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ABSTRACT

We use the overlap between multiband photometry of the Kilo-Degree Survey
(KiDS) and spectroscopic data based on the Sloan Digital Sky Survey (SDSS) and
Galaxy And Mass Assembly (GAMA) to infer the colour-magnitude relation of red-
sequence galaxies. We then use this inferred relation to select luminous red galaxies
(LRGs) in the redshift range of 0.1 < z < 0.7 over the entire KiDS Data Release 3
footprint. We construct two samples of galaxies with different constant comoving den-
sities and different luminosity thresholds. The selected red galaxies have photometric
redshifts with typical photo-z errors of σz ∼ 0.014(1 + z) that are nearly uniform with
respect to observational systematics. This makes them an ideal set of galaxies for lens-
ing and clustering studies. As an example, we use the KiDS-450 cosmic shear catalogue
to measure the mean tangential shear signal around the selected LRGs. We detect a
significant weak lensing signal for lenses out to z ∼ 0.7.

Key words: galaxies: distances and redshifts, gravitational lensing: weak, methods:
data analysis, methods: statistical

1 INTRODUCTION

The Kilo Degree Survey (KiDS) is a wide-angle optical sur-
vey designed, among others, to map the dark matter distri-
bution by studying the weak gravitational lensing of galaxies
(Kuijken et al. 2015). This is done by measuring the correla-
tion between the distortion of the shapes of distant galaxies.
These correlations are then compared to the predictions of
cosmological simulations to test cosmological models (Hey-
mans et al. 2013; Jee et al. 2016; Hildebrandt et al. 2017;
Joudaki et al. 2017; Troxel et al. 2017).

However, the full constraining power of weak lensing
studies can be unlocked through joint analysis of the cosmic
shear of background galaxies (known as source galaxies) and
the positions of foreground lens galaxies that have robust
distance estimates – either from spectroscopic or precise and
accurate photometric redshifts. This procedure, known as
galaxy-galaxy lensing, can be used for tightening the lensing
constraints on cosmological parameters (see Cacciato et al.

? E-mail: vakili@mail.strw.leidenuniv.nl

2013; Elvin-Poole et al. 2017; Joudaki et al. 2018; van Uitert
et al. 2018) by mitigating the biases arising from observa-
tional and astrophysical systematics. Furthermore, it helps
us understand the connection between the properties of the
foreground galaxies and the properties of the dark matter
halos hosting them (Viola et al. 2015; van Uitert et al. 2016;
Clampitt et al. 2017; Dvornik et al. 2018).

Furthermore, measurements of the intrinsic alignments
of galaxies (see Hirata & Seljak 2004; Kirk et al. 2015
and references therein) can benefit from having a sample
of galaxies with known redshifts (Mandelbaum et al. 2011;
Singh et al. 2015; Tonegawa et al. 2017) or photometric red-
shifts with small uncertainties (Joachimi & Schneider 2009;
Joachimi & Bridle 2010; Joachimi et al. 2011). Another ap-
plication of a galaxy sample with robust redshifts is the cal-
ibration of the photometric redshift distributions of source
galaxies in weak lensing surveys using cross correlation of
the two samples (Cawthon et al. 2017; Davis et al. 2017;
Hildebrandt et al. 2017; Morrison et al. 2017).

In weak lensing surveys, photometric redshifts are of-
ten obtained by template fitting or machine learning tech-
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niques. Redshifts derived from the former method are based
on the assumption that galaxy fluxes computed from multi-
band photometry can be expressed as a superposition of a
set of templates and some prior over the types of galaxies
(e.g. Beńıtez 2000; Bolzonella et al. 2000; Feldmann et al.
2006; Brammer et al. 2008). Machine learning methods make
use of the overlap between the imaging surveys and spec-
troscopic data to find the complex relation between galaxy
colours and their redshifts (e.g. Firth et al. 2003; Wadadekar
2005; Way et al. 2009; Gerdes et al. 2010). Additionally, hy-
brid approaches joining template fitting with machine learn-
ing are being investigated (e.g. Leistedt & Hogg 2017; Dun-
can et al. 2018).

An alternative way to derive robust redshifts is by tak-
ing advantage of the properties of galaxies with old stellar
populations. Such objects can be efficiently selected from
multi-band photometry of imaging surveys without the need
of full spectroscopic coverage for each single source. At
any given redshift, the distribution of these galaxies in the
colour-magnitude diagram follows a straight line — with
some intrinsic scatter — known as the red-sequence ridge-
line. Therefore, these galaxies are called the red-sequence
galaxies. The distribution of the red-sequence galaxies in
the colour-magnitude diagram permits us to separate these
galaxies from the rest of the galaxy population (Gladders &
Yee 2000; Hao et al. 2009; Rykoff et al. 2014; Rozo et al.
2016).

For a sample of red-sequence galaxies with spectroscopic
redshifts, one can parametrize the redshift evolution of the
red-sequence ridge-line, also known as the red-sequence tem-
plate. Assuming a prior probability over the redshifts of red
galaxies and a redshift-dependent distribution over the mag-
nitudes of red galaxies, the red-sequence template can be
turned into a red-sequence selection algorithm in photomet-
ric data. Furthermore, the redshifts of the selected galaxies
can be precisely estimated without obtaining spectroscopy
for them. This procedure, known as redMagiC, has been
successfully applied to the Sloan Digital Sky Survey and the
Dark Energy Survey data (Rozo et al. 2016). Obtaining a
sample of galaxies with a well-defined selection and precise
redshifts over the entire footprint of a given galaxy survey
has been proven beneficial for galaxy-galaxy lensing studies
(Clampitt et al. 2017; Prat et al. 2017), galaxy clustering
(Elvin-Poole et al. 2017), and joint cosmological probes.

In this investigation, we select a set of red-sequence
galaxies from the overlap of the KiDS DR3 (de Jong et al.
2017) multi-band photometry and the spectroscopic redshift
surveys of SDSS and GAMA. These galaxies are then used
to calibrate the red-sequence template. We then follow the
redMagiC prescription (Rozo et al. 2016) to select the red-
sequence galaxies and estimate their redshifts. After impos-
ing a set of luminosity cuts and constant comoving densities,
we construct two samples of luminous red galaxies suitable
for cross-correlation studies.

We then compare the derived red-sequence redshifts of
the selected galaxies in this work with the photometric red-
shifts derived from other methods. Based on overlapping
spectroscopy from SDSS, GAMA, as well as 2dFLenS (Blake
et al. 2016), we investigate the dependence of the photo-z er-
rors on the variation of observational systematics across the
survey tiles. Using the KiDS-450 cosmic shear data (Fenech
Conti et al. 2017; Hildebrandt et al. 2017), we present mea-

surement of the weak lensing signal using the red galaxies as
lenses and we find significant detection of the mean tangen-
tial shear signal. Finally, we investigate if the weak lensing
measurements can pass a set of systematic null tests. The
main purpose of this work is to present a sample of photo-
metrically selected LRGs with robust redshifts. The lensing
measurements are presented as a straightforward use case of
the sample. However, the applications and modelling of the
clustering and lensing of this sample are left for future work.

The structure of the paper is as follows. The characteris-
tics of the datasets, both photometric and spectroscopic, are
described in Section 2. In Section 3 we introduce the method-
ology used in this analysis including the selection of seed red-
sequence galaxies (red-sequence galaxies with secure spec-
troscopic redshifts for estimating the colour-magnitude rela-
tion), inference of the red-sequence colour magnitude rela-
tion, and selection of the final LRG sample based on appro-
priate cuts on the estimated luminosities and the quality of
red-sequence fits. In Section 4 we describe the two samples of
LRG candidates identified by applying two luminosity ratio
thresholds and by imposing two constant comoving num-
ber densities. We discuss the photometric redshift perfor-
mance of the selected red galaxy catalogues by comparing
the derived red-sequence redshifts with spectroscopic red-
shifts. Furthermore, we compare the red-sequence redshifts
estimated in this work with other photo-z solutions available
in KiDS DR3. We also discuss the impact of observing con-
ditions on the estimated LRG red-sequence photo-z’s. We
then present the weak lensing measurements and a set of
lensing systematic tests in Section 5. Finally, we summarize
and conclude in Section 6.

Note that calculating the comoving densities and dis-
tances requires specifying a cosmology. In this work, we as-
sume a flat ΛCDM cosmology with Ωm = 0.3 and h = 1.0
1. All distances and comoving densities are quoted in units
of h−1 Mpc and h3 Mpc−3 respectively. Also note that the
luminosity ratios used for selection of the red galaxies are
not sensitive to the choice of h and in this work and we al-
ways work with luminosity ratios. Whenever magnitudes are
used, they will be provided in the AB system.

2 DATA

2.1 KiDS photometric data

The Kilo-degree Survey (KiDS, de Jong et al. 2013) is a
wide imaging survey conducted with the OmegaCAM cam-
era (Kuijken 2011) which is mounted on the VLT Survey
Telescope (Capaccioli et al. 2012). This survey uses four
broad-band filters (ugri) in the optical wavelengths. KiDS
targets approximately 1350 deg2 of the sky in two regions,
one on the celestial equator and the other one in the South
Galactic cap.

The latest public data release of KiDS is the third data
release (DR3, de Jong et al. 2017) which covers ∼ 450 deg2

of the sky with 5σ depth of 24.3, 25.1, 24.9, 23.8 in 2 arc-
sec apertures in the ugri bands respectively. For a thorough

1 This is the convention used by Rykoff et al. (2014) in construct-
ing the SDSS redMaPPer catalogue.
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description of the KiDS data reduction, we refer the readers
to the data release paper (de Jong et al. 2017).

