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The five authors jointly guarding this polygon. The space of such optimal guard placements forms a

topological 2-chain, i.e., two cycles connected by an edge.

Abstract

Let P be a simple polygon, then the art gallery problem is looking for a minimum set of
points (guards) that can see every point in P . We say two points a, b ∈ P can see each other
if the line segment seg(a, b) is contained in P . We denote by V (P ) the family of all minimum
guard placements. The Hausdorff distance makes V (P ) a metric space and thus a topological
space. We show homotopy-universality, that is for every semi-algebraic set S there is a polygon
P such that V (P ) is homotopy equivalent to S.

Furthermore, for various concrete topological spaces T , we describe instances I of the art
gallery problem such that V (I) is homeomorphic to T .
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1 Introduction

The art gallery problem is a fundamental problem in computational geometry. In this work we
study the topological spaces formed by the set of all optimal guard placements. We show that a
large variety of spaces can be realized.

See Section 2 for a detailed definition of the art gallery problem, its solution space V (I), its
topology, semi-algebraic sets, homeomorphism, homotopy equivalence, and the existential theory
of the reals.

Homotopy-Universality. Given a set of points, the order type of this point set describes for
each ordered triple whether they are oriented clockwise or counter-clockwise. Imagine we are given
two point sets P1 and P2 with the same order type. Can we continuously move P1 to P2 without
changing the order type? For most people, intuition says that the answer is always yes, as this seems
to be the case for small examples. Let O be the order type of P1, P2, we denote the realization
space by V (O). The question above can be rephrased to whether V (O) is connected. Mnëv’s
seminal universality theorem states that for every semi-algebraic set S there exists an order type O
such that S and V (O) are homotopy equivalent [8, 27, 29, 32, 37]. Specifically, if S is the set that
consists of two isolated points, V (O) is also disconnected. Thus there are indeed two point sets
in the plane with the same order type that cannot be transformed continuously into one another.
Mnëv inspired a deep study of order types, which opened up a new research field. In particular,
Mnëv’s universality result is one of the most significant contributions to the existential theory of the
reals. The existential theory of the reals is both an algorithmic problem (ETR) and an algorithmic
complexity class (∃R). Based on Mnëvs original ideas it was shown that order-type realizability is
complete for this class [29, 37]. Order-type realizability is central, as it captures the combinatorics
of the simplest geometric objects: points in the plane. Furthermore, the ∃R-hardness of many other
algorithmic problems relies on it [7, 14, 25, 30].

Link to ∃R-completeness. Homotopy-universality and ∃R-completeness are closely linked. In
an ∃R-hardness reduction we transform semi-algebraic sets S, given by polynomials, to instances
I of some other problem. Again we denote by V (I) its solution space. In order to show ∃R-
hardness, the transformation has to be in polynomial time, and S = ∅ ⇔ V (I) = ∅. Note that
the topology of V (I) may be widely different to the topology of S. Similarly, in order to show
homotopy-universality, we need to transform a semi-algebraic set into some instance I. In this
setting, we have no restriction on the running time of the transformation. The transformations do
not even need to be computable to show homotopy-universality. Instead, we need to show that S
and V (I) are homotopy equivalent. It may not be so surprising that a transformation of the first
type may sometimes be massaged to a transformation of the second type and vice versa.

Art Gallery Problem. The art gallery problem is another central problem in computational
geometry. The aim in the art gallery problem is to place as few points G (guards) as possible into a
given polygon P such that every point q ∈ P is seen by a point g ∈ G. The art gallery problem has
been invented by Viktor Klee [33] and is since then one of the central problems in computational
geometry. Let us mention a few milestones. 1978, Steve Fisk wrote a beautiful one-page proof that
bn3 c guards are always sufficient to guard a polygon on n vertices [15, 20]. 1986, Lee and Lin [28]
first established NP-hardness, see also [18, 36]. 1987, Joseph O’Rourke wrote a beautiful book
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Art Gallery Theorems and Algorithms [33], summarizing the state of the art at the time. Surpris-
ingly, the art gallery problem is probably not contained in NP, as it is ∃R-complete [2]. In recent
years, the art gallery problem has been studied also from various other theoretical perspectives: ap-
proximation [10, 17], smoothed analysis [16, 19], and parameterized complexity [4, 5, 6, 11]. From a
practical perspective, various research groups developed, implemented, and tested algorithms that
are exact, reliable, and relatively fast, but theoretically may run forever [12, 21, 23, 39].

For us the ∃R-completeness of the art gallery problem is most relevant. Usually, ∃R-hardness
proofs imply homotopy-universality theorems as well. Although it is plausible that such a statement
follows from the ∃R-hardness reduction it is not formally stated in [2]. Instead, a slightly different
statement about semi-algebraic sets in the plane is formulated [2]. Still, it leaves an inconvenient
gap in our understanding of the art gallery problem.

Results. We fill this gap by providing a simple and short proof of homotopy-universality in the
context of the art gallery problem.

Theorem 1 (Homotopy-Universality). For every closed and bounded semi-algebraic set S 6= ∅ there
is an instance I of the art gallery problem such that V (I) is homotopy equivalent to S.

The proof can be found in Section 3 and actually gives a stronger technical statement. There are
two observations that may also hold for other algorithmic problems. First, homotopy-universality
may be generally easier to show than ∃R-completeness. While a reduction often gives both ∃R-
hardness and homotopy equivalence after sufficiently massaging it, it might be easier to just give two
separate proofs that are each more accessible individually. Second, to show homotopy-universality,
we only use that the vertices of the polygon must be seen. All other interior points are seen
automatically in our construction. Note that this version of the art gallery problem lies in NP.
Thus homotopy-universality is already achievable for NP-complete problems.

Furthermore, we provide a sequence of tangible examples that have solution spaces homeomor-
phic to standard topological spaces, like the sphere Sk. See Figure 1.

Theorem 2 (Tangible & Homeomorphic). For the following topological spaces S there exists an
instance I of the art gallery problem such that V (I) is homeomorphic to S. For any k ≥ 1,

1. k-clover; 2. k-chain; 3. 4k-necklace; 4. k-sphere; 5. torus and double torus.

Figure 1: Left to right: 4-clover, 4-chain, 4-necklace, 2-sphere, double torus.

The proofs can be found in Section 4. To help the imagination with our more involved construc-
tions, we created GeoGebra applications that show the correspondence between guard placements
and points in the topological space. An accompanying video showcases the most interesting parts.
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https://youtube.com/playlist?list=PLh3Niobwkd8pZcSF_Al7e2eeZ-8vqNm-b

Our tangible examples nicely illustrate the topological complexity that can be achieved with
very small polygons and very few guards. We believe that our results are suitable as classroom
material both in Computational Geometry as well as in Algebraic Topology. Terms like homotopy
equivalence and homeomorphism can be explained and their relevance can be illustrated. The
explicit description of our examples, coupled with the fact that the spaces of optimal solutions are
very different to typical benchmark instances, gives motivation to use our polygons as test cases
for art gallery algorithms [1, 23]. Note that even simple to construct polygons easily lead to very
complicated topological solution spaces. The selection we present here illustrates how we can realize
nice and well-known topological spaces. We do not know whether we can find an instance I of the
art gallery problem such that V (I) is homeomorphic to the projective plane or the Klein Bottle.
We find these spaces interesting as both are unorientable surfaces.

While it is conceivable that even homeomorphism-universality could be proven, our construction
for homotopy-universality does not achieve this. The dimension of the solution space gets blown up
by the freedom of movement of guards we use to enforce homotopy equivalence. Thus, our tangible
examples achieving homeomorphism are not covered by the Theorem 1 and have merit beyond their
simplicity.

Proof Ideas. Our constructions are based on guard segments, which are also used in various
other works [1, 2]. A guard segment is a segment inside the polygon that needs to contain at least
one guard. For a simple construction of a guard segment, see Figure 2.

Our homotopy-universality theorem crucially relies on guard segments to encode variables. In
addition, we build gadgets that enforce that only certain combinations of intervals on each guard
segment can be used. In this way, it is easy to construct arbitrary unions of hypercube faces. As we
will see this is sufficient to show homotopy-universality. The technical challenge is to show that we
can contract the additional dimensions our construction introduces to the desired solution space.

Figure 2: The pockets on the left and on the right enforce a guard to be placed on the dashed
segment, if we want that one guard sees both pockets simultaneously.

In our constructions for Theorem 2, guard segments can be touching or crossing one another.
Thus, it is possible to use fewer guards than guard segments, and we can get interesting solution
spaces. Intersecting guard segments also pose some technical difficulties, which will force us to
use a more complex construction with more pockets. We will deal with these technicalities in
Section 4. We will examine the possible “extremal” configurations of guards on guard segments
and the possibilities to move between them. In this way, we can determine the structure of the
solution space explicitly. Often, very simple arrangements lead to horribly complicated topological
solution spaces. Even small changes to the construction can lead to completely different spaces. The
challenge is to be inventive to get exactly those topological spaces that we care about. Specifically,
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the double torus in Section 4.7 required a solid understanding of the correspondence of polygons
and the solution space.

