
ar
X

iv
:2

10
3.

09
00

0v
1

 [
m

at
h.

C
T

]
 1

6
M

ar
 2

02
1

Third-order functionals on partial combinatory algebras

Jetze Zoethout

Department of Mathematics, Utrecht University

March 17, 2021

abstract

Computability relative to a partial function f on the natural numbers can be formalized using the notion of

an oracle for this function f . This can be generalized to arbitrary partial combinatory algebras, yielding a

notion of ‘adjoining a partial function to a partial combinatory algebra A’. A similar construction is known

for second-order functionals, but the third-order case is more difficult. In this paper, we prove several results

for this third-order case. Given a third-order functional Φ on a partial combinatory algebra A, we show how

to construct a partial combinatory algebra A[Φ] where Φ is ‘computable’, and which has a ‘lax’ factorization

property (Theorem 7.3 below). Moreover, we show that, on the level of first-order functions, the effect of

making a third-order functional computable can be described as adding an oracle for a first-order function.

1 Introduction

Classical computability on the natural numbers can be extended with notions of computability
involving functions. For example, we may add an oracle for a non-computable partial function
f : N ⇀ N to our Turing machines, yielding a notion of computability relative to f . Another
example is given by Kleene’s S1-S9, which devises a system of computation with higher-order
functionals, whose inputs are also functionals, rather than just numbers.
This paper is concerned with computability on (higher-order) functions in the more general
context of partial combinatory algebras (PCAs), which can be viewed as abstract ‘models
of computation’. Some work has previously been done on this subject. The paper [vO06]
offers a notion of ‘oracle computability’ for general PCAs, and the paper [FvO16] generalizes
this first paper to second-order functionals. The authors of [FvO16] also mention that the
third-order case seems to be far more difficult. The main result of this paper concerns this
third-order case. Specifically, given a third-order functional Φ on a PCA A, we show how to
construct a PCA A[Φ] where Φ is ‘computable’, and which has a ‘lax’ factorization property
(Theorem 7.3 below). Moreover, we show that, on the level of first-order functions, the effect
of making a third-order functional computable can be described as adding an oracle for a
first-order function.
As we said, this paper is concerned with computability on functions. In the paper [vO11], it is
shown that, for each PCA A, there is another PCA BA whose elements are partial functions
on A. The main strategy of this paper is to view higher-order functionals on A as lower-order
functionals on BA. In developing this strategy, the paper also serves as a unification of the
material from [vO06] and [FvO16] on the one hand, and [vO11] on the other hand. However,
there is also a serious obstacle for this strategy. It turns out that the elements of BA lead a
kind of ‘double life’. On the one hand, they are elements of BA, but on the other hand, for
each α ∈ BA, there are (other) elements from BA that compute α in a specific sense. These

1

http://arxiv.org/abs/2103.09000v1

cannot always be translated into one another, and we will give an explicit example of this
phenomenon (Example 6.16).
Let us briefly outline the paper. First of all, in Section 2, we introduce partial combinatory
algebras and the realizability toposes (denoted by RT) that can be constructed out out of
them. In this paper, PCAs will always be relative and ordered ; the main reason for consid-
ering such a general notion of PCAs is that it allows us to construct a geometric surjection
RT(BA) ։ RT(A). The relevant morphisms between PCAs are introduced in Section 3,
which yields a preorder-enriched category of PCAs. Section 2 contains no new material, but
Section 3 treats a slight innovation with respect to the literature, namely the notion of a
partial applicative morphism, which is specific to relative PCAs. In Section 4, we revisit
the paper [vO06], showing how to ‘freely adjoin’ a partial function f : A ⇀ A to a PCA A,
yielding a new PCA A[f]. The construction is largely the same as in [vO06], but we have
made it suitable for the relative ordered case. Next, Section 5 introduces the PCA BA of
partial functions as in [vO11], but with one important deviation. One of the central views
of this paper is that BA is best viewed as a relative, ordered PCA, even if A itself is an
‘ordinary’ PCA, i.e., lacking a notion of relativity and an order. In this section, we also show
how, at the level of realizability toposes, A[f] may be reconstructed using the construction
B−, slicing, and image toposes. This construction depends heavily on the fact that there is a
geometric surjection RT(BA) ։ RT(A), and therefore, on our treatment of BA as a relative,
ordered PCA. Then, in Section 6, we treat the second-order case, where we reinterpret the
construction from [FvO16] as a construction that actually takes place in BA. We also give
an explicit example of the ‘obstacle’ mentioned above (Example 6.16). Finally, in Section 7,
we present the aforementioned results on the third-order case.

2 Relative ordered PCAs

A partial combinatory algebra is a non-empty set A equipped with a partial binary operation,
called application. We think of the image of a pair (a, b) under this application map as the
result, if defined, of applying the algorithm (with code or Gödel number) a to the input b.
In order to capture this computational intuiton, this application will need to satisfy a few
requirements, to be specified below. In the current setting, we add two extra features to this
application map. First of all, we equip our PCAs with a partial order. We think of a′ ≤ a
as saying that a′ gives more information than a, or that a′ is a refinement of a. Second, we
specify a filter, which is a subset of A satisfying certain properties. We think of the elements
of this filter as the ‘computable’ elements, or as those (codes of) algorithms that can actually
be carried out. Let us start by defining structures equipped with an application map and a
partial order.

Definition 2.1. A partial applicative poset (abbreviated PAP) is a triple A = (A, ·,≤) where
(A,≤) is a poset and · is a partial binary map A×A ⇀ A, called the application map, such
that the following axiom is satisfied:

(A) the application map has downwards closed domain and preserves the order, i.e., if a′ ≤ a,
b′ ≤ b and a · b is defined, then a′ · b′ is defined as well, and a′ · b′ ≤ a · b.

The PAP A is called total if the application map is total, and discrete if ≤ is the discrete
order.

Axiom (A) fits the informal intuition about the order on A: if a′ and b′ contain at least as

2

much information as a resp. b, and a · b is already defined, then a′ · b′ should also be defined
and contain at least as much information as a · b.
Before we proceed to add the second extra feature mentioned above, let us agree on some
notation and describe some basic constructions for PAPs. First of all, we will usually omit
the dot for application, and just write ab for a · b. Since the application map is not required
to be associative, and in fact usually will not be associative, the bracketing of expressions is
relevant. Here we adopt the convention, as is customary, that application associates to the
left, meaning that abc is an abbreviation of (ab)c.
Second, since the application map is partial, we will have to deal with expressions that may
or may not be defined. If e is a possibly undefined expression, then we write e ↓ to indicate
that e is in fact defined. We take this to imply that all subexpressions of e are defined as well.
If e and e′ are possibly undefined expressions, then we write e′ � e to mean: if e↓, then e′ ↓
as well, and e′ ≤ e. Observe that axiom (A) above may now be rewritten as: if a′ ≤ a and
b′ ≤ b, then a′b′ � ab. On the other hand, we write e′ ≤ e to indicate that e′ and e are in fact
defined, and e′ ≤ e. Observe that, in the discrete case, e′ � e reduces to Kleene inequality : if
e is defined, then e′ is also defined and denotes the same value.
Similarly, we write e′ ≃ e iff e′ � e and e � e′; in other words, e↓ precisely when e′ ↓, and in
this case e and e′ assume the same value. In other words, ≃ is the familiar Kleene equality.
On the other hand, e′ = e expresses the stronger statement that e′ and e are in fact defined,
and equal to each other.
The following object will become increasingly important in the remainder of the paper.

Definition 2.2. Let A be a PAP.

(i) We define BA as the set of all partial functions α : A ⇀ A such that a ≤ b implies
α(a) � α(b) for all a, b ∈ A.

(ii) For α, β ∈ BA, we say that α ≤ β if α(a) � β(a) for all a ∈ A.

In other words, α ∈ BA if and only if its domain is downwards closed, and α is order-preserving
on its domain. The statement α ≤ β means that the domain of α extends the domain of β,
and α ≤ β holds pointwise on the domain of β. Clearly, this makes BA into a poset; later,we
shall see that it can be equipped with a PCA structure. Observe that, in the discrete case,
BA is simply the set of all partial functions on A, and the order is the reverse subfunction
relation.

Warning 2.3. Some authors (including myself in other papers) discussing the discrete case
use the ‘opposite’ convention for Kleene inequality, writing e′ � e where we write e′ � e. The
reason for doing so is that in this way, the corresponding order on partial functions is the
actual subfunction relation, and not the reverse one. In the context of ordered PCAs, however,
the current convention is the right one to adopt. Indeed, in the case where expressions are
defined, one should like e′ � e to imply e′ ≤ e, and not e′ ≥ e. Moreover, the order defined
on BA matches our intuition about orders. Indeed, α ≤ β means that α provides more
information than β, either by specifying more values than β, or by adding information to
values already specified by β.

Example 2.4. If (A,≤) is a poset with finite meets, then it can be made into a total PAP
by setting ab = a ∧ b.

Example 2.5. Let A = (A, ·,≤) be a PAP. We write DA for the set of downwards closed
subsets of A, i.e., the set of all α ⊆ A satisfying: if a′ ≤ a and a ∈ α, then a′ ∈ α. Clearly, DA

3

is partially ordered by inclusion. We make DA into a PAP by defining an application map as
follows. If α, β ∈ DA, then we say that αβ ↓ if and only if ab↓ for all a ∈ α and b ∈ β. In this
case, αβ is defined as ↓{ab | a ∈ α, b ∈ β}, i.e., the downwards closure of {ab | a ∈ α, b ∈ β}.
Restricting DA to the set TA of non-empty downwards closed subsets of A also yields a PAP.

The PAP DA will play an important role in the sequel of the paper. The following notation
will be convenient when working with DA.

Definition 2.6. For a ∈ A and α ∈ DA, we write

aα :≃ ↓{a} · α ≃ ↓{aa′ | a′ ∈ α},

and a similar definition applies for expressions of the form aαβ, etc.

We proceed to define filters.

Definition 2.7. Let A = (A, ·,≤) be a PAP. A filter of A is an non-empty subset F ⊆ A
that is:

(i) closed under application, i.e., if a, b ∈ F and ab↓, then also ab ∈ F ;

(ii) upwards closed, i.e., if a ≤ b and a ∈ F , then also b ∈ F .

Example 2.8. If (A,≤) is a poset with finite meets, then a filter on (A,∧,≤) is a filter in
the usual order-theoretic sense.