The KiDS database includes magnitudes derived by
SExtractor (Bertin & Arnouts 1996) such as ISO and AUTO.
These magnitudes are determined directly from images with
a variety of PSF values, they are therefore not optimal for
our purposes where colours independent of such variations
are needed. The KiDS data reduction involves however a
post-processing procedure in which Gaussian Aperture and
PSF (GAaP, Kuijken 2008) magnitudes are derived (Kuijken
et al. 2015). This procedure is performed in the following
way. First, the PSF is homogenized across each individual
coadd. Afterwards, a Gaussian-weighted aperture is used to
measure the photometry. The size and shape of the aperture
is determined by the length of the major axis, the length of
the minor axis, and the orientation, all measured in the r-
band. This procedure provides a set of magnitudes for all
filters.

The magnitudes used in this work are the zeropoint-
calibrated and extinction-corrected magnitudes2 denoted by
Mag−type−band−calib. The default magnitudes in KiDS are
GAaP magnitudes. They were designed to provide accurate
colours but underestimate total fluxes of large galaxies. Total
fluxes are, however, needed in our LRG selection procedure
to derive luminosities (see section 3.1). Therefore, whenever
galaxy fluxes are needed, we use Mag−AUTO−band in our red-
sequence modelling.

For our choice of colour, GAaP colours are used as they
have less scatter and bias than the colours derived from the
Mag−AUTO magnitudes. For the rest of this paper, we work
with the calibrated AUTO magnitudes and GAaP colours and
we refer the readers to Kuijken et al. (2015) and de Jong
et al. (2017) for a more detailed discussion of the derivation
of GAaP colours.

The photometric catalogue is cleaned by removing the
artefacts corresponding to any of the following masking flags:
readout spike, saturation core, diffraction spike, secondary
halo, or bad pixels. Furthermore, only objects for which pho-
tometric errors in all bands are provided, are kept in the
final photometric catalogue (see de Jong et al. (2017) and
Radovich et al. (2017)). Finally, we require the final sam-
ple to not contain point-like objects by applying the cut
SG2DPHOT = 0. This parameter is a KiDS star/galaxy classi-
fier based on the r band morphology, and it is equal to 0 for
objects that are classified as galaxies.

2.2 Spectroscopic data

In this work, we exploit the overlap between the KiDS cat-
alogue and a number of spectroscopic datasets for two pur-
poses. First, we need a set of galaxies in the KiDS cata-
logue with spectroscopic redshifts that can be used as seeds
for estimating the parameters of the red-sequence template.
This procedure is explained in detail in section 3.2 and it
is applied to the overlap between the KiDS photometry and
spectroscopic catalogues of galaxies in GAMA (Driver et al.

2 In the final catalogue and for each band, the zeropoint off-

sets (ZPT−offset−band) and the Galactic extinction corrections
(EXT−SFD−band) based on Schlegel et al. (1998) are provided in

separate columns.

2011) and SDSS DR13 (Albareti et al. 2017). Later, for
testing the performance of the redshifts estimated for the
selected LRGs in section 4.2 we make use of the overlap
between KiDS and the spectroscopic redshifts from SDSS,
GAMA, as well as 2dFLenS (Blake et al. 2016). In what fol-
lows in the rest of this section, we provide a brief description
of these spectroscopic catalogues.

2.2.1 GAMA

Galaxy And Mass Assembly (GAMA, Driver et al. 2011)
is a spectroscopic survey which used the AAOmega spec-
trograph mounted on the Anglo-Australian Telescope. This
survey spans five fields: G09, G12 and G15 on the celes-
tial equators, and G02 and G23 on the Southern Galactic
Cap. The only GAMA field outside the KiDS DR3 footprint
is G02. The magnitude limited sample of GAMA is nearly
complete down to r = 19.8 mag for galaxies in the equato-
rial fields and down to i = 19.2 mag for galaxies in the G23
region (Liske et al. 2015). The GAMA spectra in the four
fields that overlap with KiDS amount to a total of ∼ 230, 000
KiDS sources with high-quality spectroscopic redshifts with
〈z〉 = 0.23.

2.2.2 SDSS

The Sloan Digital Sky Survey (SDSS, York et al. 2000) is a
photometric and spectroscopic survey of 14, 555 deg2 of the
sky encompassing more than one third of the celestial sphere
using a dedicated 2.5-m telescope (Gunn et al. 2006). In
particular, we make use of the spectroscopic dataset from the
Data Release 13 (DR13, Albareti et al. 2017) of the SDSS-IV
project. We only use sources with class ‘GALAXY’.

The overlap between SDSS and KiDS in the equatorial
fields above δ = −3 gives us ∼ 57, 000 SDSS spectroscopic
galaxies with KiDS photometry. However those with r < 19.8
are mostly included in GAMA, and after removing the latter
we are left with nearly 43, 000 unique SDSS spectroscopic
galaxies with KiDS photometry.

The SDSS-matched KiDS galaxies (after removing the
overlap with GAMA) span higher redshifts than the GAMA-
matched KiDS sources. Furthermore, this sample of galaxies
mostly encompasses LRGs that are observed in the Bary-
onic Oscillation Spectroscopic Survey (BOSS, Dawson et al.
2013) and the extended BOSS (eBOSS, Dawson et al. 2016).
This makes them ideal candidates for seed galaxies needed
to estimate the red-sequence template as we seek to select
galaxies that populate the same volume in the colour space
as the SDSS LRGs do.

2.2.3 2dFLenS

The 2-degree Field Lensing Survey (2dFLenS, Blake et al.
2016) is a spectroscopic survey performed at the Australian
Astronomical Observatory covering an area of 731 deg2. By
expanding the overlap with the KiDS field in the southern
galactic cap, this survey aims to provide a dataset suitable
for joint clustering and lensing analyses (Amon et al. 2017a;
Joudaki et al. 2018), photometric redshift calibration (John-
son et al. 2017; Wolf et al. 2017; Bilicki et al. 2018), and
lensing systematic tests (Amon et al. 2018).

MNRAS 000, 1–18 (2018)
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In KiDS DR3 there are nearly 12, 000 galaxies with
2dFLenS spectra. After excluding the galaxies in common
with GAMA and SDSS, we have approximately 9, 000 unique
2dFLenS galaxies with KiDS photometry.

3 METHODOLOGY

3.1 Algorithm overview

At any given redshift, red-sequence galaxies follow a nar-
row ridge-line in the colour magnitude space. As detailed in
Rozo et al. (2016), the reference band used for describing the
colour-magnitude relation should lie redwards of the 4000 Å
break at all considered redshifts, therefore it is preferable to
choose the magnitude of the reddest available bandpass for
this. In the KiDS imaging data, the colour vector c corre-
sponds to the GAaP colours {u − g, g − r, r − i} and the mag-
nitude of the reddest photometric bandpass corresponds to
to the apparent i-band magnitude mi (de Jong et al. 2017).

This red-sequence colour magnitude relation, also
known as the red-sequence template, can be used to char-
acterize the probability distribution function p(c |mi, z). This
is the probability that a given galaxy with apparent i-band
magnitude mi and redshift z has a certain multi-dimensional
colour vector c. At a given redshift z, the expected value of
c is given by a straight line in the space of {m, c}. We denote
the redshift and magnitude-dependent expected value of c
by cred(mi, z):

cred(mi, z) = 〈c |mi, z〉 =
∫

dc cp(c |mi, z). (1)

Since cred(mi, z) is linearly dependent on mi , the relation
between cred(mi, z) and mi can be fully determined by the
following parameters: the intercept of the colour-magnitude
ridge-line a(z), the slope of the ridge-line b(z), and the ref-
erence apparent i-band magnitude mi,ref(z)3:

cmi,red(z) = a(z) + b(z)
(
mi − mi,ref(z)

)
(2)

Moreover, for every galaxy in the survey, we can define
a total colour covariance matrix Ctot(z). This matrix is com-
posed of two components: the observed colour covariance
Cobs and the intrinsic red-sequence colour covariance Cint(z):

Ctot(z) = Cobs + Cint(z) (3)

Finally, we assume that the conditional probability den-
sity p(c |mi, z) is a multivariate Gaussian with the mean
cred(mi, z) given by Eq. 2 and the covariance Ctot(z) given
by Eq. 3. Therefore p(c |mi, z) can be written as:

p(c |mi, z) = N(c ; cred(mi, z) , Ctot(z)). (4)

As we will see later, it is convenient to define a red-sequence
chi-squared χ2

red:

χ2
red =

(
c − cred(z,mi)

)T
C−1

tot (z)
(
c − cred(z,mi)

)
, (5)

3 The choice of mi,ref (z) is arbitrary and it is selected by the in-
vestigator. In the next section we will explain how this parameter
is set in our analysis.

which is related to p(c |mi, z) in the following way:

−2 ln p(c |mi, z) = χ2
red + ln

(
(2π)3det

(
Ctot(z)

) )
. (6)

Thus, in order to determine the colour-magnitude rela-
tion, we are required to estimate the three-dimensional (3D)
vectors a(z), b(z), the scalar mi,ref(z), and the 3×3 intrinsic
covariance matrix Cint(z). Hereafter in this work, we ignore
the off-diagonal elements of the intrinsic covariance matrix
as we expect the intrinsic scatter of red-sequence galaxies to
be smaller than the observed photometric uncertainties.

