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Abstract

We propose a near-linear complexity algorithm for generating simple directed random
graphs with a given degree sequence and show that this algorithm provides a means of
uniform sampling for large graphs. The algorithm is applicable when the maximum degree,
dmax, is asymptotically dominated by m'/4 with m being the number of edges and admits
an implementation with the expected running time of the order of mdy,ax.
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A graph is simple when it has no multi edges or self loops. Given a graphical degree
sequence, the existence of a simple graph that features this sequence is guaranteed by the
Erdés-Gallai theorem. However, enforcing this property when uniformly sampling from the
set of all graphs that satisfy a given degree sequence is not a straightforward task. One
computationally expensive way is the rejection sampling with configurational model [I]. Ac-
cording to this method a multigraph is constructed by randomly matching half edges of a
given graphical degree sequence. Repeating this construction multiple times will eventually
produce a simple graph in time that is linear in the number of vertices but exponential in
the square of the average degree. This strategy can be improved if instead of rejecting every
multigraph, we fix those multigraphs that are not too bad by switching several edges to re-
move edge multiplicity and loops. Such a switching procedure was shown to implement exact
uniform sampling in polynomial time for regular graphs by McKay and Wormald [2] and more
general degree sequences by Gao and Wormald [3] [4].

Generating random graphs is closely related to counting and generation of binary ma-
trices with given properties, such as row and column sums, which are of general interest to
combinatorialists, statisticians, and computer scientists. Uniform generation of simple graphs
is used in analysis of algorithms and networks [B, [0, [7]. In algorithmic spectral graph the-
ory, fast sampling is required to study spectra of sparse random matrices [8, [, [10], where
beyond the case of undirected graphs, heuristic algorithms had to be postulated. Much re-
search has therefore been directed towards sampling more general simple graphs with fast but
only asymptotically exact methods, which concentrate mainly on two ideas: 1) Markov Chain
Monte Carlo (MCMC) algorithms approximate the desired sample by taking the last element
of an ergodic Markov chain [IT], 12, [13, 22, 24]; the uniformity is asymptotically exact for long
chains and any finite number of nodes but the performance depends on the initial seed and
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have super-linear complexity. 2) Fast sequential construction algorithms [14] [I5] [16] build a
graph by placing m edges one-by-one, starting with an empty graph; they typically feature
almost linear complexity but the uniformity is asymptotically exact only for large graphs.

For a given number of nodes n, one can always improve the expected error bound on the
output distribution in an MCMC method by running the algorithm longer. However, showing
that this sample is sufficiently independent from the initial seed, i.e. estimating the mixing
time of the chain, has been achieved only of several classes of random graphs. First MCMC
algorithms were proposed for random regular graphs [11} 17, [18] 2], and were also shown to
feature polynomial mixing time [19] 20]. Later, switching MCMC algorithms were suggested
for graphs with arbitrary degree sequences by Kannan, Tetali and Vempala [21], wherein the
rapid mixing property was shown by P.L. Erdés et al. [22] for the class of P-stable [23] degree
distributions, and more recently, for other stability classes by Gao and Greenhill [24]. See
also, Jason [25] for the analysis of the convergence to uniformity. Bergerand and Miiller-
Hannemann suggested a MCMC algorithm for sampling random digraphs [13], with some
relevant rapid mixing results shown by Greenhill [26, 27] and P.L. Erdés et al. [28]. Further
generalisations were also proposed for degree-correlated random graphs [29, 30, 29]. There are
also approaches [31), 32] that realise non-uniform sampling while also outputing probability
of the generated sample a posteriori. Hence they may be used to compute expectations over
the probability space of random graphs.

As an alternative to MCMC, linear complexity sequential algorithms construct simple
graphs by starting with an empty edge set and adding edges one-by-one while updating the
probability after each edge placement [I4] [33] [34] [15]. For instance, Steger and Wormald’s
algorithm [I4] samples regular graphs almost uniformly with the running time shown to
be O(nd?,,) by Kim and Vu [34]. Bayati, Kim and Saberi [I5] generalised the sequential
method to an arbitrary degree sequence, yet maintaining a near-linear in the number of
edges algorithmic complexity. For these algorithms, the maximum degree may depend on
n with some asymptotic constraints, and the bounds on the error in the output distribution
asymptotically vanish as n tends to infinity. The downside of sequential algorithms is that for a
fixed n they alone cannot improve the error by performing more computations. Nevertheless,
the error can be still improved by generating a seed with a sequential algorithm and then
post-processing with an MCMC to improve uniformity, providing that the chain features
rapid mixing for the given degree distribution.

In this work, we provide a fast sequential algorithm for almost-unifrom sampling of simple
directed graphs with a given degree sequence by building upon the work of Bayati, Kim and
Saberi [I5]. We call a digraph simple when it has no self loops or parallel edges with identical
orientation. Similarly to the undirected case, our degree sequence is required to be graphical
in the sense of [35]. The expected runtime of our algorithm is almost-linear in the number of
edges and the bound on the error between the uniform and output distributions asymptotically
vanishes for large graphs. As such, our algorithm provides a good trade-off between the speed
and uniformity. Furthermore, if exact uniformity is required for finite n, it can be achieved by
post-processing with an appropriate MCMC algorithm for directed graphs, see for example
27, 28]

We explain the algorithm in Section [Il The proof that this algorithm generates graphs
distributed within up to a factor of 1 & o(1) of uniformity is presented in Section [2] and is
inspired by the proof of Bayati, Kim and Saberi [15, Section 7], wherein Vu’s concentration
inequality [36] plays a significant role. Our algorithm may fail to construct a graph, but it is



shown that this happens with probability o(1) in Section Bl following on [I5 Section 5]. This
work is completed with the runtime analysis of the algorithm in Section @l

1 The algorithm

The algorithm is best explained as a modification of the directed configuration model, which
generates a configuration by sequentially matching a random in-stub to a random out-stub.
One can therefore see that generating a uniformly random configuration is not difficult, how-
ever, a random configuration may induce a multigraph, which we do not desire. This issue
can be remedied by the following procedure: a match between the chosen in- and out-stub is
rejected if it leads to a self-loop or multi-edge. Then, the resulting configuration necessarily
induces a simple graph. Note that this rejection of specific matches destroys the uniformity
of the generated graphs. To cancel out the non-uniformity bias, we accept each admissible
match between an in- and an out-stub with a cleverly chosen probability, which restores the
uniformity of the samples. Namely, we show that the distribution of the resulting graphs
is within 1 £ o(1) of uniformity for large graphs. Another consequence of the constraint on
acceptable matches, is that it may result in a failed attempt to finish a configuration, for
example, if at some step of the matching procedure the only remaining stubs consist of one
in-stub and one out-stub belonging to the same vertex. In this case, we reject the entire
configuration and start from scratch again. As we will show later in Section [ a failure is not
likely to occur, i.e. the probability that a configuration cannot be finished is o(1).

Algorithm 1: generating simple directed graphs obeying a given degree sequence

Input :d, a graphical degree sequence without isolated nodes

Output: Gg = (V, E) a digraph obeying d and N an estimation for the number of
simple digraphs obeying d or a failure

V ={1,2,...n} // set of vertices

d=d // residual degree

E=10// set of edges

P =1// probability of generating this ordering

while edges can be added to E do

U kW =

aL A dtd-
6 Pick ¢,7 € V with probability F;; proportional to d?’dj_ <1 — =57 > amongst all

ordered pairs (7,j) with ¢ # j and (i,j) ¢ E ;

7 Add (i,j) to E, decrease CZ:_ and (17/]_ by 1 and set P = P - Pj;
8 if |E| = m then
9 ‘ Return Gqg = (V, E), N = #

10 else

11 ‘ Return failure

The pseudo-code of our algorithm, shown in Algorithm/[I], is a generalisation of [15, Proce-
dure A], written for undirected graphs. We use the following notation: Let d = {(d; ,d; )}™,
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with d.,d” € N be a graphical degree sequence, and m = Yois0di = Diso d’ the total
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number of edges. Furthermore we define
dmax = max{max{dy ,d, ,...,d, },max{d],dg,...,d}}}.

We wish to construct a simple directed graph G4 = (V, E) with vertex set V = {1,...,n} and
edge set F that satisfies d. At each step, Algorithm [Il chooses edge (7, ) with probability

qtd- 1_djd; | £ jand (i,§) ¢ E
Pij"’ (] 2m » 1 Jand(z, j s
0, i=jor(i,j) € E,

and adds it to E, where the residual in-degree CZZ_ (respectively residual out-degree ch) of
vertex 4 is the number of unmatched in-stubs (out-stubs) of this vertex and E the set of edges
constructed so far. When for all pairs 7,5 € V with CZ:_ > 0 and CZJ_ > 0 there holds i = j
or (i,j) € E, no edge can be added to E and the algorithm terminates. If the algorithm
terminates before m edges have been added to F, it has failed to construct a simple graph
obeying the desired degree sequence and outputs a failure. If the algorithm terminates with
|E| = m, it returns a simple graph that obeys the degree sequence d. In this case the
algorithm also computes the total probability P of constructing the instance of G4 in the
order it has been constructed. We will show that asymptotically each ordering of a set of
m edges is generated with the same probability. Hence, the probability that the algorithm
generates digraph G4 is asymptotically m!P. We will also show that each digraph is generated
within a factor of 1= o(1) of uniformity, and therefore N = — is an approximation to the
number of simple digraphs obeying the degree sequence. The value of N is also returned by
the algorithm if it successfully terminates. To make these statements more precise, let us
consider degree progression {d, }nen, that is a sequence of degree sequences indexed by the
number of vertices n. The algorithm has the following favourable properties.

Theorem 1.1. Let all degree sequences in {d,}nen are graphical and such that for some
T > 0, the mazimum degree dmax, = O (m1/4_7), where m is the number of edges in d,,.
Then Algorithm [0 applied to d,, terminates successfully with probability 1 — o(1) and has
an expected runtime of O (mdmax). Furthermore, the output graph Ga, is generated with a
probability within factor 1 + o(1) of uniformity.

The remainder of this work covers the proof of Theorem [I.1], which is split into three parts
discussing the uniformity of the generated digraphs, the failure probability of the algorithm
and its runtime.