Example 2.9. (i) If A is a PAP, and F is a filter on A, then F can also be made into a
PAP, by restricting both the application map and the order to F . This new PAP will
be denoted by (F, ·,≤), or simply by F .

(ii) If A is a PAP, F is a filter on A, and G is a filter on the PAP F , then G is also a filter
on A.

Since a filter is defined as a non-empty set with certain closure properties, we can consider
the notion of a generated filter.

Definition 2.10. Let A be a PAP and let X be a non-empty subset of A. We define 〈X〉 as
the smallest filter on A extending X, and we call this the filter generated by X.

In the case of filters on meet-semilattices, one can always generate a filter by first taking all
finite meets, and then closing upwards. In the current case, a similar description is available.
Befor we can formulate it, we need the notion of a term, which will also be central to the
definition of PCAs later in this section.

Definition 2.11. Let A be a PAP. The set of terms over A is defined recursively as follows:

(i) We assume given a countably infinite set of disinct variables, and these are all terms.

(ii) For every a ∈ A, we assume that we have a constant symbol for a, and this is a term.
The constant symbol for a is simply denoted by a.

(iii) If t0 and t1 are terms, then so is (t0 · t1) (but we usually just write (t0t1), and we omit
brackets according to our convention).

4

If t = t(~x) is a term whose variables are among the sequence ~x, then we can assign an obvious,
possibly undefined, interpretation t(~a) ∈ A to an input sequence ~a ∈ A. In this way, every
term t(~x) yields a partial function λ~a.t(~a) : An ⇀ A, where n is the length of the sequence ~x.
We have the following alternative descriptions of generated filters; the proof is easy and
omitted.

Lemma 2.12. Let A be a PAP and X ⊆ A be non-empty. Then

〈X〉 = ↑{t(~a) | t(~x) a constant-free term,~a ∈ X and t(~a)↓},

where ↑ stands for taking the upwards closure.

As promised, we will consider partial applicative preorders equipped with a filter.

Definition 2.13. A partial applicative structure (abbreviated PAS) is a quadruple A =
(A,A#, ·,≤), where (A, ·,≤) is a PAP, and A# is a filter on (A, ·,≤). So explicitly, A# is a
non-empty subset of A satisfying the following axioms:

(B) A# is closed under application;

(C) A# is upwards closed.

The PAS A is called absolute if A# = A. Moreover, a filter on A is a filter F on (A, ·,≤) such
that A# ⊆ F .

Example 2.14. Let A be a PAS and let F be a filter on A. Then (F,A#, ·,≤) is also a PAS.
When no confusion can arise, we will denote this PAS simply by F . Of course, (A,F, ·,≤) is
also a PAS.

Example 2.15. If F is a filter on the PAP A, then {α ∈ DA | α ∩ F 6= ∅} is a filter on the
PAP DA. In particular, if A is a PAS, then we can make DA into a PAS as well by setting
(DA)# = {α ∈ DA | α ∩A# 6= ∅}. Similar remarks hold for TA.

Thus far, all the structure we have introduced is of an algebraic nature, and does not yet
express a notion of computability. Now let us finally introduce the ‘computational’ component
of PCAs.

Definition 2.16. A partial combinatory algebra (abbreviated PCA) is a PAS A for which
there exist k, s ∈ A# such that:

(D) kab ≤ a;

(E) sab↓;

(F) sabc � ac(bc),

for all a, b, c ∈ A.

The elements k and s are usually called combinators. Using these combinators, every compu-
tation using the application map can be represented by a computable element (i.e., algorithm)
from A itself. In order to make this statement precise, we use the terms introduced in Defi-
nition 2.11. As we mentioned, every term defines a partial function An ⇀ A. The key fact
about PCAs is that such partial functions are (laxly) computable using an element from A
itself.

5

Proposition 2.17 (Combinatory completeness). Let A be a PCA. There exists a map that
assigns to each term1 t = t(~x, y) with at least one variable, an element λ∗~x, y.t ∈ A, satisfying:

(i) (λ∗~x, y.t)~a↓ (where ~a has the same length as ~x);

(ii) (λ∗~x, y.t)~ab � t(~a, b);

(iii) if all the constants occurring in t are from A#, then λ∗~x, y.t ∈ A# as well.

Proof. Define the element i ∈ A# as skk. We will give a slightly more general construction
than required for the proposition. For a variable u and a term s, we define a new term λ∗u.s
with the following properties:

• the free variables of λ∗u.s are those of s minus u;

• if ~v are the free variables of λ∗u.s, then the substitution instance (λ∗u.s)[~b/~v] is defined
for all ~b ∈ A;

• moreover, if a ∈ A, then (λ∗u.s)[~b/~v] · a � s[~b/~v, a/u];

• if all the constants occuring in s are from A#, then the same holds for λ∗u.s.

We define this new term resursively:

• If s is a constant or a variable distinct from u, then λ∗u.s is ks.

• If s is the variable u, then λ∗u.s is i.

• If s is s0s1, then λ∗u.s is s(λ∗u.s0)(λ
∗u.s1).

We leave the verification of the stated properties to the reader.
Now, if ~x = x0, . . . , xn−1, then we define λ∗~x, y.t as (the interpretation of) the closed term

λ∗x0.(· · · (λ
∗xn−1.(λ

∗y.t)) · · ·).

The verification of the properties (i), (ii) and (iii) is also left to the reader. Details may also
be found in Chapter 1 of [vO08] (which treats the discrete, absolute case, but this can easily
be generalized to our case).

Some useful combinators besides k and s are i = skk defined above, k = ki, p = λ∗xyz.zxy,
p0 = λ∗x.xk and p1 = λ∗x.xk. Observe that these combinators all belong to A# and satisfy:

ia ≤ a, kab ≤ b, p0(pab) ≤ a and p1(pab) ≤ b.

In particular, pab is always defined, and we think of this element as (coding) the pair (a, b).
Accordingly, p is called the pairing combinator, and p0 and p1 are known as the unpairing
combinators.
Moreover, we can construct booleans, i.e. elements ⊤,⊥ ∈ A# for which there is a case
operator C ∈ A# satisfying C⊤ab ≤ a and C⊥ab ≤ b. Indeed, we may simply take ⊤ = k,
⊥ = k and C = i. When we are dealing with expressions that are possibly undefined, we need
to be a bit more careful. Suppose we have terms t0(~x), t1(~x) and t2(~x), and define the new

1Strictly speaking: a term along with an ordered sequence of distinct variables containing the variables from
the term. A more formal treatment could be given using terms-in-context, but we will not take this trouble
here.

6

term t := Ct0t1t2, whose free variables are also among ~x. Then this term does not behave
as one would expect at first glance. In particular, if t0(~a) ≤ ⊤ and t1(~a) ↓, then it does not
follow that t(~a) is defined. Indeed, it may happen that t2(~a) fails to be defined and, since t2
is a subterm of t, this prevents t(~a) from being defined. We clearly do not want this, since
we are not interested in the value (if any) of t2(~a) when t0(~a) ≤ ⊤. Therefore, we introduce a
strong case distinction (we take this terminology from [LN15], Section 3.3.3.). If t0(~x), t1(~x)
and t2(~x) are terms, then we define a new term t′(~x) as:

Ct0(λ
∗y.t1)(λ

∗y.t2)i.

where y is not among the ~x. One can easily check that this term has the following property:
if t0(~a) ≤ ⊤, then t′(~a) � t1(~a), whereas if t0(~a) ≤ ⊥, then t′(~a) � t2(~a). We will denote the
term t′ above by if t0 then t1 else t2. Observe that, if all parameters from t0, t1 and t2 are in
A#, then the same holds for if t0 then t1 else t2.
As in ordinary recursion theory, we have fixpoint operators. Using the terminology from
[LN15], Section 3.3.5, we have a fixpoint operator y ∈ A# and a guarded fixpoint operator
z ∈ A# satisfying: ya � a(ya), za ↓ and zab � a(za)b. These may be constructed as y = uu
where u = λ∗xy.y(xxy) and z = vv where v = λ∗xyz.y(xxy)z. The fixpoint operator y is
generally only useful in total PCAs, since ya � a(ya) will always be true if ya is not defined.
The guarded fixpoint operator z has the property that za is always defined, and can be used
to create self-referential definitions. Explicitly, if t(x, y) is a term, then setting a := λ∗xy.t
yields an element T := za with the property that Tb � aTb � t(T, b) for all b ∈ A. Moreover,
if all the parameters from t are in A#, then T ∈ A# as well. Obviously, this construction
can be generalized to more variables, either by adjusting the definition of z or by using the
pairing combinators.
All this justifies the view of PCAs as generalizing computability on the natural numbers.
In fact, we can code the natural numbers in a PCA A, by setting recursively 0 = i and
n+ 1 = p⊥n; observe that all the n are in A#. Usually, we will omit the bar and simply
write n ∈ A#, where we really mean its representative n. Now it is easily checked that the
elements zero = p0, suc = λ∗x.p⊥x and pred = λ∗x.p0xi(p1x) from A# satisfy: zero · 0 ≤ ⊤,
zero · (n + 1) ≤ ⊥, suc · n ≤ n + 1, pred · 0 ≤ 0 and pred · (n + 1) ≤ n. Moreover, using the
guarded fixpoint operator, we may construct a recursor rec ∈ A# such that

recab0 ≤ a and recab(n + 1) � bn(recabn) for all n ∈ N and a, b ∈ A.

Since we have a ‘pairing’ function given by p ∈ A#, we can also code longer tuples in A. More
precisely, we can define total functions jn : An → A for n ≥ 0 by:

• j0() = i;

• jn+1(a0, . . . , an) = pa0 · j
n(a1, . . . , an).

Using these functions, we can devise a coding of finite sequences in A. If a0, . . . , an−1 is a
sequence, then we define its code by:

[a0, . . . , an−1] := pn · jn(a0, . . . , an−1).

Observe that [a0, . . . , an−1] is built using the ai, combinators from A# and application. In
particular, if all the ai are from A#, then so is the code [a0, . . . , an−1].
Using the combinators above, one can mimick the standard recursion theoretic arguments
to show that all elementary operations on sequences are computable in terms of their codes.
The following definition introduces a few such computations that we will need in the sequel.

7

Definition 2.18. If A is a PCA, then lh, read, fst, concat, unit, ext ∈ A# are combinators that
satisfy:

• lh · [a0, . . . , an−1] ≤ n;

• read · [a0, . . . , an−1] · i ≤ ai if i < n;

• fst · [a0, . . . , an] ≤ a0;

• concat · [a0, . . . , an−1] · [b0, . . . , bm−1] ≤ [a0, . . . , an−1, b0, . . . , bm−1];

• unit · a ≤ [a];

• ext · [a0, . . . , an−1] · a
′ ≤ [a0, . . . , an−1, a

′].

