
experimental data of metal oxides from the literature are compiled in a database. b Thermodynamic quantities are evaluated from first principles where
feasible. ¢ Features are extracted from the data set and used as inputs to build a quantitative machine learning (ML) model for those contributions that are
not accessible from first principles. d The output from the ML model and from first-principles calculations together enter a physics-based framework for
the prediction of the temperature-dependent stability of other metal oxides that were not included in the reference data set.

where E\'S L By, and ESFT are the DFT energies of the metal
x Yy

oxide, the base metal, and an oxygen molecule in the gas phase,
respectively. The greatest contribution to the temperature-
dependent terms of the reaction free-energy (2) arises from the
entropy of the molecular gas species CO (Sco), which can be
efficiently approximated in the ideal gas limit from first-principles
calculations. The vibrational entropy of the solid phases at a given
temperature can also be obtained from first principles by inte-
gration of the vibrational density of states, which can be
approximately obtained from DFT phonon calculations?2.
Additional contributions to the free-energy arise from the elec-
tronic, magnetic, and configurational entropies?>24, which can
also be approximated from first principles but have not been
considered in the present work. Further details of the DFT cal-
culations and additional entropy contributions are given in the
“Methods” section.

The experimental reduction temperature values along with the
corresponding predictions obtained from DFT calculations are
shown in Fig. 2. DFT reduction temperatures are shown for an
approximation only accounting for the entropy of CO and
including additionally the vibrational entropy contributions from
phonon theory. See Supplementary Table 2 and Supplementary
Fig. 1 for the corresponding data and correlation plots of the
predicted and reference reduction temperatures. As expected, the
accuracy of the reduction temperatures increases when a higher
level of theory is included in our model: the mean absolute error
(MAE) and the root mean squared error (RMSE) of the DFT-
based models decrease when including phonon corrections to the
free-energy from 235K to 166K and from 265K to 202K,
respectively. However, including phonon corrections is compu-
tationally demanding and scales poorly with increasing number
of atoms, making it computationally expensive for crystal struc-
tures with large unit cells. Due to this high computational cost, we
computed 38 samples (binary and ternary oxides) using DFT but
limited phonon calculations to the 19 binary oxides only.

As seen in Fig. 2, even on the highest level of theory con-
sidered, the predicted first-principles reduction temperatures are
on average still subject to large errors of around 200 K. Including
phonon calculations improved the DFT predictions across the
board, but the relative error reduction is barely significant except

for the compounds MgO, CaO, SiO,, and TiO,. Considering the
high computational cost of phonon calculations, this result is
sobering and reflects both the approximations made in the form
of the reaction free energy and the intrinsic error of DFT.

The limited accuracy of the first-principles models motivated
us to explore whether ML models can predict oxide reduction
temperatures with superior accuracy. Intuitively, the temperature-
dependent vibrational entropy contributions are determined by
the nature of the chemical bonds in the various oxides, ie., we
expect differences depending on the degree of ionic and covalent
character?®. As input for the ML model, we therefore chose fea-
tures that affect the chemical bonding and can be easily obtained
from the periodic table or by means of efficient DFT calculations.
The following properties were used for the construction of
compound fingerprints:

(i) Atomic properties: atomic number (Z), atomic mass (m),
electronegativity (y);
(if) Bond properties: ionic character (I¢);

(iii) Composition properties: oxidation state (Ox), stoichiome-
try (¢);
(iv) Structure properties: unit cell volume (V), density (p),

center of mass (¢); and
(v) Phase properties (from DFT): 0 K formation enthalpy
(AHj), bulk modulus (By).

Note that only two of the properties are derived from DFT
calculations, the formation energies and bulk moduli, the
calculations of which are straightforward and computationally
efficient. The construction of the compound fingerprint by
combining the above properties is described in the Supplementary
Methods section and in Supplementary Table 3. We employed
recursive feature elimination to detect redundant features and
avoid overfitting as is detailed in the Supplementary Methods
section and Supplementary Fig. 2.