With the red-sequence colour-magnitude relation,
p(c |mi, z), at hand, one can estimate the redshift probabil-
ity distribution function of a galaxy conditioned on the 3D
colour vector c and the i-band magnitude mi . According to
Bayes’ rule, this probability distribution is given by

p(z |mi, c) ∝ p(c |mi, z)p(mi |z)p(z), (7)

Note that in addition to p(c |mi, z) which we have discussed
thus far, there are two probability distributions on the right
hand side of Eq. 7: the distribution of the i-band magnitudes
of red galaxies p(mi |z), and the prior distribution over the
redshifts of red-sequence galaxies, p(z).

The magnitude distribution acts as a redshift-
dependent luminosity filter and its functional form is as-
sumed as the Schechter (1976) function:

p(mi |z) ∝ 10−0.4(mi−mi,?(z))(α+1) exp
(
− 10−0.4(mi−mi,?(z))), (8)

where α is the faint-end slope of the Schechter luminosity
function and mi,? is the characteristic i-band magnitude of
the red-sequence galaxies. Following Rykoff et al. (2016)
and Rozo et al. (2016), we fix the parameter α = 1, and
we calculate mi,?(z) using the EZgal4 (Mancone & Gon-
zalez 2012a,b) implementation of the Bruzual & Charlot
(2003) stellar population synthesis model. In the calculation
of mi,?(z) we also assume a solar metalicity, a Salpeter initial
mass function (Chabrier 2003), and a single star formation
burst at z = 3. Note that the argument of the exponential in
Eq. 8 can be expressed in terms of luminosity ratios

L
L?
= 10−0.4(mi−mi,?(z)). (9)

Finally, the redshift prior takes the form of the deriva-
tive of the comoving volume with respect to redshift. This
prior imposes uniformity of the comoving density across dif-
ferent redshifts.

p(z) ∝ dVcom
dz

(10)

dVcom
dz

= (1 + z)2D2
A(z)cH−1(z), (11)

where H(z) and DA(z) are the Hubble parameter and the
angular diameter distance as a function of redshift z, re-
spectively.

The redshift prior takes into account the fact that for
a given galaxy, the available volume is larger at higher red-
shifts. Therefore it ensures that the prior probability of find-
ing a galaxy in a given redshift slice is proportional to the

4 http://www.baryons.org/ezgal/
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volume of that redshift slice. As a result, this choice of prior
promotes a constant comoving density of galaxies across dif-
ferent redshifts.

3.2 Seed galaxies to estimate the red-sequence
template

Constructing the red-sequence template requires estimat-
ing the red-sequence ridge-line parameters as a function of
redshift. Thus the first step is to find a set of seed red-
sequence galaxies with secure spectroscopic redshifts to train
the colour magnitude relation. In this work, we make use of
the overlap between KiDS DR3 and the spectroscopic data
from the thirteenth data release of Sloan Digital Sky Survey
(hereafter SDSS DR13, Albareti et al. 2017) as well as the
final spectroscopic data from the Galaxy And Mass Assem-
bly survey (GAMA, Driver et al. 2011). These two datasets
will be sufficient for selecting a set of seed galaxies needed
for estimating the colour-magnitude relation.

Creating the set of seed red galaxies is done by multi-
ple filtering steps in the multi-dimensional colour-magnitude
space, and in thin slices of redshift spanning the range
0.1 < z < 0.7. The redshift range is limited by the avail-
able spectroscopic LRGs for training the red-sequence tem-
plate as well as the wavelength range covered by the KiDS
photometry. The i-band magnitude mi and three colour com-
ponents {u − g, g − r, r − i} used in our analysis are derived
from KiDS DR3 photometry and the spectroscopic redshifts
zspec are from GAMA and SDSS (see §2).

First, we divide the dataset into thin redshift slices of
∆z = 0.02 5. At each redshift slice, we fit two mixtures of
Gaussian to the distribution of data points in the two di-
mensional (2D) space of {g − r,mi}. One of the components
of the Gaussian mixture model corresponds to the red pop-
ulation and the other component corresponds to the blue
population6. In particular, we employ the Extreme Decon-
volution technique (hereafter XD, see Bovy et al. 2010, 2011)
that finds the maximum likelihood estimates of the param-
eters of the mixture model in the cases where each data
point has its own observed covariance matrix. That is, the
XD model finds the underlying noise-deconvolved distribu-
tion of the heterogeneous dataset. In particular we make use
of the astroml7 implementation of XD (VanderPlas et al.
2014).

In each slice of redshift, the data points are two dimen-
sional vectors xobs = {mi, g − r} and can be written as:

xobs = xmod + noise, (12)

where xmod is the model described by the mixture of Gaus-
sians, and the noise term is assumed to have a Gaussian

5 We also experimented with other widths of the redshift slices

(∆z = 0.01 , ∆z = 0.015), and found no significant impact on the
selection of seed galaxies for estimating the red-sequence ridge-
line parameters.
6 We have also repeated this step with a combination of {r−i,mi }.
We have noted that the choosing r − i as the colour component

in this step has no significant impact on the selection of seed
galaxies.
7 http://www.astroml.org

distribution with zero-mean and a known covariance matrix
S:

S =
[
σ2
i 0

0 σ2
g + σ

2
r

]
, (13)

where σg, σr, σi are photometric errors derived from KiDS
DR3. The model vector xmod is drawn from a mixture of
Gaussians with two components:

p(xmod) =
2∑

k=1
πkN

(
xmod ; µk,Vk

)
, (14)

where πk , µk , and Vk are, respectively, the weight, the 2D
mean vector, and the 2×2 covariance matrix associated with
the k-th Gaussian component, and

N
(
xmod ; µk,Vk

)
=

exp
(
− 1

2∆xTV−1
k
∆x

)
√
(2π)2det(Vk )

, (15)

∆x = xmod − µk . (16)

The component with larger mean g − r corresponds to the
red population. Then we select the points that are best rep-
resented by the 2D Gaussian distribution corresponding to
the red population.

Let us denote the mean and the covariance of the Gaus-
sian component associated with red galaxies by µr and Vr ,
respectively. The first and the second components of µr cor-
respond to mi and g − r. Note that an initial estimate of the
red-sequence ridge-line in the {mi, g − r} space can be found
from µr and Vr :

(g − r)mod = µr,2 + Vr,1,2
(
(mi)mod − µr,1

)
/Vr,1,1, (17)

where µr,i and Vr,i, j denote the i-th component of µr,i and
the i, j-th component of Vr respectively. Furthermore, the
scatter σ2

mod around this line can be defined in the following
way:

σ2
mod = Vr,2,2 − V2

r,1,2/Vr,1,1. (18)

Combining Eqs.(17,18) allows us to select data points in
the {mi, g−r} space that are one sigma away from the initial
estimate of the ridge-line. In other words, we keep the points
that satisfy the following criteria(
(g − r)obs − (g − r)mod

)2/(σ2
mod + S2,2) < 2, (19)

where (g − r)obs is the observed colour, and S2,2, (g − r)mod,

and σ2
mod are given by Eqs. (13,17,18) respectively. Galaxies

that meet this criteria (19) form an initial set of seeds for
estimating the parameters of the red-sequence template.

Furthermore, we employ a second filtering step. This is
done in the 3D colour space {u − g, g − r, r − i}. Within nar-
row redshift intervals, red-sequence galaxies are expected to
cluster in a compact volume of the colour space. If there
exists a set of outlier galaxies that do not belong to the
red population, the outlier galaxies are not going to follow
the compact distribution of the red-sequence galaxies in the
3D colour space.Therefore, we can remove them by fitting a
mixture of Gaussians with two components to the distribu-
tion of the remaining galaxies in the 3D colour space. One
of the Gaussian components will capture the red population
and the other Gaussian component will capture the outlier
population.

MNRAS 000, 1–18 (2018)
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In this case, the observed data are 3D vectors yobs =
{u−g, g−r, r−i}, with observed uncertainties with zero mean
and a known covariance S̃:

S̃ =

σ2
u + σ

2
g −σ2

g 0
−σ2

g σ2
g + σ

2
r −σ2

r

0 −σ2
r σ2

r + σ
2
i

 . (20)

Once again we fit an XD model with two components to the
distribution of the data in the colour space:

p(ymod) =
2∑

k=1
π̃kN

(
ymod ; µ̃k, Ṽk

)
, (21)

where π̃k , µ̃k , and Ṽk are respectively the weight, the 3D
mean vector, and the 3×3 covariance matrix associated with
the k-th Gaussian component:

N
(
ymod ; µ̃k, Ṽk

)
=

exp
(
− 1

2∆yT Ṽ−1
k
∆y

)
√
(2π)3det(Ṽk )

, (22)

∆y = ymod − µ̃k . (23)

Afterwards, we apply a cut based on the inferred mean
vectors of the Gaussian distributions. The mean of the Gaus-
sian component capturing the red (outlier) galaxy popula-
tion has a higher (lower) mean along the r−i axis. We denote
the mean and the covariance of the Gaussian component
with a higher mean along the r − i axis with µ̃r and Ṽr re-
spectively. Finally, we select those galaxies that, in the 3D
colour space, are within one sigma from the mean of the
Gaussian component corresponding to the red population.
That is, galaxies must meet the following criteria in order to
be considered in the collection of seed galaxies for training
the template model:(
yobs − µ̃r

)T (
S̃ + Ṽr

)−1 (
yobs − µ̃r

)
< 2. (24)

The conditions (19,24) ensure that only the galaxies in
the core of the red-sequence population of galaxies are con-
sidered as seeds for inferring the colour magnitude relation.

3.3 Red-sequence template

Now we discuss how we estimate the parameters of the red-
sequence template (4) with the seed galaxies. The template
is fully specified by the parameters a(z), b(z),Cint(z), as well
as by the reference i-band magnitude mi,ref(z).