2 The probability that Algorithm [1Il generates a given digraph

If the algorithm successfully terminates, the output graph G4 satisfies the desired graphical
degree sequence d by construction. This section is devoted to showing that any Gy is generated
with a probability within 1 & o(1) of the uniform probability. More formally we prove the
following theorem:

Theorem 2.1. Let d be a graphical degree sequence with mazimum degree dpmax = O (ml/ 4_T)
for some T > 0. Let Gq be a random simple graph obeying this degree sequence. Then



Algorithm [l generates Ggq with probability
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The proof is split into four steps, Sections 2.IH2.4l In Section 2.1 we start with determining
the probability that the algorithm generates a given digraph Gg.

2.1 The probability of generating a given digraph G4

Our goal is to determine the probability P4(Gq) that Algorithm [I outputs a given digraph
Ggq on input of a graphical d. The output of Algorithm [I] can be viewed as a configuration in
the following sense.

Definition 2.2. Let d be a degree sequence. For all i € {1,2,...,n} define a set of in-stubs
W, consisting of d; unique elements and a set out-stub VVZ-Jr containing dj elements. Let
W™ =Uieqi2,...m}W; and W+ = Ui€{1,2,...,n}Wi+' Then a configuration is a random perfect
bipartite matching of W~ and W, that is a set of tuples (a, b) such that each tuple contains
one element from W~ and one from W and each element of W~ and W™ appears in exactly

one tuple.

A configuration M prescribes a matching for all stubs, and therefore, defines a multigraph
with vertices V = {1,2,...,n} and edge set

E=1(i,j) | W >a, W 3b, and (a,b) € M]. (1)

Remark that the output of Algorithm [I] can be viewed as a configuration since at each step
an edge (7,7) is chosen with probability proportional to CZZ'"CZJ_, i.e. the number of pairs of
unmatched out-stubs of ¢ with unmatched in-stubs of j. Let R(Gq) = {M|Gr = Gq} be the
set of all configurations on (W=, W) that correspond to Gq. Since the output of Algorithm
[Mis a configuration, there holds

Pa(Ga)= >  Pa(M

MER(Gq)

Different configurations correspond to the same graph if they differ only in the labelling of
the stubs. Since the algorithm chooses stubs without any particular order preference, each
configuration in R(Gq) is generated with equal probability. However, the probability to match
an out-stub of i to an in-stub of j at a given step of the algorithm depends on the partial
configuration constructed so far. Hence the order in which the matches are chosen, influences
the probability of generating a configuration M. Let for a given M € R(Gq), S (M) be the
set of all the orderings N in which the configuration can be created. Because the configuration
already determines the match for each in-stub, an ordering of M can be thought of as an
enumeration of edges N' = (e1, ea,...,€n), € € E, defining which in-stub gets matched first,
which second, etc. There are m! different orderings of the configuration M. This implies that

Hd 'Hd*' > ]P’A

1=1 NeS(M



Hence, we further investigate P4 (N). If the algorithm has constructed the first r elements
of NV, it is said to be at step r € {0,1,...,m — 1}. There is no step m, as the algorithm

terminates immediately after constructing the m™ edge. Let d; ™) (respectively dl'-" (T)) denote
the number of unmatched in-stubs (out-stubs) of the vertex i at step r. Let E, be the set of
admissible edges that can be added to the ordering at step r,

Be= {0 g eV, df” > 0,77 > 0,0 £ (1,9) ¢ {er,ea. 0}

With this notation in mind, we write the probability of generating the entire ordering N as

m—1
= H Pleytiler, ... e,
r=0

where
1 déd;
P[er—l—l:(i)j”el)"')er] . —\
( ) 5—(r) dit dy
Z(uv Sy dy ( 2m )

Here we slightly abuse the notation as this is the conditional probability that a given out-stub
of 7 is matched with a given in-stub of j, rather than the conditional probability that the edge
(i,7) is created. The probability that the algorithm generates the graph G4 can be written
as

Pa(Ga) =[d' TTd" I (1 ) > H TRIGE (2)
=1 i=1 T

(1,7)€Ga NeS(M) r=0
where

D DI A ol i d_. (3)

(u,v)¢Er (u,v)EE,

By comparing the expression (2) with the statement of Theorem 21l we observe that the
proof will be completed if we show that for some )., which we define in section 2.2] there
holds

m—1
1
) H =[1+oWm! [[ ——=7— (4)
NeSM) r=0 ¥ (N) rmo (M=) =Y
and

m—1 m—1 n + 24 (gt 2 —\2 1 +12

1 1 i= ldz dz (d ) (d ) ':1(di ) Eizl(di)
N — [1 —+ 0(1)] [ m - 2m A4m?2 X

= || e

+ —_
2(i)eGq 4 Y 41

e 2m 2,

(5)
Indeed, combining the latter two equations with (2)) and using that 1 —x = e=2+0@?) we find:
Pidzdf SR )2 +d))? 2;;1<d;>22£;1<dj>2+1

m 2m Am?2 2 ,

PA(Gd):[1+O( )]m'Hz 1 ’L'Hl 1 z H

which coincides with the statement of Theorem 21 Thus proving equations () and (&)
suffices to show validity of Theorem 211

(m— r)2



2.2 Defining 1,

The quantity ¥, (N) is defined as a function of N'. We abbreviate ¥,. (N) by ¥, whenever N/
follows from the context. It can also be viewed as a function on the subgraph of G4 induced
by the first r elements the ordering N, which we denote by Gr.. Hence, when taking the
expected value of W, over all orderings, we look at a random subgraph of G4 with exactly r
edges. Closely related to this is the G, model where we take a subgraph of G4 where each
edge is present with probability p, = I-. We define ¢, = E,, [¥,]. In the remainder of this
section we will determine the value of 1,.. To achieve this, let us first have a closer look at
v,.
We split ¥, into a sum of two terms:

\I/r = AT’ + AT’7
with

did,

_ +(r) (1) _ +(r) ()
Ar= > dfd;" and A= > dif'd; -

(u,0)¢ Br ()€ By

(6)

Note that A, counts the number of unsuitable pairs, i.e. the number of pairs of the unmatched
in-stubs with out-stubs that induce a self-loop or multi-edge. In the sequel we refer to a
combination of an unmatched in- and out-stub as a pair. To simplify the analysis of A, and
A, they are also written as a sum of several quantities. Hence we further split

Ay =AL+ A

where
Ab=Yd Vaft (7)
i=1

is the number pairs creating a self-loop, and
AZ=A, - A}, (8)
is the number of pairs creating a double edge. The quantity A, is also split into two terms:

CATALT A2 A3

A, : ;
dm 2m )
with
AT =S Var, A =Y dar, (10)
=1 =1
A2 =%"at"dra"ds and (11)
i=1
A =S"arVay Vatdy (12)
(w0)¢ By
UFEV

We will now derive several bounds on the latter quantities, to be used in Section 2.4l



Lemma 2.3. For all0 <r <m — 1 there holds:
(i) Ay < (m—7r)da;
(’”) A71«+ < dmax(m - T): Ayl«_ < dmax(m - T);
a2

(iii) Ay < Zp2x(m —r)?.

Proof. (i) At step r, there are m — r unmatched in-stubs left. Each unmatched in-stub
can form a self-loop by connecting to an unmatched out-stub of the same vertex. The
number of unmatched out-stubs at each vertex is upper bounded by dpyay, hence Al <
(m — r)dmax. The vertex to which an unmatched in-stub belongs has at most dpyax — 1
incoming edges. The source of such an edge has at most dp.x — 1 unmatched out-
stubs left. Thus the number of out-stubs an unmatched in-stub can be paired with
to create a double edge is at most (dmax —1)%. Hence A2 < (m — )(dmax — 1) and
Ay = A}" + A% < ( - T)dgnax

(ii) By definition, A1T = Sy dj( )d:r. As Y0 d:r(r) =m —r and d} < dpax for all i,

this implies that A" < dpax(m —7) and AL < digay(m — 7).

(iii) By definition, A, = E(u )EE, d;'(r)d;(r) d’;ﬁ? < dg“;:‘ (u,0)€Er dj;(r)d; ™),

Since Y14 d;r(r) =m —r and d;(r) < (m —r) for all v, the claim follows.
U

We will now determine the expected values of Ai,A%,A}f,AiiA% and A2 in the G,,
model, and, by combining this values together, will write the expression for .

Lemma 2.4. For each 0 <1 <m — 1 the following equations hold:

(i) By [AY] = 0250 gt

2

(ii) By, [AZ] = " S o eaa (dF = D(d; —1);

2

(i) By, [ATAIT] = onl 5 (@2 S (@) D T, dE
m—r 2 n —
(iv) By, [AZ] = 22 570 (d7)2(df )2
(U) Epr [Ai’] = T(m T 2(7,] €Gq d+(d:_ - 1)d]_(d]_ - 1)

Proof. (i) The value of df(r) equals the number of edges (i,8) € G4, such that (i,e) ¢ G),.

Since p, = -, we have E,, [dli (T)] = dli% Furthermore, since G4 is simple, it contains

no self-loops. This implies that d;” ™) and d+(r) are independent. Using the fact that
AL =3 a7 D" we find By, [Al] = %z dfd; .

i=1"

(ii) A2 counts the number of pairs leading to a double edge. Choose a random (i, j) € Ggq.
To add an additional copy of this edge at step r, the edge must be already present in
G, , which happens with probability p,. Let a pair of edges (i, k), (1, j) be in Gq but not



(iii)

(iv)

(v)

in G)p,. This means that in G, there are unmatched in-stubs and out-stubs such that
one could instead form the edges (i,7) and (I, k), creating a double edge. The number

of combinations of such [ and k, is (d; ™) _ (d; ™) _ 1). By taking the expected value
of this value, summing it over all edges of G4 and multiplying it by the probability p,
that (i,j) € Gp,, the claimed expected value of A2 follows.

Remark that AL7ALT = D=1 i df d_(r)d+d , which implies that

Ep, [ A1 AL| = En: f: By, |df"a; | at .

j=1i=1

The random variables dl'-"(r) and dj_ ™) are independent, unless (i, j) € Gq. Indeed, dl'-"(r)

(respectively d; (T)) is the sum of d;f (dj_) independent Bernoulli variables representing
the out-stubs (in-stubs). If (i,j) € Gq, one fixed in-stub of j forms an edge with a fixed
out-stub of 4. This implies that the corresponding Bernoulli variables always need to take
on the same value. Let us denote these Bernoulli variables by d;; and d]: Now that we

have characterised the dependence between dj(r) and dj_ (T), we are ready to determine
E,, [dj(r)dj_(r)} = E,, [d*(r)} - [d_(r)] + Cov <d+(r)d_(r)). As already explained in
(i) Ep, [dj (T)] E [dj_ (T)] = (Lgicﬁd For the covariance there holds

B 0 if(i,j) ¢ G
Cov(d;r( )d ()) {Cov<d+d> if(i,j)GGj.