We trained a GPR-based ML model on the experimental
reduction temperatures of Supplementary Table 1 and quantified
its accuracy using leave-one-out cross-validation (LOOCYV).
LOOCYV ensures that the model is evaluated only for samples that
were not used for training and is a standard technique for
assessing the transferability of a model (see further details in the
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Fig. 2 Comparison of predicted and reference metal oxide reduction
temperatures. Green triangles indicate the oxide reduction temperatures
as predicted by density-functional theory (DFT) calculations only
considering the temperature-dependent entropy contributions of CO. The
orange squares show the reduction temperatures after correcting the DFT
calculations using phonon theory. The predictions obtained from our
machine learning (ML) model trained on reduction temperatures are
indicated by blue circles. These data points were obtained from leave-one-
out cross-validation and are thus pure predictions and were not included in
the model construction. The horizontal error bars indicate the uncertainty
estimates from the Gaussian process regression model. The black crosses
indicate the experimental reference values of Supplementary Table 1. See
Supplementary Fig. 1 for correlation plots of the predicted temperatures
with the reference values. All data can be found in Supplementary Table 2.

“Methods” section). Further details of the model hyperparameters
and construction are given in the methods section. In addition,
we also performed multiple rounds of cross-validation using
different partitions to study the robustness of the predictive
power with respect to the train/test fold size (see Supplementary

Fig. 3). The predicted reduction temperatures from LOOCV for
each sample are compared with their corresponding experimental
reference in Fig. 2.

We observe that the predicted reduction temperatures of the
GPR model surpass in accuracy the first-principles values
obtained when using only DFT, even when computationally
expensive phonon corrections were included. The MAE and
RMSE from LOOCV are 105K and 127 K, respectively, which is
around 50% smaller than the errors of the pure DFT predictions.
In addition to a greatly improved predictive power, another
benefit of the Gaussian process regression model compared to
DFT is the uncertainty estimate that it provides (shown as blue
error bars in Fig. 2).

In the first instance we used only experimental data from
binary metal oxides (19 samples) to train and validate the ML
model to allow for a fair comparison with the DFT results
including phonon theory. Since the first-principles calculations
needed for building the compound fingerprint are computation-
ally affordable, we expanded our reference data set from 19 to
38 samples by including ternary oxides as well. LOOCV on the
larger data set shows that including extra reference data improves
the predictive power of the GPR model further and reduces the
MAE and RMSE by 20K and 18K to 85K and 109K, respec-
tively. In contrast, the DFT-based model (without phonon cor-
rection) showed larger errors for the increased data set (MAE and
RMSE increased by 21K and 12K, respectively), presumably
because of the neglected entropy contributions that become more
relevant with increasing number of constituents.

Metal extraction via carbothermal reduction becomes techni-
cally challenging if the oxide reduction temperature is sig-
nificantly above 1500 K, in which case other processes such as
hydrometallurgical routes are more commonly used2°. Focusing
on pyrometallurgy, a useful model would have the ability to
predict reduction temperatures below 1500 K with an accuracy of
at least around *100K. Unfortunately, the direct ML model
predictions are the least accurate for the relevant temperature
range. Additionally, there is no guarantee that the direct ML
model correctly captures the underlying thermodynamic princi-
ples that govern metal reduction, since we have treated the GPR
model akin to a black box. To further validate the model in this
respect, we considered the competing chemical reactions that are
at the core of pyrometallurgical processes.

The overall reaction of Eq. (1) can be understood as a com-
petition between the formation reactions of carbon monoxide and
the metal oxide

C+1/20, — COandxM +%o2 - M0, o

where metal oxide formation is energetically more favorable at low
temperatures, and CO formation is favored at high temperatures.
The metal oxide reduction temperature is then determined by the
intercept of the free energies of the CO and metal oxide formation
reactions when normalized to the same oxygen content, ie., the
temperature for which 2 A;G(CO) = %AfG(MXOy). This relation-
ship of CO and oxide formation energies is visualized in Ellingham
diagrams?’, which are a common tool for the engineering of pyr-
ometallurgical processes.

Figure 3a-c show Ellingham diagrams for a subset of the
considered compounds as predicted by DFT (with and without
phonon corrections) and the direct ML model compared to
experimentally measured references from the NIST-JANAF?8 and
Cambridge DoITPoMs2%30 databases. Free-energy diagrams for
the entire set of compounds are shown in Supplementary Fig. 4.