We choose to estimate the parameter mi,ref(z) from
CubicSpline interpolation of a set of mi,ref parameters at
some Spline nodes uniformly distributed between z = 0.1
and z = 0.7. The Spline nodes are chosen to be the mid-
points in the redshift intervals that were used to select the
seed red galaxies. We also select µr,1 as our choice of mi,ref
at the Spline nodes.

Moreover, we also choose to parametrize a(z), b(z),
Cint(z) by specifying discrete Spline nodes at different red-
shifts. We note that the only parameter that varies signif-
icantly in short redshift intervals is a(z). Thus for a(z) we
choose Spline nodes with spacings of ∆z = 0.05 uniformly
distributed between z = 0.1 and z = 0.7. For b(z) and Cint(z)
however, wider spacings for the Spline nodes are chosen
(see Rykoff et al. 2014). In our work, spacing of ∆z = 0.1
and ∆z = 0.14 are chosen for the Spline nodes at which we
parametrize b(z) and Cint(z).

Furthermore, as discussed earlier, we decide to ignore
the off-diagonal elements of the intrinsic covariance matrix.
Therefore, there are three parameters at every intrinsic in-
variance Spline node, three parameters at every slope Spline
node, and three parameters at every intercept Spline node.
We denote the multi-dimensional vector representing these
parameters as θ. The vector θ can be estimated by minimiz-
ing the objective function:

O(θ) = −2
Ngal∑
j=1

ln p(c j |mi, j, zj ; θ), (25)

where the summation is over all seed galaxies and the condi-
tional probability p(c j |mi, j, zj ; θ) for j-th galaxy is evaluated
using Eq. 4. Minimization of the objective function (25) is
done by the scipy implementation of the BFGS algorithm
(Byrd et al. 1994).

3.4 Initial redshift estimation

Given the red-sequence template (Eq 4), the magnitude dis-
tributions (Eq 8), and redshift priors (Eq 10), one can opti-
mize p(z |m, c) to obtain a maximum a posteriori estimate ẑ
of the red-sequence redshift of galaxies. In practice, we use
the scipy implementation of the BFGS optimizer to minimize
the following objective function:

−2 ln p(z |mi, c) = χ2
red(z) + ln det

(
Ctot(z)

)
− 2 ln

���dV
dz

��� − 2 ln p(mi |z). (26)

Therefore, an estimate of redshift ẑ can be found according
to

ẑ = argminz
[
− 2 ln p(z |mi, c)

]
, (27)

where argminz
[
− 2 ln p(z |mi, c)

]
is the value of z that mini-

mizes the function: −2 ln p(z |mi, c).

3.5 Selection criteria

Once we have an estimate of the redshifts of LRG candi-
dates, we can apply appropriate cuts to the catalogue to
obtain a sample of luminous red-sequence galaxies. LRG
candidates need to meet two criteria in order to pass the
cuts. First, we apply a cut based on the maximum red-
sequence chi-squared χ2

red(ẑ) achieved by minimizing the ob-

jective function (27). That is, at a given redshift, if χ2
red(ẑ) is

less than a specified maximum allowable chi-squared χ2
max(z),

the LRG candidate passes the chi-squared criterion. We will
postpone discussion of estimating χ2

max(z) to Section 3.7.
The chi-squared criterion ensures that the selected

galaxies belong to the red-sequence population. In other
words, it ensures that the selected galaxy colours and mag-
nitudes are well-described by the inferred red-sequence tem-
plate. As we are mainly interested in the luminous red galax-
ies, we impose another cut that selects galaxies that are more
luminous than a certain threshold. In section 3.1, we defined
the luminosity ratio l = L/L?(see Eq. 9). At a given redshift,
we only select galaxies with l > lmin, or equivalently with
L > Lmin = lminL?.

As we discuss later in section 3.7, we will construct two
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samples: a high density sample with lmin = 0.5 and a lumi-
nous sample with lmin = 1.

3.6 Photo-z afterburner

A set of LRG candidates with secure spectroscopic redshifts
can be used to calibrate the photometric redshifts obtained
by our method. In practice, we only make use of a subset of
LRG candidates with spectroscopic redshifts and we leave
the rest for validation. The calibration set consists of ran-
domly selected 50% of the galaxies in the overlap of KiDS
DR3 with SDSS DR13, GAMA, and 2dFLenS (see section 2
for data details).

We assume that the calibration can be parametrized by
a redshift offset parameter δz that is a smooth function of
redshift, δz = δz(ẑ). In order to estimate δz(ẑ) we choose a set
of ten Spline nodes {zi}10

i=1 uniformly spaced between z = 0.1
and z = 0.7. Then the task of estimating δz is reduced to
the task of estimating δz(zi) for i = 1, ..., 10, where δz(zi) is
δz evaluated at the spline node zi .

In order to estimate δz(zi), we construct the following
objective function:

E
(
{δzi}

)
=

∑
z̃spec

| z̃spec − δz(ẑ) − ẑ |, (28)

where the summation is over spectroscopic redshifts of galax-
ies in the calibration sample.

Note that in Eq. 28 we have used an L1 norm8 for the
objective function E. The motivation for our choice of L1
norm is that it is more robust against outliers. If there is
a fraction of galaxies with highly biased redshift estimates,
they could bias our estimate of δz(z). Using a conventional
L2 norm in the objective function E can be more sensitive to
these outliers. Therefore, in order to reduce the sensitivity
of our redshift calibration method to outliers we use an L1
norm instead.

As we point out in section 3.7, this redshift calibration
scheme is done within the χ2

max(z) calibration. This is due to
the fact that both luminosity ratios l(z) and the red-sequence
chi-squared values χ2

red(z) of LRG candidates depend on the
estimated red-sequence redshifts. After every redshift cali-
bration (ẑ → ẑ + δz(ẑ)), the values of l(ẑ) and χ2

red(ẑ) need to
be updated as well. For this reason, the entire photo-z after-
burner operation needs to be performed within calibration of
maximum allowable chi-squared χ2

max(z) which we will now
explain.

3.7 Calibration of red-sequence chi-squared

We estimate the redshift-dependent χ2
max by requiring the

final red-sequence sample to have nearly constant comoving
density across cosmic time. In other words, we require the
number of LRGs to be proportional to the comoving volume

8 For a given vector y, consisting of target values of a given quan-
tity, and a vector ŷ, composed of the estimates of the same quan-

tity, the L1 cost function is defined as the sum over the absolute
values of the differences: L1(y, ŷ) =

∑
i |yi − ŷi |. Similarly, an L2

cost function is given by the sum over the squared-differences:

L2(y, ŷ) =
∑

i (yi − ŷi )2.

available for them. This can be done by counting the num-
ber of LRG candidates in narrow bins of redshift and then
comparing this number with the expected number assuming
a constant comoving density.

Let us denote the fraction of sky covered by the survey
by fs. Then for a given comoving number density n̄, the
expected number of LRGs in a redshift interval ∆zj centred
on redshift zj is

Nj ' n̄ fs
dVc
dz
(zj )∆zj, (29)

where dVc
dz (zj ) is the derivative of the comoving volume with

respect to redshift evaluated at zj . The number of LRG can-
didates in the redshift interval ∆zj will be denoted as Hj .
Given a specified minimum luminosity ratio lmin = Lmin/L?,
the number count Hj depends on the number of galaxies

that pass the requirement χ2
red(zj ) < χ2

max(zj ).
As a result, one needs to adjust the values of χ2

max(zj ) so
that for a given choice of the luminosity ratio, Hj matches
the prediction based on constant comoving number density
Nj (Eq. 29). We choose to model χ2

max as a smooth function
of redshift. Thus, we choose to parametrize it by selecting a
few Spline nodes zk uniformly spaced between z = 0.1 and
z = 0.7, and then interpolating the values of χ2

max(zk ) to a
given redshift zj using CubicSpline interpolation.

We estimate the set of parameters χ2
max(zk ) by minimiz-

ing the following objective function:

O
(
{χ2

max(zk )}
)
=

∑
j

(Hj − Nj )2

(Hj + Nj )
, (30)

where the denominator is simply given by the Poisson noise
calculated from the galaxy number counts Hj and the ex-
pected number counts assuming constant density Nj . Note
that in evaluation of Eq. 30 we use a more fine binning than
the Spline nodes at which we parametrize χ2

max.

In section 3.6 we discussed our strategy for estimating
the calibration errors as a function of redshift. Estimating
χ2

max(z) through iterative minimization of the objective func-
tion (Eq. 30) is based on the assumption that the redshifts
are calibrated since both L/L? and χ2

red(z) are modified af-
ter calibration of redshifts. Therefore, before evaluating the
objective function O

(
{χ2

max(zk )}
)

at each iteration, the af-
terburner procedure is performed, and the luminosity ratios
L/L? and the red-sequence chi-squared values χ2

max are up-
dated for all the galaxies in the survey. Afterwards, given
a choice of luminosity ratio and the χ2

max(zk ), the objective
function (Eq. 30) is evaluated.

We run the initial redshift estimation and χ2
red calcula-

tion for all objects in the photometric catalogue. Prior to the
calibration of the red-sequence chi-squared, we set an upper
limit for the apparent i-band magnitude of the objects in
the catalogue. For chi-squared calibration of objects with
lmin = 0.5 we set the maximum mi to 21.6, and for objects
with lmin = 1 we set the maximum mi to 20.8. These upper
limits ensure that the red-sequence photo-z scatters are un-
der control (less than ∼ 0.016), while the final catalogue has
the desired constant comoving density. Hereafter, the final
calibrated red-sequence redshifts are denoted by zred.
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Table 1. LRG sample selection summary: The LRG sam-
ple selected from KiDS DR3 and the corresponding luminosity

thresholds and comoving number densities. The density parame-

ters are in unit of h3 Mpc−3. The redshift range of both samples
is zred ∈ [0.1, 0.7].