Remark 2.19. Of course, the combinators constructed up to this point are far from unique.
But all of them may be constructed using only the elements k and s. When working with
a PCA, we will assume that we have made an explicit choice for k and s, and as a result, a
choice for all the combinators mentioned above.

Example 2.20. If A is a PCA and F is a filter on A, then (A,F, ·,≤) and (F,A#, ·,≤) are
also PCAs, as can be seen by taking the same combinators k and s.
The following instance of this example will be relevant in the coming sections. If r is an
element of A, then we define Fr = 〈A# ∪ {r}〉, i.e., Fr is the least filter on A containing r.
We denote the PCA (A,Fr, ·,≤) by A[r].

Example 2.21. If A is a PCA, then so are DA and TA. In both cases, a suitable choice of
combinators is ↓{k}, ↓{s}.

Example 2.22. The prototypical example of a (discrete, absolute) PCA is Kleene’s first
model K1. Its underlying set is N, and m · n is the result, if any, of applying the mth partial
recursive function to n.

Definition 2.23. A PCA A is called semitrivial if ⊤,⊥ ∈ A have a common lower bound.

This notion is introduced for the following reason: many constructions in this paper use case
distinctions inside a PCA A. Usually, such constructions do not work in a semitrivial PCA,
since we cannot distinguish ⊤ and ⊥. Observe that, if u is a common lower bound of ⊤ and
⊥, then uab is a common lower bound of a and b, for any a, b ∈ A. So in a semitrivial PCA,
every two elements have a common lower bound. On the other hand, if A is not semitrivial,
then the numerals for any two distinct m,n ∈ N do not have a common lower bound. In
particular, every non-semitrivial PCA is infinite.
In the next section, we will introduce the relevant morphisms between PCAs. Before we move
to this section, we briefly describe two important categorical constructions on PCAs.

Definition 2.24. Let A be a PCA.

(i) An assembly over A is a pair X = (|X|, EX), where |X| is a set and EX is a function
|X| → TA, i.e., EX(x) is a non-empty downwards closed subset of A, for all x ∈ |X|.

(ii) A morphism of assemblies X → Y is a function f : |X| → |Y | for which there exists a
t ∈ A# such that: for all x ∈ |X|, the set t ·EX(x) (as in Definition 2.6) is defined and
a subset of EY (f(x)). Such a t is called a tracker for f .

8

Proposition 2.25. Assemblies over a PCA A and morphisms between them form a category
Asm(A), and this is a quasitopos.

The proof is a straightforward generalization of the material in Section 1.5 from [vO08], and
is omitted. There is an obvious forgetful functor Γ: Asm(A) → Set sending X to |X| and
which is the identity on arrows. In the other direction, there is a functor ∇ : Set → Asm(A)
given by ∇Y = (Y, λy.A) and ∇f = f . The functors Γ and ∇ are both regular, and we have
Γ ⊣ ∇ with Γ∇ ∼= idSet.
Even though Asm(A), being a quasitopos, enjoys nice properties, it is not an exact category.
We can make it exact by taking the ex/reg completion, which turns out to be an elementary
topos.

Definition 2.26. Let A be a PCA. The realizability topos RT(A) is defined as Asm(A)ex/reg.

Since Γ: Asm(A) → Set is regular and Set is exact, this functor may be lifted to a functor
RT(A) → Set, which will also be denoted by Γ. In the other direction, we have the composition

Set
∇
−→ Asm(A) →֒ RT(A), which will also be denoted by ∇. This yields a geometric inclusion

Γ ⊣ ∇ : Set → RT(A), which is equivalent to the inclusion of ¬¬-sheaves of RT(A).

3 Partial applicative morphisms

In this section, we introduce morphisms between PCAs. Usually, a morphism from a PCA
A to a PCA B is a function that assigns to each a ∈ A a non-empty subset of B. In the
ordered setting, this needs to be amended to: a non-empty downset of B. The non-emptiness
condition is needed to make sure that every computation from A can be ‘transferred’ along
the morphism to B. However, in the relative setting, computations in A are given by elements
from A#, rather than A. So one really needs to require the following: for each a ∈ A#, the
associated downset of B contains an element of B#. For a outside A#, the non-emptiness
conditions can be omitted, leading to the notion of a partial applicative morphism.

Definition 3.1. Let A and B be PCAs.

(i) A partial applicative morphism A ⇀ B is a function f : A → DB satisfying the following
three requirements:

1. f(a) ∩B# 6= ∅ for all a ∈ A#.

2. There exists a t ∈ B# such that: for all a, a′ ∈ A, if aa′ is defined, then t·f(a)·f(a′)
is defined as well, and a subset of f(aa′). Such a t is called a tracker for f .

3. There exists a u ∈ B# such that: u·f(a) is defined for all a ∈ A, and u·f(a) ⊆ f(a′)
whenever a ≤ a′. We say that f preserves the order up to u.

We say that f is total if f(a) 6= ∅ for all a ∈ A, and in this case, we write f : A → B.

(ii) If f, f ′ : A → DB are functions, then we say that f ≤ f ′ if there exists an s ∈ B# such
that: for all a ∈ A, the set s · f(a) is defined and a subset of f ′(a). Such an s is said to
realize the inequality f ≤ f ′. Moreover, we write f ≃ f ′ if both f ≤ f ′ and f ′ ≤ f .

Proposition 3.2. PCAs, partial applicative morphisms and inequalities between them form a
preorder-enriched category pPCA. Restricting the 1-cells to total applicative morphisms yields
another preorder-enriched category PCA.

9

Proof. The identity on a PCA A is given by idA(a) = ↓{a}. Moreover, if A
f
⇀ B

g
⇀ C, then

their composition gf is defined by gf(a) =
⋃

b∈f(a) g(b). The proof that this yields a preorder-
enriched category proceeds as in Section 1.5 of [vO08], with appropriate adjustments. We do
mention that pPCA is not a strict preorder-enriched category, since idA f ≃ f in general holds
only up to isomorphism (see also Lemma 3.6 below). The other equations for a category do
hold strictly.
For the second statement, observe that identities are total, and that total morphisms are
closed under composition.

The reason why we call our applicative morphisms ‘partial’ is that we view the fact that f(a)
is non-empty as evidence that f(a) is ‘actually defined’. Moreover, an element of f(a) ∩ B#

counts as effective evidence that f(a) is defined. This motivates the following definition.

Definition 3.3. Let f : A ⇀ B be a partial applicative morphism. Then we write

dom f = {a ∈ A | f(a) 6= ∅} and dom# f = {a ∈ A | f(a) ∩B# 6= ∅}.

We see that f is total precisely when dom f = A. Since f ≤ f ′ implies that dom f ⊆ dom f ′,
this also means that PCA(A,B) is upwards closed inside pPCA(A,B). Moreover, we have the
following result.

Lemma 3.4. Let f : A ⇀ B be a partial applicative morphisms. Then dom f and dom# f
are filters of A.

Proof. By property 1 of f , we have A# ⊆ dom# f ⊆ dom f . If t ∈ B# tracks f and a, a′ ∈ A
are such that aa′ ↓, then t · f(a) · f(a′) ⊆ f(aa′). So, if b ∈ f(a) and b′ ∈ f(a′), then
tbb′ ∈ f(aa′), which shows that dom f is closed under application. Similarly, if b ∈ f(a)∩B#

and b′ ∈ f(a′) ∩B#, then tbb′ ∈ f(aa′) ∩B#, so dom# f is closed under application as well.
The proof that dom f and dom# f are upwards closed proceeds similarly, using property 3 of
f .

Example 3.5. Let A be a PCA, let r ∈ A and recall the PCA A[r] from Example 2.20.
Then there exists a total applicative morphism ιr : A → A[r] that ‘acts as the identity’, i.e.,
ιr(a) = ↓{a}. This morphism has the following universal property: if f : A ⇀ B, then f
factors, up to isomorphism, through ιr if and only if r ∈ dom# f . Indeed, f is also a partial
applicative morphism A[r] ⇀ B if and only if Fr ⊆ dom# f ; and since dom# f is a filter on
A, this is true if and only if r ∈ dom# f .

When working with partial applicative morphisms, the following lemma ([HvO03], Lemma
3.3) is often useful. It says that every partial applicative morphism is isomorphic to one that
preserves the order ‘on the nose’.

Lemma 3.6. Every partial applicative morphism f : A ⇀ B is isomorphic to an order-
preserving partial applicative morphism f ′, meaning that a ≤ a′ implies f ′(a) ⊆ f ′(a′).

Proof. Define f ′ as f idA, i.e., f
′(a) =

⋃
a′≤a f(a

′) for a ∈ A. Proposition 3.2 tells us that f ′

is a partial applicative morphism which is isomorphic to f . Moreover, it is immediately clear
that f ′ preserves the order on the nose.

Remark 3.7. Ordered PCAs were introduced in the paper [HvO03]. Here, the authors
consider a category whose objects are ordered (but absolute) PCAs, but whose arrows are
functions A → B. They show that the assignment A 7→ TA is part of a monad structure on

10

this category, whose Kleisli category is (the absolute version of) PCA. For pPCA, a similar
treatment can be given using the construction A 7→ DA instead. In the absolute setting, the
PCA DA is not very interesting. Indeed, because DA has a least element ∅, it is equivalent
to the one-element PCA. In the relative setting, on the other hand, this is no longer true, due
to the fact that the least element ∅ of DA is never in (DA)#.

We now proceed to extend the constructions Asm and RT to partial applicative morphisms.

Definition 3.8. Let f : A ⇀ B be a partial applicative morphism. We define the functor
Asm(f) : Asm(A) → Asm(B) by:

• |Asm(f)(X)| = {x ∈ |X| | EX(x) ∩ dom f 6= ∅};

• EAsm(f)(X)(x) =
⋃

a∈EX(x) f(a) for x ∈ |Asm(f)(X)|;

• Asm(f)(g) is the restriction of g to |Asm(f)(X)|,

for assemblies X ∈ Asm(A) and arrows g : X → Y of Asm(A).

Since we are working with multiple assemblies simultaneously, we will sometimes write ΓA ⊣
∇A for the adjunction between Set and Asm(A) or RT(A). A functor F : Asm(A) → Asm(B)
is called a Γ-functor if ΓBF ∼= ΓA, and similarly, a ∇-functor if F∇A

∼= ∇B. For functors
RT(A) → RT(B), we adopt a similar definition. Now we can state some elementary properties
of the functor Asm(f).