Figure 3: If we can force guards onto three specially arranged guard segments forming a triangle,
then every solution needs two guards, and the resulting solution space is homeomorphic to the
circle.

Simplicity. We consider it a strength of our proofs that they are simple. There are different ways
to quantify simplicity. When measured in length of the paper, we note that the paper establishing
∃R-completeness [2] has 69 pages and does not contain the homotopy-universality; including it
would have made that paper even longer. Our proof of the homotopy-universality is not even seven
pages long, with three pages merely being figures, running examples and additional explanations,
leaving only four pages for the formal proof. Yet, we do not consider brevity the main criterion for
simplicity.

Rather, we think that ease of understanding is the more relevant measure of simplicity. In
order to maximize it we provide running examples, we modularize our proofs, and we provide
elaborated illustrations, whenever this seems to be helpful. Furthermore, we add exhaustive details
and meticulously give references and additional explanations whenever it might be helpful. Each
of our tangible examples is just a few pages long. We can directly draw the topological space
and the configurations that interest us in a single figure. We believe that this type of integrated
representation makes it particularly easy to understand, see Figure 3 for an example of the circle. In
particular, apart from a few technical explanations the proof of correctness boils down to inspecting
some figure.

2 Preliminaries

Art Gallery Problem. Two points p, q inside a polygon P ⊂ R2, can see each other if the line
segment seg(p, q) is inside P . In the art gallery problem, we are given a polygon P and an integer k.
We are asked if there is a set G ⊂ P of size k such that every point in P is seen by a point in G. We
call the points in G guards. Note we consider polygons as closed and guards as indistinguishable.

Existential Theory of the Reals. The complexity class ∃R can be defined as the set of al-
gorithmic problems that is polynomial time equivalent to finding real roots of polynomials p ∈
Z[X1, . . . , Xn]. As we will not use ∃R-completeness, except for pointing out its link to homotopy-
universality, we merely refer to some surveys and recent developments [3, 13, 19, 29, 31, 34, 35].
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Hausdorff Distance. Given two points p, q in the plane R2, we define the Euclidean distance

d(p, q) = ‖p− q‖2 =
√

(p1 − q1)2 + (p2 − q2)2.

Consequently, given two closed sets F,G ⊂ R2, we define the directed Hausdorff distance as

−→
dH(F,G) = max

x∈F
min
y∈G

d(x, y).

The ordinary Hausdorff distance is defined by

dH(F,G) = max
(−→
dH(F,G),

−→
dH(G,F )

)
.

Solution Space. We describe an instance of the art gallery problem by I = (P, k). We denote
by V (I) the set of all possible solutions, i.e., the set of all possible placements of k guards such
that P is completely guarded. When we write V (P ), omitting k, we implicitly assume that k is
the smallest possible value that admits at least one solution. Note our guards are in general not
distinguishable, and thus V (I) is not readily embeddable into R2k as each solution is a set and not
a vector. However, the Hausdorff distance still defines a topology on V (I), as every metric defines a
topological space. Note that although one could choose a different metric to the Hausdorff metric,
we are not aware of any natural metric that would lead to a different topology.

In some cases, we construct instances I with disjoint guard segments such that every guard
must be on its private guard segment. In this case, we can interpret each guard set as a vector in
Rk and the usual topology in Rk coincides with the topology given by the Hausdorff distance. To
see this simply observe that small neighborhoods are identical and these are sufficient to define a
topological space.

Semi-Algebraic Sets. A basic semi-algebraic set S is defined by polynomials with integer coef-
ficients (pi)i=1,...,k and (qi)i=1,...,m, as follows:

S = {x ∈ Rn : pi(x) ≥ 0 ∧ qi(x) > 0}.

Semi-algebraic sets are finite unions of basic semi-algebraic sets.

Cubical complexes A cubical complex is a set C of hypercubes that satisfy the following con-
ditions:

1. every face of a hypercube of C is also in C;

2. any non-empty intersection of two hypercubes c1 and c2 is a face of both of them.

One example of cubical complexes that is particularly important to us are unions of (closed) faces
of some hypercube.
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Topology Terms. We say that two topological spaces A,B are homeomorphic if there is a
homeomorphism ϕ : A → B. A homeomorphism is a bijective, continuous function, whose inverse
is continuous as well.

Two maps, f0, f1 : A→ B are homotopic, if there is a continuous map H : [0, 1]×A→ B such
that H(0, x) = f0(x) and H(1, x) = f1(x). We call H a homotopy, and write ft for the function
H(t, ·).

Given two topological spaces A and B, a homotopy equivalence between A and B is a continuous
map f : A → B for which there exists another continuous map g : B → A, such that g ◦ f is
homotopic to the identity map idA and f ◦ g is homotopic to idB. If such a map exists, then A and
B are said to be homotopy equivalent, and we write A'B.

3 Realization of Unions of Hypercube Faces

In this section, we aim to prove Theorem 1.

Theorem 1 (Homotopy-Universality). For every closed and bounded semi-algebraic set S 6= ∅ there
is an instance I of the art gallery problem such that V (I) is homotopy equivalent to S.

To this end, we first show that for every semi-algebraic set S, there is a homeomorphic union
of hypercube faces (Lemma 3). Then, we show that for each union of hypercube faces U , we can
build an instance of the art gallery problem, such that its solution space can be projected to a space
homeomorphic to U (Lemma 4). This projection is the reason for our construction only yielding
homotopy equivalence and not homeomorphism.

For the proofs we will need some formal definitions. A hypercube in dimension n is the set of
points {X ∈ Rn : X ∈ [0, 1]n}. A face of the hypercube is a subset of the hypercube given by some
number of additional constraints of the form Xi = 0 or Xi = 1. A union of hypercube faces U in
dimension n is the union of faces of the hypercube in dimension n. We call a face F maximal in U
if F 6⊂ F ′ for every other face F ′ ⊆ U .

(0, 0, 0) x1

x3

x2

Figure 4: An example of a union of hypercube faces in dimension 3 consisting of 3 maximal faces.
The blue edge is a non-maximal face, as it is a subset of the green face.

Lemma 3. For every closed and bounded semi-algebraic set S, there is a union of hypercube faces
U , such that U is homeomorphic to S.
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Note that the description complexity of U is not necessarily polynomial in the description
complexity of S. This is the underlying reason why our reduction does not yield ∃R-hardness.

Proof. It was shown by Hironaka that all closed bounded semi-algebraic sets can be triangulated
[24], that is, for every such semi-algebraic set S there exists a simplicial complex T which is
homeomorphic to S. While the proof of Hironaka is phrased only for algebraic sets, it goes through
for semi-algebraic sets, see e.g. [26]. Furthermore, each simplicial complex can be refined into a
cubical complex which can be embedded into a hypercube as the union of some of its faces ([9],
Theorem 1.1). So in particular, there exists a union of hypercube faces U which is homeomorphic
to T and thus also to S.

The previous lemma shows that we can focus on unions of hypercube faces.

Lemma 4. Let U be a non-empty union of hypercube faces in dimension n. Then there exists an
instance of the art gallery problem I such that V (I) can be projected to a set that is homeomorphic
to U . Furthermore, V (I) is homotopy equivalent to U .

To prove this lemma, we first find a formula that encodes U . We define a variable constraint
on a real variable Xi as either the formula Xi = 0 or Xi = 1. We define a facial conjunction as the
conjunction of variable constraints for distinct variables, i.e.,

C =
(
(X ′1 = v1) ∧ . . . ∧ (X ′k = vk)

)
for some distinct X ′1, . . . , X

′
k ∈ {X1, . . . , Xn} and for v1, . . . , vk ∈ {0, 1}.

We define a facial disjunctive formula ϕ as a disjunction of finitely many facial conjunctions,
i.e.,

ϕ = C1 ∨ C2 ∨ . . . ∨ Cm.

Observation 5. For every non-empty union of hypercube faces U there exists a facial disjunctive
formula ϕ such that U = {x ∈ [0, 1]n : ϕ(x)}. Similarly, every facial disjunctive formula ϕ defines
a union of hypercube faces {x ∈ [0, 1]n : ϕ(x)}.

For example, the union of hypercube faces in Figure 4 is encoded by the formula

ϕ = (X1 = 0) ∨ (X2 = 1 ∧X3 = 0) ∨ (X1 = 1 ∧X2 = 1 ∧X3 = 1).

Note that the encoding uses one facial conjunction for each maximal face, the non-maximal blue
face does not have to be encoded as it is a subset of the green face.

We can now prove Lemma 4. Let ϕ be some facial disjunctive formula that encodes U and
contains m facial conjunctions, one for each maximal face in U , i.e., ϕ = C1 ∨ . . . ∨ Cm.