5 J4i

The covariance of any random variable X and a Bernoulli variable Y with expectation p*
equals: Cov (X,Y) = (E[X|Y =1] -E[X|Y =0]) p*(1 — p*). Applying this to X = d;.';_

and Y = d; , their covariance becomes T(m ") Thus there holds

(m 7’) + - (i
Epr- [dj(r)d]—(r)] — (2 ) d d 7«( ) 1 (Zvj) ¢ Gd '
d*d - if (i,7) € Ga

Plugging this back into the expression for E, [A%_A;ﬁ} the desired equation follows.

Recall that A2 =", d_(r)d (r)d_dJr In the proof of (i) we have already showed that
Ep, [dz’_(r)dj(r)} =dd; (m n . Hence E,, [AZ] = (m—n;grﬁ > d_2d+2

=1

From equation (2) it follows that A3 = 3 op oo dbd; df Vd; .
Since that A2 = = Y (6. EEy it ar" )d ") \e can use the proof of (i7). This implies each

(3

2 d+ df —1)d; (d —1
edge (i,7) € Gq contributes (mm2r )2 e T)n ( ) to the sum, proving the claim.

O

Next, we will use the following asymptotic estimates,



8) Y0y (d7)" = Cipecq () = 0 (mdih),
b) Z?:1 (d;r)t = z(i,j)eGd (dj)t_l =0 ( dfnalx)

¢) Y1y (d7)° ()" = i jyeay (d7)° (dF)" = O (mdshH),

to obtain and approximation of ¢, that we will work with. Combing these estimates with
Lemma [2.4] we find

AL ALY
4m

_(m—T)Q - —\2 - V2 4 (g — )2 Ty ax
= 3 Z(dz) Z(dz) +( )O<(m—r)m2>’

1=1 i=1

-Ag 2 di’lax A? 2 dfnax
E,. —]z(m—r)@( > and Epr[%]:(m—r)(9<r—3>.

| 4m m? m
This allows us to state the following Lemmas, which will be useful in Sections 2.3] and 2.4]

Lemma 2.5. For all 0 <r <m — 1 there holds:

o — (m oyt | Sherdrdf | " Eeca (4 (47 1) s s,

m2 m3 + 4m3 G
(13)
. Td4
with error term & = O < max | (m ‘;3‘1’%2 ma").
Lemma 2.6. For each 0 < r < m—1 the quantity v, is upper bounded by O (( )2d‘;;jx).
Proof. Combing equation (I3]) with the asymptotic estimate
. 1
—\S —\t —\S—
Do) @) = > (@) (@) =0 (mdth)
i=1 (4,)€Gq
4
we find that ¢, = (m — )20 ( max 4 T "‘a" + “‘a" + (m T)*;‘ng + “‘a" Tﬁ“f") , and since 7 <

m and d2,,,. = o(m), the latter equatlon becomes

)

m

10



2.3 Proving equation ()
With help of Lemmas 2.5 and 2.6] we are now ready to prove equation (B)). We start by

multiplying the left hand side of equatlon ) by HT: (m — r)2. This leads to
m—1 m—1
(m —r)° < Yr >
—_—— = 14+ ——|.
| el U B U o e

Applying Lemma 2.5 to the numerator and Lemma 2.6 to the denominator we the right hand
side of the later equation becomes:

m—1 i didf Y igyecq (4 1) (45 1) LX) ) ny:
exp Z In |1+ m* m 22 = -
r=0 1-0 ( Tf&b“)

and after using that O ( "‘a"> =0 (W) and some asymptotic expansions, we obtain:

[1+0(1)]6Xp |:Zz ldz d Zz 1( ) +Zz 1(d ) +
i wr m 2m
i (i) 3o (d))? + Z(m )E€Ga dl d; _|_l
4m? 2m 217

which proves equation ().
2.4 Proving equation ()
Let us define

= (m — T)2 B 1/17’
Then equation ({4 becomes equivalent to

E[f(M)] =1+ o0(1), (15)

which we will demonstrate instead in the remainder of this section. We start by rewriting the
latter expectation as a sum of expected values

E[fN)] =E[f(N) 1A+ E[f(N)15] + E[f(N) L] + E [f(N) Lsmnsm)) »

of mutually disjoint subsets covering S (M) in the following fashion.

Partitioning S (M) The set of orderings S (M) is partitioned as follows:

1. For a small number 0 < 7 < %, such that dp.x = O (m1/4_7), we define
* T 2
S (M) = {N e SM) B W)~y < (1= D) =) Yo<r<m—1}, (16)

and let S (M) \ S* (M) be the first element of the partition.

11



2. As the second element of the partition we take

= (W e s (M) |9, W)~ > T (m@)™) Yo <r<m -1},

(17)

where the family of functions T, is defined bellow, see equation (23], and ¢ is a small

positive constant, e.g. 0 < § < 0.1.

3. The next element of the partition is chosen from S* (

M)\ A to be

:{NGS*(M)\AHOSrﬁm—l, st.m—r <In(n) and ¥, (V) > 1}.

4. We define as last element as the complement

C=5"(M)\(AUB).

We will now show that the following asymptotic estimates hold

E(f(N)14) = o(1);

E (f(NV)15) = o(1);

E(f(N)1e) <14 o0(1);
E(f(N)1c) =21 —o(1);

E (f(NV) Lsvns ) = o(1).

(18)

(19)

~~ ~~ —~
N N
w N

~— — ~— ~— —

(24

Since E [f(N)] is as sum of the above expected values, it remains to introduce suitable defi-

nitions for 7, and prove equations (20)-(24]) to finish the proof of (IH]).

The family of functions 7,,. We define the family of functions 7} : R>g — R>¢ indexed

by r € {0,1,...,m — 1} as follows

T ()\) L 45, (/\) + 2min (%(A),W) if m—r>w,
' R otherwise,

et

with

57“ ()‘) \/ ( maxqr + )‘2) (drznax%‘ + )‘)

)‘ - C\/ maxqr + )‘3) (d?naXQT + )‘2)

Vp = 8mdmaxq
— In(n)’,
m—r
qr = =1-—p.
m

(25)

(26)
(27)
(28)
(29)
(30)

The quantity c is a large positive constant, which will be defined later, and g, is the probability
that an edge of G is not present in G,,. The intuition behind the definition of this family of
functions will become apparent in the remainder of this section. Let Ao := wln(n) and \; :=
2i)\g foralli € {1,2,..., L}, where L is the unique integer such that A\;,_1 < ¢dmax In(n) < Ap.

There holds the following relation between T, (\;) and T} (A;—1

12



Lemma 2.7. For all0 <r <m—1andi€ {1,2,...,L} there holds
T, (N) < 8T, (Ni—1) -
Proof. As the function T, is defined piecewise, we distinguish three cases:

1. Suppose m —r < \jw and m — r < \j_qw.

Then
B )\ZZ B 4)x?_1 8)@_1

= < = 8Tr(/\i—1)a

T:(N) 2 2

TWw?w
showing that T} (A\;) < 8T} (A\i—1).

w

2. Suppose m —r < A;w and m —r > \;_1w.

2
Then by definition of 7). there holds T (\;) = 4):;1 and Ty (Ni—1) > 48, (Ni—1) > 4eA? .
Hence we find 7). (\;) < T} (Ni—1)-

3. Suppose m —r > \w and m —r > \;_jw.
Then by definition of T;., there holds 7). (\;) = 45, (\;)+2min (v, (\;),v,) and T} (A\i—1) =
48, (N\i—1) + 2min (7-(Xi_1), v). Both 3. ()) and 7, (\) are square roots of a 6-order
polynomial in A. As \; = 2)\;_; and v/26 = 8, this implies that 3, (Ni) <86, (A\i—1) and
Yr (Ai) < 87 (Ai—1). Hence there holds T, (A;) < 8T} (N\;i—1).

This completes the proof, because m — r > \w and m — r < A\;_jw never holds, as \; >
Ni—1- |

In order to prove equations (20) and (2I)) we subpartition A and B. Let us define the
chain of subsets Ay C A1 C ... C A C S* (M) with

Ai={N eSS (M) ¥, (N) =t < T, (Xi) ,YO <7 <m—1}. (31)
To ensure that we cover S* (M) entirely, we also introduce
Ao =S " M)\ AL ={N € S* (M)[F0<r<m—1,st. U, (N) =t >T.(\)}. (32)
Now equation (I7) implies that
A=S"(M)\ Ag = UL Ai \ Aiy UAoo-

Next, we partition Ag. The goal of this partition is to write B as the union of some smaller
sets. As N/ € Ag for all 0 < r < m — 1 such that r > m — w)q there holds

v, (N) < Tr()\O) + 1y = ln(n)2 + Py

According to Lemma [2.6] for all m — 1 > r > m — wlg, ¥, = o(1). Hence there exists some n
such that for all n > nyg:

T, (N) < In(n)? + 1.

Without loss of generality we may assume that n > ng. Let K be the unique integer such
that

251 <In(n)? +1 < 2K, (33)
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Then for all > m — wq:
v, <2k,
This allows us to define the chain of subsets By C By C ... C Bg = Ag, with
B; = {N € Ay| ¥, (N) <2/,¥r >m—wlo}. (34)
From equations (I8) and (I9) it immediately follows that
B=UX B\ B;,_;y and C = B,.

These descriptions of A, B and C enable us to show validity of equations (20), (2I]), (22]) and
[23). First, we prove equation (20). The proof also contains statements that hold for any
ordering in S* (M), which are also used in the proof of equations ([2I)), (22) and ([23]). We
finish with the proof of equation (24]), which requires a different technique as it concerns all
orderings not in S* (M).

Proving equation (20) Based on the definition of A in terms of A;’s and A, we now
prove equation (20). For this we use the following Lemmas.

Lemma 2.8. For all 1 <1¢ < L there holds

(a) PIN € A;\ Ai_q] < e ),

(b) For all N € A; \ A;_1 there holds f(N) < e°P).

Lemma 2.9. For a large enough constant c there holds

(a) PIN € Ay] < e~ HedmaxIn(n)) .

