
ar
X

iv
:2

10
3.

15
95

8v
2

 [
m

at
h.

PR
]

 1
2

A
pr

 2
02

1

Fast sequential algorithm for generating directed random

graphs with a given degree sequence

Femke van Ieperen1 and Ivan Kryven1,*

1Mathematical Institute, Utrecht University, PO Box 80010, 3508 TA Utrecht, the Netherlands
*i.kryven@uu.nl

Abstract

We propose a near-linear complexity algorithm for generating simple directed random
graphs with a given degree sequence and show that this algorithm provides a means of
uniform sampling for large graphs. The algorithm is applicable when the maximum degree,
dmax, is asymptotically dominated by m1/4 with m being the number of edges and admits
an implementation with the expected running time of the order of mdmax.
Keywords: Random Graphs, Directed Graphs, Randomised Approximation Algorithms
MSC: 05C80, 05C20, 68W20, 68W25

A graph is simple when it has no multi edges or self loops. Given a graphical degree
sequence, the existence of a simple graph that features this sequence is guaranteed by the
Erdős-Gallai theorem. However, enforcing this property when uniformly sampling from the
set of all graphs that satisfy a given degree sequence is not a straightforward task. One
computationally expensive way is the rejection sampling with configurational model [1]. Ac-
cording to this method a multigraph is constructed by randomly matching half edges of a
given graphical degree sequence. Repeating this construction multiple times will eventually
produce a simple graph in time that is linear in the number of vertices but exponential in
the square of the average degree. This strategy can be improved if instead of rejecting every
multigraph, we fix those multigraphs that are not too bad by switching several edges to re-
move edge multiplicity and loops. Such a switching procedure was shown to implement exact
uniform sampling in polynomial time for regular graphs by McKay and Wormald [2] and more
general degree sequences by Gao and Wormald [3, 4].

Generating random graphs is closely related to counting and generation of binary ma-
trices with given properties, such as row and column sums, which are of general interest to
combinatorialists, statisticians, and computer scientists. Uniform generation of simple graphs
is used in analysis of algorithms and networks [5, 6, 7]. In algorithmic spectral graph the-
ory, fast sampling is required to study spectra of sparse random matrices [8, 9, 10], where
beyond the case of undirected graphs, heuristic algorithms had to be postulated. Much re-
search has therefore been directed towards sampling more general simple graphs with fast but
only asymptotically exact methods, which concentrate mainly on two ideas: 1) Markov Chain
Monte Carlo (MCMC) algorithms approximate the desired sample by taking the last element
of an ergodic Markov chain [11, 12, 13, 22, 24]; the uniformity is asymptotically exact for long
chains and any finite number of nodes but the performance depends on the initial seed and

1

http://arxiv.org/abs/2103.15958v2

have super-linear complexity. 2) Fast sequential construction algorithms [14, 15, 16] build a
graph by placing m edges one-by-one, starting with an empty graph; they typically feature
almost linear complexity but the uniformity is asymptotically exact only for large graphs.

For a given number of nodes n, one can always improve the expected error bound on the
output distribution in an MCMC method by running the algorithm longer. However, showing
that this sample is sufficiently independent from the initial seed, i.e. estimating the mixing
time of the chain, has been achieved only of several classes of random graphs. First MCMC
algorithms were proposed for random regular graphs [11, 17, 18, 12], and were also shown to
feature polynomial mixing time [19, 20]. Later, switching MCMC algorithms were suggested
for graphs with arbitrary degree sequences by Kannan, Tetali and Vempala [21], wherein the
rapid mixing property was shown by P.L. Erdős et al. [22] for the class of P-stable [23] degree
distributions, and more recently, for other stability classes by Gao and Greenhill [24]. See
also, Jason [25] for the analysis of the convergence to uniformity. Bergerand and Müller-
Hannemann suggested a MCMC algorithm for sampling random digraphs [13], with some
relevant rapid mixing results shown by Greenhill [26, 27] and P.L. Erdős et al. [28]. Further
generalisations were also proposed for degree-correlated random graphs [29, 30, 29]. There are
also approaches [31, 32] that realise non-uniform sampling while also outputing probability
of the generated sample a posteriori. Hence they may be used to compute expectations over
the probability space of random graphs.

As an alternative to MCMC, linear complexity sequential algorithms construct simple
graphs by starting with an empty edge set and adding edges one-by-one while updating the
probability after each edge placement [14, 33, 34, 15]. For instance, Steger and Wormald’s
algorithm [14] samples regular graphs almost uniformly with the running time shown to
be O(nd2max) by Kim and Vu [34]. Bayati, Kim and Saberi [15] generalised the sequential
method to an arbitrary degree sequence, yet maintaining a near-linear in the number of
edges algorithmic complexity. For these algorithms, the maximum degree may depend on
n with some asymptotic constraints, and the bounds on the error in the output distribution
asymptotically vanish as n tends to infinity. The downside of sequential algorithms is that for a
fixed n they alone cannot improve the error by performing more computations. Nevertheless,
the error can be still improved by generating a seed with a sequential algorithm and then
post-processing with an MCMC to improve uniformity, providing that the chain features
rapid mixing for the given degree distribution.

In this work, we provide a fast sequential algorithm for almost-unifrom sampling of simple
directed graphs with a given degree sequence by building upon the work of Bayati, Kim and
Saberi [15]. We call a digraph simple when it has no self loops or parallel edges with identical
orientation. Similarly to the undirected case, our degree sequence is required to be graphical
in the sense of [35]. The expected runtime of our algorithm is almost-linear in the number of
edges and the bound on the error between the uniform and output distributions asymptotically
vanishes for large graphs. As such, our algorithm provides a good trade-off between the speed
and uniformity. Furthermore, if exact uniformity is required for finite n, it can be achieved by
post-processing with an appropriate MCMC algorithm for directed graphs, see for example
[27, 28].

We explain the algorithm in Section 1. The proof that this algorithm generates graphs
distributed within up to a factor of 1 ± o(1) of uniformity is presented in Section 2 and is
inspired by the proof of Bayati, Kim and Saberi [15, Section 7], wherein Vu’s concentration
inequality [36] plays a significant role. Our algorithm may fail to construct a graph, but it is

2

shown that this happens with probability o(1) in Section 3, following on [15, Section 5]. This
work is completed with the runtime analysis of the algorithm in Section 4.

1 The algorithm

The algorithm is best explained as a modification of the directed configuration model, which
generates a configuration by sequentially matching a random in-stub to a random out-stub.
One can therefore see that generating a uniformly random configuration is not difficult, how-
ever, a random configuration may induce a multigraph, which we do not desire. This issue
can be remedied by the following procedure: a match between the chosen in- and out-stub is
rejected if it leads to a self-loop or multi-edge. Then, the resulting configuration necessarily
induces a simple graph. Note that this rejection of specific matches destroys the uniformity
of the generated graphs. To cancel out the non-uniformity bias, we accept each admissible
match between an in- and an out-stub with a cleverly chosen probability, which restores the
uniformity of the samples. Namely, we show that the distribution of the resulting graphs
is within 1 ± o(1) of uniformity for large graphs. Another consequence of the constraint on
acceptable matches, is that it may result in a failed attempt to finish a configuration, for
example, if at some step of the matching procedure the only remaining stubs consist of one
in-stub and one out-stub belonging to the same vertex. In this case, we reject the entire
configuration and start from scratch again. As we will show later in Section 4, a failure is not
likely to occur, i.e. the probability that a configuration cannot be finished is o(1).

Algorithm 1: generating simple directed graphs obeying a given degree sequence

Input : d, a graphical degree sequence without isolated nodes
Output: Gd = (V,E) a digraph obeying d and N an estimation for the number of

simple digraphs obeying d or a failure
1 V = {1, 2, . . . n} // set of vertices

2 d̂ = d // residual degree

3 E = ∅ // set of edges

4 P = 1 // probability of generating this ordering

5 while edges can be added to E do

6 Pick i, j ∈ V with probability Pij proportional to d̂+i d̂
−
j

(
1− d+i d

−
j

2m

)
amongst all

ordered pairs (i, j) with i 6= j and (i, j) /∈ E ;

7 Add (i, j) to E, decrease d̂+i and d̂−j by 1 and set P = P · Pij ;

8 if |E| = m then

9 Return Gd = (V,E), N = 1
m!P

10 else

11 Return failure

The pseudo-code of our algorithm, shown in Algorithm 1, is a generalisation of [15, Proce-
dure A], written for undirected graphs. We use the following notation: Let d = {(d−i , d+i)}ni=1

with d−i , d
+
i ∈ N be a graphical degree sequence, and m =

∑
i>0 d

−
i =

∑
i>0 d

+
i the total

3

number of edges. Furthermore we define

dmax = max{max{d−1 , d−2 , . . . , d−n },max{d+1 , d+2 , . . . , d+n }}.

We wish to construct a simple directed graph Gd = (V,E) with vertex set V = {1, . . . , n} and
edge set E that satisfies d. At each step, Algorithm 1 chooses edge (i, j) with probability

Pij ∼

d̂+i d̂

−
j

(
1− d+i d

−
j

2m

)
, i 6= j and (i, j) /∈ E,

0, i = j or (i, j) ∈ E,

and adds it to E, where the residual in-degree d̂−i (respectively residual out-degree d̂+i) of
vertex i is the number of unmatched in-stubs (out-stubs) of this vertex and E the set of edges
constructed so far. When for all pairs i, j ∈ V with d̂+i > 0 and d̂−j > 0 there holds i = j
or (i, j) ∈ E, no edge can be added to E and the algorithm terminates. If the algorithm
terminates before m edges have been added to E, it has failed to construct a simple graph
obeying the desired degree sequence and outputs a failure. If the algorithm terminates with
|E| = m, it returns a simple graph that obeys the degree sequence d. In this case the
algorithm also computes the total probability P of constructing the instance of Gd in the
order it has been constructed. We will show that asymptotically each ordering of a set of
m edges is generated with the same probability. Hence, the probability that the algorithm
generates digraph Gd is asymptotically m!P . We will also show that each digraph is generated
within a factor of 1 ± o(1) of uniformity, and therefore N = 1

m!P is an approximation to the
number of simple digraphs obeying the degree sequence. The value of N is also returned by
the algorithm if it successfully terminates. To make these statements more precise, let us
consider degree progression {dn}n∈N, that is a sequence of degree sequences indexed by the
number of vertices n. The algorithm has the following favourable properties.

Theorem 1.1. Let all degree sequences in {dn}n∈N are graphical and such that for some
τ > 0, the maximum degree dmax,n = O

(
m1/4−τ

)
, where m is the number of edges in dn.

Then Algorithm 1 applied to dn terminates successfully with probability 1 − o(1) and has
an expected runtime of O (mdmax). Furthermore, the output graph Gdn is generated with a
probability within factor 1± o(1) of uniformity.

The remainder of this work covers the proof of Theorem 1.1, which is split into three parts
discussing the uniformity of the generated digraphs, the failure probability of the algorithm
and its runtime.

2 The probability that Algorithm 1 generates a given digraph

If the algorithm successfully terminates, the output graph Gd satisfies the desired graphical
degree sequence d by construction. This section is devoted to showing that anyGd is generated
with a probability within 1 ± o(1) of the uniform probability. More formally we prove the
following theorem:

Theorem 2.1. Let d be a graphical degree sequence with maximum degree dmax = O
(
m1/4−τ

)

for some τ > 0. Let Gd be a random simple graph obeying this degree sequence. Then

4

Algorithm 1 generates Gd with probability

[1 + o(1)]

(
m!∏m−1

r=0 (m− r)2

n∏

i=1

d+i !

n∏

i=1

d−i ! e

∑n
i=1 d

−
i
d+
i

m
−

∑n
i=1(d

−
i

)2+(d+
i

)2

2m
+

∑n
i=1(d

−
i

)2
∑n
i=1(d

+
i

)2

4m2 + 1
2

)
.

The proof is split into four steps, Sections 2.1-2.4. In Section 2.1, we start with determining
the probability that the algorithm generates a given digraph Gd.

2.1 The probability of generating a given digraph Gd

Our goal is to determine the probability PA(Gd) that Algorithm 1 outputs a given digraph
Gd on input of a graphical d. The output of Algorithm 1 can be viewed as a configuration in
the following sense.

Definition 2.2. Let d be a degree sequence. For all i ∈ {1, 2, . . . , n} define a set of in-stubs
W−

i consisting of d−i unique elements and a set out-stub W+
i containing d+i elements. Let

W− = ∪i∈{1,2,...,n}W
−
i and W+ = ∪i∈{1,2,...,n}W

+
i . Then a configuration is a random perfect

bipartite matching of W− and W+, that is a set of tuples (a, b) such that each tuple contains
one element from W− and one from W+ and each element of W− and W+ appears in exactly
one tuple.

A configuration M prescribes a matching for all stubs, and therefore, defines a multigraph
with vertices V = {1, 2, . . . , n} and edge set

E = [(i, j) |W+
i ∋ a,W−

j ∋ b, and (a, b) ∈ M]. (1)

Remark that the output of Algorithm 1 can be viewed as a configuration since at each step
an edge (i, j) is chosen with probability proportional to d̂+i d̂

−
j , i.e. the number of pairs of

unmatched out-stubs of i with unmatched in-stubs of j. Let R(Gd) = {M|GM = Gd} be the
set of all configurations on (W−,W+) that correspond to Gd. Since the output of Algorithm
1 is a configuration, there holds

PA(Gd) =
∑

M∈R(Gd)

PA (M) .

Different configurations correspond to the same graph if they differ only in the labelling of
the stubs. Since the algorithm chooses stubs without any particular order preference, each
configuration in R(Gd) is generated with equal probability. However, the probability to match
an out-stub of i to an in-stub of j at a given step of the algorithm depends on the partial
configuration constructed so far. Hence the order in which the matches are chosen, influences
the probability of generating a configuration M. Let for a given M ∈ R(Gd), S (M) be the
set of all the orderings N in which the configuration can be created. Because the configuration
already determines the match for each in-stub, an ordering of M can be thought of as an
enumeration of edges N = (e1, e2, . . . , em) , ei ∈ E, defining which in-stub gets matched first,
which second, etc. There are m! different orderings of the configuration M. This implies that

PA(Gd) =

n∏

i=1

d−i !

n∏

i=1

d+i !
∑

N∈S(M)

PA (N) .