The proof goes in several steps. First, we show that ϕ can be rewritten as a conjunction of
disjunctions, using m additional binary satisfier variables Si, of which at least one has to be false.
Then, we show how the real variables Xi and binary satisfier variables Si can be encoded using
guard segments, and how the encoding ensures at least one satisfier variable to be false. Then,
we show how to encode a single disjunction as a pocket in the polygon. The conjunction of these
disjunctions is naturally encoded by the art gallery problem requiring the whole polygon to be
guarded at the same time. At last it remains to show the desired topological relationships between
V (P ) and the original union of hypercube faces U .
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Rewriting Conjunctions. Let Ci =
(
(X ′1 = v1) ∧ . . . ∧ (X ′k = vk)

)
be a conjunction of ϕ. We

introduce the boolean variable Si as a satisfier variable. Intuitively, Si being true means that Ci is
not the conjunction that satisfies the whole formula ϕ. We now rewrite Ci as

Ei =
(
(X ′1 = v1) ∨ Si

)
∧ . . . ∧

(
(X ′k = vk) ∨ Si

)
.

It can now be seen that ϕ = C1 ∨ . . .∨Cm is equivalent to ϕ̄ := E1 ∧ . . .∧Em ∧ (¬S1 ∨ . . .∨¬Sm),
as each Ei is equivalent to Ci ∨ Si. Note that ϕ̄ is in conjunctive normal form, and all clauses
except the last contain exactly two constraints. In the following construction, this last clause will
be handled separately from the others.

As an example we apply this rewriting to the example union of hypercube faces from Figure 4.

ϕ = (X1 = 0) ∨ (X2 = 1 ∧X3 = 0) ∨ (X1 = 1 ∧X2 = 1 ∧X3 = 1)

is rewritten to

ϕ̄ = (X1 = 0 ∨ S1)
∧ (X2 = 1 ∨ S2) ∧ (X3 = 0 ∨ S2)
∧ (X1 = 1 ∨ S3) ∧ (X2 = 1 ∨ S3) ∧ (X3 = 1 ∨ S3)
∧ (¬S1 ∨ ¬S2 ∨ ¬S3)

Sm−1 = > Sm = >S3 = >S2 = >S1 = >

0 1 0 1

X1 Xn D1 D2 Dm−1

Figure 5: We define for every variable Xi one variable guard segment to the left. Furthermore, we
define m − 1 dummy guard segments Di, whose guards can satisfy at most one of two adjacent
satisfier variables Si and Si+1 by standing at either the left-most or the right-most point of the
segment.

Placing Variable/Dummy Guard Segments. The construction of variables can be seen in
Figure 5. Variables Xi are realized by horizontal variable guard segments (called Xi, interchange-
ably) at the top of the art gallery polygon, which are enforced to contain at least one guard in
any optimal solution, as otherwise two guards are needed to see both pockets. The value xi of the
variable Xi in any optimal guard assignment is the location xi of the single variable guard on this
segment, where 0 corresponds to the left endpoint of the segment, and 1 to the right.

For the binary satisfier variables Si, m − 1 additional pockets with dummy guard segments
D1, . . . Dm−1 are added. In any optimal guard placement, the satisfier variable Si is considered
true (Si = >) if the location di of the dummy guard on segment Di is equal to the left-most point
l(Di) of the segment, or if the dummy guard on segment Di−1 is at the right-most point r(Di−1)
of its segment. If neither is the case, the satisfier variable is considered false.

This means that the guard on segment Di can only make either variable Si or Si+1 true, but
not both at the same time. Clearly, with only m− 1 dummy guard segments and thus only m− 1
dummy guards, at most m − 1 satisfier variables are considered to be true in any optimal guard
placement. This encodes the last clause of ϕ̄.
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Figure 6: Here, we show how to encode the constraint that there is at least one guard on one of the
two green intervals. This corresponds to a disjunction of two constraints. The helper guard that is
enforced to be on the dashed segment can see into at most one of the two corridors.

Encoding Disjunctions. The construction of disjunction gadgets can be seen in Figure 6.
Each disjunction of ϕ̄, except the already handled last clause, is encoded as a pocket on the

bottom side of the polygon. The entrance of the pocket functions like the pinhole on a pinhole
camera, and should be sufficiently small.

Each disjunction contains one constraint of the form Xi = vi and one constraint of the form
Sj = >. The constraint Xi = vi means that the variable guard for Xi is standing at the endpoint
vi of its guard segment, which can be viewed as a degenerate interval I1 := [vi, vi]. The constraint
Sj = > means that at least one of the dummy guards on Dj−1 or on Dj is at the correct position,
which is equivalent to saying that some guard is standing on the interval I2 := [r(Dj−1), l(Dj)] (for
satisfier variables S1 and Sm, this interval also degenerates to a point).

Now, for both constraints in our disjunction, we build one pocket which can only be seen
through the pinhole by a guard standing anywhere on the satisfying interval. To achieve this, the
left (right) point of the satisfying interval is connected with the left (right) end of the pinhole, and
a sufficiently deep corridor is drawn.

To ensure that the disjunction gadget is guarded exactly if the disjunction is satisfied by any
of the two constraints, one horizontal helper guard segment Hi is added above the corridors, which
needs to contain at least one helper guard. This segment is placed in such a way that the helper
guard can see into at most one corridor at once from any position. We denote the position of the
helper guard on segment Hi by hi.

Observation 6. The disjunction gadget can be completely guarded with exactly one guard inside of
the disjunction pocket if and only if there is at least one guard on one of the two satisfying intervals
I1, I2, assuming that all guards stand on guard segments.

Completing the Art Gallery. We have defined the upper and the lower boundary of our
polygon P . We want to ensure that the parts of these boundaries between the variable/disjunction
gadgets as well as the left and right boundary can be guarded in a controlled fashion. To this end,
we add one more auxiliary guard segment. This guard segment is actually only a single point a
from where all of the non-interesting parts of the polygon, but no corridor of a disjunction gadget
can be guarded. In any optimal solution, there will be one auxiliary guard standing at this point.
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D2X1 X2 X3

X1 = 0 ∨ S1 X2 = 1 ∨ S2 X3 = 0 ∨ S2 X1 = 1 ∨ S3 X2 = 1 ∨ S3 X3 = 1 ∨ S3

a

D1

Figure 7: The complete polygon encoding the union of hypercube faces from Figure 4.

The complete art gallery polygon corresponding to the example in Figure 4 can be found in
Figure 7.

Solution Space. We will now analyze the solution space V (P ). First, we derive a lower bound
on the number of required guards, and then an upper bound, which holds assuming U is non-empty.

In the following, let g denote the number of disjunction gadgets, and recall n being the dimension
of U and m being the number of conjunctions in ϕ.

Lemma 7. At least n+m+ g guards are required to guard the polygon P .

Proof. There are n+m+g pairwise disjoint guard segments, namely the n variable guard segments,
the m− 1 dummy guard segments, the g helper guard segments, and the auxiliary guard segment.
Because they are disjoint, at least one guard is needed for each such guard segment.

Lemma 8. For any point p ∈ U , a placement of the variable guards such that xi = pi can be
extended to a solution using n+m+ g guards.

Proof. Because p ∈ U , this assignment of variables must satisfy at least one conjunction Cj of ϕ.
Therefore the formula Ej is satisfied even if Sj is false. If we place the dummy guards such that
all other Sk for k 6= j are true, every disjunction is satisfied and thus every disjunction gadget has
at least one of the two corridors being guarded. The helper guards can now be placed such that
every corridor is guarded, and the auxiliary guard stands at its fixed point a, leading to a solution
using n+ (m− 1) + g + 1 guards.

As a corollary, we get the following observation.

Observation 9. If U is non-empty, exactly n+m+g guards are required to guard P . Furthermore,
in every optimal solution there is exactly one guard on each guard segment, and every guard must
stand on a guard segment.
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Now we will show the opposite direction of Lemma 8.

Lemma 10. Let S be a placement of n+m+ g guards in V (P ). Then the point p with pi = xi is
contained in U .

Proof. As every disjunction gadget is completely guarded in S, there must be a guard on at least
one of the two intervals satisfying the disjunction. This means that the corresponding assignment
of variables and satisfier variables must satisfy ϕ̄. Therefore the assignment of variables Xi must
satisfy ϕ, and the point p such that pi = xi must be in U .

We have therefore established a relationship between optimal guard placements and points in U .