Proposition 3.9. For every partial applicative morphism f , the functor Asm(f) is a regular
∇-functor. Moreover, it is a Γ-functor precisely when f is total.

By the universal property of the ex/reg completion, there is a unique regular functor RT(A) →
RT(B) whose restriction to assemblies is Asm(f). We will denote this functor by RT(f); this
is also a regular ∇-functor. Moreover, RT(f) is a Γ-functor iff Asm(f) is a Γ-functor, iff f is
total.

Remark 3.10. Longley has shown ([Lon94], Sections 2.2 and 2.3), for the discrete, absolute
case, that a left exact functor F : Asm(A) → Asm(B) is a ∇-functor if and only if it is a
Γ-functor. Morover, the regular ∇-functors are (up to equivalence) precisely the functors of
the form Asm(f). This can be generalized to the ordered case, but the relative case is slightly
different. Indeed, while Γ-functors are still always ∇-functors, the converse is not true. In the
relative case, the regular ∇-functors Asm(A) → Asm(B) correspond to the partial applicative
morphisms A ⇀ B, while the regular Γ-functors Asm(A) → Asm(B) correspond to total
applicative morphisms A → B.

In order to complete the picture, we remark that, if f ′ ≤ f , we get a natural transformation
µ : Asm(f) ⇒ Asm(f ′), where µX is the inclusion |Asm(f)(X)| ⊆ |Asm(f ′)(X)| for assemblies
X. By the universal property of the ex/reg completion, we also get a natural transformation
RT(f) ⇒ RT(f ′). This makes Asm and RT into pseudofunctors from pPCA to the 2-category
of categories.
Now we discuss some special properties that a partial applicative morphism may have.

Definition 3.11. Let f : A ⇀ B be a partial applicative morphism. Then f is called:

(i) decidable if there is a d ∈ B# (called a decider for f) such that d · f(⊤) ⊆ ↓{⊤} and
d · f(⊥) ⊆ ↓{⊥};

11

(ii) computationally dense (abbreviated c.d.) is there is an n ∈ B# such that:

∀s ∈ B#∃r ∈ A# (n · f(r) ⊆ ↓{s}); (cd)

(iii) single-valued if f(a) is a principal downset of B for each a ∈ dom f ;

(iv) projective if f ≃ f ′ for some single-valued f ′ : A ⇀ B.

We list some elementary results on decidability and computational density. The proofs are
left to the reader.

Proposition 3.12. Let A
f
⇀ B

g
⇀ C be partial applicative morphisms.

(i) if f is c.d., then f is decidable;

(ii) if f ′ : A ⇀ B satisfies f ′ ≤ f and f is c.d. (resp. decidable), then f ′ is c.d. (resp.
decidable) as well;

(iii) if f and g are c.d. (resp. decidable), then gf is c.d. (resp. decidable) as well;

(iv) if gf is c.d. (resp. decidable), then g is c.d. (resp. decidable) as well.

In particular, left adjoints are c.d. and decidable.

Computational density was first introduced in the paper [HvO03]. The definition we gave
above is not the original definition from that paper, but rather a simplification due to P. John-
stone (see [Joh13], Lemma 3.2). The main motivation for computational density is the fol-
lowing result, that we state but do not prove.

Theorem 3.13. Let f be a total applicative morphism. Then:

(i) f is projective and c.d. iff f has a right adjoint in pPCA;

(ii) f is c.d. iff Asm(f) has a right adjoint, iff RT(f) has a right adjoint.

In particular, every total c.d. applicative morphism A → B gives rise to geometric morphism
RT(B) → RT(A).

Remark 3.14. Even though we do not prove Theorem 3.13, we will make some remarks on the
proof method. The right adjoint of Asm(f), if it exists, is certainly a ∇-functor, but it is not
necessarily regular. But we do know that it is left exact, and the paper [FvO14] (Theorem 2.2)
shows, for the absolute case, that such functors arise from applicative morphisms TA → B.
The assumption that f is c.d. can then be used to construct this morphism, which yields the
desired right adjoint of Asm(f). This construction also works for the relative case, except
that one may get a partial applicative morphism TA ⇀ B. This corresponds to the fact
that the right adjoint of Asm(f) may fail to be a Γ-functor. As for (i), we have that f has a
right adjoint in pPCA iff the right adjoint of Asm(f) is regular. This is equivalent to: Asm(f)
preserve projective objects, which is equivalent to f being projective (hence the name).

Example 3.15. The morphism ιr from Example 3.5 is c.d. Indeed, define the element
n := λ∗x.xr ∈ Fr, where Fr = 〈A# ∪ {r}〉 is as in Example 2.20. If s ∈ Fr, then by
Lemma 2.12, there exists a term t(~x, y) without constants such that t(~a, r) ≤ s for certain
~a ∈ A#. Now consider the element q = λ∗y.t(~a, y) ∈ A#. We have nq � qr � t(~a, r) ≤ s,
which implies n · ιr(q) ⊆ ↓{s}, so n satisfies (cd).

12

We could also have shown that ιr is c.d. by exhibiting a right adjoint in PCA. Indeed, consider
h : A → A defined by h(a) = {b ∈ A | br ≤ a}. First of all, this is clearly a downset of A, and
we have ka ∈ h(a) for all a ∈ A, and ka ∈ h(a) ∩ A# for all a ∈ A#. Moreover, h preserves
the order on the nose, and finally, h is tracked by s ∈ A#. We also have r ∈ dom# h, since
i ∈ h(r) ∩ A#, so h is also a morphism A[r] → A, by the universal property of ιr. It is easy
to see that k ∈ A# realizes both idA ≤ ιrh and idA[r] ≤ hιr, whereas λ∗x.xr ∈ Fr realizes
ιrh ≤ idA[r]. So we have an adjunction ιr ⊣ h in PCA with ιrh ≃ idA[r]. Applying the
construction RT now shows that RT(A[r]) is a subtopos of RT(A). In fact, one can show (e.g.,
using techniques from [Zoe20]) that RT(A[r]) is an open subtopos, given by the subterminal
assembly 1r defined by |1r| = {∗} and E1r(∗) = ↓{r}.

The remainder of the paper can be seen as an attempt to generalize this example to ‘higher
orders’.

4 Adjoining a partial function to a PCA

In this section, we generalize a construction from [vO06], which, given a (discrete, absolute)
PCA A and a partial function f : A ⇀ A, ‘freely adjoins’ f to A. In fact, this can be
seen as a higher-order version of the construction of A[r], where we view A[r] as the zeroth-
order case (adjoining an element), and the construction in this section as the first-order case.
Accordingly, we will denote the resulting PCA by A[f].
Here, of course, we treat the relative, ordered case. Since the order is ‘hard-wired’ into the
PCA, we will not consider all partial functions on A, but only those that cooperate well with
the order, i.e., those from BA. The filter is a bit more flexible. For ordinary computability
on N, we know that declaring a certain function to be computable (e.g., by making it into
an oracle) causes other functions to be computable as well. Because we make a distinction
between computable and non-computable elements as well, there is also the possibility that
more elements become computable, i.e., that the filter becomes larger. More precisely, we
will need to close A# under application of f . Here a set X ⊆ A is closed under application
of f if f(a) ∈ A whenever a ∈ X and f(a)↓.
Before we proceed to define A[f], let us first give a precise meaning to the computability of
a function f ∈ BA.

Definition 4.1. Let A be a PCA and let f ∈ BA.

(i) An r ∈ A is said to represent f if ra � f(a) for all a ∈ A. The function f is called rep-
resentable if it represented by an r ∈ A, and effectively representable if it is represented
by an r ∈ A#.

(ii) If g : A ⇀ B is a partial applicative morphism, then we say that an s ∈ B represents f
w.r.t. g if s · g(a) is defined and a subset of g(f(a)) for all a ∈ dom f . The function f
is called representable w.r.t. g if it is represented w.r.t. g by an s ∈ B, and effectively
representable w.r.t. g if it is represented w.r.t. g by an s ∈ B#.

Observe that (i) is actually a special case of (ii), if we let g be idA.

Remark 4.2. If r ∈ A, then the partial function λa.ra is always in BA. (Here we mean
λa.ra to denote the partial function that sends a to ra, if defined; not to be confused with
λ∗a.ra ∈ A, which represents this function!) This means that the set of all respresentable
resp. effectively representable f can also be described as

↑{λa.ra | r ∈ A} ⊆ BA resp. ↑{λa.ra | r ∈ A#} ⊆ BA.

13

This will become important in the next section.

We observe that effective representability is transferable along partial applicative morphisms

in the following sense: if A
g
⇀ B

h
⇀ C and f ∈ BA is effectively representable w.r.t. g, then f

is also effectively representable w.r.t. hg. In order to prove this, assume for simplicity that h
preserves the order on the nose, and let t ∈ C# track h. If s ∈ B represents f w.r.t. g, then
λ∗x.ts0x ∈ C# represents f w.r.t. hg, where s0 ∈ h(s) ∩ C#. A similar argument shows that
representability is transferable along total applicative morphisms.
We will now begin the construction of the desired ‘free’ PCA A[f] is which f is effectively
representable. In order for this construction to work, we need to assume that A is not
semitrivial. In fact, from this point onwards, we will assume that all PCAs we consider are
not semitrivial. The underlying set of A[f] will simply be A itself, and the order on A[f]
will simply be the order on A. However, we equip A[f] with a new application operation.
Informally, a computation in A[f] will be a computation in A with an oracle for f . That
is, the computation can feed a finite number of inputs to f before coming up with the final
result. In order to distinguish this new application from the original one, we will write it as
a ⊙ b. Of course, this new application will depend on f , so really, we should write ⊙f . If
there is ambiguity as to which function plays the role of f , we will do so. However, doing
so consistently would make expressions concerning A[f] rather illegible, so in this section, we
exclusively write ⊙.

Definition 4.3. Let A be a PCA and let f ∈ BA. We define the PAP A[f] = (A,⊙,≤) as
follows. For a, b, c ∈ A, we say that a ⊙ b = c if and only if there exists a (possibly empty)
sequence u0, . . . , un−1 ∈ A such that

• for all i < n, we have p0(a · [b, u0, . . . , ui−1]) ≤ ⊥ and f(p1(a · [b, u0, . . . , ui−1])) = ui;

• p0(a · [b, u0, . . . , un−1]) ≤ ⊤ and p1(a · [b, u0, . . . , un−1]) = c.