(b) For all N € Ay, there holds f(N) < eT2dmaxIn(n)

Together these lemmas imply that
L
]]-.A < Z Q()\ +e —Q(cdmax 1r1(n))e72dmaX In(n) _ 0(1)7

thus proving equation (20).
First, we prove Lemma 2.8 (a) and Lemma 2.9 (a). This is done by showing a stronger
statement,

]P) [N € A??—l] é E_Q(Ai),

for all i« € {0,1,...,L}. This statement is indeed stronger than the statements of Lemma
2.8 (a) as (A; \ Ai—1) C (S (M) \ A4;_1). This observation is also relevant for Lemma [Z9] (a)
since Ao € A and A > cdmax In(n). Combining the definition of A;_; with Lemma 27 we
find

. {NES(M)BOSrﬁm—ls.t.\l!r(./\f)—wr> T’“?")}.

14



This implies that to prove Lemma 2.8 (a) and Lemma 2.9 (a), it suffices to show that for all
i€{0,1,...,L} and 0 <r <m—1,

P [!\Pr SR (A")] < e M),

S (35)

Determining the value of ¥, is more challenging than the value of ¥, in random graph model
G, , where each edge is present with probability p,. As mentioned in Section 2.2 the graph
Gy is a random subgraph of G4 with exactly r edges for a random ordering N' € S (M).

T

Denoting the number of edges in G,, by E[G),] we find:

VP, — > T N EG, ] = Pl|w, — > L0
P ’\Ilr_wr’ > I ()\2):| = |:| P TIZ) | 8 | [ P ” T:| < [| p ¢ | 8
8 PIE Gy = 7] BE[C, ] =]

Bayati, Kim and Saberi showed the following bound on the probability that the random graph
G, contains exactly r edges.

Lemma 2.10. ([15, Lemma 21]) For all 0 < r < m there holds P[|E [G),]| =r] > L.
Using this Lemma we obtain

T, (\)

P |:|\I’r _T;Z)r| > T:| <n-P |:|\ijr _¢r| > Ir ()\Z)

— |
As A\; = 2°In(n)"t% > In(n), there holds ne=2() = ¢=2(\)+In(n) — =0N)  Hence, to prove
equation (30 it suffices to show that

P [!‘I’pr | > M) é)\i)] < e 90,

As T, is defined piecewise, we formulate separate Lemmas distinguishing two cases:

i)m—r<w); and i) m—1r > w;.

Lemma 2.11. For alli € {0,1,...,L} and 0 <r < m —1 such that m —r < \jw there holds
AL < a0
P |:\I/pr, — wT > w] <e v (36)

Proof. Instead of showing the desired inequality, we show an even stronger statement:

plu, > 2] <o
Il )

A2

Combining the fact that ¥, < gt with ¥), = A, + A, and Lemma 2.3] we find

max
Pr =— 8&}2 2 r

A A?_d2m2

2

As mg, =m —r <w); and w'd?,, < 2 for large n there holds

22

)‘22 _ drznaxw2)\2
YT 40w?

Pro= 8,2 2m

A
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Let G, be the complement of G, in Gq and define Ny(u) := {v e V | (u,v) € G4, } U {u}.
Let dJC:‘qr (u) (respectively de,. (u)) be the out-degree (in-degree) of u in G,,. By definition of
A,, there holds

Ap <> df, ( w Y dGqT v)

ueV UEN()

By combining the latter inequality with the lower bound on A, we have just derived, we find

)\2
oz SAw <D dg,(w) D dg, (37)

ueV vENp (u)

This equation implies that at least one of the following statements must hold true:

(a) G4 has more than W:O)"' edges;

(b) for some u € V' there holds >, n; () dGq( v) > ’\—4

If (a) is violated, there holds Y, . d& ( ) <% )‘ (b) is violated, for all u € V' there holds
> veNo(w) 4, (V) < %. Hence if (a) and (b) are both violated, we find

2 2
+ w)\i)\i_ >‘z
Bpe < D d, (v Z e, 40wt 40w?’

ueV vENy (u

This violates equation ([B7)). Thus it is not possible that (a) and (b) are simultaneously
violated. This implies that at least one of the statements holds. Using the proof of [I5]
Lemma 20], the probablhtles that statements (a) and (b) hold, are both upper bounded by

e~ %) Since v, > ZU implies that at least one of these statements holds, this completes
the proof. O

Lemma 2.12. For alli € {0,1,...,L} and r such that m —r > \w there holds

46,(\;) + 2min(vy, v (\))
8

P |[®,, — | > < e79), (38)

Al +A1 *_A2 A3

Recall that W), = Al + A2 4 —pr—pr_pr _ 222 and that ¢, equals E[¥,, ]. Thus to
prove Lemma 2.12] it suffices to concentrate AII,T,A%T,A})T,JFAII,T_,A;T, and Agr around their
©(X) such that the difference between their sum and the

expected values with probability e~ :
4Br (i) +2 mén(”“%(’\i)). This is shown using Vu’s

sum of their expected values is smaller than
concentration inequality.

Theorem 2.13. [Vu’s concentration inequality [36]] Consider independent random variables
t1,to, ..., ty with arbitrary distribution in [0,1]. LetY (t1,t2,...,t,) be a polynomial of degree
k with coefficients in (0,1]. For any multi-set A let 04Y denote the partial derivative with
respect to the variables in A. Define Ej(Y) = max 4>, E (9aY) for all 0 < j < k. Recursively
define ¢y = 1,dy = 2,¢c; = 2Vk (cp—1 + 1) ,dy, = 2(dp—1 +1). Then for any & > & > ... >
& =1 and X fulfilling
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i) & >E; (Y);
i) gfil > A+4jIn(n) for all0<j<k-—1;

there holds

i [yY ~E[Y] > ck\/Agosl} < dpe M4,
Lemma 2.14. For alli € {0,1,...,L} and 0 <r < m — 1 there holds:

(i) B[|as, ~E[a}]] = 2] < om0,

= )

(i) B[|AZ, ~E[A3]

> min(ﬁr()‘i)‘i"YTé)‘i)vBr()‘i)"'Vr)} < e—Q()\i)

[ —Al Tt 1 —Al T_A2
All)r' All)r' _AZQJT _ E[APT APT _Apr]
4m 4am

(iii) P

> Br(gm} < 900,

a3, E[A3]
2m 2m

(iv) P

> min(ﬁr(M)+w-éh),6r(ki)+la-)] < -0

Proof. To prove each of the above equations, we write the quantity as a polynomial and apply
Theorem 2.13]to it. This polynomial will be a function of m Bernoulli variables. Each variable
te represents an edge e € Ggq, that is if e € G, then t. = 0 and if e ¢ G),, te = 1. Remark
that by definition of G),, see Section [2.2], there holds E [t.] = ¢, for all e. Also by definition
of Gj, , the variables t. are independent of each other.

(i) Recall that A;},T counts the number of pairs creating a self-loop. Each vertex v has
d; in-stubs and d; out-stubs. The number of those out-stubs (respectively in-stubs)
that are matched equals the number of outgoing (incoming edges) for v in G,,. Thus

the number of unmatched in-stubs (respectively out-stubs) of vertex v is Ze:(O,v)EGd te

(Ze:(v,o)EGd te). The number of ways to create a self-loop at v is

> > ety

e= (vv.)eGd f:(.vv)eGd

Hence we find

A =D > ety (39)

veV EI(U,.)EGd f:(.vv)eGd

Vu’s concentration inequality requires us to upper bound the values Eg [AII,T] ,Eq [AII,T]
and [Eo [All,r]. Let us first consider the expectation of A},T. Because Ggq is simple,
for each element of the summation in equation ([B9) e does not equal f. Therefore
Eltets] = ¢?. The summations over v and e in equation ([B9), can be replaced by one
summation over all edges in Gq. For each edge e € G4, there are at most dp.x edges
in Gq with the source of e as target. Hence we find E [A},T] < Mdpaxq?. Let us
take the partial derivative with respect to one variable ¢, for some e = (u,v), then we
obtain zf:(.’u)egd ty + Zf=(v,o)€Gd ty. This is upper bounded by 2dmaxgr. As All,r is
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a polynomial of degree 2 with all coefficients 1, it is clear that E [ate O, Azln] < 1 for all
e, f. Thus we find

Eq [A;,T] < max (1,2dmaxqr,mdmaxq3) , Eq [A;})r] < max (1, 2dmaxqr) , and Eg [All,r] < 1.

The maximization follows from the definition of E;(Y"). Let us define,
& = 9)\22 + 2mdmaxq§, E1 =9\ + 2dmaxgr and &y :=1.

We claim that together with A = )\;, they fulfil the conditions of Theorem 213l It is
obvious that & > Eo [All,r]. Also & > Eq [AII,T] as \; > 1 for all n > 3. Furthermore
& > Ey [A},r] as \; > 1 and mg, = m —r implies that 2mdmaxq? > 2dmaxg-- This shows
the first condition of Theorem 213l For the second condition remark that \; > In(n)
and In(m) < 2In(n) as m < n?. This implies

& _ &1 > \i +41In(m).
&
Furthermore, there holds
2dmaxmq3
o I\ + =
— =\ TZ >\,
51 9 + rrs\a.xfh

showing that the second condition of Theorem 213 is fulfilled as well. Thus we may
apply Vu’s concentration inequality to obtain

P||AL —E[AL]] > e \/)\i (9N + 2dimaxr) (907 + 2Mdimaxg?) | < e,

Since P HA;,T —E [Azl»” > a] <P HA;,T —E [A})r” > b] for @ > b, choosing any ¢ >
8- 9cy in equation (26]) completes the proof.

Recall that Agr counts the number of pairs that create an edge already present in Gy,
i.e. a double edge. Pairing an out-stub of u with an in-stub of v creates a double edge
only if (u,v) € G, i.e. if for e = (u,v), t. = 1. Recalling the expressions for the number
of unmatched in-stubs and out-stubs at a vertex v from the proof of (i) and defining a
set of non-cyclic three-edge line subgraphs,

Q:{(e,f,g)\e,f,geGd,e#f,f;ég,e#g,f:(u,v),ez(u,O),g:(O,U)},

we find

A = Z tety(1—ts) = Z tety — Z tetgt; =Y — Ya.