LRG Sample Lmin/L? number density total number

dense 0.5 10−3 191, 775
luminous 1 2 × 10−4 38, 671

4 PHOTOMETRIC REDSHIFTS

4.1 Selection summary

As our final selection step, we decide to construct two sam-
ples, with minimum L/L? ratios of 0.5 and 1. Furthermore,
in the χ2

max(z) calibration, we choose to keep the comoving
density of each sample fixed. We call these two samples the
dense sample and the luminous sample. The dense sample
has a mean comoving density of 10−3 h3Mpc−3 and a mini-
mum L/L? of 0.5. On the other hand, the luminous sample
has a mean comoving density of 2×10−4 h3Mpc−3 and a min-
imum L/L? of 1. The selection is summarized in Table 1.

Figure 1 shows the comparison between the redshift dis-
tribution of our selected red galaxies (solid blue histogram)
and the expected distribution based on the assumption of
constant comoving density (solid green line). The left panel
of Fig. 1 shows the redshift distribution of galaxies in the
dense sample while the right panel shows that of the galaxies
in the luminous sample. Also shown in Fig. 1 are the redshift
distributions of the selected red galaxies with spectroscopic
redshifts (solid orange histograms).

We note that in general there is a good agreement be-
tween the redshift distribution of the selected red galaxies
and the expected distribution based on constant comoving
density. The number of selected LRGs at higher redshifts
is significantly higher than that of LRGs with secure spec-
troscopy. This demonstrates how the method presented in
this work can exploit the information available in the red-
sequence template in order to select a well-controlled sample
of galaxies in a wide range of redshifts. Figure 2 shows the
distribution of colours versus redshift for SDSS and GAMA
galaxies (blue points) versus the distribution of galaxies in
the 2dFLenS luminous red galaxy survey (left column, or-
ange points), galaxies in the dense sample (middle column,
orange points), and galaxies in the luminous sample (mid-
dle column, orange points). We note that compared to the
2dFLenS galaxies, the galaxies selected in this work sample
the red-sequence more continuously.

4.2 Redshift performance

We will now verify the performance of LRG red-sequence
photo-z’s using the overlapping spectroscopy. As already
mentioned in section 2.2, the spec-z’s originate from SDSS
DR13, GAMA, and 2dFLenS. Figure 3 shows the perfor-
mance of the estimated red-sequence redshifts for the dense
sample (left panel) and the luminous sample (right panel).
In general, there is an excellent agreement between the red-
sequence redshifts and the spectroscopic redshifts. But in
order to asses the quantitative performance of the estimated
redshifts for the selected LRGs we make use of two quan-
tities in bins of zred. The first quantity is the mean bias

δz = zred − zspec in bins of zred. The second quantity is the
scatter which is estimated via the standard median absolute
deviation (SMAD) of (zred − zspec)/(1 + zspec) in bins of zred.

Figure 4 shows the mean bias and SMAD for galaxies
in the dense sample (red) and those in the luminous sample
(blue). All quantities are measured in bins of zred. The mean
scatter of the red-sequence redshifts of luminous and dense
galaxies is 0.0145 and 0.0152 respectively, and the mean ab-
solute value of bias is respectively 2.9×10−3 and 3.4×10−3. In
general the estimated scatter is nearly constant but higher
at the redshifts corresponding to the transition of the 4000
Angstrom break between the photometric filters. Note that
the estimated bias is also higher at those redshifts.

The estimated zred scatters of the selected red-sequence
galaxies is limited by using the broad-band KiDS photome-
try. The mean zred scatters of the dense and the luminous
sample are very similar. That is due to the fact that a
large fraction of dense galaxies with spectroscopy are lu-
minous (L/L? > 1). The 5-σ outlier fraction of both sam-
ples are about 1% and the catastrophic outlier fractions are
about 0.1%. After investigating the spectroscopy of the red-
sequence galaxies, we have noted that at fixed photometric
redshift bins, the outlier galaxies have slightly higher Hα
fluxes than the non-outlier galaxies. That may suggest that
a residual star formation in the outlier galaxies make them
appear bluer than the non-outlier galaxies.

4.3 Comparison with other methods

For the selected galaxies, we also assess the quality of
the estimated red-sequence redshifts by comparing them
with other photo-z estimation methods available in KiDS
DR3. These include template-fitting BPZ photo-z’s (Beńıtez
2000), as well as those determined by the machine learning
method ANNz2 (Sadeh et al. 2016), as described in de Jong
et al. (2017) and Bilicki et al. (2018). Those photo-z’s are
available for all galaxy types, but here we will discuss their
performance only for the LRGs contained in our samples.
As in the previous section, we will also employ overlapping
spectroscopy to derive photo-z performance metrics.

For the machine-learning results, we make use of two es-
timates of ANNz2 photo-z’s presented in Bilicki et al. (2018).
The first set of redshifts, which we call the bright ANNz2
photo-z’s, are the photo-z’s that are exclusively trained on
GAMA, and their performance is enhanced by using not only
magnitudes, but also colours and angular sizes in the fea-
ture space. After a posteriori cut to the apparent magnitude
(mr,AUTO < 20.3), Bilicki et al. (2018) demonstrated that
compared to the GAMA spectroscopic redshifts, the bright
ANNz2 photo-z’s have a scatter of 0.026 and a mean bias of
−3.3 × 10−3. Note that as a result of the magnitude cut, the
maximum redshift in the bright ANNz2 catalogue is approx-
imately 0.62. The second machine learning-based catalogue,
which we call the full-depth ANNz2 catalogue, consists of
photo-z’s that are trained on the full depth of KiDS DR3
data exploiting the overlapping deep spectroscopic samples.
For those photo-z’s only GAaP magnitudes were used as
features, but weighting was applied to the training data to
mimic the magnitude distribution in the target photometric
sample. See Bilicki et al. (2018) for details.

Figure 5 compares the bias and the scatter as a function
of photometric redshifts for the dense sample derived by
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Figure 1. Histogram of the redshift distribution of the photometrically selected luminous red galaxies in KiDS based on the method

described in this paper. Left: Comparison between the distribution of galaxies in the dense sample (blue histogram) and the galaxies in

the dense sample with secure spectroscopic redshifts (orange histogram). The green curve shows the expected distribution assuming a
constant comoving density of n = 10−3 h3 Mpc−3. Right: same as the left panel but for the galaxies in the luminous sample, with the green

line showing the expected redshift distribution assuming constant a comoving density of n = 2×10−4 h3 Mpc−3. There is a good agreement

between the redshift distribution of the selected galaxies in both samples and the expected distributions based on the assumption of
constant comoving density.

Table 2. Photo-z performance comparison: Comparison between the performances of four photo-z estimation methods when applied
to galaxies in the dense sample. The quantities considered here are the bias defined as |zphot − zspec |, scatter defined as 1.4826 times the

median-absolute-deviation of (zphot − zspec)/(1 + zspec), the percentage of 5σ outlier fraction, and the percentage of catastrophic outliers.

We define the percentage of catastrophic outliers as the percentage of galaxies for which |zphot − zspec |/(1 + zspec) > 0.15. The first three
quantities are computed in bins of redshift and then the means of the binned values are reported in the Table.

Photo-z estimation method |Bias| Scatter 5σ outlier fraction (%) Catastrophic outlier fraction (%)

Red-sequence 3.4 × 10−3 0.0152 1.3 0.05

Bright ANNz2 1.3 × 10−3 0.0135 0.9 0.04

Full-depth ANNz2 6.8 × 10−3 0.0182 1.5 0.18

BPZ 14.7 × 10−3 0.0196 4.2 0.06

the red-sequence method versus other approaches in KiDS
DR3. We use SMAD of (zphot − zspec)/(1 + zspec) as a proxy
for scatter and δz = zphot − zspec as bias. Both quantities
are computed in bins of photometric redshift. For galaxies
in the dense sample, all four photo-z methods yield nearly
the same level of scatter, with the bright ANNz2 approach
performing the best (mean scatter of 0.0135), followed by the
red-sequence redshifts estimated in this work (with the mean
of 0.0152); note however that the former photo-z solution is
not available for z ≥ 0.6. We observe similar trends in the
photo-z errors of the luminous sample (not shown).

The high accuracy and precision of the bright ANNz2
redshifts (for z < 0.6) is not surprising as these photo-z’s
were specifically trained on the bright sample of GAMA
galaxies and were designed to deliver very precise redshift
for bright low-redshift galaxies. The red-sequence redshifts
estimated with the method in this work are nearly as ac-
curate and precise as the bright ANNz2 redshifts. The full-
depth ANNz2 redshifts, on the other hand, are highly biased
at z ∼ 0.4. This is probably due to the fact that the full-
depth ANNz2 sample was trained on the full-depth KiDS

DR3 data. As explained in Bilicki et al. (2018), the galaxy
colours of the spectroscopic sample were re-scaled such that
they match the colour distribution of the full-depth KiDS
data. This procedure can lead to obtaining more accurate
redshifts for a wide range of magnitudes including the deep
data at the expense of compromising the ANNz2 photo-z
accuracy of bright red galaxies at z ∼ 0.4.