Ellingham diagrams contain more information than the
reduction temperature, as they represent the variation of reaction
free energies (per O, molecule) across different temperatures:
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Fig. 3 Predicted reaction free-energy curves for different metal oxides and models. a-d Predicted Ellingham diagrams obtained from a density-functional
theory (DFT), b DFT including phonon theory, ¢ the machine-learning (ML) model trained on reduction temperatures, and d the hybrid ML model trained
on metal oxide formation free-energy slopes (dG/aT). The labels for the different metal oxides are included in panel d. Predicted free-energy curves are
represented by the solid colored lines whilst the dashed lines are the experimental reference values (Expt.). The free-energy curves for the formation of
e MgO, f Cr,03, g LiFesOg, and h Fe,0O3 obtained from DFT (green), DFT using phonon corrections (orange) and the ML models trained on reduction
temperatures (blue) and free-energy slopes (pink) are compared with their corresponding experimental reference data (black dashed lines). The black solid

lines indicate the experimental free-energy curve for CO formation.

(i) Reduction temperatures can be determined from the
intersection of the free energy of formation of CO (black line
with negative slope) and the formation energy of a given
metal oxide (positive slope), (ii) the reaction enthalpies at zero
Kelvin (AH(T=0K)) are given by the y-intercepts of the
oxide formation free energies, and (iii) the change of the for-
mation free-energies with respect to the temperature (0A¢G/9dT, in
the following 0G/9T for conciseness) is the slope of a metal oxide
formation free-energy curve in the Ellingham diagram.

As seen in Fig. 3a, b, the slope of the reaction free energy curves
predicted purely from first principles deviates significantly from
the experimental reference, indicating that the temperature-
dependence of the oxides is subject to large errors. The direct ML
model trained on the reduction temperatures T.q (Fig. 3c) is in
excellent agreement with experiment for V,03, TiO,, and LiAlO,,
both in terms of the slope of the reaction free energies as well as
for the intercept with CO formation. However, the ML model
predicts a completely wrong temperature dependence for CuO
and CoO.

The failure of the T;.q ML model for some of the compounds is
due to errors in the DFT zero-Kelvin formation enthalpies of
CuO and CoO. Even though the ML model predicts reduction
temperatures for the two oxides that are close to the reference,
the temperature dependence is described incorrectly because of
large errors in the y-intercept of the reaction free energy curves,
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i.e., the zero-Kelvin enthalpies. The T;.q ML model thus does not
capture the underlying thermodynamics correctly and would not
predict useful free energies at temperatures other than the oxide
reduction temperature. Hence, the T,,q ML model does not
provide reliable predictions of the temperature-dependent
reduction free energy and would therefore not be useful for,
e.g., the prediction of reduction potentials for high-temperature
electrolysis!.

To further improve the predictive capabilities of our model we
decomposed it into two parts: zero Kelvin formation energies that
can be obtained from DFT according to Eq. (3) and the tem-
perature variation of the oxide formation free energy (dG/0T).
Training targets for this hybrid ML model are thus the experi-
mental values for dA{G/9T. Figure 3d shows the Ellingham dia-
gram obtained from the combination of the DFT zero Kelvin
formation energies and the ML-predicted free energy change with
the temperature. This hybrid ML model predicts the temperature
dependence of the formation free energies of CuO and CoO in
excellent agreement with experiment and simultaneously
improves the accuracy of the reduction temperature predictions.
The remaining error is mostly due to the zero-Kelvin formation
energy and no longer is an artifact of the ML model.

As previously for the T,.q model, we validate the 0G/0T model
by comparing the experimental reduction temperatures with the
values obtained by our predictions using LOOCV. Training on
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the experimental dG/9T values of the binary oxides decreases the
cross-validation scores even further, yielding an MAE of 74 K and
an RMSE of 87K, which are 31 K (MAE) and 40K (RMSE)
smaller than the errors of the T,.q model (Fig. 4a). The LOOCV

scores of the larger data set including ternary oxides are yet
smaller, giving an MAE and RMSE of 64 K and 78 K, respectively,
showing that the predictive power of the dG/0T model increases
as samples are added to the data set.