5

Hence, we further investigate PA (N). If the algorithm has constructed the first r elements
of N , it is said to be at step r ∈ {0, 1, . . . ,m − 1}. There is no step m, as the algorithm

terminates immediately after constructing the mth edge. Let d−i
(r)

(respectively d+i
(r)

) denote
the number of unmatched in-stubs (out-stubs) of the vertex i at step r. Let Er be the set of
admissible edges that can be added to the ordering at step r,

Er :=
{
(i, j) | i, j ∈ V, d+i

(r)
> 0, d−j

(r)
> 0, i 6= j, (i, j) /∈ {e1, e2 . . . , er}

}
.

With this notation in mind, we write the probability of generating the entire ordering N as

PA(N) =
m−1∏

r=0

P [er+1|e1, . . . , er] ,

where

P [er+1 = (i, j)|e1, . . . , er] =
1− d+i d

−
j

2m∑
(u,v)∈Er

d+u
(r)
d−v

(r)
(
1− d+u d

−
v

2m

) .

Here we slightly abuse the notation as this is the conditional probability that a given out-stub
of i is matched with a given in-stub of j, rather than the conditional probability that the edge
(i, j) is created. The probability that the algorithm generates the graph Gd can be written
as

PA(Gd) =
n∏

i=1

d−i !
n∏

i=1

d+i !
∏

(i,j)∈Gd

(
1−

d+i d
−
j

2m

)
∑

N∈S(M)

m−1∏

r=0

1

(m− r)2 −Ψr(N)
, (2)

where

Ψr (N) =
∑

(u,v)/∈Er

d+u
(r)
d−v

(r)
+

∑

(u,v)∈Er

d+u
(r)
d−v

(r)d+u d
−
v

2m
. (3)

By comparing the expression (2) with the statement of Theorem 2.1, we observe that the
proof will be completed if we show that for some ψr, which we define in section 2.2, there
holds

∑

N∈S(M)

m−1∏

r=0

1

(m− r)2 −Ψr(N)
= [1 + o(1)]m!

m−1∏

r=0

1

(m− r)2 − ψr
, (4)

and
m−1∏

r=0

1

(m− r)2 − ψr
= [1 + o(1)]

m−1∏

r=0

1

(m− r)2
e

∑n
i=1 d

−
i
d+
i

m
−

∑n
i=1(d

−
i

)2+(d+
i

)2

2m
+

∑n
i=1(d

−
i

)2
∑n
i=1(d

+
i

)2

4m2 ×

e

∑
(i,j)∈G

d
d+
i
d−
j

2m
+ 1

2 .
(5)

Indeed, combining the latter two equations with (2) and using that 1−x = e−x+O(x2) we find:

PA(Gd) = [1 + o(1)]m!
∏n

i=1 d
−
i !
∏n

i=1 d
+
i !
∏m−1

r=0
1

(m−r)2
e

∑n
i=1 d

−
i
d+
i

m
−

∑n
i=1(d

−
i

)2+(d+
i

)2

2m
+

∑n
i=1(d

−
i

)2
∑n
i=1(d

+
i

)2

4m2 + 1
2 ,

which coincides with the statement of Theorem 2.1. Thus proving equations (4) and (5)
suffices to show validity of Theorem 2.1.

6

2.2 Defining ψr

The quantity Ψr (N) is defined as a function of N . We abbreviate Ψr (N) by Ψr whenever N
follows from the context. It can also be viewed as a function on the subgraph of Gd induced
by the first r elements the ordering N , which we denote by GNr . Hence, when taking the
expected value of Ψr over all orderings, we look at a random subgraph of Gd with exactly r
edges. Closely related to this is the Gpr model where we take a subgraph of Gd where each
edge is present with probability pr = r

m . We define ψr = Epr [Ψr]. In the remainder of this
section we will determine the value of ψr. To achieve this, let us first have a closer look at
Ψr.

We split Ψr into a sum of two terms:

Ψr = ∆r + Λr,

with

∆r =
∑

(u,v)/∈Er

d+u
(r)
d−v

(r)
and Λr =

∑

(u,v)∈Er

d+u
(r)
d−v

(r) d+u d
−
v

2m
. (6)

Note that ∆r counts the number of unsuitable pairs, i.e. the number of pairs of the unmatched
in-stubs with out-stubs that induce a self-loop or multi-edge. In the sequel we refer to a
combination of an unmatched in- and out-stub as a pair. To simplify the analysis of ∆r and
Λr, they are also written as a sum of several quantities. Hence we further split

∆r = ∆1
r +∆2

r

where

∆1
r =

n∑

i=1

d−i
(r)
d+i

(r)
(7)

is the number pairs creating a self-loop, and

∆2
r = ∆r −∆1

r , (8)

is the number of pairs creating a double edge. The quantity Λr is also split into two terms:

Λr =
Λ1
r
+
Λ1
r
− − Λ2

r

4m
− Λ3

r

2m
, (9)

with

Λ1
r
+
=

n∑

i=1

d+i
(r)
d+i , Λ1

r
−
=

n∑

i=1

d−i
(r)
d−i , (10)

Λ2
r =

n∑

i=1

d+i
(r)
d+i d

−
i
(r)
d−i and (11)

Λ3
r =

∑

(u,v)/∈Er
u 6=v

d+u
(r)
d−v

(r)
d+u d

−
v . (12)

We will now derive several bounds on the latter quantities, to be used in Section 2.4.

7

Lemma 2.3. For all 0 ≤ r ≤ m− 1 there holds:

(i) ∆r ≤ (m− r)d2max;

(ii) Λ1
r
+ ≤ dmax(m− r), Λ1

r
− ≤ dmax(m− r);

(iii) Λr ≤ d2max
2m (m− r)2.

Proof. (i) At step r, there are m − r unmatched in-stubs left. Each unmatched in-stub
can form a self-loop by connecting to an unmatched out-stub of the same vertex. The
number of unmatched out-stubs at each vertex is upper bounded by dmax, hence ∆1

r ≤
(m− r)dmax. The vertex to which an unmatched in-stub belongs has at most dmax − 1
incoming edges. The source of such an edge has at most dmax − 1 unmatched out-
stubs left. Thus the number of out-stubs an unmatched in-stub can be paired with
to create a double edge is at most (dmax − 1)2. Hence ∆2

r ≤ (m − r)(dmax − 1)2 and
∆r = ∆1

r +∆2
r ≤ (m− r)d2max.

(ii) By definition, Λ1
r
+

=
∑n

i=1 d
+
i
(r)
d+i . As

∑n
i=1 d

+
i
(r)

= m − r and d+i ≤ dmax for all i,

this implies that Λ1
r
+ ≤ dmax(m− r) and Λ1

r
− ≤ dmax(m− r).

(iii) By definition, Λr =
∑

(u,v)∈Er
d+u

(r)
d−v

(r) d+u d
−
v

2m ≤ d2max
2m

∑
(u,v)∈Er

d+u
(r)
d−v

(r)
.

Since
∑n

i=1 d
+
u
(r)

= m− r and d−v
(r) ≤ (m− r) for all v, the claim follows.

We will now determine the expected values of ∆1
r,∆

2
r,Λ

1
r
+
,Λ1

r
−
,Λ2

r and Λ3
r in the Gpr

model, and, by combining this values together, will write the expression for ψr.

Lemma 2.4. For each 0 ≤ r ≤ m− 1 the following equations hold:

(i) Epr

[
∆1

r

]
= (m−r)2

m2

∑n
i=1 d

+
i d

−
i ;

(ii) Epr

[
∆2

r

]
= r(m−r)2

m3

∑
(i,j)∈Gd

(d+i − 1)(d−j − 1);

(iii) Epr

[
Λ1
r
−
Λ1
r
+
]
= (m−r)2

m2

∑n
i=1(d

−
i)

2
∑n

i=1(d
+
i)

2 + r(m−r)
m2

∑
(i,j)∈Gd

d+i d
−
j ;

(iv) Epr

[
Λ2
r

]
= (m−r)2

m2

∑n
i=1(d

−
i)

2(d+i)
2;

(v) Epr

[
Λ3
r

]
= r(m−r)2

m3

∑
(i,j)∈Gd

d+i (d
+
i − 1)d−j (d

−
j − 1).

Proof. (i) The value of d+i
(r)

equals the number of edges (i, •) ∈ Gd, such that (i, •) /∈ Gpr .

Since pr =
r
m , we have Epr

[
d±i

(r)
]
= d±i

m−r
m . Furthermore, since Gd is simple, it contains

no self-loops. This implies that d−i
(r)

and d+i
(r)

are independent. Using the fact that

∆1
r =

∑n
i=1 d

−
i
(r)
d+i

(r)
, we find Epr

[
∆1

r

]
= (m−r)2

m2

∑n
i=1 d

+
i d

−
i .

(ii) ∆2
r counts the number of pairs leading to a double edge. Choose a random (i, j) ∈ Gd.

To add an additional copy of this edge at step r, the edge must be already present in
Gpr , which happens with probability pr. Let a pair of edges (i, k), (l, j) be in Gd but not

8

in Gpr . This means that in Gpr there are unmatched in-stubs and out-stubs such that
one could instead form the edges (i, j) and (l, k), creating a double edge. The number

of combinations of such l and k, is (d+i
(r) − 1)(d−j

(r) − 1). By taking the expected value
of this value, summing it over all edges of Gd and multiplying it by the probability pr
that (i, j) ∈ Gpr , the claimed expected value of ∆2

r follows.

(iii) Remark that Λ1
r
−
Λ1
r
+
=
∑n

j=1

∑n
i=1 d

+
i
(r)
d−j

(r)
d+i d

−
j , which implies that

Epr

[
Λ1
r
−
Λ1
r
+
]
=

n∑

j=1

n∑

i=1

Epr

[
d+i

(r)
d−j

(r)
]
d+i d

−
j .

The random variables d+i
(r)

and d−j
(r)

are independent, unless (i, j) ∈ Gd. Indeed, d
+
i
(r)

(respectively d−j
(r)

) is the sum of d+i (d−j) independent Bernoulli variables representing
the out-stubs (in-stubs). If (i, j) ∈ Gd, one fixed in-stub of j forms an edge with a fixed
out-stub of i. This implies that the corresponding Bernoulli variables always need to take
on the same value. Let us denote these Bernoulli variables by d+ij and d

−
ji
. Now that we

have characterised the dependence between d+i
(r)

and d−j
(r)

, we are ready to determine

Epr

[
d+i

(r)
d−j

(r)
]
= Epr

[
d+i

(r)
]
Epr

[
d−j

(r)
]
+ Cov

(
d+i

(r)
d−j

(r)
)
. As already explained in

(i) Epr

[
d+i

(r)
]
E

[
d−j

(r)
]
= (m−r)2

m2 d+i d
−
j . For the covariance there holds

Cov
(
d+i

(r)
d−j

(r)
)
=

{
0 if (i, j) /∈ Gd

Cov
(
d+ijd

−
ji

)
if (i, j) ∈ Gd

.

The covariance of any random variable X and a Bernoulli variable Y with expectation p∗

equals: Cov (X,Y) = (E [X|Y = 1]− E [X|Y = 0]) p∗(1− p∗). Applying this to X = d+ij
and Y = d−ji , their covariance becomes r(m−r)

m2 . Thus there holds

Epr

[
d+i

(r)
d−j

(r)
]
=

{
(m−r)2

m2 d+i d
−
j if (i, j) /∈ Gd

(m−r)2

m2 d+i d
−
j + r(m−r)

m2 if (i, j) ∈ Gd

.

Plugging this back into the expression for Epr

[
Λ1
r
−
Λ1
r
+
]
the desired equation follows.

(iv) Recall that Λ2
r =

∑n
i=1 d

−
i
(r)
d+i

(r)
d−i d

+
i . In the proof of (i) we have already showed that

Epr

[
d−i

(r)
d+i

(r)
]
= d+i d

−
i

(m−r)2

m2 . Hence Epr

[
Λ2
r

]
= (m−r)2

m2

∑n
i=1 d

−
i
2
d+i

2
.

(v) From equation (12) it follows that Λ3
r =

∑
(i,j)/∈Er ,i 6=j d

+
i d

−
j d

+
i
(r)
d−j

(r)
.

Since that ∆2
r =

∑
(i,j)/∈Er,i 6=j d

+
i
(r)
d−j

(r)
we can use the proof of (ii). This implies each

edge (i, j) ∈ Gd contributes (m−r)2

m2

rd+i (d
+
i −1)d−j (d−j −1)

m to the sum, proving the claim.

Next, we will use the following asymptotic estimates,

9

a)
∑n

i=1

(
d−i
)s

=
∑

(i,j)∈Gd

(
d−i
)s−1

= O
(
mds−1

max

)
,

b)
∑n

i=1

(
d+i
)t

=
∑

(i,j)∈Gd

(
d+i
)t−1

= O
(
mdt−1

max

)
,

c)
∑n

i=1

(
d−i
)s (

d−i
)t

=
∑

(i,j)∈Gd

(
d−i
)s−1 (

d+i
)t

= O
(
mds+t−1

max

)
,

to obtain and approximation of ψr that we will work with. Combing these estimates with
Lemma 2.4 we find

Epr

[
Λ1
r
−
Λ1
r
+

4m

]
=

(m− r)2

4m3

n∑

i=1

(d−i)
2

n∑

i=1

(d+i)
2 + (m− r)2O

(
rd2max

(m− r)m2

)
,

Epr

[
Λ2
r

4m

]
= (m− r)2O

(
d3max

m2

)
and Epr

[
Λ3
r

2m

]
= (m− r)2O

(
r
d4max

m3

)
.

This allows us to state the following Lemmas, which will be useful in Sections 2.3 and 2.4.