(e,f,9)€Q (e,f,9)€Q e,f,9€Q

Vu’s inequality will be applied to Y; and Y5 separately. To upper bound the expected
value of Y7, we need an upper bound on the size of (). Given f, the source of e and
the target of ¢ are fixed. Hence there are at most d2, triples in Q with a fixed edge

max
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f. As f may be any edge, |Q| < md?2,,,. Together with E [t.t,] = ¢* this implies that
E[Y1] < md2,,.q?. We differentiate Y7 with respect to tz, to obtain:

dtg+ > te

(e,f,9)€Q (e,f,9)€EQ

e=e g=e

Since

Z 1<d?,. and Z 1<d,.,
(e.f,9)€Q (e.f,9)€Q

e=e g=e

we have E[0,.Y7] < 2d2...¢q,, and since Y] is a polynomial of degree 2 with all coefficients
e max

equal to 1, all second derivatives are at most 1. Together, these observations yield:
Eo [V1] < max (1, Qdﬁlaxqr,mdilaxqz) , Ei[V1] < max (1, 2d12naxqr) and E,[Y7] <1.
Similar to (7) it can be shown that A = \; and

Eo =N +2md>, q?, & =9\ +2d>,.q and & =1,

fulfil the conditions of Theorem 2.13l Applying Vu’s inequality and assuming ¢ > 8-9¢s,
we thus obtain

P {IYI ~EW]| > %} < e ),

Moving on to Ya, we see that E[Ya] < md2,.q> as |Q| < md2,, and E [ttty = g¢3.
Differentiating Y5 to with respect tz, we obtain

D ity + Y tetg + Y tety.

e=e f=e g=¢

This implies that E [9,.Y7] < 3d?

caxqr- Differentiating Y5 to with respect ¢z and ty for
€ # f, we obtain

Dty + D> tp+ Y te+ D> tg+ D b+ D te

(e,f,9)€Q (e, f,9)€Q (e,f,9)€EQ (e,f,9)€Q (e,f,9)€EQ (e,f,9)€Q
e=

’@i 6:@; :E f:é g:E g:E

f=r g=f g=f e=f e=f I=f

In each of the sums, there is freedom to choose only one edge. As the source, the
target or both are fixed for this edge, each summation is upper bounded by dmaxg:-
According to the definition of (), at most two of the summations are non-zero, implying

that E [8@&75@} < 2dmaxqr- As Ys is a polynomial of degree 3 and all of its coefficients
are 1, any third order partial derivative of Y5 can be at most 1. We thus find:

Eo [Ya] < max (1, 2dmaxr: 3dmax @y, M@y ), E1[Ya] < max (1, 2dmaxr: 3daaxdr ) »
E [Y2] < max (1, 2dyaxqr) and Es[Ys] < 1.
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(iii)

Vu’s inequality is applied to Y5 using A = \; and
Eo = 85X} +3md2, 2, & =85M2 +3d> .7, E =17\ + 2dmaxq, and E3 =1,

to obtain

P [lYa ~E Y]] 2 855/ A (% + Be?) (A + md%naxq?)] < e,

If we choose ¢ large enough, this implies that

5 Br(X) Z%(Ai)} < 00N

|l B [43)
Next, remark that
A5, —E[AL]] =¥ = Y2 —EM] + E ] < ¥ —E V]| + E[Y)
< Vi - EWi| + mdnaa; = V1 - EVi]| + o
This implies that there also holds

)

P |3, —E[a3]

> Br()‘i; + Vr] < o~ 2N)

completing the proof.

TAL A2 E[AL TAL A2 ; . .
To prove that P [ - _ B[, e 2] > BT(B)‘Z)} < e 920N Vs inequality
AL Al — A2
is applied to ”*277’* and -~ separately. The construction is almost identical to the

max d2I ax
proofs of (i) and (i7). First consider

1 +p1 — w
AL v Vil v S B R N (R
d2 - d2 - d c d
max max e=(u,v)€Gq max f=(w,z)eGq max
(2 ) st s,
e=(uw)€EGq M e= (uv)eGglax
f=(w,z)€Ga
e f

Start with Z;. This is a polynomial of degree one, as for a Bernoulli variable there
holds t2 = t.. Since its coefficients are at most 1, it is clear that any first order partial
derivative of Z; is upper bounded by 1. The expected value of Z; is upper bounded by
mgq,. This implies that,

Eo[Z1]) < max (1,mq,) and E;[Z] <1.

Hence, & = mq,.+X; and &; = 1, satisfy the constraints of Theorem 2.I13]with A = A;
. Applying this theorem we find

P[1Z1 —E[Z1] = eoy/Ni O+ mgy) | < e 80,
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Next, consider Zy. This is a sum over all pau"s of distinct edges, hence it contains
fewer than m? terms. Combining this with d dz < 1 and E[tet;] = ¢?, we find that

max

E [Z5] < m?q?. Taking the partial derivative with respect to a variable t, and writing
g = (1,7) leads to

— 7t

d; df du 4
Z 2 ty + Z d2 te.
f:(w,z)EGglaX e=(u, v)eG?aX
f#9 e#g

Each term of the summations is upper bounded by ¢,. Each summation contains m — 1
terms. Thus we find: E [athg] < 2mgq,. As Z5 is a second order polynomial with
coeflicients upper bounded by 1, all second order partial derivatives will be at most 1.
Combining these observations we find:

Eq [Z2] < max (17 2mqr,m2q3) , Ei[Zs) <max(1,2mq,) and Eg[Z] <1
Similar to the proof of (i) it can be shown that A = \; and
o =9\ +2m?¢%, &£ =9\ +2mq, and & =1,

satisfy the constraints of Vu’s concentration inequality, which gives

P [yzz —E[Z]| > 9¢o \/)\,- (N +ma,) (A2 + m2qz)} < e ),

2 1 + 1 - d2
s v/ Ai (Ai +may) \//\ Ai +mqy) (A2 +m?q?) and =2 br— = max (7, 4 7)), we

obtaln

ALTALY E[ATALT
bt EN ] > Do 00, 4 cy) s (i +mae) (4 megd) | < e,

4m B 4m

Pulling this factor dg“ﬁ inside the root and taking ¢ > 8 (¢; + 9¢2), we also find

AL AL {A%‘Al N
4m B

\/)\ i +d2..qr) ()\22 + md?naqu) < e 92N)

Next, we consider

A2 " dmdzarar d-df
- -y 4 i _Z o oot Yoty

max = max e=(i,0)€Gq f=(s,1)€Cq

Note that this is the same expression as for Al where the coefficient of each term is

replaced by - d . Hence using the same argument as for (i) we obtain

Ay %

4m 4m

> 9¢y W% N+ o) (A milang?) | < 70,
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2
Again pulling d’;‘rj" inside the square root, we find

7|
Since 8 = c\/ i (N + d2aiar) (A2 + md2,,q?), this completes the proof
by taking ¢ > 8(18¢3 + ¢1).

1 —pl1 + 2 1 —A1 + 2
AP’!‘ Apr 7Ap7- _ E[APT' AP'r' A
am am

> 902 \/)\ ()\ + dmaxQT) (A? + md?naxqg) § €_Q(Ai).

(iv) This argument is exactly the same as for (i), as there holds

A3 did;
2= St (L—ty) .

T (. 7 gy e

e=(u,v)
. 3 E[A3 2 ; . .
Hence we Obtaln ]P) |: /;5; [2727] 2 dénnix mln(ﬁr()‘ )+'Y'r()‘ ) Br()‘z)+1/7‘):| S e—Q()w,)7 and since

2
—d‘ﬁf" = 0(1), this completes the proof.

U
Combining all inequalities from the statement of Lemma (2.14]), we find that

4 r\ "\ 2mi Ty I\ — ;

for all i € {0,1,...,L} and 0 <r < m — 1. By definition of v, this shows equation (38)) and
hence it proves Lemma This completes the proofs of Lemma 28] (a) and (a).
Next, we prove Lemma 2.8 (b) and 2.9 (b). This requires the following Lemma.

Lemma 2.15. For alli € {1,2,...,L} and N € A; \ A;_1 there holds

= max (¥, () = ¢r,0)
(m—r -0, (N)

=0 ()\Z) .
r=0

Furthermore for all N € Aq there holds

—~  max (¥, (N) —¢r,0)
—o(1).
2 Tmor-wm 0
m—r=Aqw
Proof. The first claim follows by changing the summation Z2mm T2 o into Y . in the proof
of Lemma 15(b) [I5]. The second claim follows by applying a similar change to the proof of
Lemma 18 [15]. O

We will now determine an upper bound on f(N) for all N' € S* (M). According to the
definition of S* (M), ¥, (N) < (1= %) (m — r)? holds for all 0 < r < m — 1. Therefore,

f(N):iijOl<1+(m\I—lr7’()j;/) > ’E( 4max ( <m(—7)~>2 U, >>.
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Using 1 + z < e® the latter inequality becomes

m—1 4max(¥r(N)—1yr,0)

f(./\/) S lefo T(m—r)2 . (40)

Let us consider N' € A; \ A;_1 for i € {1,2,..., L} and apply Lemma 2.T5] to equation (40),
to obtain:

fFN) < i)

This completes the proof of Lemma 2.8] (b).
It remains to prove Lemma 29| (b). As Ao, C S* (M) we have:

m—d?naLX 4 max \Ijr N _ 7’70 m—1 m—T2—¢r
< 1 <” i<m(—l>2w )> 1 <m(—7‘>2)—‘PTW)’

r=0 r=m—d2, . +1

Since 0 < ¥, (N) and 1, < (m — r)?, we further have:

m—d?

2 (W
FOV) < (dha) ™ 1 <1 + T(Tir))» :

r=0

From Lemma 2.3 it follows that ¥, = A, + A, < 2(m — r)d>

o ax> Which, when inserted in the
latter inequality, gives:

m—d?

4 d?nax ma Sd?nax
FV) < (d) 1;[0 (” m)

Using (14 z) < €%, we find:

Z:d?nax max max

8 .
f(N) < e4d12nax In(dmax)++ 327" i R ax < e4d2 In(dmax)+2 In(m)— £ In(d? )’

and since 7 < % and m < ndpax, we have:
f(N) < e4dr2nax In(dmax)+241n(m) ~ e4d?nax In(dmax)+24 In(ndmax )

< 2Adi n(nd?) < 24d0 0, In(n®) _ J72d2,, In(n)

This proves Lemma (b), completes the proofs of Lemma’s 2§ and 20 and therefore,
completes the proof of the asymptotic estimate (20)).

Proving equation (2I)) The next step is showing that equation (2I]) holds. To this end,
we first prove the following Lemma.