Finally, we analyze the accuracy of the predicted free-energy
curves for different metal oxides to determine the source of the
errors of the various models. In the interest of space, we only
include four representative examples here and refer the reader to
Supplementary Fig. 4 for the free-energy curves of all 38 samples
considered in this work. This holds for the majority of the con-
sidered oxides, especially for the ML model trained for 0G/dT,
which produces the most accurate predictions for the free-energy
curves. We note that the ML methods can be applied to large
structures, e.g., ternary oxides (Fig. 3g), for which the phonon
corrections are computationally too demanding.

One of the advantages of training the ML model on the free
energy slopes 0G/0T is that it is possible to distinguish between
errors in the zero Kelvin formation enthalpy and errors in the
predicted temperature dependence committed by the ML model.
For some metal oxides, such as Fe,0O3, the zero Kelvin enthalpy of
formation is not well described by DFT (Fig. 3h). In this example,
the reduction temperatures obtained from DFT and from the Tiq
model are close to the experimental reference, but only because of
a compensation of errors in the zero-Kelvin enthalpy and the free
energy slope. The 0G/0T model predicts the temperature
dependence of the free energy in much better agreement with
experiment than the other models, and the remaining error in the
reduction temperature of Fe,Oj; is dominated by the DFT error in
the zero-Kelvin enthalpy. Hence, the dG/0T model correctly
captures the underlying physics.

In fact, as seen in Fig. 4b, the errors in the DFT zero-Kelvin
formation energies correlate with the errors in the reduction
temperatures predicted by the 0G/0T model. This does not hold
true for the other models. The dG/9dT model decouples the zero
Kelvin energies from the DFT calculations and the ML predic-
tions of the temperature-dependent terms. As a consequence,
increasing the accuracy of the zero-Kelvin enthalpies, e.g., by
means of a higher level of theory, would yield an immediate
improvement of the model accuracy.

This is further corroborated by a baseline ML model com-
bining the experimental zero-Kelvin formation enthalpies with
the ML-predicted free-energy slopes. This baseline model, which
by construction does not exhibit the DFT errors at zero Kelvin,
yields indeed an improved accuracy reducing the MAE and
RMSE of the oxide reduction temperatures from 64 K and 78 K to
52K and 65K, respectively. An overview of the LOOCV error
estimates of all discussed models is compiled in Supplementary
Table 4. Since the feature vector of the ML model contains
information derived from DFT, we would expect even further
improvements in the predictions when using more accurate first-
principles methods. Together, this test indicates that the accuracy
of the hybrid ML model can still substantially improve if a more
accurate electronic-structure method becomes available.

A limitation of our model arises from the fact that phase
transitions were only implicitly included in the reference data, i.e.,
the model is not aware of the melting points of the base metals
even though some of the metals melt well below the reduction
temperature of their oxides. This is not a deficiency of the
model for the prediction of reduction free energies and reduction
temperatures. However, we believe that models for other
temperature-dependent processes can be built following the same
principles that we put forward here but training with explicit
phase information, i.e., by distinguishing between different solid,
liquid, and gas phases. We further note that an extension of our
model to compositions with greater number of species is
straightforward, since the feature vector entering the ML model is

6 NATURE COMMUNICATIONS | (2021)12:7012 | https://doi.org/10.1038/s41467-021-27154-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

built on averaging species-specific quantities. Though, the
description of disordered and eutectic systems might require
the incorporation of additional terms in the model, such as
the entropy of mixing. We also expect that the ML approach can
be improved further by including terms that can capture other
sources of temperature-dependent contributions to the free-
energy, e.g., configurational, electronic, or magnetic entropy.

In conclusion, we demonstrated that zero-Kelvin first-princi-
ples calculations can be augmented with ML models trained on
experimental free energy slopes to facilitate the accurate yet
computationally efficient prediction of high-temperature materi-
als properties. As one example with relevance for chemical
industry, we applied this concept to the pyrometallurgical
reduction of 38 binary and ternary metal oxides, showing that
ML-augmented first-principles calculations can predict oxide
reduction temperatures with a mean absolute error of 64 K and
correctly describe the temperature dependence of the reaction
free energies. We further highlighted the importance of encoding
and targeting physical properties that are directly related to the
fundamental equations of thermodynamics and serve as a sensible
prior to build accurate ML models. The approach is not limited to
oxide and could also be applied to other classes of compounds,
such as sulfides or nitrides, if at least some experimental reference
data is available, since all model features are derived either from
first principles (formation energies and bulk moduli), from the
crystal structure, or from the periodic table. The proposed ML
methodology can serve as a blueprint for the modeling of
temperature-dependent materials processes with a manageable
computational cost in cases where limited experimental data is
available and may ultimately guide the design of novel materials
and processes.