Projection and Homotopy Equivalence. We can now show the existence of the projection
claimed in Lemma 4. Consider any guard placement of one guard per variable, dummy, and helper
guard segment, and the auxiliary guard at a and consider the function π

π : [0, 1]n+(m−1)+g × {a} −→ [0, 1]n+(m−1)+g × {a}
(x1, . . . , xn, d1, . . . , dm−1, h1, . . . , hg, a) 7−→ (x1, . . . , xn, 0 . . . , 0, 0 . . . , 0, a)

(1)

which maps such a placement by moving all dummy and helper guards to the left-most point of their
guard segment. By definition, π is equal to its square, therefore π is a projection. By Lemmas 8
and 10, the image π(V (P )) of the solution space under this projection is exactly the embedding
of U into the movement of the variable guards. In particular, π restricted to V (P ) is surjective
onto U . Recall that a map between topological spaces is called proper if inverse images of compact
subsets are compact. For the map π for any open or compact set of U , its pre-image is open or
compact. Thus, the projection π is continuous and proper.

To finalize the proof of Lemma 4, it remains to show homotopy equivalence between V (P ) and
U . To this end, we first show the following claim.

Claim 11. For each fixed assignment of variable guards that corresponds to a point in U , the set
of optimal guard placements extending this assignment is contractible.

Proof. First, we show how to contract the degrees of freedom in the helper guards. For each fixed
assignment of variable guards and dummy guards, each helper guard is either completely free to
move on its whole helper guard segment (if both conditions for its disjunction gadget are met by
the variable and dummy guards already), or it is only free to move within the interval where it can
observe the corridor that is not yet guarded by variable and dummy guards. In either situation,
the space each helper guard can move on is an interval, and all helper guards are independent from
each other. Therefore the space spanned by the helper guards for a fixed assignment of variable
and dummy guards forms a g-dimensional cube, which is contractible.

For any given placement of the variable guards corresponding to a point p ∈ U , p can be part
of one or more maximal faces. If the point is part of a single maximal face, there is a one-to-one
correspondence of the point to a dummy guard assignment. If the point is part of multiple maximal
faces, there is some freedom in the placement of dummy guards.

With the point being a part of v maximal faces, v satisfier variables S′1, ..., S
′
v ∈ {S1, . . . , Sm}

(in order) do not need to be true. In this case, between every consecutive pair S′i, S
′
i+1, the dummy

guards have some freedom to move around. As all satisfier variables between S′i and S′i+1 still need
to be true, the possible movement of the dummy guards on the dummy guard segments between
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Figure 8: How dummy guards can be moved when multiple dummy variables do not need to be
guarded (green ellipses). Between two adjacent such variables, guards can switch between two
extremal positions: all guards to the left, or all guards to the right.

S′i and S′i+1 equates to a path/interval between the two extreme solutions – all guards to the
left of their intervals, and all guard to the right of their intervals (see Figure 8). The dummy
guard movements between each such consecutive pair are independent, therefore the solution space
spanned by the dummy guards for a fixed assignment of variable guards forms a v− 1-dimensional
cube, which is also contractible.

We have therefore shown in two steps that for fixed variable guards, the solution space spanned
by the dummy and helper guards is contractible.

Intuitively, we would now like to contract the solution space spanned by the dummy and helper
guards to a point for each configuration of variable guards. However, the above lemma only shows
that this is locally possible, and it is not clear that these local contractions can be chosen in a way
that they fit together globally. The intuition can however be formalized using the following lemma.

Lemma 12 ([38]). Let X and Y be connected cubical complexes. Assume that there exists a
continuous proper surjective map f : X → Y such that for each point y ∈ Y , its pre-image f−1(y)
is contractible. Then X and Y are homotopy equivalent.

Lemma 12 follows easily from a more general result by Smale [38]. In order to apply Smale’s
result we merely need to review a handful of technical topological conditions on the involved spaces.
As this is a standard step we defer the checks to Appendix A.

It remains to apply Lemma 12 to X = V (P ), Y = U and f = π. First, being a union of faces of
a hypercube, U is naturally a cubical complex. In the proof of Claim 11 we have shown that V (P )
consists of cubes. These cubes can be subdivided such that they fulfill the conditions of a cubical
complex, therefore V (P ) is a cubical complex too.

By Claim 11, it also follows that the pre-image under π of every point of U is contractible.
Further, as noted above, π : V (P ) → U is indeed continuous, proper and surjective. Finally, if
U is not connected, we can just consider each connected component separately, as the parts are
then also disconnected in V(P). Thus Lemma 12 shows that U and V (P ) are indeed homotopy
equivalent.
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4 Tangible Examples

In this section we show that some simple art gallery problem instances have solution spaces home-
omorphic to nice topological spaces, in particular, we prove Theorem 2.

Theorem 2 (Tangible & Homeomorphic). For the following topological spaces S there exists an
instance I of the art gallery problem such that V (I) is homeomorphic to S. For any k ≥ 1,

1. k-clover; 2. k-chain; 3. 4k-necklace; 4. k-sphere; 5. torus and double torus.

Beginning with 1-dimensional solution spaces will give us insights into the concepts used and
starting with Section 4.5 we show how to get higher-dimensional, yet still recognizable solution
spaces homeomorphic to commonly known topological spaces.

4.1 The Circle and Guard Segments

Arguably, one of the simplest yet non-trivial topological spaces is the circle. We introduce our proof
techniques by carefully analyzing an instance of the art gallery problem where the solution space
is homeomorphic to the circle. As already mentioned, the general idea is to force guards onto line
segments, so-called guard segments, that each need a guard on them. Consider the arrangement of
three guard segments given in Figure 9a.

(a)
(b)

Figure 9: If we can force guards onto three specially arranged guard segments forming a triangle
(a), then every solution needs two guards. The resulting solution space is homeomorphic to the
circle (b).

Note that in this case we need at least two guards to guard everything, as a single guard can
guard at most two of the segments simultaneously. Possible solutions are drawn in Figure 9b,
indicated by black dots. Furthermore, it can be seen that the solution space of a polygon inducing
these guard segments is homeomorphic to the circle. Whenever one of the guards is placed at the
intersection of two different guard segments, the other guard is free to walk along the remaining
unoccupied guard segment. In this way we can start in some configuration, move the first guard,
move the second guard, and move the first guard once again and we are back in the configuration
we started with. It is important to note that we work with unlabelled guards and thus we really
start and end in the exact same configuration. Since there are no solutions with guards not on the
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Figure 10: Enforcing a set of guard segments with the simplest pockets.

triangular set of guard segments one can see that the solution space is indeed homeomorphic to a
circle.

So far, we did not care about the actual polygon and only considered the guard segments.
Enforcing guard segments can be done by adding pockets (see Section 1) on opposite sides of the
polygon. To get a triangle of guard segments, our first attempt adds the pockets to a square, see
Figure 10.

Unfortunately in this case the guard segments are not restricted to the triangle and are too
long, i.e., they include the red dotted parts. Instead of forcing guard segments with single pockets
on each side (as in Figure 2; or Figure 10) we add three distinct pockets on one of the sides, see
Figure 11.

Figure 11: Extending the idea of using pockets. Instead of only using one on each side, we use
three on one side and one on the other.

The idea is that if any guard is on the (previously) unbounded guard segment, then it only sees
the additional pockets from within the bounded part. Thus, hopefully in an optimal solution any
guard would rather be in the bounded part of the line segment and so we indeed get our bounded
guard segment. In the remainder of this subsection we will be dealing with the technicalities of
these three pockets and prove that they really enforce guard segments.

Without additional arguments, the now four pockets per guard segment only guarantee that at
least one guard stands in the union of the four visibility areas of each of the pockets. This union is
some thin area around the unbounded guard segment. By moving the pockets closer to each other,
this area can be made arbitrarily thin. Let us denote these areas as the sausages around the guard
segments, see Figure 12b for an example.

These sausages intersect in the same way as the underlying guard segments did, and therefore the
arguments about the possible solutions on the guard segments still hold for the sausages, except
that the guards now have wiggle-room within the sausages. We generalize this in the following
observation.

Observation 13. If the intersection graph of the sausages around our guard segments is equal to
the intersection graph of the guard segments itself, then the structure of the space of optimal guard
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(a) (b)

Figure 12: The second attempt to get guard segments forming a triangle (a). For each guard
segment we use four pockets as described in Figure 11. In (b) the sausages of the guard segments
are indicated in blue.

placements such that each sausage contains a guard is the same as the structure of the space of
optimal guard placements such that each guard segment contains a guard, up to the guards having
some wiggle-room within the sausages.

For most of our constructions, the sausages around our guard segments can be made thin enough
to fulfill this condition. When this condition can not be fulfilled, we will argue that the additional
intersections in the sausages do not produce additional solutions. We will therefore always be able
to argue the overall structure of the solution space in terms of segments instead of in terms of
sausages.

We can now argue by looking at each of the solutions shown in Figure 9, that the drawn pockets
actually enforce the guards to be on the segments exactly. This argument works using the following
lemma. It is one of the key ingredients in forcing guards onto segments for all our constructions.

Lemma 14. In any optimal guard placement S, a guard g standing on the sausage of guard segment
L is forced by pockets shown in Figure 11 to stand on L itself, if S fulfills either of the following
conditions:

(a) There is no guard except g standing in the sausage of L.