Lemma 2.16. Forall1 <j < K
(@) B € B,\ By_y] < 00,

(b) For all N € Bj\ Bj_1, f(N) < O ().
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Proof. (a) The probability that N' € B; \ B;_1 is upper bounded by the probability that
N € Bf_; := 5 (M)\ Bj_1. Hence if we show that

P [N c B]c] < e—Q(2j/21n(n))’

the claim is proven. Remark that BS_; C {NeSM)|Tr, st.m—r <wlgand ¥, > 2771},
Therefore, we need to consider only those r for which m —r < w.

Note that
P[¥, > 27 r >m—wk] < e~ (2/? In(n) (41)
is a stronger statement than the desired inequality. Indeed, using w)o < In(n)? gives:

PN € BS_,] < In’(n)P [¥, > 2771] < In?(n)e H(2/*1n(m)
— ¢ 2(2/2In(n))+2In(In(n)) _ ,~Q(2/2In(n))_
We will therefore prove inequality (41]) instead. Fix an arbitrary r such that m —r < w)g
and assume that U, < 2/~1. Then by definition of ¥, and applying Lemma 23], we have
d2..m 5

A, 227l - g

Since m — r < wXg < 27 twg and d2,,, w2 < m,

) 2j—1d2
A, >0 72mma"w2>\§.
. 2j—1 .
>oiml 2 _—9i2
- 2

The remainder of the proof is similar to the proof of Lemma 2.TT] wherein equation (37)
is replaced by

PNy, <) d () Y dg (v).

uev vENo (u)
This inequality can be shown to imply one of the following statements holds true:
(a) G, has more than 27/271 edges;
(b) for some u € V' there holds >~ n; () de, (v) > 29/2-1,
—Q(29/2 ln(n))’

Indeed, the probability that either of those statements holds, is upper bounded by e
by using the same argument as in the proof of Lemmal[2Z11l Since r is arbitrary this shows

that P [\IJT > 2j_1] < e~ (M) for all + such that m—r < wg, completing the proof.
(b) Since B; C S* (M) for all 1 < j < K, inequality (Q) gives

Amax(¥r(N)—r,0)

mel 4 max
FN) < &0 TS

—_— )
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for all N € B; \ Bj_1. According the definition of B;, we have

wAo wAo .
Z max( ( ) > wra ) < Z 2 s = O (2]) ,
m—r=1 (m n T) m—r=1 (m - T)

and since B; C Ap the second statement from Lemma [2.T5] can be applied, giving:

Z 4max (¥, (N) — wr’):o(l).

T(m —r)?

m—r=wlg

Hence for all N € Bj it holds f(N) < O(2)+o(1) — O(¥)
O

Now, we give a proof of asymptotical estimate (2I). Lemma 216 implies that for all
B;\ Bj_1
]

E [f(/\/) ]lBj\Bj,l] < o—2(27/21n(n)) ,O(27)

Recall that j < K, and, in combination with equation (33), this yields 27 < In(n). Hence
there holds

K K .
E[f(N)1g] = 3B [fN) 15, | < 30 e 2 m0)0E) —o1),
j=1 7j=1

proving equation (2I]).

Proving equations ([22) and (23) We bound the expected value of f(N) for all N € C.
We, start with proving upper bound (22]), for which it suffices to show that for all N € C,

FN) <1+ o0(1).

As C C S* (M), in analogy to equation (40]), there holds

m—1

\IIT(N)_T;Z)T
f(N)ZIJO(l*(m—r)?—wN))
o 4max (¥, (N) — 1,.,0) Ty Amax(ErN)-vr,0)
< IL (et & A

Because C C Ag, we obtain from Lemma 2.15] that

m

Z 4max( ( ) 1)[)7“7 ) :O(l)

T(m —r)?

m—r=Aow-+1
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Also by definition of C, ¥, (N) <1 for all m —r < w)g. Hence for all N € C,

Aow Aow
I S e Aow L)) e
o< T1 (1t e < (100 (22 1T s )

m—r=1 m—r=1

< e (14 0(1)) = 1+ o(1),

proving equation (22I).

Next, we derive a lower bound on E [f(N) Lg«np]. As C C S* (M) this will prove
equation (23). Take any ordering N € S* (M). Lemma [2.12] states that

P (|0, (N) = 9| > 4B, (Ao) + 2min (v (o), 1)] < e~ H0) < =™ — (1), (42)

holds for all r, such that m —r > w)g. Thus the probability that [¥, (N) — ¢,.| > 48, (Xo) +
2min (7, (Ag) , ) holds for at least one r is small. Now consider an ordering N € S* (M)
such that for all » with m — r > w)g there holds

| U, (N) — | <48, (No) + 2min (v, (Xo) , ) - (43)

Recall that A" € S* (M) implies ¥, (V) < (1 — %) (m — r)?%. Combining this with the defini-
tion of f(N), we find:

w)\g-‘rl

0z ] (e eon) L (0 e m)

m—r:w)\g m—r=1

3
WA

> ﬁ <1 B %457« (Ao) +(72nm_1nr()2r (Ao) 77/7‘)) 11 <1 B %ﬁ) ‘

m—r:w)\g—l—l m—r=1

From Lemma and the definition of T;, we find ) = —N 41 i4ﬁ T(/\o)+(2mm1r;§gr(>\o) r)
o(1), which when combined with 1 —z > e~ for 0 < z < 3, gives
w)\o
4 9
> p—o(l) ) R s S
fN) >e ml:[:1< 7 (m—r)?2

To approximate the remaining product, we apply Lemma[2.6in combination with 1 —x > e~2*

and asymptotical estimate A\3wd2,. = o(m) to obtain:

FN) > e 2 > 1 —o(1).

Now, for each N € S* (M) we have shown that either f(N) > 1—o0(1) or that its probability
is upper bounded by o(1), which this completes the proof of equation (23)). Remark that in
fact we have proven

E [F(N) Ls-np) 21— ol0).
Additionally, the proofs of equations (20)-(23]) demonstrate the following corollary.

Corollary 2.17. For a sufficiently large constant c, as used in the definition of Ap, there

holds:
exp < 2 Z maX )2 o )>

This corollary will be used to prove equation (24]).

=1+o(1).
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Proving equation (24). This equation is the last bit that remains to prove equation ().
It concerns the expected value of f(N) for the orderings in S (M) \ S* (M). Equation (I6])
implies that for any V' € S (M) \ S* (M), there exists at least one 0 < r < m — 1 such that
the inequality

U, (M) < (1 - i) (m — )2 (44)

is violated. This inequality can only be violated for specific values of r. To determine these
values, we assume that the above inequality is violated and investigate what are the implica-
tions for A,. Recall that ¥,, = A, + A,. By using Lemma 23] to bound A,, we obtain:

2

d
A>T, — %(m —r)2

2
Since d* .. = o(m), there is such ng that for all n > ng there holds Imax T Tt n > ng,

max

then

A>T, — %(m —r)2.

Assuming the opposite inequality to (44]) holds, this becomes:
A, > (1 - %) (m —1)2. (45)

Lemma 23] states that A, < (m —r)d?

2 ox> and hence, we deduce that (m—r) (1 - %) < d2
which is equivalent to

max’

2d>?

~max

m—r < 22X
2—7°

Therefore, inequality (44]) can only be violated if m — r < ma" . This allows us to partition

S(M)\ 5 (M

with Sy (M) being the set of all orderings N violating inequality ([#4]) with » = m — ¢ and not
violating it for all » < m — t. To prove equation (24]), it suffices to show that

E[f(M)1g] <O <m1t> , (16)

for all t € {1,2,..., 232%:"} as > ;2 —— = o(1). We will now prove equation (@G).
. e _ -
According to the definition of ¥,., we have (m—7r)2—V, = > (uw)eE, d;r(r)dv ™) <1 - %
For the algorithm to finish successfully, there must be at least m — r suitable pairs left at each

step 7, implying that (m —r)? — ¥, > (m —r) (1 — M) Therefore

g (o (5))
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and since df’% = o(1), we have: # <m—r+1lform—r<? ma" . Now we have that
m—1 m 1)[) m—1 2 -1
—T _ _ | t
H e —3. < 11 T S [I m-r+1=+DI<tt+1).
r=m-—t r=m-—t r=m-—t

In analogy to equation (@Q) it can also be shown that

m— m—1
(m—=r)" =9 4 max (¥, — 1,,0)
< — .
1;[ (m—r)2 -0, P [7’ Z (m —r)?

r=0

Combing these observations with inequality (44]), which holds for all » < m — ¢, we find:

B o (m—71)2 =, 47 max (¥, —¢,,0) | ,
f(N)]‘St_]]'Stgmg]]'Stexp[;;o (m—7)? t(t+1).

Next, we take the expected value of the above equation and apply Holder’s inequality to
obtain:

E [f(N) ]]'St] <E []]-St]l_TE tt(t + 1)’

15, exp [ ’“Z wr, 0)
=0

Using Corollary 2Z.17] this becomes
E[f(N)1s,] <E[Ls]" "7 [L+o(1)] (¢ + 1).

Hence, to prove equation ([{Gl), it remains to show that

PN € STt +1) < [1 4 0(1)]

(47)

mTt :

This requires an upper bound on P [N € Sy, which we derive in the following manner: As the
first step, we show that if N € S;, then G, always contains a vertex with some special prop-
erty. We use use the probability that such a vertex exists as an upper bound for P [N € Sy].
Let us assume that NV € S, fix r = m — ¢t and define I'(u) := {v € V|(u,v) € Gn.}. By
definition of A, this allows us to write

A=5"at N " and (-2 =3 a0 a "

ueV vel'(u)U{u} ueV veV

Because N € Sy, inequality (43]) must hold. Inserting the above expressions for A, and (m—r)
into this inequality yields:

Sar” Y 4 ( )Zd+ SNd; s 0-nY a0 a ",

ueV vel(u)U{u} ueV veV ueV veV

which implies that there exists a vertex u € V such that

&V >0 and Y &V>a-nY 4" =1 - (48)
vel (uw)U{u} veV
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Thus we have shown that if N € Sy, there must exists a vertex u obeying (@8], and therefore,
probability that G s, contains such a vertex u provides an upper bound for P [N € S;]. As the
second step, we derive an upper bound on the probability that u obeys ([@8]). Recall that G,
contains the first r edges of the ordering A'. Adding the remaining ¢t edges of A completes
Gq. In this complement edge set, let [ out of ¢ edges have their target in I'(u) U {u}, then
L= verugey do - Let k := df — [T(u)| = df ). Inequality (@) holds if and only if k > 1
and [ > (1 —7)t. We derive an upper bound on the probability that £ > 1 and [ > (1 — 1)t for
a random ordering ' € S (M). That is to say we fix all m edges in the graph, but the order
in which they are drawn A/ is a uniform random variable. To obtain a fixed value of k, exactly
k of the df edges with u as source must be in A"\ AV;. Choosing these edges determines I'(u).
To obtain the desired value of I, exactly [ edges with target in I'(u) U {u} must be in N'\ N,.
There are Y, cp(yuqey (dy — 1) +d;; edges to choose from, since for each v € I'(u) the edge
with v as the target and u as the source is already in A,.. The remaining ¢ — [ — k edges that
are not in AV, may be chosen freely amongst all the edges that do not have u as a source or
an element of I'(u) U {u} as target. Thus the probability to get a specific combination of k
and [ is