Methods
Details of the machine learning models. All ML models were based on Gaussian
Process Regression (GPR)2! as implemented in CatLearn32. We built a Gaussian
process (GP)

fX) ~ GP(0,K(X, X)), )

where X defines the set of inputs (x;), f{X) denotes the latent functions, and K(X, X)
is an 7 x n matrix with components k(x;, x;) for a number of n samples in the
training or test set and d dimensions of the input space.

The kernel trick is used to translate the input space into feature space with the
covariance function k(x, x’). The kernel is applied to determine relationships
between the descriptor vectors for candidates x and x'. We used the radial basis
function (RBF) kernel with the form

2
k(x,x') = o> + o} exp<— u) , 6)
20
where 07 is a scaling factor, ¢2 defines the kernel length scale, and ¢? is a constant
shift. The hyperparameters 67 and ¢2 were optimized in each feature dimension of
the fingerprint vector allowing for an anisotropic form of the kernel. This adds
automatic relevance determination (ARD) capability to our model.
In the following, we refer to X and X+ as the accumulation of the feature vectors
of the candidates in the training and test sets, respectively. The conditional
distribution of the GP is given by the mean

fX) =KX, X) K"y @
and covariance
cov(f(X,)) = K(X,,X,) - K(X,,X) K;' K(X,X,) ®

where K, = K(X, X) + €2 I is the n x n covariance matrix for the noisy target values
y and noise level . The variance for a new data (x+) obtained from the training data
(X), which is used to quantify the uncertainty of the process, is given by

P(x,) = X+ K(x, x,) - kix,)| ;' k(x,), ©

where the 7 x 1 covariance vectors between new data points and the training data
x; € X are given by k(x,) = [K(x,,X;), ... 7K(x*,xn)]T. The predicted uncertainty
is then given by o(x, ). The first term applies the predicted noise to the uncertainty
with xA being the optimized regularization strength for the training data. We chose
as initial hyperparameters [0, o5, €] = (1.0, 1.0, 1.0), with bounds on the noise level
€€[1x1073, 1x 10~!] and performed an optimization of the hyperparameters

through maximizing the log marginal likelihood

1 1 n
logp(y|X, 0) = —7y' Ky — S log [K| — 7 log2r, (10)

where 6 denotes the whole set of hyperparameters (o, o5, ¢, and €). The
hyperparameter optimization was performed using the Truncated Newton
Constrained (TNC) method?? as implemented in SciPy>*.

Model validation. The predictive power of our ML models was validated using
three different techniques to ensure that the models are transferable to unseen data
and do not exhibit overfitting. All reported error estimates were obtained from
leave-one-out cross-validation (LOOCV), which is a standard method for assessing
the generalization ability of models. This means, for each of the 38 oxides a GPR
model was trained on a data set containing only data from the other 37 oxides. The
error estimate was then determined by evaluating the model for the oxide that was
left out. Thus, LOOCYV establishes the transferability of the models for unseen data.
Second, k-fold cross-validation was employed to detect correlations of the reference
samples with each other by using test sets with increasing size. The results from the
analysis confirm the error estimates from LOOCV and do not indicate any issues
with the data set. See Supplementary Figs. 1 and 3 for further details. Finally, we
varied the noise parameter of the GPR models over four orders of magnitude to
determine whether the models were overfitted and reproduced unwanted infor-
mation (such as noise) from the reference data or if they were able to robustly fit
statical noisy observations from the reference data. As discussed in more detail in
the Supplementary Methods section and shown in Supplementary Figs. 5 and 6, the
goodness-of-fit of the models does not change significantly with the magnitude of
the noise parameter, further indicating that the models do not suffer from over-
fitting. Based on these three tests, the ML models are robust and exhibit good
transferability.