Lemma 2.5. For all 0 ≤ r ≤ m− 1 there holds:

ψr = (m− r)2

∑n

i=1 d
−
i d

+
i

m2
+
r
∑

(i,j)∈Gd

(
d+i − 1

) (
d−j − 1

)

m3
+

∑n
i=1(d

−
i)

2
∑n

i=1(d
+
i)

2

4m3
+ ξr

 ,

(13)

with error term ξr = O
(
d3max
m2 + rd2max

(m−r)m2 + rd4max
m3

)
.

Lemma 2.6. For each 0 ≤ r ≤ m−1 the quantity ψr is upper bounded by O
(
(m− r)2 d

2
max
m

)
.

Proof. Combing equation (13) with the asymptotic estimate

n∑

i=1

(
d−i
)s (

d−i
)t

=
∑

(i,j)∈Gd

(
d−i
)s−1 (

d+i
)t

= O
(
mds+t−1

max

)

we find that ψr = (m− r)2O
(
dmax
m + rd2max

m2 + d2max
4m + rd2max

(m−r)m2 + d3max
m3 + rd4max

m3

)
, and since r ≤

m and d2max = o(m), the latter equation becomes

ψr = (m− r)2O
(
d2max

m

)
.

10

2.3 Proving equation (5)

With help of Lemmas 2.5 and 2.6 we are now ready to prove equation (5). We start by
multiplying the left hand side of equation (5) by

∏m−1
r=0 (m− r)2. This leads to

m−1∏

r=0

(m− r)2

(m− r)2 − ψr
=

m−1∏

r=0

(
1 +

ψr

(m− r)2 − ψr

)
.

Applying Lemma 2.5 to the numerator and Lemma 2.6 to the denominator we the right hand
side of the later equation becomes:

exp

m−1∑

r=0

ln

1 +

∑n
i=1 d

−
i d+i

m2 +
r
∑

(i,j)∈Gd
(d+i −1)(d−j −1)
m3 +

∑n
i=1(d

−
i)2

∑n
i=1(d

+
i)2

4m3 + ξr

1−O
(
d2max
m

)

 .

and after using that O
(
d2max
m

)
= O

(
1

m1/2+2τ

)
and some asymptotic expansions, we obtain:

m−1∏

r=0

(m− r)2

(m− r)2 − ψr
= [1 + o(1)] exp

[∑n
i=1 d

−
i d

+
i

m
−
∑n

i=1(d
−
i)

2 +
∑n

i=1(d
+
i)

2

2m
+

∑n
i=1(d

−
i)

2
∑n

i=1(d
+
i)

2

4m2
+

∑
(i,j)∈Gd

d+i d
−
j

2m
+

1

2

]
,

which proves equation (5).

2.4 Proving equation (4)

Let us define

f(N) :=

m−1∏

r=0

(m− r)2 − ψr

(m− r)2 −Ψr
. (14)

Then equation (4) becomes equivalent to

E [f(N)] = 1 + o(1), (15)

which we will demonstrate instead in the remainder of this section. We start by rewriting the
latter expectation as a sum of expected values

E [f(N)] = E [f(N)1A] + E [f(N)1B] + E [f(N)1C] + E
[
f(N)1S(M)\S∗(M)

]
,

of mutually disjoint subsets covering S (M) in the following fashion.

Partitioning S (M) The set of orderings S (M) is partitioned as follows:

1. For a small number 0 ≤ τ ≤ 1
3 , such that dmax = O

(
m1/4−τ

)
, we define

S∗ (M) =
{
N ∈ S (M) |Ψr (N)− ψr ≤

(
1− τ

4

)
(m− r)2 ,∀ 0 ≤ r ≤ m− 1

}
, (16)

and let S (M) \ S∗ (M) be the first element of the partition.

11

2. As the second element of the partition we take

A =
{
N ∈ S∗ (M) |Ψr (N)− ψr > Tr

(
ln(n)1+δ

)
,∀ 0 ≤ r ≤ m− 1

}
, (17)

where the family of functions Tr is defined bellow, see equation (25), and δ is a small
positive constant, e.g. 0 < δ < 0.1.

3. The next element of the partition is chosen from S∗ (M) \ A to be

B =
{
N ∈ S∗ (M) \ A | ∃0 ≤ r ≤ m− 1, s.t.m− r ≤ ln(n)1+2δ andΨr (N) > 1

}
.

(18)

4. We define as last element as the complement

C = S∗ (M) \ (A ∪ B) . (19)

We will now show that the following asymptotic estimates hold

E (f(N)1A) = o(1); (20)

E (f(N)1B) = o(1); (21)

E (f(N)1C) ≤ 1 + o(1); (22)

E (f(N)1C) ≥ 1− o(1); (23)

E
(
f(N)1S(M)\S∗(M)

)
= o(1). (24)

Since E [f(N)] is as sum of the above expected values, it remains to introduce suitable defi-
nitions for Tr and prove equations (20)-(24) to finish the proof of (15).

The family of functions Tr. We define the family of functions Tr : R≥0 → R≥0 indexed
by r ∈ {0, 1, . . . ,m− 1} as follows

Tr (λ) :=

{
4βr (λ) + 2min (γr(λ), νr) if m− r ≥ λω,
λ2

ω2 , otherwise,
(25)

with

βr (λ) := c
√
λ (md2maxq

2
r + λ2) (d2maxqr + λ), (26)

γr (λ) := c
√
λ (md2maxq

3
r + λ3) (d2maxq

2
r + λ2), (27)

νr := 8md2maxq
3
r , (28)

ω := ln(n)δ, (29)

qr :=
m− r

m
= 1− pr. (30)

The quantity c is a large positive constant, which will be defined later, and qr is the probability
that an edge of Gd is not present in Gpr . The intuition behind the definition of this family of
functions will become apparent in the remainder of this section. Let λ0 := ω ln(n) and λi :=
2iλ0 for all i ∈ {1, 2, . . . , L}, where L is the unique integer such that λL−1 < cdmax ln(n) ≤ λL.
There holds the following relation between Tr (λi) and Tr (λi−1).

12

Lemma 2.7. For all 0 ≤ r ≤ m− 1 and i ∈ {1, 2, . . . , L} there holds

Tr (λi) ≤ 8Tr (λi−1) .

Proof. As the function Tr is defined piecewise, we distinguish three cases:

1. Suppose m− r < λiω and m− r < λi−1ω.
Then

Tr(λi) =
λ2i
ω2

=
4λ2i−1

ω2
<

8λ2i−1

ω2
= 8Tr(λi−1),

showing that Tr (λi) ≤ 8Tr (λi−1).

2. Suppose m− r < λiω and m− r ≥ λi−1ω.

Then by definition of Tr there holds Tr (λi) =
4λ2
i−1

ω2 and Tr (λi−1) ≥ 4βr (λi−1) ≥ 4cλ2i−1.
Hence we find Tr (λi) ≤ Tr (λi−1).

3. Suppose m− r ≥ λiω and m− r ≥ λi−1ω.
Then by definition of Tr, there holds Tr (λi) = 4βr (λi)+2min (γr(λi), νr) and Tr (λi−1) =
4βr (λi−1) + 2min (γr(λi−1), νr). Both βr (λ) and γr (λ) are square roots of a 6th-order
polynomial in λ. As λi = 2λi−1 and

√
26 = 8, this implies that βr (λi) ≤ 8βr (λi−1) and

γr (λi) ≤ 8γr (λi−1). Hence there holds Tr (λi) ≤ 8Tr (λi−1).

This completes the proof, because m − r ≥ λiω and m − r < λi−1ω never holds, as λi >
λi−1.

In order to prove equations (20) and (21) we subpartition A and B. Let us define the
chain of subsets A0 ⊂ A1 ⊂ . . . ⊂ AL ⊂ S∗ (M) with

Ai = {N ∈ S∗ (M) |Ψr (N)− ψr < Tr (λi) ,∀0 ≤ r ≤ m− 1} . (31)

To ensure that we cover S∗ (M) entirely, we also introduce

A∞ = S∗ (M) \ AL = {N ∈ S∗ (M) | ∃ 0 ≤ r ≤ m− 1, s.t. Ψr (N)− ψr ≥ Tr (λL)}. (32)

Now equation (17) implies that

A = S∗ (M) \ A0 = ∪L
i=1Ai \ Ai−1

⋃
A∞.

Next, we partition A0. The goal of this partition is to write B as the union of some smaller
sets. As N ∈ A0 for all 0 ≤ r ≤ m− 1 such that r ≥ m− ωλ0 there holds

Ψr (N) < Tr(λ0) + ψr = ln(n)2 + ψr.

According to Lemma 2.6 for all m− 1 ≥ r ≥ m−ωλ0, ψr = o(1). Hence there exists some n0
such that for all n > n0:

Ψr (N) < ln(n)2 + 1.

Without loss of generality we may assume that n > n0. Let K be the unique integer such
that

2K−1 < ln(n)2 + 1 ≤ 2K . (33)

13

Then for all r ≥ m− ωλ0:

Ψr ≤ 2K .

This allows us to define the chain of subsets B0 ⊂ B1 ⊂ . . . ⊂ BK = A0, with

Bj =
{
N ∈ A0|Ψr (N) < 2j ,∀r ≥ m− ωλ0

}
. (34)

From equations (18) and (19) it immediately follows that

B = ∪K
i=1Bi \Bi−1 and C = B0.

These descriptions of A,B and C enable us to show validity of equations (20), (21), (22) and
(23). First, we prove equation (20). The proof also contains statements that hold for any
ordering in S∗ (M), which are also used in the proof of equations (21), (22) and (23). We
finish with the proof of equation (24), which requires a different technique as it concerns all
orderings not in S∗ (M).

Proving equation (20) Based on the definition of A in terms of Ai’s and A∞, we now
prove equation (20). For this we use the following Lemmas.

Lemma 2.8. For all 1 ≤ i ≤ L there holds

(a) P [N ∈ Ai \ Ai−1] ≤ e−Ω(λi);

(b) For all N ∈ Ai \Ai−1 there holds f(N) ≤ eo(λi).

Lemma 2.9. For a large enough constant c there holds

(a) P [N ∈ A∞] ≤ e−Ω(cdmax ln(n));

(b) For all N ∈ A∞ there holds f(N) ≤ e72dmax ln(n).

Together these lemmas imply that

E [f(N)1A] ≤
L∑

i=1

e−Ω(λi)eo(λi) + e−Ω(cdmax ln(n))e72dmax ln(n) = o(1),

thus proving equation (20).
First, we prove Lemma 2.8 (a) and Lemma 2.9 (a). This is done by showing a stronger

statement,
P
[
N ∈ Ac

i−1

]
≤ e−Ω(λi),

for all i ∈ {0, 1, . . . , L}. This statement is indeed stronger than the statements of Lemma
2.8 (a) as (Ai \ Ai−1) ⊂ (S (M) \ Ai−1). This observation is also relevant for Lemma 2.9 (a)
since A∞ ∈ Ac

L and λL ≥ cdmax ln(n). Combining the definition of Ai−1 with Lemma 2.7, we
find

Ac
i−1 ⊂

{
N ∈ S (M) |∃ 0 ≤ r ≤ m− 1 s.t. Ψr (N)− ψr >

Tr (λi)

8

}
.

14

This implies that to prove Lemma 2.8 (a) and Lemma 2.9 (a), it suffices to show that for all
i ∈ {0, 1, . . . , L} and 0 ≤ r ≤ m− 1,

P

[
|Ψr − ψr| ≥

Tr (λi)

8

]
≤ e−Ω(λi). (35)

Determining the value of Ψr is more challenging than the value of Ψpr in random graph model
Gpr , where each edge is present with probability pr. As mentioned in Section 2.2, the graph
GNr is a random subgraph of Gd with exactly r edges for a random ordering N ∈ S (M).
Denoting the number of edges in Gpr by E [Gpr] we find:

P

[
|Ψr − ψr| ≥

Tr (λi)

8

]
=

P

[
|Ψpr − ψr| ≥ Tr(λi)

8 ∩ |E [Gpr]| = r
]

P [|E [Gpr]| = r]
≤

P

[
|Ψpr − ψr| ≥ Tr(λi)

8

]

P [|E [Gpr]| = r]
.

Bayati, Kim and Saberi showed the following bound on the probability that the random graph
Gpr contains exactly r edges.

Lemma 2.10. ([15, Lemma 21]) For all 0 ≤ r ≤ m there holds P [|E [Gpr]| = r] ≥ 1
n .

Using this Lemma we obtain

P

[
|Ψr − ψr| ≥

Tr (λi)

8

]
≤ n · P

[
|Ψpr − ψr| ≥

Tr (λi)

8

]
.

As λi = 2i ln(n)1+δ ≫ ln(n), there holds ne−Ω(λi) = e−Ω(λi)+ln(n) = e−Ω(λi). Hence, to prove
equation (35) it suffices to show that

P

[
|Ψpr − ψr| ≥

Tr (λi)

8

]
≤ e−Ω(λi).

As Tr is defined piecewise, we formulate separate Lemmas distinguishing two cases:
i) m− r < ωλi and ii) m− r ≥ ωλi.

Lemma 2.11. For all i ∈ {0, 1, . . . , L} and 0 ≤ r ≤ m− 1 such that m− r < λiω there holds

P

[
Ψpr − ψr ≥

λ2i
8ω2

]
≤ e−Ω(λi). (36)

Proof. Instead of showing the desired inequality, we show an even stronger statement:

P

[
Ψpr ≥

λ2i
8ω2

]
≤ e−Ω(λi).

Combining the fact that Ψpr ≤
λ2
i

8ω with Ψpr = ∆pr + Λpr and Lemma 2.3, we find

∆pr ≥
λ2i
8ω2

− d2maxm

2
q2r .

As mqr = m− r < ωλi and ω
4d2max <

m
5 for large n there holds

∆pr ≥
λ2i
8ω2

− d2max

2m
ω2λ2i ≥ λ2i

40ω2
.

15

Let Gqr be the complement of Gpr in Gd and define N0(u) := {v ∈ V | (u, v) ∈ Gqr} ∪ {u}.
Let d+Gqr (u) (respectively d

−
Gqr

(u)) be the out-degree (in-degree) of u in Gqr . By definition of
∆pr there holds

∆pr ≤
∑

u∈V

d+Gqr (u)
∑

v∈N0(u)

d−Gqr (v).