The sequence u0, . . . , un−1 is called a b-interrogation of f by a.

Intuitively, the coefficients in the interrogation are the values the oracle returns in the course
of the computation of a ⊙ b. At each stage of the computation, the algorithm a is allowed
to consult the input b and the values u0, . . . , ui−1 obtained from the oracle so far. Formally,
this means that we let a act on the coded sequence [b, u0, . . . , ui−1]. We view the result as
carrying two pieces of information. The first piece is a (sub)boolean, which tells us whether
the computation has gathered enough oracle values to output a result. If not, then the second
piece of information is fed to the oracle; if the oracle need not be consulted anymore, then
this second piece is the output.
Since A is not semitrivial, there is at most one b-interrogation of f by a, which also means that
a⊙b = c for at most one c ∈ A. Observe that a⊙b may fail to be defined in several ways. First
of all, one of the applications in A could be undefined. In addition, p0(a · [b, u0, . . . , ui−1])
could fail to be a subboolean or p1(a · [b, u0, . . . , ui−1]) could lie outside the domain of f
(i.e., the oracle fails to return a value). Finally, it could happen that the computation keeps
feeding inputs to the oracle indefinitely, never coming up with a final output. For example,
if a = k(p⊥⊥), then a⊙ b will always be undefined, even if A itself is a total PCA and f is a
total function.

Remark 4.4. In the original definition of a⊙ b from [vO06], which is for discrete PCAs, the
sequence u0, . . . , un−1 should satisfy:

14

• for all i < n, there exists a vi ∈ A such that a · [b, u0, . . . , ui−1] = p⊥vi and f(vi) = ui;

• there exists a c ∈ A such that a · [b, u0, . . . , un−1] = p⊤c,

in which case a ⊙ b = c. Since we are working with ordered PCAs, however, we cannot
hope to get equalities between elements from A, since all the available combinators only yield
inequalities. We do have the following, which we will use most often when computing a⊙ b.
If there are ū0, . . . , ūn−1, c ∈ A such that:

• for all i < n, there exists a vi ∈ A such that a · [b, ū0, . . . , ūi−1] ≤ p⊥vi and f(vi) ≤ ūi;

• a · [b, ū0, . . . , ūn−1] ≤ p⊤c,

then a ⊙ b ≤ c. (We write ūi rather than ui because this sequence need not be the actual
b-interrogation of f by a.)

Of course, we should show that A[f] is actually a PAP, which is also the point where we need
that f ∈ BA. Suppose we have a′ ≤ a and b′ ≤ b such that a⊙ b↓, and let u0, . . . , un−1 be the
b-interrogation of f by a. Then by induction, one easily shows that there exist u′i ≤ ui such
that u′0, . . . , u

′
n−1 is a b′-interrogation of f by a′; and from this, we get that a′ ⊙ b′ is defined

and a′ ⊙ b′ ≤ a⊙ b, as desired.
In order to complete the definition of A[f] as a PAS, it remains to define A[f]#. If A[f] is to
be the free PCA in which f is effectively representable, there should be a morphism A → A[f]
(cf. the zeroth-order case). The identity on A, i.e., a 7→ ↓{a}, is an obvious candidate, and in
order for this to be a morphism, we must have A# ⊆ A[f]#. We cannot, in general, let A[f]#

be equal to A#, however, since A# could fail to be closed under (defined) ⊙. The following
definition remedies this.

Definition 4.5. Let A be a PCA and let f ∈ BA. The PAP A[f] is made into a PAS by
setting A[f]# := 〈A#〉, where the generated filter is taken in the PAP A[f], rather than A,
of course.

This, by definition, makes A[f] into a PAS.

Proposition 4.6. For each PCA A and f ∈ BA, the quadruple A[f] = (A,A[f]#,⊙,≤) is a
PCA.

Proof. We need to exhibit suitable combinators kf and sf for A[f]. Recall the combinator
fst ∈ A# from Definition 2.18. For kf , we can take λ∗x.p⊤(λ∗y.p⊤(fstx)) ∈ A# ⊆ A[f]#.
Indeed, if a, b ∈ A, then kf ⊙ a ≤ (λ∗y.p⊤(fstx))[[a]/x], and

(kf ⊙ a) · [b] � (p⊤(fstx))[[a]/x, [b]/y] = p⊤(fst[a]) ≤ p⊤a,

which means that kf ⊙ a⊙ b ≤ a, as desired. Observe that kf does not, in fact, depend on f ,
and that the computation of kf ⊙ a⊙ b does not consult the oracle at all.
The definition of sf (which will also not depend on f) is a little more involved, and writing
down an actual definition of sf would be quite cumbersome. Therefore, we simply explain how
to construct it. Using recursion and the elementary operations on sequences and booleans,
we can construct an element S ∈ A# such that for all a, b and u = [u0, . . . , un−1] from A, we
have:

• if ∀i ≤ n(p0(x · [u0, . . . , ui−1]) ≤ ⊥), then Sxyu � xu;

15

• if i is minimal such that p0(x · [u0, . . . , ui−1]) ≤ ⊤, and

∀j ≤ n(i ≤ j → p0(y · [u0, ui, . . . , uj−1]) ≤ ⊥),

then Sxyu � y · [u0, ui, . . . , un−1];

• if i is minimal such that p0(x · [u0, . . . , ui−1]) ≤ ⊤, and j ≥ i is minimal such that
p0(y · [u0, ui, . . . , uj−1]) ≤ ⊤, then

Sxyu � p1(x · [u0, . . . , ui−1]) · [p1(y · [u0, ui, . . . , uj−1]), uj , . . . , un−1].

We leave it to the reader to check that Sab⊙ c � a⊙ c⊙ (b⊙ c) for a, b, c ∈ A. (This is a good
exercise in understanding what the definition of S above actually does!) Finally, we can set

sf = λ∗x.p⊤(λ∗y.S(fstx)(fsty)) ∈ A# ⊆ A[f]#.

In the same way as we did for kf , one can verify that sf ⊙ a ⊙ b ≤ Sab, so we can conclude
that A[f] is a PCA.

Before we continue, we introduce two algorithms tf , rf ∈ A# ⊆ A[f]# that are relevant
throughout this section. Set

tf := λ∗x.p⊤(λ∗y.p⊤(fstx(fsty))),

where fst is as above. A calculation similar to the ones in the proof above above shows that
tf ⊙ a⊙ b � a · b, for all a, b ∈ A. Moreover, set

rf := λ∗x.(if zero(pred(lhx)) then p⊥(fstx) else p⊤(readx1)). =,

where lh, fst, read ∈ A# are as in Definition 2.18. If a ∈ A is such that f(a)↓, then

• rf · [a] ≤ p⊥a and f(a)↓;

• rf · [a, f(a)] ≤ p⊤f(a),

which means that rf ⊙ a ≤ f(a). So we have rf ⊙ a � f(a) for all a ∈ A.
In analogy with Example 3.5, we define ιf : A → A[f] by ιf (a) = ↓{a}.

Proposition 4.7. The map ιf is a total applicative morphism, and f is effectively repre-
sentable w.r.t. ιf . Moreover, ιf has a right adjoint h : A[f] → A satisfying ιfh ≃ idA[f]. In
particular, ιf is c.d. and decidable.

Proof. Since A# ⊆ A[f]#, it is clear that ιf satisfies the first requirement; and it is also
obvious that ιf preserves the order on the nose. Moreover, tf is a tracker, so ιf is indeed a
total applicative morphism, and rf represents f w.r.t. ιf .
We define the required right adjoint h : A[f] → A by:

h(a) := {b ∈ A | b⊙ i ≤ a},

where i ∈ A# is the identity combinator for A. It is clear that h(a) is a downset, and that
h preserves the order on the nose. Now consider the S ∈ A# constructed in the proof of
Proposition 4.6. If b ∈ h(a) and b′ ∈ h(a′), then Sbb′ ⊙ i � (b ⊙ i) ⊙ (b′ ⊙ i) � a ⊙ a′, so if
a ⊙ a′ ↓, then Sbb′ ∈ h(a ⊙ a′). In other words, S is a tracker for h. Next, we observe that

16

p⊤a ∈ h(a) for all a ∈ A, so in particular, we have A# ⊆ dom# h. Since h preserves the order
and has a tracker, we already know that dom# h is a filter of the partial applicative preorder
A[f]. Combining this with A# ⊆ dom# h yields A[f]# ⊆ dom# h, so h is a total applicative
morphism.
By the observation above, we know that p⊤ ∈ A# realizes idA ≤ hιf . Finally, idA[f] ≤ ιfh
and ιfh ≤ idA[f] are realized by kf and λ∗x.x⊙ i, respectively.

Since ιf is decidable, we see that the boolean ⊥,⊤ ∈ A# of A can also serve as booleans in
A[f]. In particular, A[f] is also not semitrivial, given that A is not semitrivial.
In analogy with Example 3.15, we see that RT(A[f]) is a subtopos of RT(A). Before we
proceed to establish the universal property of A[f], we give an alternative description of
A[f]#.

Lemma 4.8. Let A be a PCA and let f ∈ BA. Then A[f]# is the least filter on A which is
closed under application of f .

Proof. We need to show the following: if A# ⊆ X ⊆ A and X is upwards closed, then X is
closed under defined ⊙ if and only if X is closed under application in A and application of f .
First of all, suppose that X is closed under defined ⊙. If we have a, b ∈ X such that ab↓,
then tf ⊙ a⊙ b ≤ ab, so since tf , a, b ∈ X, we have that tf ⊙ a⊙ b ∈ X as well, hence ab ∈ X.
Similarly, if a ∈ X is such that f(a)↓, then rf ⊙ a ≤ f(a) yields that f(a) ∈ X as well.
Conversely, suppose that X is closed under application in A and application of f . Suppose
that we have a, b ∈ X such that a ⊙ b ↓, and let u0, . . . , un−1 be the b-interrogation of f by
a. Then using induction, we may show that ui ∈ X for all i < n. Indeed, let i < n and
suppose that u0, . . . , ui−1 ∈ X. Then p1(a · [b, u0, . . . , ui−1]), which is an expression built
using a, b, u0, . . . , ui−1 ∈ X, combinators from A# ⊆ X and application, must be in X as
well. Since X is closed under f , it follows that ui ∈ X as well, completing the induction.
Finally, we see that a⊙ b = p1(a · [b, u0, . . . , un−1]) is in X as well, completing the proof.