(b) There is one other guard g′ ∈ S also in the sausage of L, but not exactly on L. There is
another guard segment L′, such that L∩L′ 6= ∅, and L′ completely lies on the same side of L
as g′. Furthermore, g is enforced to stand on L′ exactly.

(c) There is one other guard g′ ∈ S also in the sausage of L, but not exactly on L. There are
two other guard segments L1, L2, such that L1 ∩ L and L2 ∩ L are exactly the two endpoints
of L. Furthermore, g′ is enforced to stand on L1, and g is enforced to stand on L2.

These three cases correspond to the three arrangements shown in Figure 13.

We now show as an example how to apply this lemma to the top left solution in Figure 9b.
For the left and bottom guard segment, there is only one guard on the sausage of the segment,
therefore case (a) applies and the guards are enforced to stand on these segments exactly. Now,
for the right segment, for both guards, case (b) (and case (c) too) applies, so at least one of the
guards needs to be at an intersection point of segments exactly.
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(a) (b) (c)

Figure 13: The three situations describing the fundamental ways how other guards (square) are
allowed to enter the sausage such that the guard is still forced to be on the guard segment exactly.

We will refrain from proving this for the more complex constructions, as it is merely tedious but
not insightful. Note that one can always find a sausage containing only a single guard to bootstrap
the proof using case (a), as if every sausage would contain two or more guards, a guard could be
removed and every sausage would still be guarded, therefore such a guard placement could not be
optimal.

We conclude this introductory construction with a proof of Lemma 14.

Proof. We prove this separately for each condition, and always assume that the respective condition
holds.

(a) g must be on L, as no other guard can see any pocket realizing L, and the four pockets can
only be seen simultaneously from L.

(b) Without loss of generality, assume guard g′ is above L. g′ can at most see the left pocket and
the bottom right pocket. By the condition (b), g must be on guard segment L′, but there
must also be a guard seeing the middle and upper right pockets of L. There exists only a
single point which can see all of these, which is the intersection point of L and L′, and g must
therefore stand at this point.

(c) Assume g′ is below L, and L ∩ L1 is the right endpoint of L. g′ can at most see the middle
and lower right pockets. g must be on L2, and there must be a guard seeing the upper right
pocket and the left pocket. Again, the only point which can see all of these is the intersection
point of L and L2, and g must therefore stand at this point.

The proof for (c) works similarly for L1 being at the other endpoint of L, or g′ being above L.

4.2 Clovers

We now begin proving Theorem 2 by showing how to achieve solution spaces homeomorphic to
k-clovers. A k-clover consists of k circles glued together at a single point. Note that in the previous
section we have shown that we can build a polygon with solution space homeomorphic to the circle,
which can also be seen as a 1-clover.
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(a) (b) (c)

Figure 14: (a) The polygon gives us as a solution space the 2-clover (i.e., the symbol ∞). (b)
Guards are forced to live on 6 specific guard segments (dashed). (c) One of the visibility regions
(i.e., sausages) is shown on the right, they can be made arbitrarily thin.

2-clover. We first consider the following polygon, see Figure 14a. The idea is to force an arrange-
ment of 6 guard segments (cf. Figure 14b) that each need to have one guard on them. Note that we
cannot guard this arrangement with 2 guards and so any optimal solution needs 3 guards. As can
be seen in Figure 14c, the pockets can be moved together close enough such that the intersection
graph of the sausages of the guard segments is the same as the intersection graph of the guard
segments themselves. Using Observation 13, we can therefore analyze the solution space in terms
of guard segments.

Note that there are multiple solutions with 3 guards on intersections of guard segments, and for
all of these solutions, only one guard can move away from its intersection simultaneously. Figure 15
shows a solution with 3 guards and the movement of one of the guards.

Figure 15: The 6 guard segments from the polygon above. The figure shows how moving guards
around is possible, and it shows that there is at least one cycle in the solution space.

By using movements similar to the ones described in Section 4.1 we can discover the whole
solution space, and we arrive at the graph in Figure 16, where edges mean movement of a single
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guard along one single guard segment.

Figure 16: The complete solution space of the polygon. The situations in boxes are connected by
single guard movements indicated next to the edges.

Finally, using Lemma 14, we can conclude that the solution space of this art gallery problem
instance is homeomorphic to the symbol ∞ or the 2-clover.

k-clovers. For showing that we can have any k-clover as a solution space we describe the following
arrangement of guard segments. Let k ≥ 3 and create guard segments on the sides of a regular
k-gon. Additionally, consider the set M of middle points of the already present guard segments and
let us add a complete graph onto these (middle) points. In other words, we add a guard segment
connecting any two points in M . Let us denote the resulting set of lines as the k-clover art gallery
guard segments. Examples of the resulting arrangement can be found in Figure 17.

Figure 17: Examples of the k-clover art gallery guard segments for small values of k. The red
circles indicate the set M with the blue lines describing the inner complete graph Kk. The black
guard segments are the ones we start our construction with, the regular k-gon.

For clarity, let us denote the inner part as the inner Kk (blue in Figure 17) and the set of
intersection points of guard segments as the set of vertices.

Lemma 15. The minimum number of guards to guard every guard segment in the k-clover art
gallery guard segments is k.

Proof. Note that if there is a guard placement guarding everything, then there is a guard placement
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with the same number of guards, with guards only on vertices. This is because moving a guard
from a single guard segment to a vertex only increases the set of segments covered by this guard.

Assume for the sake of contradiction, that we can guard the inner Kk with at most k−2 guards.
If all k− 2 guards are on points in M , then there are two unoccupied points in M and their direct
edge cannot be covered by any guard. Hence, let us assume that i ≥ 1 of the guards are in the
interior of the inner Kk. Consider the induced graph G formed by unoccupied points M ′ ⊆M . By
the construction of the k-clover art gallery guard segments, we know that G = Ki+2 and recall that
there is no guard on any point in M ′. Since every point in M ′ has i+ 1 adjacent edges in G that
do not intersect in the interior of the inner Kk, we cannot guard everything with only i guards.
Overall this shows that there are at least k − 1 guards needed in the inner Kk.

Suppose now that we have k− 1 guards in the inner Kk. Then there is at least one unoccupied
point of M and with it the corresponding guard segment of the regular k-gon is uncovered. Thus
any solution to the k-clover art gallery guard segments needs at least k guards.

Finally, note that putting a guard on every point of M gives a valid assignment.

Lemma 16. The solution space of the k-clover art gallery guard segments is the k-clover.

Proof. The concepts used to analyze the solution space of the 2-clover polygon apply here as well.
The common “point” (i.e., center of the clover) is the canonical configuration already described
above, where the k guards are all placed on the points of M (see Figure 18 leftmost). Note
that in this specific configuration every single guard can be moved along its corresponding outer
guard segment. However; we can only move one of the guards at a time, as moving two of them
simultaneously would leave the edge between their original locations unguarded. Note also that
moving a guard into the inside of the Kk would leave the outer guard segment (the one from the
k-gon) unguarded.

Whenever we move a guard far enough, until it reaches a corner of the regular k-gon, this frees
exactly one other guard (namely the one on the side of the k-gon which is newly covered by the
moved guard). This freed guard can now only walk on one particular inner edge to the old position
of the first guard, ending back at the canonical solution. The described movements can be seen in
Figure 18 for the case of the 4-clover.

Figure 18: Moving guards along the edges of the k-clover art gallery guard segments.

As already mentioned, whenever a guard is on a single edge, no other guard is free to move.
Hence, by the structure of the graph, we get exactly k circles attached to a common point and thus
the k-clover as claimed.

Lemma 17. We can realize the k-clover art gallery guard segments as an art gallery problem of a
simple polygon.
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Proof. We again use small pockets to force guard segments. One example of a possible resulting
polygon for k = 4 can be found in Figure 19. Similarly to the cases before, one can check that

Figure 19: The polygon on the left gives the 4-clover art gallery guard segments as possible locations
for guards. Thus the solution space of this instance of the art gallery problem is homeomorphic to
the 4-clover.

every optimal guard placement in this polygon is a solution with guards only on the guard segments,
using Observation 13 and Lemma 14. Thus the polygons describe the k-clover art gallery guard
segments.

4.3 Chains

We continue proving Theorem 2, namely in this section we show that there are instances of the art
gallery problem with solution spaces homeomorphic to k-chains. The main idea used in this section
is to have different sets of guards for the different things we want to chain up. We need to restrict
the valid placement of guards with guard segments such that at each moment in time only one set
of guards can move freely.

For simplicity we will restrict ourselves to chaining up circles; however, we believe that the idea
can be used to chain up different, more complex spaces as well. Let k ≥ 1 and consider a path of
k vertices. Instead of using vertices we use circles. We denote the resulting set as a k-chain, some
examples for small k can be found in Figure 20.

Figure 20: k-chains for small values of k.