By combining the latter inequality with the lower bound on ∆pr we have just derived, we find

λ2i
40ω2

≤ ∆pr ≤
∑

u∈V

d+Gq (u)
∑

v∈N0(u)

d−Gq (v). (37)

This equation implies that at least one of the following statements must hold true:

(a) Gq has more than ω2λi
40 edges;

(b) for some u ∈ V there holds
∑

v∈N0(u)
d−Gq (v) ≥

λi
ω4 .

If (a) is violated, there holds
∑

u∈V d
+
Gq

(u) ≤ ω2λi
40 . If (b) is violated, for all u ∈ V there holds

∑
v∈N0(u)

d−Gq (v) <
λi
ω4 . Hence if (a) and (b) are both violated, we find

∆pr ≤
∑

u∈V

d+Gq (u)
∑

v∈N0(u)

d−Gq (v) <
ω2λi
40

λi
ω4

=
λ2i

40ω2
.

This violates equation (37). Thus it is not possible that (a) and (b) are simultaneously
violated. This implies that at least one of the statements holds. Using the proof of [15,
Lemma 20], the probabilities that statements (a) and (b) hold, are both upper bounded by

e−Ω(λi). Since Ψpr ≥ λ2
i

8ω implies that at least one of these statements holds, this completes
the proof.

Lemma 2.12. For all i ∈ {0, 1, . . . , L} and r such that m− r ≥ λiω there holds

P

[
|Ψpr − ψr| ≥

4βr(λi) + 2min(νr, γr(λi))

8

]
≤ e−Ω(λi). (38)

Recall that Ψpr = ∆1
pr +∆2

pr +
Λ1
pr

+
Λ1
pr

−
−Λ2

pr
4m − Λ3

pr
2m and that ψr equals E [Ψpr]. Thus to

prove Lemma 2.12, it suffices to concentrate ∆1
pr ,∆

2
pr ,Λ

1
pr

+
Λ1
pr

−
,Λ2

pr and Λ3
pr around their

expected values with probability e−Ω(λi) such that the difference between their sum and the
sum of their expected values is smaller than 4βr(λi)+2min(νr ,γr(λi))

8 . This is shown using Vu’s
concentration inequality.

Theorem 2.13. [Vu’s concentration inequality [36]] Consider independent random variables
t1, t2, . . . , tn with arbitrary distribution in [0, 1]. Let Y (t1, t2, . . . , tn) be a polynomial of degree
k with coefficients in (0, 1]. For any multi-set A let ∂AY denote the partial derivative with
respect to the variables in A. Define Ej(Y) = max|A|≥j E (∂AY) for all 0 ≤ j ≤ k. Recursively

define c1 = 1, d1 = 2, ck = 2
√
k (ck−1 + 1) , dk = 2 (dk−1 + 1). Then for any E0 > E1 > . . . >

Ek = 1 and λ fulfilling

16

i) Ej ≥ Ej (Y);

ii)
Ej

Ej−1
≥ λ+ 4j ln(n) for all 0 ≤ j ≤ k − 1;

there holds

P

[
|Y − E [Y]| ≥ ck

√
λE0E1

]
≤ dke

−λ/4.

Lemma 2.14. For all i ∈ {0, 1, . . . , L} and 0 ≤ r ≤ m− 1 there holds:

(i) P

[∣∣∆1
pr − E

[
∆1

pr

]∣∣ ≥ βr(λi)
8

]
≤ e−Ω(λi);

(ii) P

[∣∣∆2
pr − E

[
∆2

pr

]∣∣ ≥ min(βr(λi)+γr(λi),βr(λi)+νr)
8

]
≤ e−Ω(λi);

(iii) P

[∣∣∣∣
Λ1
pr

−
Λ1
pr

+
−Λ2

pr
4m − E[Λ1

pr
−
Λ1
pr

+
−Λ2

pr]
4m

∣∣∣∣ ≥
βr(λi)

8

]
≤ e−Ω(λi);

(iv) P

[∣∣∣∣
Λ3
pr

2m − E[Λ3
pr]

2m

∣∣∣∣ ≥
min(βr(λi)+γr(λi),βr(λi)+νr)

8

]
≤ e−Ω(λi).

Proof. To prove each of the above equations, we write the quantity as a polynomial and apply
Theorem 2.13 to it. This polynomial will be a function of m Bernoulli variables. Each variable
te represents an edge e ∈ Gd, that is if e ∈ Gpr then te = 0 and if e /∈ Gpr , te = 1. Remark
that by definition of Gpr , see Section 2.2, there holds E [te] = qr for all e. Also by definition
of Gpr , the variables te are independent of each other.

(i) Recall that ∆1
pr counts the number of pairs creating a self-loop. Each vertex v has

d−v in-stubs and d+v out-stubs. The number of those out-stubs (respectively in-stubs)
that are matched equals the number of outgoing (incoming edges) for v in Gpr . Thus
the number of unmatched in-stubs (respectively out-stubs) of vertex v is

∑
e=(•,v)∈Gd

te(∑
e=(v,•)∈Gd

te

)
. The number of ways to create a self-loop at v is

∑

e=(v,•)∈Gd

∑

f=(•,v)∈Gd

tetf .

Hence we find

∆1
pr =

∑

v∈V

∑

e=(v,•)∈Gd

∑

f=(•,v)∈Gd

tetf . (39)

Vu’s concentration inequality requires us to upper bound the values E0

[
∆1

pr

]
,E1

[
∆1

pr

]

and E2

[
∆1

pr

]
. Let us first consider the expectation of ∆1

pr . Because Gd is simple,
for each element of the summation in equation (39) e does not equal f . Therefore
E[tetf] = q2r . The summations over v and e in equation (39), can be replaced by one
summation over all edges in Gd. For each edge e ∈ Gd, there are at most dmax edges
in Gd with the source of e as target. Hence we find E

[
∆1

pr

]
≤ mdmaxq

2
r . Let us

take the partial derivative with respect to one variable te for some e = (u, v), then we
obtain

∑
f=(•,u)∈Gd

tf +
∑

f=(v,•)∈Gd
tf . This is upper bounded by 2dmaxqr. As ∆1

pr is

17

a polynomial of degree 2 with all coefficients 1, it is clear that E
[
∂te∂tf∆

1
pr

]
≤ 1 for all

e, f . Thus we find

E0

[
∆1

pr

]
≤ max

(
1, 2dmaxqr,mdmaxq

2
r

)
, E1

[
∆1

pr

]
≤ max (1, 2dmaxqr) , and E2

[
∆1

pr

]
≤ 1.

The maximization follows from the definition of Ej(Y). Let us define,

E0 := 9λ2i + 2mdmaxq
2
r , E1 := 9λi + 2dmaxqr and E2 := 1.

We claim that together with λ = λi, they fulfil the conditions of Theorem 2.13. It is
obvious that E2 ≥ E2

[
∆1

pr

]
. Also E1 ≥ E1

[
∆1

pr

]
as λi ≥ 1 for all n ≥ 3. Furthermore

E0 ≥ E0

[
∆1

pr

]
as λi ≥ 1 and mqr = m− r implies that 2mdmaxq

2
r ≥ 2dmaxqr. This shows

the first condition of Theorem 2.13. For the second condition remark that λi ≥ ln(n)
and ln(m) ≤ 2 ln(n) as m ≤ n2. This implies

E1
E2

= E1 ≥ λi + 4 ln(m).

Furthermore, there holds

E0
E1

= λi

9λi +

2dmaxmq2r
λi

9 + 2dmaxqr
λi

 ≥ λi,

showing that the second condition of Theorem 2.13 is fulfilled as well. Thus we may
apply Vu’s concentration inequality to obtain

P

[∣∣∆1
pr − E

[
∆1

pr

]∣∣ ≥ c2

√
λi (9λi + 2dmaxqr)

(
9λ2i + 2mdmaxq2r

)]
≤ e−Ω(λi).

Since P
[∣∣∆1

pr − E
[
∆1

pr

]∣∣ ≥ a
]
≤ P

[∣∣∆1
pr − E

[
∆1

pr

]∣∣ ≥ b
]
for a > b, choosing any c >

8 · 9c2 in equation (26) completes the proof.

(ii) Recall that ∆2
pr counts the number of pairs that create an edge already present in Gpr ,

i.e. a double edge. Pairing an out-stub of u with an in-stub of v creates a double edge
only if (u, v) ∈ Gpr , i.e. if for e = (u, v), te = 1. Recalling the expressions for the number
of unmatched in-stubs and out-stubs at a vertex v from the proof of (i) and defining a
set of non-cyclic three-edge line subgraphs,

Q = {(e, f, g)|e, f, g ∈ Gd, e 6= f, f 6= g, e 6= g, f = (u, v), e = (u, •), g = (•, v)} ,

we find

∆2
pr =

∑

(e,f,g)∈Q

tetg(1− tf) =
∑

(e,f,g)∈Q

tetg −
∑

e,f,g∈Q

tetgtf = Y1 − Y2.

Vu’s inequality will be applied to Y1 and Y2 separately. To upper bound the expected
value of Y1, we need an upper bound on the size of Q. Given f , the source of e and
the target of g are fixed. Hence there are at most d2max triples in Q with a fixed edge

18

f . As f may be any edge, |Q| ≤ md2max. Together with E [tetg] = q2r this implies that
E [Y1] ≤ md2maxq

2
r . We differentiate Y1 with respect to tẽ, to obtain:

∑

(e,f,g)∈Q
e=ẽ

tg +
∑

(e,f,g)∈Q
g=ẽ

te.

Since
∑

(e,f,g)∈Q
e=ẽ

1 ≤ d2max and
∑

(e,f,g)∈Q
g=ẽ

1 ≤ d2max,

we have E [∂tẽY1] ≤ 2d2maxqr, and since Y1 is a polynomial of degree 2 with all coefficients
equal to 1, all second derivatives are at most 1. Together, these observations yield:

E0 [Y1] ≤ max
(
1, 2d2maxqr,md

2
maxq

2
r

)
, E1 [Y1] ≤ max

(
1, 2d2maxqr

)
and E2 [Y1] ≤ 1.

Similar to (i) it can be shown that λ = λi and

E0 = 9λ2i + 2md2maxq
2
r , E1 = 9λi + 2d2maxqr and E2 = 1,

fulfil the conditions of Theorem 2.13. Applying Vu’s inequality and assuming c ≥ 8 ·9c2,
we thus obtain

P

[
|Y1 − E [Y1]| ≥

βr(λi)

8

]
≤ e−Ω(λi).

Moving on to Y2, we see that E [Y2] ≤ md2maxq
3
r as |Q| ≤ md2max and E [tetf tg] = q3r .

Differentiating Y2 to with respect tẽ, we obtain

∑

(e,f,g)∈Q
e=ẽ

tf tg +
∑

(e,f,g)∈Q
f=ẽ

tetg +
∑

(e,f,g)∈Q
g=ẽ

tetf .

This implies that E [∂tẽY1] ≤ 3d2maxqr. Differentiating Y2 to with respect tẽ and t
f̃
for

ẽ 6= f̃ , we obtain

∑

(e,f,g)∈Q
e=ẽ
f=f̃

tg +
∑

(e,f,g)∈Q
e=ẽ
g=f̃

tf +
∑

(e,f,g)∈Q
f=ẽ

g=f̃

te +
∑

(e,f,g)∈Q
f=ẽ

e=f̃

tg +
∑

(e,f,g)∈Q
g=ẽ

e=f̃

tf +
∑

(e,f,g)∈Q
g=ẽ

f=f̃

te.

In each of the sums, there is freedom to choose only one edge. As the source, the
target or both are fixed for this edge, each summation is upper bounded by dmaxqr.
According to the definition of Q, at most two of the summations are non-zero, implying

that E
[
∂tẽ∂tf̃Y2

]
≤ 2dmaxqr. As Y2 is a polynomial of degree 3 and all of its coefficients

are 1, any third order partial derivative of Y2 can be at most 1. We thus find:

E0 [Y2] ≤ max
(
1, 2dmaxqr, 3d

2
maxq

2
r ,md

2
maxq

3
r

)
, E1 [Y2] ≤ max

(
1, 2dmaxqr, 3d

2
maxq

2
r

)
,

E [Y2] ≤ max (1, 2dmaxqr) and E3 [Y2] ≤ 1.

19

Vu’s inequality is applied to Y2 using λ = λi and

E0 = 85λ3i + 3md2maxq
3
r , E1 = 85λ2i + 3d2maxq

2
r , E2 = 17λi + 2dmaxqr and E3 = 1,

to obtain

P

[
|Y2 − E [Y2]| ≥ 85c3

√
λi
(
λ2i + d2maxq

2
r

) (
λ3i +md2maxq

3
r

)]
≤ e−Ω(λi).

If we choose c large enough, this implies that

P

[∣∣∆2
pr − E

[
∆2

pr

]∣∣ ≥ βr(λi) + γr(λi)

8

]
≤ e−Ω(λi).

Next, remark that
∣∣∆2

pr − E
[
∆2

pr

]∣∣ = |Y1 − Y2 − E [Y1] + E [Y2]| ≤ |Y1 − E [Y1]|+ E [Y2]

≤ |Y1 − E [Y1]|+md2maxq
3
r = |Y1 − E [Y1]|+

νr
8
.

This implies that there also holds

P

[∣∣∆2
pr − E

[
∆2

pr

]∣∣ ≥ βr(λi) + νr
8

]
≤ e−Ω(λi),

completing the proof.

(iii) To prove that P

[∣∣∣∣
Λ1
pr

−
Λ1
pr

+
−Λ2

pr
4m − E[Λ1

pr
−
Λ1
pr

+
−Λ2

pr]
4m

∣∣∣∣ ≥
βr(λi)

8

]
≤ e−Ω(λi), Vu’s inequality

is applied to
Λ1
pr

+
Λ1
pr

−

d2max
and

Λ2
pr

d2max
separately. The construction is almost identical to the

proofs of (i) and (ii). First consider

Λ1
pr

+
Λ1
pr

−

d2max

=

∑n
i=1 d

−
i
(r)
d−i
∑n

i=1 d
+
i
(r)
d+i

d2max

=

 ∑

e=(u,v)∈Gd

d−u
dmax

te

 ∑

f=(w,z)∈Gd

d+z
dmax

tf

=

 ∑

e=(u,v)∈Gd

d−u d
+
v

d2max

t2e

+

∑

e=(u,v)∈Gd

f=(w,z)∈Gd

e 6=f

d−u d
+
z

d2max

tetf = Z1 + Z2.