(dki) (Zvem)(f—l)”i) (m—di—Zuermu(d;—l)—dJ)

G

We therefore write the upper bound for the probability that a randomly chosen vertex u

satisfies (48] as

(d]if) ((di_k';‘l)dmax) (m_di_zvtejl(qi)kgd;_l)—da)

>

m
E>1,01>(1—7)t ( t )
For N € S, at least one vertex satisfies inequality (48]), thus we have:

(dkj) ((df[—k+1)dmax) (m_dj_zver‘(u)(d;_l)_d;)

N’ G St Z Z l — t—Il—k
weV k>1,1>(1-7)t (7)
Remark that (7) < mk— and since t = O (d2,,,) and O (d,.,) = o(m) there holds:

(7) =1+ oty

This gives

dF ((dF =k + 1) (diax))  mt=1=F¢!
mtkll(m — 1 — k)!

ﬂ)’f <(df[—k+l)dmax)l "
K (m — 1 — k)!

Finally, we approximate the sum over k and [. Since adding ¢t edges completes the ordering,
Y ey d‘u"( N = Y ey du( ") = t. This implies that k € {1,2,...t} and that [ is an integer
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in the interval [(1 — 7)¢,¢]. Thus this sum consists of at most ¢7 terms. Remark that, as

Lk <t = 0(dh) = O (m2), (%) = 0 (dx) and ((df = k+1)(dnax)) = O (512)

the term inside the summation is maximal for £k =1 and [ = (1 — 7) ¢t. This gives:

P[S)] < [L+o(1)] 7ty <d+> <d+dmax>(1_7—)t <ttT>

ueV
2 (1-7)t d+
< t max “u
_[1+0(1)]2t<m> Z<m>
veV

. d2 (1—-7)t
<1 1)] 2% | 2& .
< 1+ o1 2'e (222

Here we used that 7 < %, (T,?) <2™and ) . di =m. Plugging this into {T) yields:

(1-7)t\ 1-7
PN € STttt + 1) < [1+o(1)] t1(t + 1) <2tt <df%‘x> > .

Since t < "‘a" , we have:

— T m1—27'+7'2

! 9. 9l—T gi—dr+27? t
PIN €8 Tt 4+ 1) < [T+ o(D)] (¢ 4+ 12T | 5 max 7

and since 7 < %, for any > 1, 277 < z, we find:

PN € ST ¢t +1) < [+ o(1)] (¢ + 1)t ( 4 dizirer )

2 — 7 ml-27472

Inserting the estimate dy.x = O (ml/ 4_7) yields,

t
PIV € ST #(t+1) < [L+o(1)] (¢4 1)t (%m—?’wﬁr?—sﬁ) ,

-7
and using t = o (ml/ 2) and that % is constant when m goes to infinity with n, we find:
t
PN € S Tttt +1) < [1+0(1)] o <m1/2> @ (m_37+3'572_373) =0 (m™ ™).
This completes the proof of inequality (€] and hence it shows that equation (24]) holds. This

completes the prove of equation (I3]) and hence proves equation ({l). Together with the results
from Sections 2.1, and 23] this completes the proof of Theorem 2.11

3 The probability of failure of Algorithm [I]

Here we show that the probability the algorithm fails is o(1). The proof is inspired by [15]
Section 5]. If at step s, every pair of an unmatched in-stub with an unmatched out-stub is
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unsuitable — the algorithm fails. In this case, the algorithm will necessary create a self-loop
or double edge when the corresponding edge is added to G,. First, we investigate at which
steps s € {0,1,...,m — 1} the algorithm can fail. Then, we derive an upper bound for the
number of vertices that are left with unmatched stubs when the algorithm fails. For a given
number of unmatched stubs, this allows us to determine the probability that the algorithm
fails. Combining these results, we show that this probability is o(1). The following lemma
states that the algorithm has to be close to the end to be able to fail.

Lemma 3.1. If Algorithm [ fails at step s, then m — s < d2,,....

Proof. At step s, there are (m — s)? pairs of unmatched stubs. If the algorithm fails at step
s, all these pairs are unsuitable. The number of unsuitable pairs at step s is A;. According
to Lemma 23l A, < d2,.(m — s). Therefore, if the algorithm fails at step s, there must hold
(m—s)2<d?, . (m—s). O

The number of vertices that have unmatched stubs when the algorithm fails is also
bounded. Suppose a vertex v € V has unmatched in-stub(s) left when the algorithm fails.
Since the number of unmatched in-stubs equals the number of unmatched out-stubs, this
implies that there are also unmatched out-stubs. Because the algorithm fails, every pair of
an unmatched in-stub and an unmatched out-stub induces either a double edge or self-loop.
Hence, only v and vertices that are the source of an edge with v as a target can have un-
matched out-stub(s). As v has at least one unmatched in-stub, there are at most dpyax — 1
edges with v as a target. Thus at most dpyax vertices have unmatched out-stub(s). Symmetry
implies that at most dyax vertices have unmatched in-stub(s) when a failure occurs.

Let Ad_, ®), i @ gt ) gt © be the event that the algorithm fails at step s with

J1 I+
Vi, .-, 05, €V belng the only vertices with unmatched in-stubs and vj,,...,v; , the only

vertices having unmatched out-stubs. The amount of unmatched in-stubs (respectively out-
stubs) of such a vertex i (ji) is denoted by d;; (s) (dj, (S)). Since k™ (respectively k1) denotes
the number of vertices with unmatched in-stubs (out-stubs) that are left, there holds k~, kT <
dmax- This allows to write the probability that Algorithm [ fails as

max max(m—s,dmax)

P|[failure] = ) Z > > ]P’[Ad.@ - O g s)] (49)
ip o )

m—s=1 —kt=1 dlenip— =110 4 =1 ‘K 1 Tt

The sum ler _, is the sum over all possible subsets B C {1,2,...,n} of size k~, such
that >, p Z-_(S) =m—sand } 4p =) — 0. The goal is to show that P[failure] = o(1),

1
which we achieve by first determining an upper bound for P [A O - @ e (s):| .
i ARG 'L _ b ) 9 Jk+

Lemma 3.2. The probability of the event Ad, (s)
i 5oy

e © gh @) gt © s upper bounded by
.

EAR jk+

dgr(S) _d.’(s)
o(l)d2k+k*—2ki HzeK+ d+ ) HzeK d ’ m-—3S m— S (50)
d- (s) (s) dt (s) :
? ’ J1

max ktk——kE. 2 — + ()
m m2(m=s) , "’di;r ,...,djk+
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Proof. Let us define K~ := {iy,ia,...95-}, KT := {j1,72,...jp+}, and K* := K- N K*.

When event A O g 9 g r (s oceurs, the algorithm has constructed a graph G,
11 AR ’ka 7,-;7/1 AR Jk+

having the degree sequence d with elements:

=_ |4 ifi ¢ K- = df ifi ¢ Kt
P ldr a7 itier= T \db—dfY ifie K+

PN equals the number of graphs G, that obey
~ v jk+
d and lead to a failure multiplied by the probability that the algorithm constructs this partial
graph. To construct an upper bound on the number of graphs obeying d and leading to a
failure, note that such a graph must contain the edge (i,7) for alli € K*,j € K~,i # j, and

The probability of Ad, © g @
7;1 [EREX) ik7 "

therefore, it must contain a subgraph obeying degree sequence dg - K+(S), which is defined
by:

d; ifi ¢ K-
&= -tk tieKig Kt
d7 —d;W —kt 41 ifie K- ie K+
and
df ifi ¢ KT
TV dar —ar® e itieKtig K-

df —df™ — k41 ifie Kt ie K-

The number of graphs obeying the degree sequence d - K+(S) gives an upper bound for the
number of partial graphs inducing event A O e O e e © Denote by L (d) the
ip oo%e o oGy ey

space of simple graphs obeying the degree sequence d. Theorem 2.1] implies that for any
degree sequence d with dy.x = O (ml/ 4_7) there holds

m=1c .2 Pydidf Y (d)2 a2 S )2 TP (d)?
i) < Ll pP S B BB e oy
T m! L 4 e d !

We apply this bound to the degree sequence W(S). A graph obeying this degree se-
quence has s — kTk™ + k¥ edges, with k¥ = |K*|. Thus we must show that dpa.x =
O ((s —kTkT + k‘i)l/4_7>. Combining the statement of Lemma Bl with d2 . = o(m) gives
s > 3d?,,, for dpae > 1. Since kTk™ < d2,,., we now find m < 2(s — k~k* 4 kT), that is
m = O (s — k~kT + k¥), which implies that dyax = O (m/4"7) = O ((s — k‘k+ki)1/4_T) .
(

Thus we may apply inequality (5I)) to dx— g+ *) to obtain

. okt he 4 k)
’E (dK*,K+( )>’ < Hn(s d_f(s)lfn_: k%(s)!