Theorem 4.9. Let g : A ⇀ B be a decidable partial applicative morphism, and let f ∈ BA.
Then g factors, up to isomorphism, through ιf if and only if f is effectively representable
w.r.t. g.

Proof. The ‘only if’ statement is clear, since f is effectively representable w.r.t. ιf , and effec-
tive representability transfers along partial applicative morphisms. Conversely, suppose that
f is effectively representable w.r.t. g. We need to show that g is also a partial applicative
morphism A[f] ⇀ B; then we will have that the triangle

A B

A[f]

g

ιf g

commutes up to isomorphism. Assume for simplicity that g preserves the order on the nose,
let t ∈ B# be a tracker of f , let d ∈ B# be a decider for g, and let s ∈ B# represent f w.r.t.
g.
First, we need to show that A[f]# ⊆ dom# g. We already know that dom# g is a filter of the
PCA A, so according to Lemma 4.8, it suffices to show that dom# g is closed under application
of f . So suppose that a ∈ dom# g and that f(a) ↓. Then there exists a b ∈ g(a) ∩ B#, and
we get sb ∈ g(f(a)) ∩ B#, so f(a) ∈ dom# g as well, as desired. Of course, g still preserves
the order when considered as a morphism A[f] ⇀ B, so it remains to construct a tracker.

17

First, recall the combinators unit, ext ∈ A# from Definition 2.18. For i = 0, 1, define p′i =
λ∗x.tpix ∈ B#, where pi is any element from g(pi) ∩ B#. This element has the property
that p′i · g(a) � g(pia) for a ∈ A. Similarly, using an element from g(unit) ∩ B#, we define
unit′ ∈ B# such that unit′ · g(a) ⊆ g(unit · a) ⊆ g([a]) for all a ∈ A. Moreover, we may define
ext′ ∈ B# such that ext′ · g([a0, . . . , an−1]) · g(a

′) ⊆ g([a0, . . . , an−1, a
′]). Using the fixed point

operator in B#, we can construct an element T ∈ B# satisfying:

Tbv � if d(p′0(tbv))) then p′1(tbv) else Tb
(
ext′v(s(p′1(tbv)))

)
. (1)

Suppose that a, a′ ∈ A are such that a ⊙ a′ ↓, and let u0, . . . , un−1 be the a′-interrogation of
f by a. First of all, we claim that

T · g(a) · g([a′, u0, . . . , ui−1]) � T · g(a) · g([a′, u0, . . . , ui]) (2)

for all i < n. Suppose that the right hand side of (2) is defined, and consider b ∈ g(a) and
v ∈ g([a′, u0, . . . , ui−1]). Then we have tbv ∈ g(a · [a′, u0, . . . , ui−1]), so

p′0(tbv) ∈ g(p0(a · [a′, u0, . . . , ui−1])) ⊆ g(⊥).

This gives d(p′0(tbv)) ≤ ⊥, so we need to evaluate the ‘else’ clause in (1). We have p′1(tbv) ∈
g(p1(a · [a′, u0, . . . , ui−1])), which gives s(p′1(tbv)) ∈ g(f(p1(a · [a′, u0, . . . , ui−1]))) = g(ui).
Now ext′v(s(p′1(tbv))) ∈ g([a′, u0, . . . , ui]), and (1) tells us that Tbv ≤ Tb

(
ext′v(s(p′1(tbv)))

)
∈

T · g(a) · g([a′, u0, . . . , ui]), as desired.
Moreover, we have:

T · g(a) · g([a′, u0, . . . , un−1]) ⊆ g(a⊙ a′). (3)

Indeed, consider b ∈ g(a) and v ∈ g([a′, u0, . . . , un−1]). Then as above, we find d(p′0(tbv))) ≤
⊤, so (1) tells us that Tbv ≤ p′1(tbv) ∈ g(p1(a · [a

′, u0, . . . , un−1])) = g(a⊙ a′). Combining (2)
and (3) yields:

T · g(a) · g([a′]) ⊆ g(a⊙ a′)

whenever a⊙ a′ ↓. We conclude that λ∗xy.Tx(unit′y) tracks g : A[f] ⇀ B, which finishes the
proof.

Since identities are c.d., and c.d. partial applicative morphisms are closed under composition,
there is a wide subcategory pPCAcd of pPCA consisting of only the c.d. partial applicative
morphisms. Similarly, we have the subcategory pPCAdec consisting of only the decidable
morphisms. We define PCAcd and PCAdec analogously. The following now easily follows from
Theorem 4.9.

Corollary 4.10. Let A,B be PCAs, let f ∈ BA and let C be any of the preorder-enriched
categories pPCAcd, pPCAdec,PCAcd,PCAdec. Then composition with ιf :

C(A[f], B) → {g ∈ C(A,B) | f is effectively representable w.r.t. g}

is an equivalence of preorders.

Proof. Theorem 4.9 readily implies that for each of the C, the map above is essentially sur-
jective. Moreover, composition with ιf reflects the order since ιf has a right pseudoinverse as
shown in Proposition 4.7.

18

Example 4.11. The construction of A[f] is a generalization of oracle computations for clas-
sical Turing computability. Indeed, if f : N ⇀ N is a partial function, then g : N ⇀ N is
effectively representable w.r.t. ιf : K1 → K1[f] iff g is Turing computable relative to an oracle
for f . See also Corollary 2.3 in [vO06].

Example 4.12. As we mentioned at the beginning, the construction from this section can be
seen as a higher-order version of the construction from Example 3.5. On the other hand, the
construction of A[r] can be seen as a special case of the construction A[f]. Indeed, consider
r ∈ A and denote the constant function with value r, which is an element of BA, by r̂. It
is easy to see that, for any g : A ⇀ B, we have that r̂ is effectively representable w.r.t. g iff
r ∈ dom# g. It follows that A[r] and A[r̂] are equivalent PCAs.

Example 4.13. Of course, if f ∈ BA is already effectively representable in A itself, then
ιf : A → A[f] will be an isomorphism of PCAs. Now suppose that f is represented by
an element r ∈ A (but not necessarily r ∈ A#). Then f is effectively representable w.r.t.
ιr : A → A[r], so we get a factorization:

A

A[f] A[r]

ιf
ιr

It is worth observing that the mediating arrow A[f] → A[r] is not, in general, an isomorphism.
Indeed, consider, e.g., a PCA with A# 6= A, and take a b ∈ A\A#. Then the partial function
f ∈ BA defined by

f(a) =

{
p1a if p0a ≤ ⊤;

undefined else

is effectively representable, e.g., by p1 ∈ A#. This means that ιf is an isomorphism. But it
is also representable by r := λ∗x.if p0x then p1x else b. Moreover, we have r 6∈ A#, because
r(p⊥⊥) ≤ b, so r ∈ A# would imply b ∈ A#. This means that ιr is not an isomorphism, so
A[f] → A[r] cannot be an isomorphism either. So we see that the point here is, really, that
a function f ∈ BA can have many representers.

5 The PCA of partial functions

In this section, we show how to turn the set BA from Section 2 into a PCA. As the order,
we use the order defined in Definition 2.2(ii). In particular, the empty function is a largest
element of BA. It is worth noting that, in contrast with A[f], the order on BA is not discrete
even if the order on A is. Indeed, if A is discrete, then BA consists of all partial functions
A ⇀ A, and the order is the reverse subfunction relation. In this case, the total functions are
minimal elements of BA. In the general case, the total functions in BA form a downwards
closed set.
The application on BA will, in a sense, generalize the A[f] for f ∈ BA all at once. As for the
construction of A[f], we need the assumption that A is not semitrivial. An important thing
to note about the application on BA is that it will be total.
Let us define the application now. For α, β ∈ A and a, b ∈ A, we say that αβ(a) = b if and
only if there are u0, . . . , un−1 such that:

• for all i < n, we have p0 · α([a, u0, . . . , ui−1]) ≤ ⊥ and β(p1 · α([a, u0, . . . , ui−1])) = ui;

19

• p0 · α([a, u0, . . . , un−1]) ≤ ⊤ and p1 · α([b, u0, . . . , ui−1]) = b.

By the assumption that A is nontrivial, the sequence u0, . . . , un−1 is unique if it exists, and if
it exists it is called the a-interrogation of β by α. The following table compares the definition
of αβ(a) with the definition of a⊙f b from Definition 4.3.

a⊙f b αβ(a)

Interrogator a α

Input b a

Oracle f β

The above defines αβ as a partial function A ⇀ A; we leave it to the reader to check that
αβ is actually in BA, and that this application makes BA into a PAP. The argument is very
similar to the proof that A[f] is a PAP. It should be noted that, even though αβ is always
defined, αβ(a) could be undefined for the same reasons a⊙f b could be undefined. Moreover,
a remark similar to Remark 4.4 applies: the PCA BA was introduced in [vO11] for discrete
PCAs, where one finds a definition of application involving equalities between elements of A.
Again, this version of the definition is not suitable for the ordered case.
For (BA)#, we take the set of all effectively representable functions from BA. By Remark 4.2,
this is equivalent to saying:

(BA)# = ↑{λa.ra | r ∈ A#}.

This set is clearly upwards closed, so we need to check that it also closed under the application
defined above. This requires a bit more work. Suppose that we have ρ, σ ∈ (BA)#, and take
r, s ∈ A# such that ra � ρ(a) and sa � σ(a). Using the fixpoint operator, we may find a
T ∈ A# such that

Txyu � if p0(xu) then p1(xu) else Txy(ext · u · (y(p1u))),

where ext ∈ A# is as in Definition 2.18. Now it is not hard to check that Trs · [a] � ρσ(a),
which means that ρσ is represented by λ∗x.Trs(unit·x) ∈ A#. We can conclude that ρσ ∈ A#

as well, so BA is a PAS.
Showing that BA is a PCA is rather involved, and we will not provide all the details here.
In fact, the k-combinator is still easy: using operations on sequences, one may construct an
r ∈ A# such that:

• r · [[[a]]] ≤ p⊥a;

• r · [[[a], b]] ≤ p⊤(p⊤(p⊤b)).