Start with Z1. This is a polynomial of degree one, as for a Bernoulli variable there
holds t2e = te. Since its coefficients are at most 1, it is clear that any first order partial
derivative of Z1 is upper bounded by 1. The expected value of Z1 is upper bounded by
mqr. This implies that,

E0 [Z1] ≤ max (1,mqr) and E1 [Z1] ≤ 1.

Hence, E0 = mqr+λi and E1 = 1, satisfy the constraints of Theorem 2.13 with λ = λi
. Applying this theorem we find

P

[
|Z1 − E [Z1]| ≥ c1

√
λi (λi +mqr)

]
≤ e−Ω(λi).

20

Next, consider Z2. This is a sum over all pairs of distinct edges, hence it contains

fewer than m2 terms. Combining this with d−u d+z
d2max

≤ 1 and E [tetf] = q2r , we find that

E [Z2] ≤ m2q2r . Taking the partial derivative with respect to a variable tg and writing
g = (i, j) leads to

∑

f=(w,z)∈Gd

f 6=g

d−i d
+
z

d2max

tf +
∑

e=(u,v)∈Gd

e 6=g

d−u d
+
j

d2max

te.

Each term of the summations is upper bounded by qr. Each summation contains m− 1
terms. Thus we find: E

[
∂tgZ2

]
≤ 2mqr. As Z2 is a second order polynomial with

coefficients upper bounded by 1, all second order partial derivatives will be at most 1.
Combining these observations we find:

E0 [Z2] ≤ max
(
1, 2mqr,m

2q2r
)
, E1 [Z2] ≤ max (1, 2mqr) and E2 [Z2] ≤ 1.

Similar to the proof of (i) it can be shown that λ = λi and

E0 = 9λ2i + 2m2q2r , E1 = 9λi + 2mqr and E2 = 1,

satisfy the constraints of Vu’s concentration inequality, which gives

P

[
|Z2 − E [Z2]| ≥ 9c2

√
λi (λi +mqr)

(
λ2i +m2q2r

)]
≤ e−Ω(λi).

As
√
λi (λi +mqr) ≤

√
λi (λi +mqr)

(
λ2i +m2q2r

)
and

Λ1
pr

+
Λ1
pr

−

4m = d2max
4m (Z1 + Z2), we

obtain

P

∣∣∣∣∣∣
Λ1
pr

−
Λ1
pr

+

4m
−

E

[
Λ1
pr

−
Λ1
pr

+
]

4m

∣∣∣∣∣∣
≥ d2max

m
(9c2 + c1)

√
λi (λi +mqr)

(
λ2i +m2q2r

)

 ≤ e−Ω(λi).

Pulling this factor d2max
m inside the root and taking c > 8 (c1 + 9c2), we also find

P

∣∣∣∣∣∣
Λ1
pr

−
Λ1
pr

+

4m
−

E

[
Λ1
pr

−
Λ1
pr

+
]

4m

∣∣∣∣∣∣
≥ c

8

√
λi (λi + d2maxqr)

(
λ2i +md2maxq

2
r

)

 ≤ e−Ω(λi).

Next, we consider

Λ2
pr

d2max

=
n∑

i=1

d−i
(r)
d−i d

+
i
(r)
d+i

d2max

=
n∑

i=1

d−i d
+
i

d2max

 ∑

e=(i,•)∈Gd

te

 ∑

f=(•,i)∈Gd

tf

 .

Note that this is the same expression as for ∆1
pr where the coefficient of each term is

replaced by
Λ2
pr

d2max
. Hence using the same argument as for (i) we obtain

P

[∣∣∣∣∣
Λ2
pr

4m
−

E
[
Λ2
pr

]

4m

∣∣∣∣∣ ≥ 9c2
d2max

4m

√
λi (λi + qrdmax)

(
λ2i +mdmaxq2r

)
]
≤ e−Ω(λi).

21

Again pulling d2max
m inside the square root, we find

P

[∣∣∣∣
Λ1
pr

−
Λ1
pr

+
−Λ2

pr
4m − E[Λ1

pr
−
Λ1
pr

+
−Λ2

pr]
4m

∣∣∣∣ ≥ 9c2

√
λi (λi + d2maxqr)

(
λ2i +md2maxq

2
r

)]
≤ e−Ω(λi).

Since β = c
√
λi (λi + d2maxqr)

(
λ2i +md2maxq

2
r

)
, this completes the proof

by taking c > 8(18c2 + c1).

(iv) This argument is exactly the same as for (ii), as there holds

Λ3
pr

d2max

=
∑

(e,f,g)∈Q
e=(u,v)

d+u d
−
v

d2max

te (1− tf) tg.

Hence we obtain P

[∣∣∣∣
Λ3
pr

2m − E[Λ3
pr]

2m

∣∣∣∣ ≥
d2max
2m

min(βr(λi)+γr(λi),βr(λi)+νr)
8

]
≤ e−Ω(λi), and since

d2max
m = o(1), this completes the proof.

Combining all inequalities from the statement of Lemma (2.14), we find that

P

[
|Ψpr − E [Ψpr]| ≥

4βr(λi) + 2min(νr, γr(λi))

8

]
≤ e−Ω(λi),

for all i ∈ {0, 1, . . . , L} and 0 ≤ r ≤ m− 1. By definition of ψr this shows equation (38) and
hence it proves Lemma 2.12. This completes the proofs of Lemma 2.8 (a) and 2.9 (a).

Next, we prove Lemma 2.8 (b) and 2.9 (b). This requires the following Lemma.

Lemma 2.15. For all i ∈ {1, 2, . . . , L} and N ∈ Ai \ Ai−1 there holds

m−1∑

r=0

max (Ψr (N)− ψr, 0)

(m− r)2 −Ψr (N)
= o (λi) .

Furthermore for all N ∈ A0 there holds

m∑

m−r=λ0ω

max (Ψr (N)− ψr, 0)

(m− r)2 −Ψr (N)
= o (1) .

Proof. The first claim follows by changing the summation
∑2m−2

m−r=2 into
∑m

m−r=1 in the proof
of Lemma 15(b) [15]. The second claim follows by applying a similar change to the proof of
Lemma 18 [15].

We will now determine an upper bound on f(N) for all N ∈ S∗ (M). According to the
definition of S∗ (M), Ψr (N) ≤

(
1− τ

4

)
(m− r)2 holds for all 0 ≤ r ≤ m− 1. Therefore,

f(N) =
m−1∏

r=0

(
1 +

Ψr (N)− ψr

(m− r)2 −Ψr (N)

)
≤

m−1∏

r=0

(
1 +

4max (Ψr (N)− ψr, 0)

τ(m− r)2

)
.

22

Using 1 + x ≤ ex the latter inequality becomes

f(N) ≤ e
∑m−1
r=0

4max(Ψr(N)−ψr,0)

τ(m−r)2 . (40)

Let us consider N ∈ Ai \ Ai−1 for i ∈ {1, 2, . . . , L} and apply Lemma 2.15 to equation (40),
to obtain:

f(N) ≤ eo(λi).

This completes the proof of Lemma 2.8 (b).
It remains to prove Lemma 2.9 (b). As A∞ ⊂ S∗ (M) we have:

f(N) ≤
m−d2max∏

r=0

(
1 +

4max (Ψr (N)− ψr, 0)

τ(m− r)2

) m−1∏

r=m−d2max+1

(m− r)2 − ψr

(m− r)2 −Ψr (N)
.

Since 0 < Ψr (N) and ψr < (m− r)2, we further have:

f(N) ≤
(
d4max

)d2max

m−d2max∏

r=0

(
1 +

4Ψr (N)

τ(m− r)2

)
.

From Lemma 2.3 it follows that Ψr = ∆r + Λr ≤ 2(m − r)d2max, which, when inserted in the
latter inequality, gives:

f(N) ≤
(
d4max

)d2max

m−d2max∏

r=0

(
1 +

8d2max

τ(m− r)

)
.

Using (1 + x) ≤ ex, we find:

f(N) ≤ e
4d2max ln(dmax)+

8
τ

∑m
i=d2max

i−1d2max ≤ e4d
2
max ln(dmax)+

8
τ
ln(m)− 8

τ
ln(d2max),

and since τ ≤ 1
3 and m ≤ ndmax, we have:

f(N) ≤ e4d
2
max ln(dmax)+24 ln(m) ≤ e4d

2
max ln(dmax)+24 ln(ndmax)

≤ e24d
2
max ln(nd2max) ≤ e24d

2
max ln(n3) = e72d

2
max ln(n).

This proves Lemma 2.9 (b), completes the proofs of Lemma’s 2.8 and 2.9, and therefore,
completes the proof of the asymptotic estimate (20).

Proving equation (21) The next step is showing that equation (21) holds. To this end,
we first prove the following Lemma.

Lemma 2.16. For all 1 ≤ j ≤ K

(a) P [N ∈ Bj \Bj−1] ≤ e−Ω(2j/2 ln(n));

(b) For all N ∈ Bj \Bj−1, f(N) ≤ eO(2
j).

23

Proof. (a) The probability that N ∈ Bj \Bj−1 is upper bounded by the probability that
N ∈ Bc

j−1 := S (M) \Bj−1. Hence if we show that

P
[
N ∈ Bc

j

]
≤ e−Ω(2j/2 ln(n)),

the claim is proven. Remark that Bc
j−1 ⊂

{
N ∈ S (M) | ∃ r, s.t.m− r ≤ ωλ0 andΨr ≥ 2j−1

}
.

Therefore, we need to consider only those r for which m− r ≤ ωλ0.

Note that

P
[
Ψr ≥ 2j−1|r ≥ m− ωλ0

]
≤ e−Ω(2j/2 ln(n)) (41)

is a stronger statement than the desired inequality. Indeed, using ωλ0 ≪ ln(n)2 gives:

P
[
N ∈ Bc

j−1

]
≤ ln2(n)P

[
Ψr ≥ 2j−1

]
≤ ln2(n)e−Ω(2j/2 ln(n))

= e−Ω(2j/2 ln(n))+2 ln(ln(n)) = e−Ω(2j/2 ln(n)).

We will therefore prove inequality (41) instead. Fix an arbitrary r such that m− r < ωλ0
and assume that Ψr ≤ 2j−1. Then by definition of Ψr and applying Lemma 2.3, we have

∆r ≥ 2j−1 − d2maxm

2
q2r .

Since m− r ≤ ωλ0 < 2j−1ωλ0 and d2maxω
2λ20 < m,

∆r ≥ 2j−1 − 2j−1d2max

2m
ω2λ20.

≥ 2j−1 − 2j−1

2
= 2j−2.

The remainder of the proof is similar to the proof of Lemma 2.11 wherein equation (37)
is replaced by

2j−2 ≤ ∆pr ≤
∑

u∈V

d+Gq (u)
∑

v∈N0(u)

d−Gq (v).

This inequality can be shown to imply one of the following statements holds true:

(a) Gq has more than 2j/2−1 edges;

(b) for some u ∈ V there holds
∑

v∈N0(u)
d−Gq (v) ≥ 2j/2−1.

Indeed, the probability that either of those statements holds, is upper bounded by e−Ω(2j/2 ln(n)),
by using the same argument as in the proof of Lemma 2.11. Since r is arbitrary this shows

that P
[
Ψr ≥ 2j−1

]
≤ e−Ω(2j/2 ln(n)) for all r such that m− r < ωλ0, completing the proof.

(b) Since Bj ⊂ S∗ (M) for all 1 ≤ j ≤ K, inequality (40) gives

f(N) ≤ e
∑m−1
r=0

4max(Ψr(N)−ψr,0)

τ(m−r)2 ,

24

for all N ∈ Bj \Bj−1. According the definition of Bj, we have

ωλ0∑

m−r=1

max (Ψr (N)− ψr, 0)

(m− r)2
≤

ωλ0∑

m−r=1

2j

(m− r)2
= O

(
2j
)
,

and since Bj ⊂ A0 the second statement from Lemma 2.15 can be applied, giving:

m∑

m−r=ωλ0

4max (Ψr (N)− ψr, 0)

τ(m− r)2
= o(1).

Hence for all N ∈ Bj it holds f(N) ≤ eO(2
j)+o(1) = eO(2

j).

Now, we give a proof of asymptotical estimate (21). Lemma 2.16 implies that for all
Bj \Bj−1

E

[
f(N)1Bj\Bj−1

]
≤ e−Ω(2j/2 ln(n))eO(2

j).

Recall that j ≤ K, and, in combination with equation (33), this yields 2
j−1
2 ≤ ln(n). Hence

there holds

E [f(N)1B] =
K∑

j=1

E

[
f(N)1Bj\Bj−1

]
≤

K∑

j=1

e−Ω(2j/2 ln(n))eO(2
j) = o(1),

proving equation (21).

Proving equations (22) and (23) We bound the expected value of f(N) for all N ∈ C.
We, start with proving upper bound (22), for which it suffices to show that for all N ∈ C,

f(N) ≤ 1 + o(1).

As C ⊂ S∗ (M), in analogy to equation (40), there holds

f(N) =

m−1∏

r=0

(
1 +

Ψr (N)− ψr

(m− r)2 −Ψr (N)

)

≤
λ0ω∏

m−r=1

(
1 +

4max (Ψr (N)− ψr, 0)

τ(m− r)2

)
e
∑m
m−r=λ0ω+1

4max(Ψr(N)−ψr,0)

τ(m−r)2 .

Because C ⊂ A0, we obtain from Lemma 2.15 that

m∑

m−r=λ0ω+1

4max (Ψr (N)− ψr, 0)

τ(m− r)2
= o(1).