Model selection. In addition to GPR, we confirmed that other regression models
can also be successfully trained on the reference data. The accuracies (from
LOOCYV) obtained with a number of different regression models are discussed in
the Supplementary Methods section and errors are compiled in Supplementary
Table 5. As seen in the table, the models achieve overall similar accuracies as the
GPR model, although the maximal errors are significantly larger, except for the
three linear models (linear, ridge, and LASSO regression). Based on this test, we
decided to proceed with Gaussian process regression, since it provides an uncer-
tainty estimate for its predictions (as shown as error bars in Fig. 2).

Density functional theory (DFT) calculations. DFT calculations were performed
using the Vienna Ab initio Simulation Package (VASP)3>3¢ and the Strongly
Constrained and Appropriately Normed (SCAN) exchange—correlation
functional’” including the dispersion corrections scheme rVV1038. The energy
cutoff was 600 eV, and the Brillouin zone was sampled using the automatic k-mesh
generation method implemented in VASP with 30 subdivisions in each direction.
We used the pseudopotentials Li(s! p?), Na(p® s!), Mg (s p), Al(s? p!), Si(s? p?),
K(3s 3p 4s), Ca (3s 3p 4s), Ti (d3 s!), V (p® d* s1), Cr (d° s!), Mn (d® s!), Fe (3p d”
sl), Co (d® s!), Ni (d° s1), Cu (d'0 p!), and Zn (d'0 p?) included in VASP
version 5.4.

The convergence criterion for the electronic self-consistent cycle was fixed at
10> eV. Bulk structure optimizations were restarted until the optimizations
required at most five ionic steps to ensure basis-set consistency with changing cell
size and shape. For the d bands of V, Cr, Mn, Co, and Ni in their respective oxides,
a Hubbard- U340 correction was used to counteract the self-interaction error and
correct the oxide formation energies. The U values were fitted to the experimental
formation energy values*! from the NIST-JANAF?® and Cambridge
DoITPoMs?%30 thermodynamic tables as described in detail in the Supplementary
Methods section and visualized in Supplementary Fig. 7. We applied the following
U values: V (0.7 eV), Cr (1.5¢eV), Mn (0.5¢eV), Co (0.3 eV), and Ni (1.5¢V).

Phonon corrections were calculated using the Phonons module of the Atomic
Simulation Environment (ASE)*? package. We used 2 x 2 x 2 supercells for
calculating vibrational normal modes using the finite-displacement method?2.

Entropy contributions. The discussion of entropy effects above is limited to
vibrational entropy, which is intuitively the largest entropy contribution for the
considered oxide compounds at high temperature. For solid oxide solutions, the
configurational entropy contributions to the free energy, — TAS,,;, can also become
significant and are the origin of the stability of high-entropy oxides*>** and may
determine the ground-state phase?>. The entropy of mixing of an ideal solution is
ASmix = —ks S, xInx;, where kg is Boltzmann’s constant, x; is the concentra-
tion of species i, and N is the number of species that share the same sublattice of
the crystal structure. If it is known that a given oxide composition forms a solid
solution, the contribution from the mixing entropy can be included analytically in
the free energy of formation either on the level of first-principles theory or on top
of the ML models. In case it is not known whether a composition is disordered or
ordered, the tendency to disorder can be estimated based on first-principles
calculations?® of special quasirandom structures”.
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Data availability

All experimental reference data is contained in Supplementary Table 1. Data from first-
principles (SCAN) calculations that were generated in this study and enter the
compound fingerprints are provided as Supplementary Software 1. Reference trained
models have been deposited on GitHub and are publicly available from https://
github.com/atomisticnet/gibbsml°.

Code availability

The ML methodology described in the present work was implemented in a Python
package named GibbsML that provides the vectorized compound fingerprints and can be
used to build regression models based on GPR as implemented in CatLearn32. GibbsML
further makes use of the Atomistic Simulation Environment (ASE)*? and the Python
Materials Genomics (pymatgen) package*8. The source code generated in this study has
been deposited in GitHub under https:/github.com/atomisticnet/gibbsml*’ and is
publicly available under the terms of the MIT license. Additional source code that
implements the model validation is provided as Supplementary Software 1. A web
application for predicting free-energy curves Ellingham diagrams is hosted at: http://
ellingham.energy-materials.org. Note that the web application interfaces with the
Materials Project database® to extract first-principles data for the compound
fingerprints, so that predictions are not limited to the scope of our own (SCAN-based)
reference database.
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