Consider the arrangement of guard segments in Figure 21. Note that any guard can only cover
two guard segments simultaneously and since there are 9 different segments we need at least 5
guards. We have already seen in Section 4.1 that if guard segments form a triangle, we always
need two guards on the triangle. Therefore in any optimal guard placement there is a guard on the
horizontal guard segment in the middle, we call it the link guard on the link segment.

The left and right guard segments of the link ensure that whenever they are not guarded by
the link guard, the guards on the corresponding triangle need to maintain one particular position.
This means that the link guard can move from one end of its segment to the other in order to lock
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Figure 21: Guard segments forming two triangles that are connected by a link consisting of three
individual guard segments.

one circle and unlock the other. In the solution space, this results in a segment linking the two
circles, see Figure 22.

Figure 22: The solution space of the guard segments given in Figure 21 is a 2-chain.

Figure 23 shows one possible instance of the art gallery problem that aims to achieve these
desired guard segments. Note that no matter how thin the sausages are made, the sausages of the
left and right guard segments of the link actually intersect with the sausages of the bottom triangle
segments, and the conditions laid out in Observation 13 are not fulfilled. We therefore have to
manually argue that this additional intersection does not create a spurious solution, and that all
guard segments must contain a guard.

Recall that on each sausage there must be one guard. We first observe that the link segment,
and each of the triangle segments must contain a guard (by the same arguments as in Section 4.1).
There is a single type of possible spurious pseudo-solution under these conditions, where all sausages
contain a guard, but one of the guard segments of the link does not. This solution is noted in
Figure 23, and one can verify that this pseudo-solution can not satisfy the left bottom pocket of
the right segment of the link (emphasized in red). We can therefore conclude that in each optimal
guard placement, all guard segments must contain a guard.

Note that by repeatedly linking triangles together, we can realize a chain of any length, and the
argument above generalizes.

4.4 Necklaces

We have just described how one can chain up different spaces. In particular we have given art
gallery problem instances with solution spaces homeomorphic to chains of circles. Here we want
to investigate whether it is possible to close the chain (of circles), that is, we want to construct a
necklace of topological spaces, in particular circles. Let us denote a closed k-chain as a k-necklace,
see Figure 24 for some small examples.
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Figure 23: An example of the full polygon forcing guard segments; with solution space homeomor-
phic to a 2-chain. Marked is the possible spurious solution that arises from analyzing sausages of
guard segments. Note that this placement does not guard the left bottom pocket of the unoccupied
guard segment, emphasized in red. This is therefore not actually a spurious solution.

Figure 24: k-necklaces for small values of k.

The two topological spaces, chains and necklaces are very similar, the only difference being at
the ends of the chain. When we move in the chain, say from the left-most circle to the right-most
circle, we want to have some way of going back to the first circle without going through all other
circles in-between. This would then close the chain and we would end up with some necklace.

A first attempt is to link the first and last circle of the chain in a similar way as we linked circles
in-between. Then there are as many links as circles. Recall that the link guards cannot guard the
whole link, therefore the guards on the circles are forced to guard one of the link segments. Thus,
we can never get a solution space homeomorphic to a necklace. So, the construction we present
here uses another idea: we duplicate the chain using small guard segment squares and link up the
ends of the different copies.

Consider the polygon given in Figure 25a. The induced guard segments are drawn in Figure 25b,
where we omitted the polygon for clarity. The guard segments form a 1-chain (the triangle in the
middle) with two small squares attached. Let us denote the small squares, as the flags. They
are attached at different points of the triangle. Note that if the guards are forced to live on the
indicated guard segments, then we need at least 6 guards in any optimal solution. This is because
there are 11 segments and each guard can occupy at most two simultaneously. Furthermore, two
guards need to be on the triangle as well as on each of the flags.

Note that the squares have exactly two discrete solutions and thus by adding the flags to both
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(a) (b)

Figure 25: (a) A polygon and (b) its induced guard segments. They form a simple triangle with
two attached flags. The solution space is homeomorphic to the 4-necklace.

ends of the triangle will not only duplicate the chain but multiply it by four. In other words,
any solution on the triangle can be completed to four different solutions on all guard segments.
Note that the flags can only change their state if the guards on the adjacent triangle are already
guarding the guard segment that connects the flags to the triangle. This is only possible in exactly
one placement of guards. Further the guards in the flags can only move horizontally. Analyzing
the possible movements of guards allows us to discover the solution space, Figure 26 shows that we
arrive at a 4-necklace.

Figure 26: The different guard placements and their connections for guards standing on guard
segments as given in Figure 25b. The solution space is homeomorphic to a 4-necklace.

It remains to show that we can indeed force guards onto the guard segments given in Figure 25b.
By the exact same reasons as presented in Section 4.3, it follows that the polygon given in Figure 25a
does the job.

All the ideas and arguments presented here generalize to any chain. By attaching flags at
opposite ends of the chain, we multiply the solution space. Since flags only change their state
in one guard placement on the chain, the copies of the chain are linked together nicely. We can
therefore get an instance of the art gallery problem with solution space homeomorphic to any
4k-necklace. We believe that by a slight modification we could also get 2k-necklaces; however,
it remains an open question whether there are simple instances of the art gallery problem with
solution spaces homeomorphic to necklaces of odd length.
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4.5 Balls and Spheres

For the remaining parts of the proof of Theorem 2, we consider multidimensional topological spaces.
For simplicity, let us once more study how to get a simple polygon with a solution space homeomor-
phic to the circle, or sphere S1. This time, the construction will generalize to higher dimensions and
allow us to show that there are instances of the art gallery that have solution spaces homeomorphic
to balls and spheres. Let us define an (h, v)-art gallery grid, that is a (graph-theoretical) grid, with
h horizontal guard segments and v vertical guard segments. Again, let us denote the intersection
points of guard segments as vertices. Since the vertical and horizontal segments are disjoint, we
exactly know how many guards are needed in any optimal solution of an art gallery grid.

Observation 18. On any (h, v)-art gallery grid, the minimum number of guards required is
max(h, v). If h ≥ v, then in any optimal solution there is no guard solely on a vertical segment
(and vice versa).

Claim 19. The (3, 2)-art gallery grid has a solution space homeomorphic to S1.

Proof. By Observation 18, the 3 guards are always on horizontal guard segments. Note that
whenever one of the guards is not on a vertex, then the other two guards are fixed in one of two
(antipodal) states. Similarly, when all three guards are on vertices, we can move two of them, but
only one simultaneously. There is a way to go through all the states with guards only on vertices
using all the different states and taking no detours, i.e., a Hamiltonian cycle. Therefore the solution
space of the (3, 2)-art gallery grid is homeomorphic to S1. For some intuition, consider Figure 27
below.

(a)

a

bc

(b)

Figure 27: The solution space of the (3, 2)-art gallery grid drawn in two different ways. On the
left one can see what happens in the grid. On the right we embedded the grid into the cube, one
dimension for each guard. The solution space is homeomorphic to the circle S1.

More generally, we can state the following result, namely the part of Theorem 2 about spheres.

Lemma 20. For any k ≥ 1, the solution space of the (k + 2, 2)-art gallery grid is homeomorphic
to Sk.
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Before we are able to prove this statement we take a closer look at the (k + 1, 1)-art gallery
grids that arise if we ignore one of the vertical lines in the (k+ 1, 2)-art gallery grids, see Figure 28
for an example. On the one hand they give interesting solution spaces and on the other hand these
grids are an essential part in proving Lemma 20.

Figure 28: Some (k + 1, 1)-art gallery grids for small values of k.

Lemma 21. For any k ≥ 2, if the (k + 1, 2)-art gallery grid has a solution space homeomorphic
to Sk−1, then the (k + 1, 1)-art gallery grid has a solution space homeomorphic to the ball Bk.

Proof. Let us consider the solution space of the (k + 1, 1)-art gallery grid. Among all solutions,
there is one special one, that is the guard placement with all k+ 1 guards on the vertical line. Let
us denote this placement as the 1-placement. This solution will be the center of our ball. We can
now embed the solutions of the (k+ 1, 2)- and (k+ 1, 1)-art gallery grids into the k+ 1-dimensional
hypercube (one dimension for each guard along its horizontal guard segment).

Look at all the solutions of the (k + 1, 1)-art gallery grid that have at least one guard on the
missing left vertical guard segment, and at least one guard on the remaining right vertical segment.
These boundary solutions are also solutions of the (k + 1, 2)-art gallery grid, and form an Sk−1 by
assumption. Every solution s of the (k+ 1, 1)-art gallery grid lies on a straight line between such a
boundary solution and the 1-placement — the boundary solution can be found by continuing the
ray from the 1-placement through s until the first guard reaches the left endpoint of its segment.
Furthermore, every placement p on such a line between a boundary solution and the 1-placement
must be a valid solution of the (k + 1, 1)-art gallery grid, as some guard is always on the vertical
segment for all placements on this line. We conclude that the solution space of the (k + 1, 1)-art
gallery grid is homeomorphic to the filled Sk−1, i.e., the ball Bk.