25

Also by definition of C, Ψr (N) ≤ 1 for all m− r ≤ ωλ0. Hence for all N ∈ C,

f(N) ≤
λ0ω∏

m−r=1

(
1 +

4

τ(m− r)2

)
eo(1) ≤

(
1 +O

(
4λ0ω

τ

λ0ω∏

m−r=1

1

(m− r)2

))
eo(1)

≤ eo(1) (1 + o(1)) = 1 + o(1),

proving equation (22).
Next, we derive a lower bound on E

[
f(N)1S∗(M)

]
. As C ⊂ S∗ (M) this will prove

equation (23). Take any ordering N ∈ S∗ (M). Lemma 2.12 states that

P [|Ψr (N)− ψr| ≥ 4βr (λ0) + 2min (γr (λ0) , νr)] ≤ e−Ω(λ0) < e− ln(n)1+δ = o(1), (42)

holds for all r, such that m− r ≥ ωλ0. Thus the probability that |Ψr (N)− ψr| ≥ 4βr (λ0) +
2min (γr (λ0) , νr) holds for at least one r is small. Now consider an ordering N ∈ S∗ (M)
such that for all r with m− r ≥ ωλ0 there holds

|Ψr (N)− ψr| ≤ 4βr (λ0) + 2min (γr (λ0) , νr) . (43)

Recall that N ∈ S∗ (M) implies Ψr (N) ≤
(
1− τ

4

)
(m− r)2. Combining this with the defini-

tion of f(N), we find:

f(N) ≥
m∏

m−r=ωλ3
0

(
1− Ψr (N)− ψr

(m− r)2 −Ψr (N)

) ωλ3
0+1∏

m−r=1

(
1− ψr

(m− r)2 −Ψr (N)

)

≥
m∏

m−r=ωλ3
0+1

(
1− 4

τ

4βr (λ0) + 2min (γr (λ0) , νr)

(m− r)2

) ωλ3
0∏

m−r=1

(
1− 4

τ

ψr

(m− r)2

)
.

From Lemma 2.15 and the definition of Tr, we find
∑m

m−r=ωλ3
0+1

4
τ
4βr(λ0)+2min(γr(λ0),νr)

(m−r)2
=

o(1), which when combined with 1− x ≥ e−2x for 0 ≤ x ≤ 1
2 , gives

f(N) ≥ e−o(1)

ωλ3
0∏

m−r=1

(
1− 4

τ

ψr

(m− r)2

)
.

To approximate the remaining product, we apply Lemma 2.6 in combination with 1−x ≥ e−2x

and asymptotical estimate λ30ωd
2
max = o(m) to obtain:

f(N) ≥ e−2o(1) ≥ 1− o(1).

Now, for each N ∈ S∗ (M) we have shown that either f(N) ≥ 1− o(1) or that its probability
is upper bounded by o(1), which this completes the proof of equation (23). Remark that in
fact we have proven

E
[
f(N)1S∗(M)

]
≥ 1− o(1).

Additionally, the proofs of equations (20)-(23) demonstrate the following corollary.

Corollary 2.17. For a sufficiently large constant c, as used in the definition of λL, there
holds:

E

[
exp

(
1

τ2

m−1∑

r=0

max (Ψr (N)− ψr, 0)

(m− r)2

)]
= 1 + o(1).

This corollary will be used to prove equation (24).

26

Proving equation (24). This equation is the last bit that remains to prove equation (5).
It concerns the expected value of f(N) for the orderings in S (M) \ S∗ (M). Equation (16)
implies that for any N ∈ S (M) \ S∗ (M), there exists at least one 0 ≤ r ≤ m− 1 such that
the inequality

Ψr (N) ≤
(
1− τ

4

)
(m− r)2 (44)

is violated. This inequality can only be violated for specific values of r. To determine these
values, we assume that the above inequality is violated and investigate what are the implica-
tions for ∆r. Recall that Ψr = ∆r + Λr. By using Lemma 2.3 to bound Λr, we obtain:

∆r > Ψr −
d2max

2m
(m− r)2.

Since d4max = o(m), there is such n0 that for all n > n0 there holds d2max
m < τ

2 . Let n > n0,
then

∆r > Ψr −
τ

4
(m− r)2.

Assuming the opposite inequality to (44) holds, this becomes:

∆r >
(
1− τ

2

)
(m− r)2. (45)

Lemma 2.3 states that ∆r ≤ (m− r)d2max, and hence, we deduce that (m− r)
(
1− τ

2

)
≤ d2max,

which is equivalent to

m− r ≤ 2d2max

2− τ
.

Therefore, inequality (44) can only be violated if m− r ≤ 2d2max
2−τ . This allows us to partition

S (M) \ S∗ (M) =

2d2max
2−τ⋃

t=1

St (M) ,

with St (M) being the set of all orderings N violating inequality (44) with r = m− t and not
violating it for all r < m− t. To prove equation (24), it suffices to show that

E [f(M)1St] ≤ O
(

1

mtτ

)
, (46)

for all t ∈ {1, 2, . . . , 2d2max
2−τ } as

∑∞
t=1

1
mtτ = o(1). We will now prove equation (46).

According to the definition of Ψr, we have (m−r)2−Ψr =
∑

(u,v)∈Er
d+u

(r)
d−v

(r)
(
1− d+u d

−
v

2m

)
.

For the algorithm to finish successfully, there must be at least m− r suitable pairs left at each
step r, implying that (m− r)2 −Ψr ≥ (m− r)

(
1− d2max

2m

)
. Therefore

(m− r)2

(m− r)2 −Ψr
≤ (m− r)

1− d2max
2m

= (m− r)

(
1 +O

(
d2max

2m

))
,

27

and since d4max
m = o(1), we have: (m−r)2

(m−r)2−Ψr
≤ m− r+1 for m− r ≤ 2d2max

2−τ . Now we have that

m−1∏

r=m−t

(m− r)2 − ψr

(m− r)2 −Ψr
≤

m−1∏

r=m−t

(m− r)2

(m− r)2 −Ψr
≤

m−1∏

r=m−t

m− r + 1 = (t+ 1)! ≤ tt(t+ 1).

In analogy to equation (40) it can also be shown that

m−t∏

r=0

(m− r)2 − ψr

(m− r)2 −Ψr
≤ exp

[
4

τ

m−1∑

r=0

max(Ψr − ψr, 0)

(m− r)2

]
.

Combing these observations with inequality (44), which holds for all r < m− t, we find:

f(N)1St = 1St

m−r∏

r=0

(m− r)2 − ψr

(m− r)2 −Ψr
≤ 1St exp

[
4

τ

m−1∑

r=0

max(Ψr − ψr, 0)

(m− r)2

]
tt(t+ 1).

Next, we take the expected value of the above equation and apply Hölder’s inequality to
obtain:

E [f(N)1St] ≤ E [1St]
1−τ

E

[
1St exp

[
4

τ2

m−1∑

r=0

max(Ψr − ψr, 0)

(m− r)2

]]τ
tt(t+ 1).

Using Corollary 2.17 this becomes

E [f(N)1St] ≤ E [1St]
1−τ [1 + o(1)] tt(t+ 1).

Hence, to prove equation (46), it remains to show that

P [N ∈ St]
1−τ tt(t+ 1) ≤ [1 + o(1)]

1

mτt
. (47)

This requires an upper bound on P [N ∈ St], which we derive in the following manner: As the
first step, we show that if N ∈ St, then GNr always contains a vertex with some special prop-
erty. We use use the probability that such a vertex exists as an upper bound for P [N ∈ St].
Let us assume that N ∈ St, fix r = m − t and define Γ(u) := {v ∈ V |(u, v) ∈ GNr}. By
definition of ∆r, this allows us to write

∆r =
∑

u∈V

d+u
(r)

∑

v∈Γ(u)∪{u}

d−v
(r)

and (m− r)2 =
∑

u∈V

d+u
(r)
∑

v∈V

d−v
(r)
.

Because N ∈ St, inequality (45) must hold. Inserting the above expressions for ∆r and (m−r)
into this inequality yields:

∑

u∈V

d+u
(r)

∑

v∈Γ(u)∪{u}

d−v
(r)
>
(
1− τ

2

)∑

u∈V

d+u
(r)
∑

v∈V

d−v
(r)
> (1− τ)

∑

u∈V

d+u
(r)
∑

v∈V

d−v
(r)
,

which implies that there exists a vertex u ∈ V such that

d+u
(r)
> 0 and

∑

v∈Γ(u)∪{u}

d−v
(r)

> (1− τ)
∑

v∈V

d−v
(r)

= (1− τ)t. (48)

28

Thus we have shown that if N ∈ St, there must exists a vertex u obeying (48), and therefore,
probability that GNr contains such a vertex u provides an upper bound for P [N ∈ St]. As the
second step, we derive an upper bound on the probability that u obeys (48). Recall that GNr

contains the first r edges of the ordering N . Adding the remaining t edges of N completes
Gd. In this complement edge set, let l out of t edges have their target in Γ(u) ∪ {u}, then
l =

∑
v∈Γ(u)∪{u} d

−
v
(r)

. Let k := d+u −|Γ(u)| = d+u
(r)

. Inequality (48) holds if and only if k ≥ 1
and l ≥ (1− τ)t. We derive an upper bound on the probability that k ≥ 1 and l ≥ (1− τ)t for
a random ordering N ∈ S (M). That is to say we fix all m edges in the graph, but the order
in which they are drawn N is a uniform random variable. To obtain a fixed value of k, exactly
k of the d+u edges with u as source must be in N \Nr. Choosing these edges determines Γ(u).
To obtain the desired value of l, exactly l edges with target in Γ(u)∪ {u} must be in N \Nr.
There are

∑
v∈Γ(u)∪{u} (d

−
v − 1) + d−u edges to choose from, since for each v ∈ Γ(u) the edge

with v as the target and u as the source is already in Nr. The remaining t− l− k edges that
are not in Nr may be chosen freely amongst all the edges that do not have u as a source or
an element of Γ(u) ∪ {u} as target. Thus the probability to get a specific combination of k
and l is

(d+u
k

)(∑
v∈Γ(u)(d

−
v −1)+d−u
l

)(m−d+u−
∑
v∈Γ(u)∪(d

−
v −1)−d−u

t−l−k

)
(
m
t

) .

We therefore write the upper bound for the probability that a randomly chosen vertex u
satisfies (48) as

∑

k≥1,l≥(1−τ)t

(d+u
k

)((d+u−k+1)dmax

l

)(m−d+u−
∑
v∈Γ(u)(d

−
v −1)−d−u

t−l−k

)
(m
t

) .

For N ∈ St at least one vertex satisfies inequality (48), thus we have:

P [N ∈ St] ≤
∑

u∈V

∑

k≥1,l≥(1−τ)t

(d+u
k

)((d+u−k+1)dmax

l

)(m−d+u−
∑
v∈Γ(u)(d

−
v −1)−d−u

t−l−k

)
(m
t

) .

Remark that
(m
k

)
≤ mk

k! , and since t = O
(
d2max

)
and O

(
d4max

)
= o(m) there holds:

(
m

t

)
= [1 + o(1)]

mt

t!
.

This gives

P [St] ≤
∑

u∈V

∑

k≥1,l≥(1−τ)t

[1 + o(1)]
d+u

k
((d+u − k + 1)(dmax))

l
mt−l−kt!

mtk!l!(m− l − k)!

=
∑

u∈V

∑

k≥1,l≥(1−τ)t

[1 + o(1)]

(
d+u
m

)k ((d+u−k+1)dmax

m

)l
t!

k!l!(m− l − k)!
.

Finally, we approximate the sum over k and l. Since adding t edges completes the ordering,∑
u∈V d

+
u
(r)

=
∑

u∈V d
−
u
(r)

= t. This implies that k ∈ {1, 2, . . . t} and that l is an integer

29

in the interval [(1 − τ)t, t]. Thus this sum consists of at most tτ terms. Remark that, as

l, k ≤ t = O
(
d2max

)
= O

(
m1/2

)
,
(
d+u
m

)
= O

(
1

m3/4

)
and ((d+u − k + 1)(dmax)) = O

(
1

m1/2

)
,

the term inside the summation is maximal for k = 1 and l = (1− τ) t. This gives:

P [St] ≤ [1 + o(1)] τt
∑

u∈V

(
d+u
m

)(
d+u dmax

m

)(1−τ)t (
t

tτ

)

≤ [1 + o(1)] 2tt

(
d2max

m

)(1−τ)t∑

v∈V

(
d+u
m

)

≤ [1 + o(1)] 2tt

(
d2max

m

)(1−τ)t

.

Here we used that τ ≤ 1
3 ,
(m
k

)
≤ 2m and

∑
u∈V d

+
u = m. Plugging this into (47) yields:

P [N ∈ St]
1−τ tt(t+ 1) ≤ [1 + o(1)] tt(t+ 1)

(
2tt

(
d2max

m

)(1−τ)t
)1−τ

.

Since t ≤ 2d2max
2−τ , we have:

P [N ∈ St]1−τ tt(t+ 1) ≤ [1 + o(1)] (t+ 1)t1−τ

(
2 · 21−τ

2− τ

d4−4τ+2τ2
max

m1−2τ+τ2

)t

,

and since τ ≤ 1
3 , for any x ≥ 1, x1−τ ≤ x, we find:

P [N ∈ St]1−τ tt(t+ 1) ≤ [1 + o(1)] (t+ 1)t

(
4

2− τ

d4−4τ+2τ2
max

m1−2τ+τ2

)t

.

Inserting the estimate dmax = O
(
m1/4−τ

)
yields,

P [N ∈ St]1−τ tt(t+ 1) ≤ [1 + o(1)] (t+ 1)t

(
4

2− τ
m−3τ+3.5τ2−3τ3

)t

,

and using t = o
(
m1/2

)
and that 4

2−τ is constant when m goes to infinity with n, we find:

P [N ∈ St]1−τ tt(t+ 1) ≤ [1 + o(1)] o
(
m1/2

)
O
(
m−3τ+3.5τ2−3τ3

)t
= O

(
m−τt

)
.

This completes the proof of inequality (46) and hence it shows that equation (24) holds. This
completes the prove of equation (15) and hence proves equation (4). Together with the results
from Sections 2.1, and 2.3 this completes the proof of Theorem 2.1.