It is important to note that, although the BPZ redshifts
have small scatters for the red galaxies, their bias can be as
large as δz ∼ 0.04 for our LRG sample. As discussed in more
detail elsewhere (Hildebrandt et al. 2017; Bilicki et al. 2018)
the BPZ photo-z’s available in KiDS DR3 had been opti-
mized for faint higher-redshift galaxies used in cosmic shear
analyses. Their worse performance than of machine learn-
ing ones which use complete training sets is therefore not
surprising. In forthcoming KiDS DR4 this will be much im-
proved in particular thanks to using a prior better optimized
for low redshifts. Comparison between the performances of
different photo-z’s of the red-sequence galaxies is summa-
rized in Table 2.
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Figure 2. Left column: The redshift dependence of the colours of SDSS+ GAMA galaxies with spectroscopic redshifts (blue points)

used in this study and that of the 2dFLenS galaxies (orange points). Shown from Top to Bottom are the redshift dependence of u − g,

g − r , and r − i. Middle column: Same as the Left column with the exception that the over-plotted orange points are the galaxies in the
dense sample, and the redshifts are the estimated red-sequence redshifts of these galaxies. Right column: same as the Middle column

but with the orange points showing the galaxies in the luminous sample. For better visibility the points corresponding to the 2dFLenS

galaxies are chosen to be much larger than the points corresponding to galaxies in the dense and the lum samples.

4.4 Observational systematics

We assess the robustness of the red-sequence photo-z’s
against a set of observational systematics. This test is done
to ensure that the photometric variations across the sur-
vey footprint do not impact the red-sequence photo-z errors.
If the photometric redshifts of red galaxies are to be used
in large-scale structure and cross correlation studies, they
need to have uniform uncertainties across the survey with
no strong dependence on photometric variations.

These observing conditions include the PSF FWHM
(measured in arcsec), limiting magnitude (2σ in 2 arcsecond
apertures), and the 98% completeness magnitude in the gri
filters. The first two quantities are derived from the coadded
images while the third quantity is derived from the single-
band source list. In KiDS DR3, the median value of these
quantities is provided for every tile 9. There are in total 440

9 http://kids.strw.leidenuniv.nl/DR3/data_table.php

survey tiles over the entire KiDS DR3 footprint. The RA
and DEC range of each tile is 62.3 arcmin × 66.8 arcmin.

We compute the red-sequence photo-z bias and scatter
in bins of observing conditions of the survey tiles. We find
that the photo-z error distributions are very uniform across
different values of the observing conditions. This property
makes these galaxies an ideal set for clustering studies.

For each observational systematic, we have computed
the red-sequence photo-z bias and scatters in the gri bands.
We note that the photo-z errors are nearly constant func-
tions of these observational systematics. Figure 6 shows the
variation of photo-z errors of galaxies in the dense sample
with respect to the (1) PSF FWHM (measured in arcsec)
in the g band (right panel), (2) the 2σ magnitude limit in
the r band (middle panel), and (3) the mean 98% complete-
ness magnitudes in the i band. In this investigation we limit
ourselves to a set of observing conditions that are provided
in KiDS DR3. We note however that in future studies em-
ploying our LRG samples for cosmological constraints (an-
gular clustering, galaxy-galaxy lensing, etc.) a more in-depth
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Figure 3. Left panel: Demonstration of the performance of the estimated red-sequence redshifts zred of galaxies in the dense sample.

The heat map demonstrates the red-sequence redshifts (x-axis) versus the spectroscopic redshifts (y-axis). Right panel: Same as the left
panel but showing the red-sequence redshift performance of galaxies in the luminous sample. In both panels the dashed line shows the

zspec = zred line.

analysis of additional systematics, such as small-scale PSF
variations, might be required (Morrison & Hildebrandt 2015;
Elvin-Poole et al. 2017).

5 GALAXY-GALAXY LENSING

In this section we present lensing measurements around the
LRGs using the faint source galaxies in KiDS-450 cosmic
shear data (Hildebrandt et al. 2017; de Jong et al. 2017) by
the sample of red galaxies selected in this work. We split
both lens samples into three tomographic redshift bins of
equal widths, in the redshift range of 0.1 < zl < 0.7.

For each tomographic lens bin, we consider a source
bin consisting of galaxies with BPZ redshifts in the redshift
range of max(zl) + δz < zB < 0.9 where max(zl) is the maxi-
mum redshift of the lens bin under consideration. We choose
the value of δz = 0.1 in order to maximize the signal-to-noise
ratio of the lensing signal while minimizing the contamina-
tion of the source population with lens galaxies. Such con-
tamination will dilute the lensing signal particularly on small
scales, thus it requires applying a correction to the estimated
signal. This correction is also called the boost factor, which
we will explain shortly. The maximum redshift of sources,
zB = 0.9, is set by requiring the catastrophic outlier rate to
be less than 10% (Kuijken et al. 2015).

5.1 Cosmic shear data

We use the cosmic shear measurements presented in Hilde-
brandt et al. (2017). Shapes of galaxies are measured by
the lensfit algorithm (Miller et al. 2007, 2013; Kitching
et al. 2008), in particular by its most recent implementa-
tion in which ellipticities of source galaxies are internally
self-calibrated (Fenech Conti et al. 2017). Source redshifts
are estimated with the BPZ algorithm (Beńıtez 2000). Fol-
lowing Hildebrandt et al. (2017), we only use sources with

best-fit photometric redshifts in the range 0.1 < zB < 0.9.
Furthermore, most low-redshift and bright sources have been
removed by the mr > 20 cut (Hildebrandt et al. 2017). For a
more thorough description of the list of criteria for remov-
ing flagged source galaxies we refer the reader to Hildebrandt
et al. (2017).

5.2 Measurements

We measure the mean tangential shear 〈γt 〉 and the mean
cross-component of the shear 〈γ×〉. The latter is not pro-
duced by gravitational lensing. However, it is a useful test of
systematics in the data. Measurement of the tangential and
the cross-component of shear is performed in the following
way. First, for a pair of lens-source galaxies, the ellipticity
of the source galaxy j is decomposed into the tangential and
the cross components:

et, j = −e1, j cos(2φ j ) − e2, j sin(2φ j ), (31)

e×, j = e1, j sin(2φ j ) − e2, j cos(2φ j ), (32)

where (e1, j, e2, j ) are the ellipticity components of the source
galaxy j in a Cartesian coordinate system centred on the lens
galaxy and φ j is the position angle of the source galaxy with
respect to the horizontal axis in this Cartesian coordinate
system.

Then the mean tangential and cross-components of the
shear 〈γt,×〉 can be obtained by estimating the mean 〈et,×〉
for a large ensemble of lens-source pairs in the data. Note
that this estimator is built under the assumption that the
intrinsic galaxy ellipticities are randomly oriented. However,
in addition to gravitational lensing, it does receive contribu-
tion from the intrinsic alignment of galaxies (for physically
close lens-source pairs; see Blazek et al. 2012; Clampitt et al.
2017), which needs to be accounted for in the modelling of
the signal (Joudaki et al. 2018; van Uitert et al. 2018).
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Figure 4. Bias and scatter of the estimated red-sequence red-
shifts of galaxies in the dense sample (Red) and in the luminous
sample (Blue) as a function of zred. The scatter (solid line) is

the standard median absolute deviation (SMAD) of the quantity
(zred−zspec)/(1+zred) measured in bins of redshift. The bias (dashed

dotted line) is given by the mean of δz = zred − zspec measured in
bins of redshift. The dashed lines show the mean of the estimated

binned scatters. We note that the scatter is nearly constant as

a function of redshift and its mean value is approximately 0.015
(0.014) for the dense (luminous) sample. Moreover, the bias is

always smaller than the predicted scatter.

We measure 〈γt,×〉 using a weighted mean of et,×:

〈γα(θ)〉 =
∑

ls wseα,ls∑
s ws

, (33)

where α denotes {t,×}, the summation is over all pairs of lens
(l) source (s) galaxies in an angular bin centred on θ, and
ws is the lensfit weight assigned to a given source ellipticity.

Following Viola et al. (2015), in order to account for the
multiplicative bias in the cosmic shear data, we apply this
correction to the estimated tangential shear:

〈γt (θ)〉 →
1

1 + µ(θ) 〈γt (θ)〉, (34)

µ =

∑
ls wsms∑

s ws
, (35)

where ms is the multiplicative noise bias in the lensfit shear
estimates (Fenech Conti et al. 2017). We find that this cor-
rection is small and largely independent of the angular sep-
aration (see Viola et al. 2015; Amon et al. 2017b; Brouwer
et al. 2018; Dvornik et al. 2018 for further discussion of the
multiplicative bias correction in KiDS).

We also measure 〈γt 〉 around a set of points randomly
distributed across the survey footprint. These random points
are generated using the geometry of the survey. In the ab-
sence of systematics, such a signal is expected to be zero.
In practice however, this signal can be non-negligible due
to spatially varying additive shear bias, and the anisotropic
distribution of source galaxies around lenses as a result of

Figure 5. Comparison between the performances of red-sequence

photo-z’s (shown in orange), bright ANNz2 photo-z’s (shown in

green), full-depth ANNz2 photo-z’s (shown in blue), and BPZ
photo-z’s (shown in red) for galaxies in the dense LRG sample.