Then κ ∈ (BA)# defined by κ(a) ≃ ra will satisfy καβ(a) � α(a), hence καβ ≤ α. The
s-combinator σ ∈ (BA)# can be constructed in the following way. For α, β ∈ BA, the function
σαβ should be an interrogator that, when provided with oracle γ, works as follows. Suppose
that αγ(βγ)(a) is defined with interrogation sequence u0, . . . , un−1. On input [a], it first
simulates the computation of αγ([a]). When finished, it checks whether p0 · (αγ([a])) holds.
If so, it can output αγ([a]). If not, it proceeds to simulate, again using the oracle γ, the
computation βγ(p1 · αγ([a])), thus finding u0. Then it proceeds to simulate the computation
of αγ([a, u0]). It keeps going back and forth between simulating a computation instances
of αγ and βγ, reconstruction the entire sequence u0, . . . , un−1. Then it finally finds that
p0 · αγ([a, u0, . . . , un−1]) holds, and it can give the correct output. This means that the task
is to construct a σ that, when fed oracles for α and β, produces such an interrogator σαβ.

20

Details on how to do this may be found in [vO11]; it does not show that σ is an effective
computation, but the constructions involved are clearly effective computations in A. See also
the following remark, however.

Remark 5.1. The paper [vO11] treats BA as an absolute, discrete PCA. In this paper,
on the other hand, we want to consider BA as a relative PCA, with (BA)# consisting of the
effectively representable functions. By doing so, the applicative morphism i in Proposition 5.2
below becomes compuationally dense, so we have a geometric morphism RT(BA) → RT(A),
which is even a surjection (Proposition 5.7). Moreover, it allows us to apply the construction
from Example 3.5 to BA in a nontrivial way, which is essential for the new topos-theoretic
construction of RT(A[f]) described below.
The move to relativity also forces us to view BA as an ordered PCA. Indeed, we do not have
that (BA, (BA)#, ·,=) is always a PCA, even if A itself is discrete. What we have, is an
effectively representable σ such that: if αγ(βγ)(a) is defined, then σαβγ(a) is also defined
with (in the discrete case) the same value. However, if BA is equipped with the discrete order,
then αγ(βγ) and σαβγ should be the same function. And this is not automatically true.
Indeed, one of the reasons αγ(βγ) could turn out undefined, is that a certain intermediate
result that should be a boolean, is not in fact a boolean. When simulating computations, σ
feeds such expressions to the if-then-else operator, and this may very well yield an unintended
result. One could remedy this by setting all such unintended results to undefined, or to an
output that sends the computation of σαβγ(a) into an infinite loop, but one cannot hope,
in general, that this keeps σ effective. It may happen to be possible, of course. The most
prominent example is Kleene’s first model K1, which allows a nice coding of booleans for
which this problem does not arise.
The main focus of [vO11] is actually not BA, but a related PCA K2A whose elements are
the total functions A → A. The application is defined in the same way, except that αβ is
only defined if αβ(a) is defined for all a ∈ A. Then the problem described above does not
arise, since all the functions involved are total. But there is another problem, namely that
the σ described above will clearly be partial. In order to make σ into an element of K2A,
we need to extend it to a total function, and once again, this can not necessarily be done in
an effective way. Kleene’s first model again forms an exception; indeed, it is well known that
Kleene’s second model, which is K2(K1), has a relative version.

For a ∈ A, let â ∈ BA denote the constant function with value a.

Proposition 5.2. There is a total c.d. applicative morphism i : A → BA, defined by i(a) =
↓{â}.

Proof. If a ∈ A#, then â is clearly represented by ka ∈ A#, so â ∈ (BA)#, meaning that i
satisfies the first requirement. A similar argument shows that i is total. Moreover, i clearly
preserves the order on the nose, so in order to show it is an applicative morphism, it remains
to construct a tracker. Using the elementary operations on sequences, we may contruct a
t ∈ A# satisfying:

• t · [[x]] ≤ p⊤(p⊥i);

• t · [[x, y]] ≤ p⊥i;

• t · [[x, y], z] � p⊤(p⊤(zy)).

21

If τ ∈ (BA)# is defined by τ(a) ≃ ta, then it is straightforward to check that τ âb̂(c) � ab for
all a, b, c ∈ A, so τ is a tracker for i.
For computational density, we take an n ∈ A# satisfying:

• n · [x] ≤ p⊥i;

• n · [x, y] � p⊤(yx).

If ν ∈ (BA)# is defined by ν(a) ≃ na, then it is easy to check that νr̂(a) � ra for all a, r ∈ A.
So, if ρ ∈ (BA)# is represented by r ∈ A#, then νr̂ ≤ ρ, so ν · i(r) ⊆ ↓{ρ}, showing that ν
satisfies (cd).

Since i is c.d., it is decidable as well, which means that ⊤̂, ⊥̂ can serve as booleans in BA. In
particular, BA is not semitrivial, given that A is not semitrivial.
The fact that i is c.d. is the main reason for viewing BA as a relative PCA. If we consider
BA as an absolute PCA, then the corresponding result does not hold for cardinality reasons.
Indeed, one might say that ‘there are more functions than respresenters’. The computational
density of i means that we get a geometric morphism RT(BA) → RT(A). In fact, the right
adjoint of i must already exist at the level of PCAs, since i is also total and projective. We
will construct this right adjoint explicitly.
As in [vO11], the PCA BA has the property that every element of BA is representable w.r.t.
i : A → BA.

Proposition 5.3. Let A be a PCA. Then every α ∈ BA is representable w.r.t. i : A → BA.

Proof. Construct an r ∈ A# satisfying:

• r · [[x]] ≤ p⊤(p⊥i);

• r · [[x, y]] ≤ p⊥y;

• r · [[x, y], z] ≤ p⊤(p⊤z),

and let ρ ∈ (BA)# be defined by ρ(a) ≃ ra. Then it is easily checked that ραâ � α̂(a) for all
α ∈ BA and a ∈ A. It follows that ρα represents α w.r.t. i, for all α ∈ BA.

The following result also appears as Proposition 5.1 in [vO11]. Since we have introduced the
concept of a partial applicative morphism, we can formulate the result here in a nicer way.

Theorem 5.4. Let g : A ⇀ B be a decidable partial applicative morphism. Then there exists
a largest partial applicative morphism h : BA ⇀ B such that hi ≃ g, and it is explicitly defined
by:

h(α) = {b ∈ B | b represents α w.r.t. g} = {b ∈ B | ∀a ∈ A(α(a)↓ → b · g(a) ⊆ g(α(a)))}.

Proof. It is easy to see that h(α) is a downset of B. For simplicity, we will assume that g
preserves the order on the nose; then it follows that h preserves the order on the nose as well.
Moreover, if α ∈ (BA)#, then α is effectively representable in A, which implies that α is also
effectively representable w.r.t. g, which means that h(α) ∩ B# is non-empty. So in order to
show that h is a partial applicative morphism it remains to construct a tracker.
The construction of a tracker will be very similar to the construction of a tracker in the proof
of Theorem 4.9. Let t ∈ B# be a tracker of g and let d ∈ B# be a decider of g. Moreover,

22

take ext′, p′0, p
′
1, unit

′ ∈ B# as in the proof of Theorem 4.9. Using the fixpoint operator in B,
we may construct a U ∈ B# such that

Uxyv � if d(p′0(xv)) then p′1(xv) else Uxy(ext′v(y(p′1(xv)))).

Using the familiar kind of argument, one can show that T · h(α) · h(β) · g([a]) ⊆ g(αβ(a)),
whenever α, β ∈ B(A) and a ∈ A are such that αβ(a)↓. It follows that λ∗xyz.Uxy(unit′z) ∈
B# tracks h.
For a ∈ A, we have:

hi(a) = h(â) = {b ∈ B | ∀a′ ∈ A(b · g(a′) ⊆ g(a))}.

Now it is easy to see that k ∈ B# realizes g ≤ hi, and if j ∈ g(i) ∩ B#, then λ∗x.xj ∈ B#

realizes hi ≤ g. So we indeed have hi ≃ g.
In order to show that h is the largest partial appplicative morphism such that hi ≃ g, suppose
we have another h′ : BA ⇀ B such that h′i ≃ g, and assume that h′ preserves the order on the
nose. Let t′ ∈ B# be a tracker of h′, and let r, s ∈ B# realize h′i ≤ g resp. g ≤ h′i. Moreover,
consider the function ρ ∈ (BA)# from the proof of Proposition 5.3; it has the property that

ραâ � α̂(a) for all α ∈ BA and a ∈ A. We pick a q ∈ h′(ρ) ∩ B#. Now it is easy to see
that, if b ∈ g(a), c ∈ h′(α) and α(a) ↓, we have r(t′(t′qc)(sb)) ∈ g(α(a)). This implies that
λ∗xy.r(t′(t′qx)(sy)) ∈ B# realizes h′ ≤ h, as desired.

Observe that the h constructed above will automatically be decidable as well, since hi ≃ g.

Corollary 5.5. Let g : A ⇀ B be a decidable partial applicative morphism. Then

{α ∈ BA | α is representable w.r.t. g} and

{α ∈ BA | α is effectively representable w.r.t. g}

are filters of BA.

Proof. If we let h : BA ⇀ B be as in Theorem 5.4, then these sets are domh and dom# h,
respectively.

Example 5.6. If we apply Theorem 5.4 to i itself, then we see that

h(α) = {β ∈ BA | β represents α w.r.t. i}

defines the largest h : BA → BA such that hi ≃ i. We claim that h is isomorpic to the identity.
By Theorem 5.4, we already know that idBA ≤ h. For the converse inequality, construct an
r ∈ A# such that:

• r · [x] ≤ p⊥[i];

• r · [x, u0 . . . , ui] ≤ if p0ui then p⊤(p1ui) else p⊥[i, x, . . . , x︸ ︷︷ ︸
i+1 times

], for i ≥ 0.

If ρ ∈ (BA)# is defined by ρ(a) ≃ ra, then ρβ(a) ≤ βâ(i) for all a ∈ A and β ∈ BA. In
particular, if β ∈ h(α), then ρβ ≤ α, so ρ realizes h ≤ idBA. In a slogan, we could say that
elements of BA and their representers can be used interchangably in BA.
If f ∈ BA, then we can consider ιf : BA → BA[f] as in Example 3.5. A completely similar
argument shows that ιf is the largest h : BA → BA[f] such that hi ≃ ιf i, so the slogan

23

remains true for this case. If we add a function (on BA) to BA, however, then this principle
will break down. It is clear that the argument above will not work, because adding a function
involves changing the application. In the next section, we will give an explicit counterexample
(Example 6.16).

Another example of Theorem 5.4 is given by the following result. Again, we stress that such
a result does not hold if BA is taken to be an absolute PCA.