3 The probability of failure of Algorithm 1

Here we show that the probability the algorithm fails is o(1). The proof is inspired by [15,
Section 5]. If at step s, every pair of an unmatched in-stub with an unmatched out-stub is

30

unsuitable – the algorithm fails. In this case, the algorithm will necessary create a self-loop
or double edge when the corresponding edge is added to GNs . First, we investigate at which
steps s ∈ {0, 1, . . . ,m − 1} the algorithm can fail. Then, we derive an upper bound for the
number of vertices that are left with unmatched stubs when the algorithm fails. For a given
number of unmatched stubs, this allows us to determine the probability that the algorithm
fails. Combining these results, we show that this probability is o(1). The following lemma
states that the algorithm has to be close to the end to be able to fail.

Lemma 3.1. If Algorithm 1 fails at step s, then m− s ≤ d2max.

Proof. At step s, there are (m− s)2 pairs of unmatched stubs. If the algorithm fails at step
s, all these pairs are unsuitable. The number of unsuitable pairs at step s is ∆s. According
to Lemma 2.3, ∆s ≤ d2max(m− s). Therefore, if the algorithm fails at step s, there must hold
(m− s)2 ≤ d2max(m− s).

The number of vertices that have unmatched stubs when the algorithm fails is also
bounded. Suppose a vertex v ∈ V has unmatched in-stub(s) left when the algorithm fails.
Since the number of unmatched in-stubs equals the number of unmatched out-stubs, this
implies that there are also unmatched out-stubs. Because the algorithm fails, every pair of
an unmatched in-stub and an unmatched out-stub induces either a double edge or self-loop.
Hence, only v and vertices that are the source of an edge with v as a target can have un-
matched out-stub(s). As v has at least one unmatched in-stub, there are at most dmax − 1
edges with v as a target. Thus at most dmax vertices have unmatched out-stub(s). Symmetry
implies that at most dmax vertices have unmatched in-stub(s) when a failure occurs.

Let A
d−i1

(s)
,...,d−i

k−

(s)
,d+j1

(s)
,...d+j

k+

(s) be the event that the algorithm fails at step s with

vi1 , . . . , vik− ∈ V being the only vertices with unmatched in-stubs and vj1 , . . . , vjk+ the only
vertices having unmatched out-stubs. The amount of unmatched in-stubs (respectively out-

stubs) of such a vertex il (jl) is denoted by d−il
(s)

(d−jl
(s)

). Since k− (respectively k+) denotes

the number of vertices with unmatched in-stubs (out-stubs) that are left, there holds k−, k+ ≤
dmax. This allows to write the probability that Algorithm 1 fails as

P [failure] =

d2max∑

m−s=1

max(m−s,dmax)∑

k−,k+=1

n∑

i1,...,ik−=1

n∑

j1,...,jk+=1

P

[
A

d−i1
(s)

,...,d−i
k−

(s)
,d+j1

(s)
,...d+j

k+

(s)

]
. (49)

The sum
∑n

i1,...,ik−=1 is the sum over all possible subsets B ⊂ {1, 2, . . . , n} of size k−, such

that
∑

i∈B d
−
i
(s)

= m − s and
∑

i/∈B d
−
i
(s)

= 0. The goal is to show that P [failure] = o(1),

which we achieve by first determining an upper bound for P

[
A

d−i1
(s)

,...,d−i
k−

(s)
,d+j1

(s)
,...d+j

k+

(s)

]
.

Lemma 3.2. The probability of the event A
d−i1

(s)
,...,d−i

k−

(s)
,d+j1

(s)
,...d+j

k+

(s) is upper bounded by

eo(1)d2k
+k−−2k±

max

∏
i∈K+ d

+
i
d+i

(s)∏
i∈K− d

−
i
d−i

(s)

mk+k−−k±m2(m−s)

(
m− s

d−i1
(s)
, . . . , d−ik−

(s)

)(
m− s

d+j1
(s)
, . . . , d+jk+

(s)

)
. (50)

31

Proof. Let us define K− := {i1, i2, . . . ik−} , K+ := {j1, j2, . . . jk+} , and K± := K− ∩ K+.
When event A

d−i1
(s)

,...,d−i
k−

(s)
,d+j1

(s)
,...d+j

k+

(s) occurs, the algorithm has constructed a graph GMs

having the degree sequence d̃ with elements:

d̃−i =

{
d−i if i /∈ K−

d−i − d−i
(s)

if i ∈ K−
, d̃−i =

{
d+i if i /∈ K+

d+i − d+i
(s)

if i ∈ K+
.

The probability of A
d−i1

(s)
,...,d−i

k−

(s)
,d+j1

(s)
,...d+j

k+

(s) equals the number of graphs GMs that obey

d̃ and lead to a failure multiplied by the probability that the algorithm constructs this partial
graph. To construct an upper bound on the number of graphs obeying d̃ and leading to a
failure, note that such a graph must contain the edge (i, j) for all i ∈ K+, j ∈ K−, i 6= j, and

therefore, it must contain a subgraph obeying degree sequence dK−,K+
(s)

, which is defined
by:

d−i
(s)

:=

d−i if i /∈ K−

d−i − d−1
(s) − k+ if i ∈ K−, i /∈ K+

d−i − d−1
(s) − k+ + 1 if i ∈ K−, i ∈ K+

and

d+i
(s)

:=

d+i if i /∈ K+

d+i − d+1
(s) − k− if i ∈ K+, i /∈ K−

d+i − d+1
(s) − k− + 1 if i ∈ K+, i ∈ K−

.

The number of graphs obeying the degree sequence dK−,K+
(s)

gives an upper bound for the
number of partial graphs inducing event A

d−i1
(s)

,...,d−i
k−

(s)
,d+j1

(s)
,...d+j

k+

(s) . Denote by L (d) the

space of simple graphs obeying the degree sequence d. Theorem 2.1 implies that for any
degree sequence d with dmax = O

(
m1/4−τ

)
there holds

|L (d)| ≤
∏m−1

r=0 (m− r)2

m!
∏n

i=1 d
+
i !
∏n

i=1 d
−
i !
e−

∑n
i=1 d

−
i
d+
i

m
+

∑n
i=1(d

−
i

)2+(d+
i

)2

2m
−

∑n
i=1(d

−
i

)2
∑n
i=1(d

+
i

)2

4m2 − 1
2
+o(1). (51)

We apply this bound to the degree sequence dK−,K+
(s)

. A graph obeying this degree se-
quence has s − k+k− + k± edges, with k± = |K±|. Thus we must show that dmax =

O
(
(s− k−k+ + k±)

1/4−τ
)
. Combining the statement of Lemma 3.1 with d4max = o(m) gives

s > 3d2max for dmax > 1. Since k+k− ≤ d2max, we now find m < 2 (s− k−k+ + k±), that is

m = O (s− k−k+ + k±), which implies that dmax = O
(
m1/4−τ

)
= O

(
(s− k−k+k±)

1/4−τ
)
.

Thus we may apply inequality (51) to dK−,K+
(s)

to obtain
∣∣∣L
(
dK−,K+

(s)
)∣∣∣ ≤ (s− k+k− + k±)!

∏n
i=1 d

+
i

(s)
!
∏n

i=1 d
−
i

(s)
!

× exp

∑n
i=1

[
(d−i

(s)
)2 + (d+i

(s)
)2
]

2 (s− k+k− + k±)
−
∑n

i=1 d
−
i

(s)
d+i

(s)

s− k+k− + k±
−
∑n

i=1(d
−
i

(s)
)2
∑n

i=1(d
+
i

(s)
)2

4 (s− k+k− + k±)2
− 1

2
+ o(1)

 .

32

Following the derivation in Sections 2.1 and 2.3 we find

PA (GMs) =

∏n
i=1 d

+
i !
∏n

i=1 d
−
i !∏

i∈K+ d
+
i
(s)

!
∏

i∈K− d
−
i
(s)

!

∑

Ns∈S(Ms)

PA (Ns)

=

∏n
i=1 d

+
i !
∏n

i=1 d
−
i !∏

i∈K+ d
+
i
(s)

!
∏

i∈K− d
−
i
(s)

!
s!

s−1∏

r=0

1

(m− r)2

× exp

(
s
∑n

i=1 d
−
i d

+
i

m2
− s2

∑n
i=1

[
(d−i)

2 + (d+i)
2
]

2m3
+
s
∑n

i=1(d
−
i)

2
∑n

i=1(d
+
i)

2

4m3
+

s2

2m2
+ o(1)

)
.

In the latter expression, the factor with factorials accounts for the number of different configu-
rations leading to the same graph GMs , which equals the number of permutations of the stub

labels. However for i ∈ K− there are only
d−i !

d−i
(s)

!
permutations of the labels of the in-stubs

of vi that lead to a different configuration. Remark that changing the label of an in-stub
that remains unmatched with another in-stub that remains unmatched does not change the

configuration. By the same argument for i ∈ K+ there are only
d+i !

d+i
(s)

!
ways to permute the

labels of the out-stubs of vi.
We can now determine

P

[
A

d−i1
(s)

,...,d−i
k−

(s)
,d+j1

(s)
,...d+j

k+

(s)

]
≤ P [GMs]

∣∣∣L
(
d̄
(s)
k−,k+

)∣∣∣ .

First, we look at the product of the exponentials in the asymptotical approximations of

P [GMs] and
∣∣∣L
(
d̄
(s)
k−,k+

)∣∣∣, which after some transformations, and using that m > s ≥ m −
d2max, becomes:

exp

∑n
i=1

[
(d−i

(s)
)2 + (d+i

(s)
)2
]

2 (s− k+k− + k±)
−
∑n

i=1 d
−
i

(s)
d+i

(s)

s− k+k− + k±
−
∑n

i=1(d
−
i

(s)
)2
∑n

i=1(d
+
i

(s)
)2

4 (s− k+k− + k±)2
− 1

2
+ o(1)

= exp
(s
m
O (dmax) +

s

m
O
(
d2max

)
+ o(1)

)
exp

(
−O (dmax)−O

(
d2max

)
+ o(1)

)
= eo(1).

By using the latter estimate, we obtain

P

[
A

d−i1
(s)

,...,d−i
k−

(s)
,d+j1

(s)
,...d+j

k+

(s)

]
≤ P [GMs]

∣∣∣L
(
dK−,K+

(s)
)∣∣∣

≤ eo(1)

∏
i∈K+ d

+
i !
∏

i∈K− d
−
i !
∏

i∈K+,i∈K−

(
d+i − d+i

(s) − k−
)(

d−i − d−i
(s) − k+

)

∏
i∈K+

(
d+i − d+i

(s) − k−
)
!d+i

(s)
!
∏

i∈K−

(
d−i − d−i

(s) − k+
)
!d−i

(s)
!

× (s− k+k− + k±)!s!(m− s)!(m− s)!

m!m!

≤ eo(1)d2k
+k−−2k±

max

∏

i∈K+

d+i
d+i

(s) ∏

i∈K−

d−i
d−i

(s) 1
∏k+k−−k±+1

j=0 s− j

(
s!

m!

)2

×
(

m− s

d−i1
(s)
, . . . , d−ik−

(s)

)(
m− s

d+j1
(s)
, . . . , d+jk+

(s)

)
.

33

It remains to bound s!
m! and

∏k+k−−k±+1
j=0 s−j

mk+k−−k±
. First, using that m− s = O

(
d2max

)
, we find:

m!

s!
= (s+ 1)(s + 2) · · · (m− 1)m = mm−s

(
1− 1

m

)(
1− 2

m

)
· · ·
(
1− m− s− 1

m

)

= mm−s

(
1−

m−s−1∏

i=1

i

m
+O

(
(m− s)2

(m− s)2

m2

))

≥ mm−se
−

∑m−s−1
i=1

i
m
+O

(
d8max
m2

)

= mm−se
− (m−s)(m−s−1)

2m
+O

(
d8max
m2

)

= mm−se
−O

(
d4max
m

)

,

and therefore s!
m! ≤ 1

mm−s e
O

(
d4max
m

)

= 1
mm−s e

o(1). Second, let us consider 1∏k+k−−k±+1
j=0 s−j

.

Using that m− s ≤ d2max, k
+, k− ≤ dmax and 0 ≤ k± ≤ min (k−, k+), we obtain:

k+k−−k±+1∏

j=0

s− j ≥
k+k−−k±+1∏

j=0

m− d2max − j = mk+k−−k±
k+k−−k±+1∏

j=0

(
1− d2max + j

m

)

= mk+k−−k±

1−

k+k−−k±+1∏

j=1

d2max + j

m
+O

(
d8max

m2

)

≥ mk+k−−k±e
−

(d2max+k
+k−+k±+1)(d2max+k

+k−+k±+2)

2m
+O

(
d8max
m2

)

= mk+k−−k±e
−O

(
d4max
m

)

,

which gives

1
∏k+k−−k±+1

j=0 s− j
≤ 1

mk+k−−k±
e
O

(
d4max
m

)

=
1

mk+k−−k±
eo(1).

Thus the upper bound on the probability of A
d−i1

(s)
,...,d−i

k−

(s)
,d+j1

(s)
,...d+j

k+

(s) becomes

eo(1)d2k
+k−−2k±

max

∏
i∈K+ d

+
i
d+i

(s)∏
i∈K− d

−
i
d−i

(s)

mk+k−−k±m2(m−s)

(
m− s

d−i1
(s)
, . . . , d−ik−

(s)

)(
m− s

d+j1
(s)
, . . . , d+jk+

(s)

)
.

Combining equation (49) with Lemma 3.2, we are able to prove the desired result.

Lemma 3.3. The probability that Algorithm 1 returns a failure is o(1).

Proof. In the statement of Lemma 3.2, the fraction
(
d2max
m

)k+k−−k±

is either 1 if k+k− = k±

or smaller than d2max
m if k+k− 6= k±. Since k± ≤ min (k−, k+), k+k− = k± implies that

k+ = k− = 1. Together k+ = k− = 1 and the conditions under which the algorithm can fail

34

imply that K+ = K−. First we consider this case. Since K+ = K− = K± = 1 there holds

d−i1
(s)

= d+i1
(s)

= m− s, plugging this into equation (50) we find

P

[
A

d−i1
(s)

,d+i1
(s)

]
≤ eo(1)

d+i1
m−s

d−i1
m−s

mm−smm−s
= o(1).