=1 i=1"
(s)

— ()
n Y +19\2 (e —(, _ _
| TR R s @@y o
P 2(s — ktk— + k%) s—ktk— +k* 4(s — ktk— 4 k*)? g T
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Following the derivation in Sections 2.1 and 23] we find

Pa(Cu) = — A= T A 5~

[Lex+ d+(5) Miex- d_(S) Ns€S(Ms)

n _ s—1
_ Hz 1d:—'Hz:1dz |H 1 -
[Tick+ d:r(s)! [lick- dz‘_(s)' o (m =)
sy didf S ()P ()P sy (d )2 (df)? s
3 i T 7 i i T 1 X
X exp < m?2 2m3 + 4m3 + 2m?2 +o(1)

In the latter expression, the factor with factorials accounts for the number of different configu-
rations leading to the same graph G4, , which equals the number of permutations of the stub

labels. However for ¢ € K~ there are only d( T permutations of the labels of the in-stubs

of v; that lead to a different configuration. Remark that changing the label of an in-stub

that remains unmatched with another in-stub that remains unmatched does not change the
+
configuration. By the same argument for i € KT there are only % ways to permute the

labels of the out-stubs of v;.
We can now determine

]P) |:Ad (s) d- (s) d+ (s) d+ (S):| S ]P) [GMS]
ip U T T 4

(42
First, we look at the product of the exponentials in the asymptotical approximations of
P[Ga.] and £ (d) )
d?,,., becomes:
n ——()\y . 79
2im1 [(di ;) } s FOFD sm FOpsn @

_ i=1"1 _ 1= (] = I 1
xp 2(s — kTk— + k% s — kth— 4 k* A(s — kth— + kT)2 5 tol)
( )

, which after some transformations, and using that m > s > m —

= exp (%o (dma) + %0 (d20) + 0(1)> exp (—O (diax) — O (d2) + 0(1)) = e
P [Ad_ © g O g gt <s)} <SPGl

By using the latter estimate, we obtain
(@)
le ARG} Zk* 9 ]1 bR Jk+

[Lick+ dg_!HieK* di_!HieKJr,ier (dj' _ d?‘(s) _ k‘) (dz_ _ di_(S) _ k"')

o(1)

<e
Miescs (d = df ) =k )1 Mg (d = a7 =k )17 1
(s — kTk™ 4+ k5)ls!(m — s)!(m — s)!
. m!m/!
2

okt k— —2k* +d+( s) _d;(s) 1 3!

< o2kt I 4 IT e
iEKT €K~ =0 s$—17



l—[k+k77ki+1 .

It remains to bound % and %ﬂ. First, using that m — s = O (d2,,,), we find:
. m

7:—!!=<s+1><s+2>---<m—1>m=mm‘s (“%) <1‘%>”'<1_m_TH>
cree (1 o ()

=1
_ ’_"*15*1 L+O drsn%x) _(m—s)ém—s—l)_i_o(d?ngx) _O(dﬁ’)ax)
p— 1= p— p—
me Se m m :mm Se m m :mm Se m ,
| o)
and therefore 25 < m,}b,se m = #eo(l). Second, let us consider

ktk——kT41 .
j=0 * 5=

Using that m — s < d2,,., k%, k7 < dmax and 0 < k* < min (k~, k%), we obtain:

ktk——kT41 ktk——kt41 ktk——kt41

2 .
. . ot ds .+
I s> [[ m due—j=m** 11 (1_ max J)
j=0 j=0 j=0 m
ktk=—kt4+1 o . <
_ mk*k’—ki 1— H dmax +J +0 dmax
et m m?
]:
G P A ol B [ WO L ) B (908
> mk*k*—ki e 2m o
d4
e o)
— mk k——k e n ’
which gives
4
1 < 1 O(_dr;’l:x) 1 o(1)
- < — e = ——¢°Wb),
Hftg —kEHL — mk k™ —kE mkTh——kE
Thus the upper bound on the probability of A (s) becomes

a- W War ™ at
11 'Lk7 J1 ]k+
+(s) —(s)
+d- _d:
eo(l)d2k+k*—2ki Hi€K+ d; Hier d; ( )m -8 " ( )m -5 ©
max ktk——k*, 0 2(m—s) — s - s + (s + 8) )
m m d;, ""’dizr dj, ""’djw

Combining equation ([49) with Lemma [3.2] we are able to prove the desired result.
Lemma 3.3. The probability that Algorithm[1l returns a failure is o(1).

is either 1 if kTk— = k*

or smaller than d?“ﬁ if ktk~ # k*. Since k¥ < min (k7, k"), KTk~ = kT implies that
k™ = k= = 1. Together k™ = k=~ = 1 and the conditions under which the algorithm can fail

. a2 ktk——k*
Proof. In the statement of Lemma [3.2] the fraction <T)
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imply that KT = K~. First we consider this case. Since KT = K~ = K* = 1 there holds
d;, () _ d; ©) — s, plugging this into equation (50) we find
m—Ss ;—Mm—sS
dr d;,

1) _
P [Ad. ®) d_+1(8>] < el )4nllm—smm—s = o(1).
11 ke

o\ kTk™—k* 2
Next, assume that ATk~ # kT, which implies that (dmﬁ> < d‘;:j". We apply the

multinomial theorem to obtain:

max(m—s,dmax)

" = () - m—s
> > Hdﬂi<5@m }@OZ@?%wwﬁ
@

k—=1 il""7ik7:1 Z€K7 9 ik7
and
max(m—s,dmax) n
7 +() m—s
+d; _ + 41\ m—s
Yoy I (e w) =)
kt=1 jl""’jk+:1 26K+ 71 PRI ] g

Plugging these into equation (49)) yields

2 d?nax -+ L\m—s _ \m—s
P [failure | §0(1)+e°(1)% Z (dl +...dn) (dl +"'dn)

mm— Sy m—s
m—s=1

This proves the claim of Theorem [[.T] about the failure probability of Algorithm [l

4 Running time Algorithm [I]

When implementing Algorithm [I] one has a certain freedom to chose how exactly choosing
random samples with probability proportional to P;; is performed. Our implementation of
Algorithm [ is based on the implementation of Bayati, Kim and Saberi [15] for undirected
graphs, which, in turn, is based on Steger and Wormald’s implementation for undirected
regular random graphs. The latter uses a three-phase procedure, which depending on the step
r, picks an edge (i, 7) with probability proportional to di(’")dj (") in a different manner. We also
distinguish three phases depending on the algorithm step r, however, our sampling probability

+7
00 (1 -4

5~ |, and the corresponding criteria that determine the

is proportional dj

phase of the algorithm are different. In what follows, we show that the expected running time
of our algorithm is O (mdpax), that is we prove the following lemma.

Lemma 4.1. Algorithm[1l can be implemented so that its expected running time is O (mdmpax)
for graphical degree sequences d with dyax = O (m1/4_7) for some T > 0.

Proof. Phase 1. Let E be the list of edges constructed by the algorithm so far. In the first
phase, a random unmatched in- and out-stubs are selected. We may check whether this is an
eligible pair in time O (dyax) . If eligible, the pair is accepted with probability proportional
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dfd;
to 1 — - and (4,j) is added to E. We select edges according to this procedure until the

number of unmatched in-stubs drops bellow 2d2,, .. This marks the end of phase 1. As a crude
estimate, each eligible pair is accepted with probability at least %, and at most % of all stub
pairs is ineligible, see Lemma 2.3(a). Hence, creating one edge in phase 1 has an expected
computational complexity of O (dpax), and the total runtime of this phase is O (mdpax)-
Phase 2. In this phase we select a pair of vertices instead of a pair of stubs. This requires
us to keep track of the list of vertices with unmatched in-stubs/out-stubs. These lists are
constructed in O (n) and can be updated in a constant time. Draw uniformly random vertices
1 and j from the lists of vertices with unmatched out-stubs and in-stubs correspondingly.

+(r) dfw>
Accept i (respectively j) with probability % <ﬁ> If both vertices are accepted, we

check if (i,7) is an eligible edge in time O (dyax)- ij the edge is eligible, it is accepted with
did;

7

probability 1 — ——. Phase 2 ends when the number of vertices with unmatched in-stubs
or the number of vertices with unmatched out-stubs is less than 2dn.x. Since every vertex
with unmatched in-stubs (respectively out-stubs) has at most dy,ax unmatched in-stubs (out-
stubs), this guarantees that the edge is eligible with probability at least % To get a pair of
accepted vertices, we need an expected number of O (d?nax) redraws. Thus the construction
of one edge is expected to take O (d2,,,). As there are only 2d2,,, unmatched in-stubs at the
start of phase 2, at most d2 . edges are created in this phase. Thus the expected running

time of Phase 2 is O (d4 )

max

Phase 3. At the beginning of this phase, a list E of all remaining eligible edges is con-
structed. At the start of phase 3 there are only 2d,ax vertices left with unmatched in-stubs or
with unmatched out-stubs. Hence there are at most 2d2,,, vertices with unmatched out-stubs
or in-stubs. Thus F contains no more than 4d3. . edges. For each possible edge we check
in time O (dpmax) if it does not create a double edge or self-loop. Thu§v, constructing E takes

@ (dfnax). The rest of Phase 3 consist of picking a random element of £ and accepting it with
+(1) = () dtd-
probability ——12 <1 — 51 > This leads to an expected number of O (d2

i T max) repetitions
i %

)

to accept one edge. If an edge is accepted, it is removed from E and the values of df(r

and dj_ ™) are updated. After selecting an element of E , it must be checked if df(r) > 0 and

dj_ ™) > 0. If this is not the case, the edge is not added to F and removed from E. This

continues until F is empty or |E| = m. This has expected running time of order O (dfnax) as

there are O (d2,,,) edges that are expected to be discarded or accepted in O (dZ,,). Thus,
the total running time of the algorithm is O (mdmax) + O (n) + O (diay) + O (ddax) - As
dmax = O (m1/4_7), the running time is O (mdmpax)-

We must also compute P;; at each step. Let Pi(jr) denote the probabilities that the edge
(,7) is added to E at step r. There holds:

g+ g (1 _ didj>
i j

2m

P — 9
ij (m—r)2 — U, (N) (52)
+ —
The numerator d;r(r)dj_(r) <1 — %) can be computed in a constant time. To determine
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the denominator in (52)), remark that:

[(m—r+ 12—, N)] = [(m - r)? — 0, (N)]

_ (1) =) ( _ dudy ) 1) - (1 dady
> ar e (1- S0 ) - Y g .

(u,0)EEr 41 (u,v)EE, m
— — + —
o), ddy o) [, did; o [, _ %9
+ > 4, (1 o >+ Z dit (1= ) T (1
(1,0)EG N, (w,7)EG N,

drd-
+(r) MYy
+dj <1 5 ) .

At each step 7, each of the terms in the latter expression can be updated in O (dpax) oper-
ations. This allows us to determine the value of PZ-(-T) in time O (dpax). As the construction
of one edge also takes at least O (dpyax) in every phase, this does not change the overall

complexity of the algorithm. The initial value is

n _2 2 —2 42
nod: A7 i R P

\I’O (N) — m2 _ § :dl—d;ﬁ- . Zz:l i i=1" Zz:l i [

i=1

2m

)

which can be computed in O (n). As n < m this does not change the order of the expected
running time, and hence, this completes the proof. O

This lemma completes the proof of Theorem .11
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