Scatter is estimated by calculating the SMAD of (zphot − zspec)/(1+
zspec) and is shown by solid lines, while bias δz = zphot − zspec is
shown with points. Both bias and scatter are calculated in bins

of redshifts. We note that the estimated scatters from the all

methods are very similar with the bright ANNz2 and red-sequence
photo-z’s having the best performances.

masked regions and edges of the survey. Therefore in order to
robustly remove the impact of coherent additive shear bias
in the estimated galaxy-galaxy lensing signal, it is important
to measure the mean tangential shear around random points
and to subtract it from the mean tangential shear around
lenses (Mandelbaum et al. 2005, 2013; Singh et al. 2017).
The added advantage of random point subtraction is the
decrease of statistical errors on large scales (see also Prat
et al. 2017). Therefore, we incorporate the random point
subtraction into estimation of 〈γα〉:

〈γα(θ)〉 = 〈γα,lens(θ)〉 − 〈γα,random(θ)〉. (36)

Excess source counts around the lenses can bias our es-
timate of the tangential shear. Any sources that in fact are
associated with the lenses would not be lensed, resulting
in suppression of the lensing signal at small angular sepa-
rations10. We correct this effect by applying the so-called
boost correction to the estimated tangential shear. We esti-
mate the boost correction by computing the excess of sources
around lenses compared to the random points. We define a
boost factor parameter B(θ) in the following way:

B(θ) = Nrandom
Nlens

∑
l,s wls∑
r,s wrs

, (37)

10 We have implicitly assumed that the contribution from intrin-

sic alignment of physically close source-lens pairs is negligible.
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Figure 6. Dependence of the red-sequence photo-z errors of galaxies in the dense sample on the survey systematics. Left panel: photo-z

error as a function of PSF FWHM (in units of arcseconds) in the g band. The seeing values are the mean PSF FWHM of the coadded

images of the survey tiles in KiDS-DR3. Middle panel: photo-z error as a function of the the limiting magnitude (2σ in 2 arcsecond
aperture) in the r band. The limiting magnitudes are the mean values calculated from the coadded images of the survey tiles in KiDS-

DR3. Right Panel: photo-z error as a function of the 98% completeness magnitudes in the i band. These values are obtained from the

single band source list in KiDS DR3 and represent the mean completeness magnitudes of the survey tiles. Both red-sequence photo-z
scatter and bias are nearly constant functions of the survey systematics.

where Nrandom (Nlens) denotes the number of randoms
(lenses), wls (wrs) is the weight assigned to the lens-source
(random-source) pair in the angular bin centred on θ, and
the summation in the numerator (denominator) is over all
the lens-source (random-source) pairs in the data. The boost
correction is expected to be close to unity on large angular
scales but it can be significant (as large as 10%) on very
small scales. Furthermore, since the photo-z uncertainties
of source galaxies increase with redshift, the excess counts
increase when considering the high redshift source bins. Fi-
nally, we modify the estimator of the tangential shear (36)
in the following way:

〈γt (θ)〉 = B(θ)
(
〈γt,lens(θ)〉 − 〈γt,random(θ)〉

)
(38)

The galaxy-galaxy lensing measurements presented in
this work are measured in 19 logarithmically spaced angular
bins between 0.5 and 250 arcmin. The lensing measurements
are not extended to smaller scales as small-scale lensing may

suffer from blending of source galaxies from the deep imag-
ing data with the foreground lenses that are typically much
brighter than the source galaxies. Furthermore, including
the smaller scales could result in a lack of source galax-
ies that are behind (or in angular vicinity of) foreground
lenses. Such obscuration, unlike the physically associated
source galaxies, can result in a boost factor that is smaller
than one. These issues can be avoided by a conservative cut
on angular scales at 0.5 arcmin. All the measurements are
computed using the TreeCorr software11.

5.3 Covariance estimation

We estimate the measurement uncertainties using the jack-
knife resampling method (Norberg et al. 2009; Friedrich
et al. 2016; Singh et al. 2017; Shirasaki et al. 2017). In the

11 https://github.com/rmjarvis/TreeCorr
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Figure 7. Boost factor as a function of angular separation for galaxies in the dense sample (blue) and those in the luminous sample
(orange). The boost factor is estimated for three redshift bins from left to right: 0.1 < zl < 0.3, 0.3 < zl < 0.5, 0.5 < zl < 0.7. We note

that on scales larger than ∼ 10 arcminute, the estimated boost factors are consistent with one. The errorbars are the square-roots of the

diagonal elements of the jackknife error covariance matrices as a function of angular separation. For the first lens redshift bin the boost
factor on small scales (θ ∼ 1 arcmin) is ∼1.05, while for the last two redshift bin the boost factor on small scale can be as large as ∼ 1.1
and ∼ 1.15 respectively.

Figure 8. Tangential shear (top panel) and cross shear (bottom panel) measured around galaxies in the dense sample for three lens
redshift bins from left to right: 0.1 < zl < 0.3, 0.3 < zl < 0.5, 0.5 < zl < 0.7. For each lens redshift bin, sources are selected such
that zB > max(zl ) + 0.1. For the shown mean tangential shear signal we have applied the boost factor correction and the random point
subtraction, while for the shown mean cross component of shear, we have applied the random subtraction. The uncertainties are derived
from the jackknife resampling method. We have scaled the y-axis of the bottom panels to make the errorbars on the cross-component

more visible. Top panel from left to right: the estimated signal-to-noise ratio of the estimated signal is 20.9, 23.1, and 11.0 respectively.
Bottom panel from left to right, the null χ2/ndf for the cross component is 6.3/19, 7.5/19, and 10.0/19 respectively.

MNRAS 000, 1–18 (2018)
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Figure 9. Same as Figure 8 but for galaxies in the luminous sample. Top panel from left to right: the estimated signal-to-noise ratio

of the estimated signal is 11.8, 15.3, and 10.7 respectively. Bottom panel From left to right: the null χ2/ndf for the cross component is
4.7/19, 3.4/19, and 14.1/19 respectively.

jackknife method, the survey footprint is first divided into
NJK jackknife subregions of approximately equal area. Then
for each subregion k ∈ {1, ..., NJK}, the lensing data vector

γ
(k)
α = 〈γ(k)α 〉 is measured by cutting out the k-th subregion

and estimating the lensing signal of the rest of the survey

footprint. Note that γ
(k)
α is a 19-dimensional vector which

contains the tangential (cross) component of the shear in
all angular bins. The jackknife estimator of the covariance
matrix is then given by:

CJK,α =
NJK − 1

NJK

NJK∑
k=1

(
γ
(k)
α − γα

)T (
γ
(k)
α − γα

)
, (39)

where γα is the mean of all γ
(k)
α vectors.

In order to construct jackknife subregions, we generate a
large number of random points uniformly distributed across
the entire KiDS DR3 footprint. Then we use the kmeans12

algorithm to divide the random points into 100 disjoint sub-
regions each encompassing a nearly equal number of random
points. Note that for the purpose of determining the jack-
knife subregions, we exclude the small disjoint regions of the
KiDS DR3 footprint that are between the G9, G12, G15,
G23, and GS patches.

Finally, we compute the unbiased estimate of the inverse
covariance matrix by applying the correction (Hartlap et al.
2007):

Ĉ−1 =
NJK − Nbins − 2

NJK − 1
Ĉ−1, (40)

12 https://github.com/esheldon/kmeans_radec

where Ĉ is the jackknife estimate of the covariance matrix
and is given by Eq. 39, and Nbins is the number of angular
bins.

5.4 Results

The estimated boost corrections are demonstrated in Fig. 7.
The blue (orange) points show the boost factor applied to
〈γt 〉 measurements for the dense (luminous) sample. The er-
rorbars are derived from the jackknife resampling method.
As expected, the boost corrections deviate from one at small
angular scales and are consistent with one at large angular
scales. B(θ) is larger for higher redshifts because the proba-
bility of physical association of sources with lens galaxies is
higher. This highlights the importance of accounting for the
effect of physical association of sources with lenses.

Our estimates of 〈γt×〉 for lenses in the dense and the
luminous samples are shown in Figs. 8 and 9 respectively.
The errorbars are derived by taking the square root of the
diagonal elements of the jackknife covariance matrix for each
observable. We note that in a given tomographic lens red-
shift bin, the estimated uncertainties of 〈γt 〉 measured for
galaxies in the luminous sample are larger than those of
〈γt 〉 measured for the dense bin. This is due to the fact that
by construction at a given redshift, the comoving number
density of the luminous galaxies is much smaller the that
of the dense galaxies resulting in fewer lens-source pairs at
any angular bin.

We also note that for both samples of lens galaxies,
〈γt 〉 is the noisiest for the last tomographic lens redshift
bin: 0.5 < zl < 0.7. The corresponding tomographic source

MNRAS 000, 1–18 (2018)
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bin of this lens redshift bin contains galaxies with only 0.8 <
zB < 0.9 which yields a very limited number of lens-source
pairs. In order to assess the detection significance of the
measurements, we compute the signal-to-noise ratios defined
in the following way:

S/N =
√
γTt C−1γt, (41)

where C−1 is the estimate of the inverse covariance matrix
(Eq. 40), and γt denotes the measured tangential shear in a
tomographic lens bin for a lens sample. Equation 41 can be
interpreted as the ratio of the mean and the square-root of
the variance of the probability distribution function that the
measurements are drawn from13. For galaxies in the dense
sample the signal-to-noise ratios of the detected tangential
signals are 20.9, 23.1, and 11.0 in the tomographic lens bins
0.1 < zl < 0.3, 0.3 < zl < 0.5, and 0.5 < zl < 0.7 respectively.
For galaxies in the luminous sample the signal-to-noise ra-
tios of the detected tangential signals are 11.8, 15.3, and 10.7
in the tomographic lens bins 0.1 < zl < 0.3, 0.3 < zl < 0.5,
and 0.5 < zl < 0.7 respectively. Note that the top panels
of Figs 8, 9 show the tangential shear after random point
subtraction (Eq. 36) and boost correction (see Eqs. 37, 38).