Next, assume that k+k− 6= k±, which implies that
(
d2max
m

)k+k−−k±

≤ d2max
m . We apply the

multinomial theorem to obtain:

max(m−s,dmax)∑

k−=1

n∑

i1,...,ik−=1

∏

i∈K−

d−i
d−i

(s)
(

m− s

d−i1
(s)
, . . . , d−ik−

(s)

)
=
(
d−1 + . . . + d−n

)m−s

and

max(m−s,dmax)∑

k+=1

n∑

j1,...,jk+=1

∏

i∈K+

d+i
d+i

(s)
(

m− s

d+j1
(s)
, . . . , d+jk+

(s)

)
=
(
d+1 + . . . + d+n

)m−s
.

Plugging these into equation (49) yields

P [failure] ≤ o(1) + eo(1)
d2max

m

d2max∑

m−s=1

(
d+1 + . . . d+n

)m−s (
d−1 + . . . d−n

)m−s

mm−smm−s
≤ o(1).

This proves the claim of Theorem 1.1 about the failure probability of Algorithm 1.

4 Running time Algorithm 1

When implementing Algorithm 1 one has a certain freedom to chose how exactly choosing
random samples with probability proportional to Pi,j is performed. Our implementation of
Algorithm 1 is based on the implementation of Bayati, Kim and Saberi [15] for undirected
graphs, which, in turn, is based on Steger and Wormald’s implementation for undirected
regular random graphs. The latter uses a three-phase procedure, which depending on the step
r, picks an edge (i, j) with probability proportional to di

(r)dj
(r) in a different manner. We also

distinguish three phases depending on the algorithm step r, however, our sampling probability

is proportional d+i
(r)
d−j

(r)
(
1− d+i d

−
j

2m

)
, and the corresponding criteria that determine the

phase of the algorithm are different. In what follows, we show that the expected running time
of our algorithm is O (mdmax), that is we prove the following lemma.

Lemma 4.1. Algorithm 1 can be implemented so that its expected running time is O (mdmax)
for graphical degree sequences d with dmax = O

(
m1/4−τ

)
for some τ > 0.

Proof. Phase 1. Let E be the list of edges constructed by the algorithm so far. In the first
phase, a random unmatched in- and out-stubs are selected. We may check whether this is an
eligible pair in time O (dmax) . If eligible, the pair is accepted with probability proportional

35

to 1 − d+i d
−
j

2m and (i, j) is added to E. We select edges according to this procedure until the
number of unmatched in-stubs drops bellow 2d2max. This marks the end of phase 1. As a crude
estimate, each eligible pair is accepted with probability at least 1

2 , and at most 1
2 of all stub

pairs is ineligible, see Lemma 2.3(a). Hence, creating one edge in phase 1 has an expected
computational complexity of O (dmax), and the total runtime of this phase is O (mdmax).

Phase 2. In this phase we select a pair of vertices instead of a pair of stubs. This requires
us to keep track of the list of vertices with unmatched in-stubs/out-stubs. These lists are
constructed in O (n) and can be updated in a constant time. Draw uniformly random vertices
i and j from the lists of vertices with unmatched out-stubs and in-stubs correspondingly.

Accept i (respectively j) with probability
d+i

(r)

d+i
(r)

(
d−j

(r)

d−j
(r)

)
. If both vertices are accepted, we

check if (i, j) is an eligible edge in time O (dmax). If the edge is eligible, it is accepted with

probability 1 − d+i d
−
j

2m . Phase 2 ends when the number of vertices with unmatched in-stubs
or the number of vertices with unmatched out-stubs is less than 2dmax. Since every vertex
with unmatched in-stubs (respectively out-stubs) has at most dmax unmatched in-stubs (out-
stubs), this guarantees that the edge is eligible with probability at least 1

2 . To get a pair of
accepted vertices, we need an expected number of O

(
d2max

)
redraws. Thus the construction

of one edge is expected to take O
(
d2max

)
. As there are only 2d2max unmatched in-stubs at the

start of phase 2, at most d2max edges are created in this phase. Thus the expected running
time of Phase 2 is O

(
d4max

)
.

Phase 3. At the beginning of this phase, a list Ẽ of all remaining eligible edges is con-
structed. At the start of phase 3 there are only 2dmax vertices left with unmatched in-stubs or
with unmatched out-stubs. Hence there are at most 2d2max vertices with unmatched out-stubs
or in-stubs. Thus Ẽ contains no more than 4d3max edges. For each possible edge we check
in time O (dmax) if it does not create a double edge or self-loop. Thus, constructing Ẽ takes
O
(
d4max

)
. The rest of Phase 3 consist of picking a random element of Ẽ and accepting it with

probability
d+i

(r)
d−j

(r)

d+i d
−
j

(
1− d+i d

−
j

2m

)
. This leads to an expected number of O

(
d2max

)
repetitions

to accept one edge. If an edge is accepted, it is removed from Ẽ and the values of d+i
(r)

and d−j
(r)

are updated. After selecting an element of Ẽ, it must be checked if d+i
(r)

> 0 and

d−j
(r)

> 0. If this is not the case, the edge is not added to E and removed from Ẽ. This

continues until Ẽ is empty or |E| = m. This has expected running time of order O
(
d5max

)
as

there are O
(
d3max

)
edges that are expected to be discarded or accepted in O

(
d2max

)
. Thus,

the total running time of the algorithm is O (mdmax) + O (n) + O
(
d4max

)
+ O

(
d5max

)
. As

dmax = O
(
m1/4−τ

)
, the running time is O (mdmax).

We must also compute Pij at each step. Let P
(r)
ij denote the probabilities that the edge

(i, j) is added to E at step r. There holds:

P
(r)
ij =

d+i
(r)
d−j

(r)
(
1− d+i d

−
j

2m

)

(m− r)2 −Ψr (N)
. (52)

The numerator d+i
(r)
d−j

(r)
(
1− d+i d

−
j

2m

)
can be computed in a constant time. To determine

36

the denominator in (52), remark that:
[
(m− r + 1)2 −Ψr+1 (N)

]
−
[
(m− r)2 −Ψr (N)

]

=
∑

(u,v)∈Er+1

d+u
(r+1)

d−v
(r+1)

(
1− d+u d

−
v

2m

)
−

∑

(u,v)∈Er

d+u
(r)
d−v

(r)
(
1− d+u d

−
v

2m

)

+
∑

(i,v)∈GNr

d−v
(r)
(
1− d+i d

−
v

2m

)
+

∑

(u,j)∈GNr

d+u
(r)

(
1−

d+u d
−
j

2m

)
+ d−i

(r)

(
1−

d+i d
−
j

2m

)

+ d+j
(r)

(
1−

d+i d
−
j

2m

)
.

At each step r, each of the terms in the latter expression can be updated in O (dmax) oper-

ations. This allows us to determine the value of P
(r)
ij in time O (dmax). As the construction

of one edge also takes at least O (dmax) in every phase, this does not change the overall
complexity of the algorithm. The initial value is

Ψ0 (N) = m2 −
n∑

i=1

d−i d
+
i −

∑n
i=1 d

−
i
2∑n

i=1 d
+
i
2 −∑n

i=1 d
−
i
2
d+i

2

2m
,

which can be computed in O (n). As n ≤ m this does not change the order of the expected
running time, and hence, this completes the proof.

This lemma completes the proof of Theorem 1.1.

Acknowledgements

We are grateful to Péter L. Erdős for an interesting discussion about MCMC algorithms.

References

[1] Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European Journal of Combinatorics, 1(4):311–316, 1980.

[2] Brendan D McKay and Nicholas C Wormald. Uniform generation of random regular
graphs of moderate degree. Journal of Algorithms, 11(1):52–67, 1990.

[3] Pu Gao and Nicholas Wormald. Uniform generation of random regular graphs. SIAM
Journal on Computing, 46(4):1395–1427, 2017.

[4] Pu Gao and Nicholas Wormald. Uniform generation of random graphs with power-law
degree sequences. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1741–1758. SIAM, 2018.

[5] Ching Law and K-Y Siu. Distributed construction of random expander networks. In
IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer
and Communications Societies (IEEE Cat. No. 03CH37428), volume 3, pages 2133–2143.
IEEE, 2003.

37

[6] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion
using alternating minimization. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 665–674, 2013.

[7] Jürgen Lerner. Role assignments. In Network analysis, pages 216–252. Springer, 2005.

[8] Fernando L Metz, Giorgio Parisi, and Luca Leuzzi. Finite-size corrections to the spectrum
of regular random graphs: An analytical solution. Physical Review E, 90(5):052109, 2014.

[9] Tim Rogers, Conrad Pérez Vicente, Koujin Takeda, and Isaac Pérez Castillo. Spectral
density of random graphs with topological constraints. Journal of Physics A: Mathemat-
ical and Theoretical, 43(19):195002, 2010.

[10] Jacopo Grilli, Tim Rogers, and Stefano Allesina. Modularity and stability in ecological
communities. Nature communications, 7(1):1–10, 2016.

[11] Gottfried Tinhofer. On the generation of random graphs with given properties and known
distribution. Appl. Comput. Sci., Ber. Prakt. Inf, 13:265–297, 1979.

[12] A Ramachandra Rao, Rabindranath Jana, and Suraj Bandyopadhyay. A markov chain
monte carlo method for generating random (0, 1)-matrices with given marginals. Sankhyā:
The Indian Journal of Statistics, Series A, pages 225–242, 1996.

[13] Annabell Berger and Matthias Müller-Hannemann. Uniform sampling of digraphs with
a fixed degree sequence. In International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 220–231. Springer, 2010.

[14] Angelika Steger and Nicholas C Wormald. Generating random regular graphs quickly.
Combinatorics, Probability and Computing, 8(4):377–396, 1999.

[15] Mohsen Bayati, Jeong Han Kim, and Amin Saberi. A sequential algorithm for generating
random graphs. Algorithmica, 58(4):860–910, 2010.

[16] Andrii Arman, Pu Gao, and Nicholas Wormald. Fast uniform generation of random
graphs with given degree sequences. In 2019 IEEE 60th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 1371–1379. IEEE, 2019.

[17] Tinhofer Gottfried. On the generation of random graphs with given properties and known
distribution. Appl. Comput. Sci., Ber. Prakt. Inf., 13:265–297, 1979.

[18] Mark Jerrum and Alistair Sinclair. Fast uniform generation of regular graphs. Theoretical
Computer Science, 73(1):91–100, 1990.

[19] Colin Cooper, Martin Dyer, and Catherine Greenhill. Sampling regular graphs and a
peer-to-peer network. Comb. Probab. Comput., 16(4):557–593, 2007.

[20] Péter L Erdös, Istán Miklós, and Lajos Soukup. Towards random uniform sampling
of bipartite graphs with given degree sequence. Electronic Journal of Combinatorics,
20:P16, 2013.

38

[21] Ravi Kannan, Prasad Tetali, and Santosh Vempala. Simple markov-chain algorithms
for generating bipartite graphs and tournaments. Random Structures & Algorithms,
14(4):293–308, 1999.

[22] Péter L Erdős, Catherine Greenhill, Tamás Róbert Mezei, István Miklós, Dániel Soltész,
and Lajos Soukup. The mixing time of the switch markov chains: a unified approach.
arXiv preprint arXiv:1903.06600, 2019.

[23] Mark Jerrum, Brendan D McKay, and Alistair Sinclair. When is a graphical sequence
stable? University of Edinburgh, Department of Computer Science, 1989.

[24] Pu Gao and Catherine Greenhill. Mixing time of the switch markov chain and stable
degree sequences. Discrete Applied Mathematics, 291:143–162, 2021.

[25] Svante Janson. Random graphs with given vertex degrees and switchings. Random
Structures & Algorithms, 57(1):3–31, 2020.

[26] Catherine Greenhill. A polynomial bound on the mixing time of a markov chain for
sampling regular directed graphs. Electronic Journal of Combinatorics, 18:P234, 2011.

[27] Catherine Greenhill and Matteo Sfragara. The switch markov chain for sampling irregular
graphs and digraphs. Theoretical Computer Science, 719:1–20, 2018.

[28] Péter L. Erdős, Tamás Róbert Mezei, István Miklós, and Dániel Soltész. Efficiently
sampling the realizations of bounded, irregular degree sequences of bipartite and directed
graphs. PLOS ONE, 13(8):1–20, 08 2018.

[29] Éva Czabarka, Aaron Dutle, Péter L Erdős, and István Miklós. On realizations of a joint
degree matrix. Discrete Applied Mathematics, 181:283–288, 2015.

[30] Georgios Amanatidis, Bradley Green, and Milena Mihail. Graphic realizations of joint-
degree matrices. arXiv preprint arXiv:1509.07076, 2015.

[31] Charo I. Del Genio, Hyunju Kim, Zoltán Toroczkai, and Kevin E. Bassler.

[32] Kevin E Bassler, Charo I Del Genio, Péter L Erdős, István Miklós, and Zoltán Toroczkai.
Exact sampling of graphs with prescribed degree correlations. New Journal of Physics,
17(8):083052, 2015.

[33] Joseph Blitzstein and Persi Diaconis. A sequential importance sampling algorithm for
generating random graphs with prescribed degrees. Internet mathematics, 6(4):489–522,
2011.

[34] Jeong Han Kim and Van H Vu. Generating random regular graphs. In Proceedings of
the thirty-fifth annual ACM symposium on Theory of computing, pages 213–222, 2003.

[35] M Drew LaMar. Directed 3-cycle anchored digraphs and their application in the uniform
sampling of realizations from a fixed degree sequence. In Proceedings of the 2011 Winter
Simulation Conference (WSC), pages 3348–3359. IEEE, 2011.

[36] Van H Vu. Concentration of non-lipschitz functions and applications. Random Structures
& Algorithms, 20(3):262–316, 2002.

39

	1 The algorithm
	2 The probability that Algorithm 1 generates a given digraph
	2.1 The probability of generating a given digraph G
	2.2 Defining r
	2.3 Proving equation (5)
	2.4 Proving equation (4)

	3 The probability of failure of Algorithm 1
	4 Running time Algorithm 1