Now we are able to prove Lemma 20.

Proof of Lemma 20. In any optimal solution there are exactly k+ 2 guards, one on each horizontal
guard segment (cf. Observation 18). We give a proof by induction over k, where the base case k = 1
is proven already in Claim 19. Therefore let us assume that k ≥ 2.

Fix any of the guards, and let us denote it as guard a. If a has to be free to move around,
then the remaining k + 1 guards need to cover both vertical guard segments. They are arranged
in a grid-structure; thus, we are in the situation of the (k+ 1, 2)-art gallery grid. By the induction
hypothesis we already know that the corresponding solution space is homeomorphic to Sk−1. Note
that moving a along its guard segment multiplies the Sk−1 by an interval.

On the other hand, if a lies on one of the vertical lines, then the remaining guards only need
to cover one of the vertical guard segments. Hence, we are in the situation of the (k + 1, 1)-art
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gallery grid. By the induction hypothesis, and by Lemma 21, we know that its solution space is
homeomorphic to Bk.

For both the middle hypercylinder (for a free), and the two balls (for a on a vertical guard
segment), the boundary is exactly the set of those solutions in which a is free to move, but on one
of the vertical guard segments. These are also exactly the solutions through which one can move
from a ball to the hypercylinder and vice-versa, and we can conclude that the parts therefore fit
together. We see that the solution space is homeomorphic to two balls Bk joined by a hypercylinder
Sk−1 × [0, 1], which is homeomorphic to Sk as claimed.

Figure 29: Polygons realizing the (3, 2)-art gallery grid and the (4, 1)-art gallery grid, respectively.

Showing the realizability of any grid is not hard using Observation 13 and Lemma 14. Figure 29
gives polygons for the (3, 2)-art gallery grid and for the (4, 1)-art gallery grid. As a final observation
in this section, we shortly take a closer look at one of the smallest interesting grids and analyze
the (2, 2)-art gallery grid, see Figure 30. The following observation can be seen as an extension of
Lemma 20.

Observation 22. The (2, 2)-art gallery grid has a solution space with two disjoint points, that is,
homeomorphic to S0.

Figure 30: Solution space of the (2,2)-art gallery grid.

4.6 Torus

We start this section with the following observation about independent guard segments in a polygon.
If a polygon can be split into two parts, such that the guards guarding each part can move around
independently from each other (i.e., the possible positions of the guards guarding one part do
not depend on the positions of the guards guarding the other part), then the solution space of
the whole polygon is homeomorphic to the cross product of the two solution spaces given by the
possible positions of the guards guarding each part on its own.

With this in mind, we can now construct an art gallery problem instance with a solution space
homeomorphic to a torus. Note that the torus is the product of two circles, so we will use the
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circle construction from Section 4.1. Now all we need to do is to fit two copies of this construction
into the same polygon, with guards from each circle construction not influencing the others. The
key idea is to separate the two circle constructions in the polygon such that a guard from one side
cannot see any of the pockets of a guard segment from the other set. This can be achieved by
the construction in Figure 31. The middle separator guarantees that the sausages of any guard
segment on the left and any guard segment on the right do not intersect.

Figure 31: The polygon with solution space homeomorphic to the torus. Guards are forced onto
guard segments forming two independent triangles.

4.7 Double Torus

As a last tangible example we give a polygon with solution space homeomorphic to a double torus.
The polygon has many spikes and pockets (see Figure 32) but the key idea is once more to force
guards onto guard segments. In particular the guard segments form two triangles and a path of
three segments that nearly forms a triangle. Note that this nearly-triangle is not a triangle as it
is not closed at its left. There are additional pockets on the left hand side and on the top part of
the polygon that restrict the possibilities to place guards further. Let us denote the four pockets
on the left circle pockets, whose visibility areas are indicated in green and red. Let us call the
additional pocket on the top part of the polygon the hole pocket. The visibility area of the hole
pocket is indicated in gray. Note that all other pockets serve the purpose of forcing guards onto
the segments, as in previous sections.

It is worth mentioning two features of the polygon. First, we consider the intersections of the
visibility areas of the hole pocket and each circle pocket. These intersections all contain only a
single point lying on guard segments. Second, from both endpoints of the guard segment path on
the right side, all circle pockets can be seen.

To simplify the analysis, we mainly consider the following three components: (1) the guard
segment triangle on the top left, (2) the guard segment triangle on the bottom left, and (3) the
three guard segments on the right, later referred to as the top, bottom, and vertical segment
of the third component. We will prove that each of these components will need to be guarded
independently, in other words no guard from one component can see the pockets of the guard
segments from another component. Apart from these components the circle pockets and the hole
pocket put additional constraints on the possible guard placements and create dependencies across

28



(a) (b)

Figure 32: The polygon with solution space homeomorphic to the double torus. Guards are forced
to live on guard segments, forming two guard triangles and an open triangle (dashed). An optimal
solution needs only six guards. There are additional restrictions on the exact placements of the
guards by circle pockets (visibility areas in green and red) and a hole pocket (visibility area in gray).
We split the analysis of this whole polygon into three different components.

components. In the following we will focus on the different components of the construction and
show how they interact. Our goal is proving the following lemma.

Lemma 23. The solution space of the polygon given in Figure 32 is homeomorphic to a double
torus.

We start by proving the following lemma. It shows that in optimal solutions, guards are indeed
forced to live on guard segments. In particular the guards behave as expected and there have to
be two guards in each component. The proof only relies on the way the polygon is drawn and does
not give additional insights.

Lemma 24. The polygon in Figure 32 needs 6 guards to be guarded. In an optimal solution with
6 guards, the guards fulfill the following conditions:

(a) there are two guards on segments of component (1), and two on segments of component (2).

(b) there is one guard on the top segment and one on the bottom segment of component (3).

29



Proof. To see that 6 guards are sufficient, it suffices to give one configuration with 6 guards seeing
the entire polygon. Observe that the guard placement in Figure 32 is a valid solution. Next we
prove that 6 guards are necessary.

Note that component (3) is completely isolated from the others. Furthermore, there is no
common intersection of the visibility areas of all pockets of component (3), and thus two guards
are required to guard the component. Where can those guards be? Observe that there must be
a guard in the sausage of the vertical segment, denote it as guard g and let us denote the other
guard as h. Suppose that g is not in the sausage of any of the other segments of the component.
In this case h must guard all the pockets of both the top and bottom guard segments, which is not
possible, as the segments do not intersect. We conclude that guard g must be in one other sausage
as well and guard h must guard the third sausage. Using Lemma 14, we can show that the guards
must stand on guard segments exactly, proving property (b).

It remains to show that in any optimal solution, four more guards are required; two on each
of the triangles. In Section 4.6 we have shown that two separate triangular arrangements of guard
segments require four guards exactly on the guard segments. The only difference of that con-
struction to the polygon here is that we could potentially have guards guarding pockets from both
triangles simultaneously. The only possibility for that to happen is if at least one guard stands in
the intersection of the sausages of the two offending segments of the triangles: those which point
to the middle of the polygon. Let us denote this intersection of sausages as the middle. Note that
no guard in the middle can see pockets of any non-offending guard segment, thus we need at least
one guard per triangle that can only see pockets of the corresponding component. Consequently
there are at most two guards in the middle in any optimal solution.

Any guard in the middle can see at most two pockets of each guard triangle, see Figure 33.
Therefore if there is only one guard in the middle we require at least two additional guards in
components (1) and (2) each, leading to a total of seven guards. Thus, having only one guard in
the middle is not optimal.

If there are two guards in the middle, one can verify that these two guards cannot guard the
two offending segments completely, see Figure 33. In particular, there is only a single point that
can see four of the eight pockets of the offending segments (the intersection of the extensions of the
guard segments). Consequently any two guards in the middle together can see at most six pockets.
Hence, in one of the components (1) or (2) more than 8 unguarded pockets remain and two guards
are needed, leading to at least seven guards again.

We conclude that there is no optimal solution in which a guard sees a pocket of component (1)
and one of component (2) simultaneously. Therefore the two components are independent and as
in Section 4.6, there can only be guards on the guard segments, proving property (a).

Recall that the red and green areas (e.g. in Figure 32) show the visibility areas of the circle
pockets on the left side of the polygon. If one of the guards of component (3) is at the left endpoint
of its segment, it guards all four circle pockets. The left and right parts of Figure 34 show the
two configurations of the guards in component (3) for which this holds. We refer to them as
unlocking configurations, and the rest of the configurations of the guards in component (3) are
referred to as locking configurations. In the following, we will analyze the solution spaces of the
first two components, when knowing that the third one is in either the unlocking or the locking
configuration. In the end it only remains to show that all parts of the solution space come together
nicely and form a double torus.
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(a) (b)

Figure 33: (a) The polygon and (b) the middle with the offending guard segments (dashed), the
extension lines of the guard segments (gray lines) and the visibility areas of their respective guard
segment pockets (gray). There is only a single point seeing four of the involved pockets, the
intersection of the gray lines.