Additionally, we present the cross-component measure-
ments in the bottom panels of Figs. 8, 9. These signals are
shown in the bottom panels of Figs. 8, 9 in which the y-axis
has been scaled for better visibility of the errorbars.

We compute the Null χ2 per number of degrees of
freedom for the following null data vectors: cross compo-
nent of shear 〈γ×〉 and the tangential shear around randoms
〈γt,random(θ)〉. For a given null data vector xNull, and the in-
verse covariance matrix associated with the null signal by
C−1, the Null χ2 is given by:

χ2 = xTNullC
−1xNull. (42)

In order for a measurement to pass a null test, χ2/ndf
needs to be smaller than or equal to one. In order of the lens
redshift bin, the measured Null χ2/ndf are 6.3/19, 7.5/19,
10.0/19 for lenses in the dense sample and 4.7/19, 3.4/19,
14.1/19 for lenses in the luminous sample. For the mean
tangential shear around randoms, in order of tomographic
bins, the null χ2ndf are 6.5/19, 4.5/19, and 1.1/19. This
implies that the random shear signal is consistent with zero.

6 SUMMARY AND CONCLUSION

In this investigation we have presented the selection and
weak lensing analysis of luminous red galaxies with the Kilo-
Degree Survey broadband photometry. We exploited the
KiDS multi-band imaging data and the overlapping spec-
troscopic datasets to select two samples of red galaxies with
different luminosity thresholds and comoving densities. Since
these galaxies are mostly bright, they are complementary to
the fainter galaxies that are used for cosmic shear studies.
As a result, the selection of these galaxies is a crucial step

13 In principle, γt in 41 is provided by a theoretical model. Since
we only present the measurements and we postpone the mod-
elling to future analyses, we use the measurements to obtain an

approximate S/N .

towards fully realizing the scientific potential of the Kilo-
Degree Survey.

We have shown that these galaxies have very accu-
rate and precise redshifts. The estimated red-sequence pho-
tometric redshifts of these galaxies are nearly as accurate
and precise as the redshifts obtained by the ANNz2 algo-
rithm trained on a complete sample of bright galaxies in
the GAMA survey. A nice property of these red galaxies
is that regardless of the photo-z estimation method, they
have nearly equal photo-z scatters, although we note that
the bright ANNz2 photo-zs are the most stable in terms of
bias.

We have also demonstrated that the estimated LRG
redshifts are very robust against a number of survey observ-
ing conditions. These conditions include the seeing, limit-
ing gri magnitudes, and the 98% completeness magnitudes
of the survey tiles. The photometric redshift uncertainties
are uniform and do not vary with photometric variations
across survey tiles. These qualities make these red-sequence
galaxies and their estimated red-sequence redshifts an ideal
dataset for galaxy clustering and cross-correlation studies.
As an example of the scientific application of this sample
of galaxies, we have presented galaxy-galaxy lensing mea-
surements. Using the KiDS shear data, we have found a
significant detection of tangential shear even for LRGs with
0.5 < zl < 0.7.

The longest wavelength used in this work for the red-
sequence selection was covered by the i band. This limited
the redshift range of identified LRGs to z < 0.7. In order to
extend the method to higher redshifts, one needs to use addi-
tionally near-infrared (NIR) bands such as Z (Rykoff et al.
2014, 2016). This is indeed possible by combining optical
KiDS data with the VISTA Kilo degree INfrared Galaxy
survey (VIKING; Edge et al. 2013), probing the NIR wave-
lengths (8000-24000 Å).This will provide the largest existing
joint optical-NIR dataset for cosmological studies. We will
present the selection of bright red-sequence galaxies from
the joint optical-NIR catalogue in a future work.

Weak lensing analysis of the upcoming 1000 deg2 pho-
tometry of the Kilo-Degree Survey will provide tight con-
straints on cosmological parameters. Selection of a set
of red-sequence galaxies with reliable redshifts with the
1000 deg2 photometry will enable us to measure additional
probes of the large-scale structure, such as galaxy cluster-
ing and galaxy-galaxy lensing. Joint analysis of these ad-
ditional probes and the cosmic shear will help improve the
constraints on cosmological models. Additionally, the red-
sequence galaxy catalogue will provide a useful playground
for testing the empirical models of galaxy-halo connection
and the intrinsic alignments of galaxies.
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Bovy J., Hogg D. W., Roweis S. T., 2010, Extreme Deconvolution:
Density Estimation using Gaussian Mixtures in the Presence

of Noisy, Heterogeneous and Incomplete Data, Astrophysics

Source Code Library (ascl:1010.032)

Bovy J., Hogg D. W., Roweis S. T., 2011, Annals of Applied

Statistics, 5

Brammer G. B., van Dokkum P. G., Coppi P., 2008, ApJ, 686,

1503

Brouwer M. M., et al., 2018, preprint, (arXiv:1805.00562)

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000

Byrd R. H., Nocedal J., Schnabel R. B., 1994, Mathematical Pro-

gramming, 63, 129

Cacciato M., van den Bosch F. C., More S., Mo H., Yang X., 2013,

MNRAS, 430, 767

Capaccioli M., et al., 2012, in Science from the Next Generation

Imaging and Spectroscopic Surveys. p. 1

Cawthon R., et al., 2017, preprint, (arXiv:1712.07298)

Chabrier G., 2003, PASP, 115, 763

Clampitt J., et al., 2017, MNRAS, 465, 4204

Davis C., et al., 2017, preprint, (arXiv:1710.02517)

Dawson K. S., et al., 2013, AJ, 145, 10

Dawson K. S., et al., 2016, AJ, 151, 44

Driver S. P., et al., 2011, MNRAS, 413, 971

Duncan K. J., Jarvis M. J., Brown M. J. I., Röttgering H. J. A.,
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APPENDIX A: DISTRIBUTION OF THE
SELECTED RED GALAXIES IN THE
COLOUR-MAGNITUDE SPACE

Compared to the galaxies with spectroscopic redshifts, the
distribution of the selected galaxies in magnitude space is
more inclined towards fainter galaxies. This is shown in Fig-
ure A1 for the dense sample (left panel) and the luminous
sample (right panel). In both samples, there are more galax-
ies at higher redshifts and higher i-band magnitudes. Fig-
ure A1 shows contours containing 68%, 95%, and 99% of
galaxy densities in the two dimensional space of zred and
mi . The blue contours show the distribution of all selected
LRGs while the orange contours show the distribution of
LRGs with spectroscopy. The zred −mi distribution of galax-
ies in the luminous sample has a better match with the
distribution of galaxies in the same sample that have spec-
troscopic redshifts. Since the galaxies in the luminous sam-
ple are brighter, they have a more representative magnitude
distribution in the spectroscopic data.

In the two dimensional space of g − r and r − i colours,

we compare the redshift-dependent distribution of red galax-
ies with the distribution of red galaxies that have spec-
troscopy. These distributions are shown in Figure A2 with
the right (left) panel corresponding to galaxies in the dense
(luminous) sample. In particular, we compute the 68% and
95% of galaxy densities in the {g − r, r − i} colour space in
bins of redshifts. The central values of the redshift bins are
{0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.67} from
bottom to top in each panel. The orange contours are the
densities of the selected red galaxies while the blue contours
show the densities of the red galaxies with spectroscopy.

We have seen in Figure A1 that the photometrically-
selected red galaxies and those with spectroscopy do not
sample the apparent magnitude-redshift space in a similar
fashion. Therefore in each redshift bin in Figure A2, we ap-
ply a cut to the apparent magnitude of the selected red
galaxies such that their maximum apparent magnitude is
equal to the maximum apparent magnitude of the red galax-
ies with spectroscopy. This allows us to make a fair compar-
ison between the two colour distributions. We note that at
certain redshifts the colour distributions of all red galaxies
and that of the red galaxies with spectroscopy do not fully
overlap. In other words, at certain redshifts, spectroscopic
data samples the colour space of the selected red galaxies
in a biased manner which could lead to biases in the esti-
mated photometric redshifts. For both dense and luminous
galaxies, this sampling bias becomes more pronounced for
z > 0.36. This leads to slight deviation of bias from zero at
higher redshifts for both dense and luminous galaxies. As
shown in Figure A2, luminous sample is a more represen-
tative sample of the spectroscopic dataset. Therefore, the
median absolute value of redshift bias is slightly smaller for
this sample.
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Figure A1. Distribution of LRGs in the two dimensional space of the i-band magnitude mi and red-sequence redshift zred. Shown are
contours containing 68%, 95%, and 99% of all selected LRGs (blue) and the selected LRGs with secure spectroscopic redshift (orange).

The distribution of galaxies in the dense and in the luminous samples are shown in the Left and Right panels respectively. We note that
in terms of magnitude distribution, galaxies in the luminous sample have a more representative sample of spectroscopic counterparts

compared to galaxies in the dense sample.

Figure A2. Left: 68% and 95% of galaxy density contours in the g−r and r−i space for galaxies in the dense sample for different redshift

bins. From bottom to top the redshift bins correspond to z = 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.67 respectively. The blue

contours correspond to galaxies in the dense sample that have spectroscopy, while the orange contours correspond to all galaxies in the
dense sample with the exception that their maximum mi is set by the maximum mi of galaxies with spectroscopy in the same redshift

bin. Right: same as the left panel but showing galaxies in the luminous sample. Any mismatch between the orange and the blue contours

implies biased spectroscopic sampling of the selected LRGs. The spectroscopic sampling of both dense and luminous galaxies is unbiased
up to z ' 0.36 and mismatch between the colour distributions at higher redshift bins (z ≥ 0.4) is evident. The biased spectroscopic

sampling of the selected galaxies is slightly less pronounced in the luminous sample.
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