Lemma 25. The solution space, restricted to solutions in which the guards of component (3) are
in one of the unlocking configurations, is homeomorphic to a torus with a hole.

Proof. Since a guard from component (3) can see the circle pockets, they do not affect the position
of the rest of the guards, so we can ignore these pockets. Additionally, we can also completely ignore
the placement of guards in component (3) since its guards cannot see any pockets from the other
components (cf. Lemma 24), nor can they see the hole pocket. This leaves us with components (1)
and (2), which on their own would have a solution space homeomorphic to a torus, ignoring the
hole pocket. To prove the lemma, we need to argue that the hole pocket eliminates a part of the
solution space (we call it the forbidden region) that is homeomorphic to a disk, resulting in a torus
with a hole.

Observe that the forbidden region is made of all placements of the guards in components (1)
and (2), for which the hole pocket is not guarded. The guard placements in the two components are
independent, since the hole pocket constraint applies to both. Following the reasoning in Section 4.6
it suffices to prove that the forbidden region of the guards of each component is homeomorphic to
a line segment.

In each component we have guard segments forming a triangle, and some area around one of
the vertices from which the hole pocket can be seen. Figure 35 shows the guard placements that
do not guard the hole pocket. As this is homeomorphic to a line segment, the forbidden region is
homeomorphic to a B2, and the lemma follows.
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Figure 34: The solution space restricted to the guards of component (3) is homeomorphic to an
interval. The left and right figures are the unlocking configurations, i.e., all circle pockets are
already guarded. All configurations in between are locking.

Figure 35: The forbidden region in the solution space of one of the components (1) or (2). The
hole pocket is only visible from the gray area; therefore, if either of the guards is in the gray area,
then the hole pocket is visible and the solution is not forbidden.
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Lemma 26. The solution space, restricted to solutions in which the guards of component (3) are
in some locking configuration, is homeomorphic to a circle S1.

Proof. Recall that by Lemma 24 no guard can be in the interior of the vertical guard segment.
Therefore in any locking configuration, the guards of component (3) do not see the circle pockets,
the hole pocket or the pockets of components (1) and (2). This also means that the placement of
guards in component (3) is independent from the rest of the polygon; the solution space for this
component is homeomorphic to a line segment, with the unlocking configurations at the ends as
boundary (see Figure 34).

Considering components (1) and (2), we note that each guard can only see one of the circle
pockets at any time, so the four guards each need to be guarding one circle pocket. Note that there
is also the hole pocket. Let I be the set of points on a guard segment triangle from which a guard
is able to see both an circle pocket and the hole pocket. Observe that there are only four points in
I and that at least one of the guards needs to be on such a point.

Furthermore, as we have seen before, in each component (1) and (2) at least one guard needs to
be on a vertex of the triangle. Knowing this, we can see that each guard can only move between a
fixed vertex and a point in I, when another guard satisfies the corresponding requirement. Figure 36
shows these possible movements. One can see that the solution space is homeomorphic to a circle

Figure 36: Solution space formed by the guards of components (1) and (2) when the guards of
component (3) are in some fixed locking configuration. One of the guards has to see the hole
pocket, its visibility area is indicated in gray. There have to be guards in the visibility areas of the
circle pockets as well.

and the desired statement follows.

We are finally ready to prove Lemma 23, that indeed this art gallery problem instance has a
solution space homeomorphic to the double torus.

Proof of Lemma 23. We know that in any optimal solution there are exactly six guards, two in each
component. Let us assume that the two guards in component (3) are in a locking configuration.
Then by Lemma 26 we know that that the solution space of the remaining guards is homeomorphic
to a circle S1. Since all locking configurations are homeomorphic to an interval, the solution space
over all locking configurations is a cylinder (i.e., S1 × [0, 1]). On the other hand, if the guards in
component (3) are in either unlocking configuration, then the solution space is homeomorphic to a
torus with a hole, cf. Lemma 25.

For both the middle cylinder (component (3) locking) and the two tori with holes (component
(3) in either unlocking configuration) the boundary is exactly the set of solutions with guards of
components (1) and (2) guarding one of the circle pockets each and guards of component (3) in
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unlocking configuration. These are also exactly the solutions through which one can move from a
torus to the cylinder and vice-versa, and we can conclude that the parts fit together. We see that the
solution space is homeomorphic to two tori joined by a cylinder S1× [0, 1], which is homeomorphic
to the double torus as claimed.

5 Conclusion

We showed that up to homotopy equivalence, any closed and bounded semi-algebraic set can be
achieved as a solution space of an art gallery problem instance. By doing this, we not only expand
on a result by Abrahamsen, Adamaszek and Miltzow [2], but also highly improve the simplicity
of the arguments required. We are now left to wonder whether even homeomorphism-universality
holds for the art gallery problem, but we believe that our construction cannot be naturally improved
to yield it.

Furthermore, we have given example instances of the art gallery problem, that are not only
homotopy equivalent, but even homeomorphic to well-known topological spaces. In particular, we
have shown that we can get 1-dimensional topological spaces with any number of circles (clovers
and chains), and that we can get simple higher-dimensional spaces (spheres). On the one hand,
a natural open question asks whether it is possible to extend our ideas and find nice examples
leading to orientable surfaces of higher genus. On the other hand, it also remains open whether
there are simple art galleries leading to unorientable surfaces like the Möbius strip, Klein bottle, or
the projective plane. To answer this, it could very well be that completely new ideas are needed.
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A Proof of Lemma 12

We use the following result of Smale [38]. We will repeat all definitions below.

Theorem 27 ([38], “Main Theorem”). Let X and Y be connected, locally compact, separable
metric spaces. Assume further that X is locally contractible. Let f : X → Y be a continuous proper
surjective map such that for each y ∈ Y the space f−1(y) is contractible and locally contractible.
Then f is a weak homotopy equivalence.

In the following, we will briefly recall all the notions used in the above statement. In our setting,
where X and Y are cubical complexes, it turns out that all the technical preconditions follow rather
easily from embedding the cubical complex into Rn for some n. Further, weak homotopy equivalence
implies homotopy equivalence for a large class of spaces, including cubical complexes.

Let us now dive into the details.

1. By the assumption of Lemma 12, X and Y are connected, f is continuous, proper and
surjective, and f−1(y) is contractible.

2. A space X is called locally compact if for each x ∈ X there exists an open set V ⊂ X and a
compact set K ⊂ X such that x ∈ V ⊂ K. Any subspace of Euclidean space Rn is locally
compact, and thus so are cubical complexes, as each cubical complex can be embedded into
a hypercube of large enough dimension.

3. A space X is called separable if there exists a countable sequence of elements {xi}∞i=1 such
that each non-empty open set contains an element of the sequence. The Euclidean space Rn

is separable (Qn is an example of the desired sequence), and so are all its subspaces, hence
cubical complexes are separable.

4. A topological space is metric, if its topology is given by a metric. Any subspace of Rn is
metric. In fact, for the spaces we are interested in, the Hausdorff distance also makes them
a metric space, as mentioned in Section 2.

5. We say B is a basis of a topological space X, if every open set o is the union of sets from
B. For example, all balls of radius r < 1 form a basis of Rn. A space X is called locally
contractible if it has a basis of open subsets that are contractible. Again this holds for Rn

and all of its subspaces as balls are contractible.

The above considerations show that the preconditions of Smale’s theorem are satisfied. We thus
get that f is a weak homotopy equivalence.

For the following, we need some language from homotopy theory. Many of the definitions are
rather lengthy, and stating them here would exceed the scope of this paper. We therefore refer
the reader to any book on algebraic topology, for example Hatcher’s excellent book [22]. The
main conclusion of the following can however be easily summarized: for cubical complexes, weak
homotopy equivalence implies homotopy equivalence.

A map f : X → Y is a weak homotopy equivalence if for every n ≥ 0 it induces isomorphisms
f∗ : πn(X) → πn(Y ), where f∗ denotes the induced homomorphism of f and πn denotes the n’th
homotopy group. This can be seen as an algebraic formulation of homotopy equivalence, but it
is in general weaker. However, for many spaces, weak homotopy equivalence implies homotopy
equivalence. One important family of such spaces are CW complexes (also called cell complexes),
as given by Whitehead’s Theorem (see e.g. Theorem 4.5 in [22]):
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Theorem 28 (Whitehead’s theorem). If a map f : X → Y between connected CW complexes
induces isomorphisms f∗ : πn(X)→ πn(Y ) for all n, then f is a homotopy equivalence.

Finally, cubical complexes are special cases of CW complexes, thus f = π is indeed a homotopy
equivalence.
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