Proposition 5.7. The applicative morphism i : A → BA has a right adjoint h : BA ⇀ A
satisfying hi ≃ idA. In particular, there is a geometric surjection RT(BA) ։ RT(A).

Proof. By Theorem 5.4, there is a (largest) partial applicative morphism h : BA → A such
that hi ≃ idA. We also have ihi ≃ i, and by Example 5.6, this implies ih ≤ idBA.

As a corollary, we see that, while i makes every element of BA representable, it adds no new
effectively representable functions.

Corollary 5.8. An element of BA is effectively representable w.r.t. i iff it is effectively
representable in A itself.

Proof. This is immediate from the existence of a left inverse for i in pPCA, along with the
fact that effective representability transfers along partial applicative morphisms.

We close this section with a novel topos-theoretic interpretation of the construction from the
previous section, which freely adjoins a partial function to a PCA. For f ∈ BA, we can adjoin
f as a function to A, yielding ιf : A → A[f], but we can also adjoin it as an element to BA,
which gives ιf : BA → BA[f]. In the proof of Proposition 5.3, we constructed a ρ ∈ (BA)#

such that ρα is defined and represents α w.r.t. i, for all α ∈ BA. From this, we easily deduce
that ρf ∈ (BA[f])# represents f w.r.t. ιf i. This means we get a factorisation:

A BA

A[f] BA[f]

i

ιf ιf

j

where j acts as i does, i.e., j(a) = ↓{â}.
According to Theorem 5.4,

h(α) = {a ∈ A | a represents α w.r.t. ιf : A → A[f]}

defines a partial applicative morphism h : BA ⇀ A[f] such that hi ≃ ιf . By construction,
f is effectively representable w.r.t. ιf , so f ∈ dom# h. This means that h factors through
ιf : BA → BA[f] as h ≃ kιf for some k : BA[f] ⇀ A[f].

A BA

A[f] BA[f]

i

ιf ιf
h

j

k

Now we have
kjιf ≃ kιf i ≃ hi ≃ ιf ,

24

so by Corollary 4.10, we have kj ≃ idA[f]. On the other hand,

jkιf i ≃ jhi ≃ jιf ≃ ιf i.

By Example 5.6, this implies jkιf ≤ ιf , which yields jk ≤ idBA[f]. We conclude that j ⊣ k
with kj ≃ idA[f].
Recall from Example 3.15 that RT(BA[f]) is equivalent to the slice of RT(BA) over the
subterminal assembly 1f , which is given by |1f | = {∗} and E1f (∗) = ↓{f}. So at the level of
toposes, we get the following diagram:

RT(BA)/1f RT(BA)

RT(A[f]) RT(A)

Intuitively, this diagram may be explained as follows. First, we cover RT(A) by the topos
RT(BA), where the truth values are sets of functions rather than sets of elements of A. Then,
we make f computable (or alternatively: true) at that level by taking the slice subtopos
RT(BA)/1f . Finally, RT(A[f]) is retrieved as the geometric surjection-inclusion factorisation
of the composition RT(BA)/1f →֒ RT(BA) ։ RT(A).
Another application of the construction of j and k above is the following nice characteization
of the elements in BA that are effectively representable w.r.t. ιf : A → A[f]. Since j has
a left inverse, we have that α ∈ BA is effectively representable w.r.t. ιf iff α is effectively
representable w.r.t. jιf ≃ ιf i. By Example 5.6, we know that α ∈ BA and representers of
α w.r.t. ιf i can be effectively translated into one another, so α is representable w.r.t. ιf i iff
α ∈ (BA[f])# = 〈(BA)# ∪ {f}〉. We can conclude that

{α ∈ BA | α is effectively representable w.r.t. ιf : A → A[f]} = 〈(BA)# ∪ {f}〉.

In other words, the set of all elements of BA that are ‘forced’ to become effectively repre-
sentable if f is effectively representable, can simply be obtained by adding f to the filter in
the PCA BA.

6 Adjoining a type-2 functional

In the previous section, we have explained how to freely adjoin zeroth- and first-order functions
to a PCA A. This prompts the question whether a similar construction is available for
second-order functions. The answer to this question is yes, as the paper [FvO16] shows for
the absolute discrete case. In this section, we generalize this construction to some relative
ordered PCAs; it will in fact turn out that the order needs to be nice in a specific sense for
the construction to work. There are two reasons for generalizing the material from [FvO16].
First of all, the construction ties in quite nicely with Theorem 5.4 above in a way that had
not been observed before. Second, in the next section we will apply this construction to BA
(which is always an ordered PCA), in order to see what one can obtain for the third-order
case.
Let us first introduce the restriction on PCAs we need in order for the construction to work.

Definition 6.1. Let A be a PCA.

(i) A chain in A is a non-empty subset X ⊆ A that is totally ordered by ≤.

25

(ii) A is called chain-complete if every chain X ⊆ A has a greatest lower bound in A, which
we will denote by

∧
X.

(iii) If A is chain-complete, then a partial applicative morphism g : A ⇀ B is called chain-
continuous if, for every chain X ⊆ A, we have g (

∧
X) =

⋂
a∈X g(a).

We stress some important aspects of this definition.

Remark 6.2. (i) Since we will not usually be interested in the greatest lower bound of ∅
(i.e., the top element), chains are non-empty by definition.

(ii) If g : A ⇀ B is chain-continuous, then it must preserve the order on the nose. Indeed,
if a′ ≤ a, then X = {a′, a} is a chain with

∧
X = a′. It follows that g(a′) = g(a′)∩ g(a),

i.e., g(a′) ⊆ g(a).

(iii) Of course, Definition 6.1 works just as well if A and B are merely posets, and g is any
function A → DB. But we will only use these notions for PCAs and partial applicative
morphisms.

Example 6.3. Every discrete PCA A is chain-complete, since the only chains are single-
tons. For the same reason, every partial applicative morphism g : A ⇀ B is trivially chain-
continuous. This shows that our construction will subsume the discrete case.

Example 6.4. Suppose that A is chain-complete, and that g : A → B is total and single-
valued, i.e., we can write g(a) = ↓{g0(a)} for a certain function A → B. Then g is chain-
continuous if and only if, for each chain X ⊆ A, the greatest lower bound of g0(X) ⊆ B exists
and is equal to g0(

∧
X).

From this, it is easy to deduce the following. Suppose that A and B are chain-complete, and

that A
g
→ B

h
⇀ C are chain-continuous with g projective. Then hg is chain-continuous as

well. This does not seem to be true if we do not require that g is projective.

The following two lemmata discuss the compatibility between the notions introduced above
and the construction BA.

Lemma 6.5. Let A be a chain-complete PCA. Then BA is also chain-complete, and i : A →
BA is chain-continuous.

Proof. Let {αi | i ∈ I} be a chain in BA. We define its greatest lower bound α =
∧
{αi | i ∈ I}

as follows. First of all, we set:

domα =
⋃

i∈I

domαi = {a ∈ A | ∃i ∈ I (αi(a))↓}.

For a ∈ domα, the set Xa = {αi(a) | i ∈ I and a ∈ domαi} is a chain in A. This means we
can define α(a) =

∧
Xa. We leave it to the reader to show that α ∈ BA, and that α is indeed

the greatest lower bound of the αi.

For the final statement, we observe that, for a chain X ⊆ A, we have
∧

a∈X â =
∧̂

X, which
suffices by Example 6.4.

Lemma 6.6. Consider a decidable partial applicative morphism g : A ⇀ B, where A is chain-
complete. Let h : BA ⇀ B be the largest partial applicative morphism such that hi ≃ g as in
Theorem 5.4. If g is chain-continuous, then h is chain-continuous as well.

26

Proof. Suppose that g is chain-continuous. We recall that, since g preserves the order on the
nose, h does so as well. If {αi | i ∈ I} is a chain in BA and α =

∧
i∈I αi, then this already

implies that h(α) ⊆
⋂

i∈I h(αi). So it remains to show the converse inclusion, i.e., if b ∈ B
represents all the αi w.r.t. g, then b also represents α w.r.t. g.
So suppose that b ∈ B represents αi w.r.t. g, for all i ∈ I, and consider an a ∈ domα. Then
a ∈ domαi for some i, which implies that b · g(a) is defined. Moreover, for all i ∈ I such that
a ∈ domαi, we have b · g(a) ⊆ g(αi(a)). This yields:

b · g(a) ⊆
⋂

i∈I
a∈domαi

g(αi(a)) = g
(∧

{αi(a) | i ∈ I and a ∈ domαi}
)
= g(α(a)),

as desired.

The main point of introducing chain-completeness is that we can perform ‘fixpoint construc-
tions’ in BA, which is crucial for generalizing the contruction from [FvO16]. This construction
is described in the following proposition.

Proposition 6.7. Let A be a chain-complete PCA and let F ∈ BBA be a total function.
Then F has a largest fixpoint in BA.

Remark 6.8. It may seem strange that we construct a largest fixpoint, since recursion theory
is usually concerned with smallest fixpoints. However, we must keep in mind that ‘largest’
should be read w.r.t. the ordering on BA as in Definition 2.2. If A is discrete, then this is the
reverse subfunction relation, so what we identify as the largest fixpoint would usually indeed
be called the smallest fixpoint.

Proof of Proposition 6.7. A total function F ∈ BBA is simply an order-preserving function
BA → BA. We define, recursively, an ordinal-indexed sequence of element fγ of BA, as
follows:

• f0 = ∅;

• fγ+1 = F (fγ);

• fλ =
∧

κ<λ fκ if λ > 0 is a limit ordinal.

Using transfinite induction and the fact that F is order-preserving, one may show that fγ ≥ fδ
for γ ≤ δ, and that the sequence is well-defined. By cardinality considerations, the sequence
must stabalize at some point, i.e., there exists an ordinal ζ such that F (fζ) = fζ . Then fζ is
a fixpoint of f . Moreover, if f ′ ∈ BA is an element satisfying f ′ ≤ F (f ′), then by transfinite
induction, it easily follows that f ′ ≤ fγ for every ordinal γ, and in particular, f ′ ≤ fζ . We
conclude that fζ is the largest fixpoint of F .

Proposition 6.9. Consider a decidable partial applicative morphism g : A ⇀ B, such that
A is chain-complete and g is chain-continuous. Let F ∈ BBA be a total function, and let
h : BA ⇀ B be the largest partial applicative morphism such that hi ≃ g. If F is effectively
representable w.r.t. h, then the largest fixpoint of F is effectively representable w.r.t. g.

Proof. Let z ∈ B# be the guarded fixpoint operator. We will show that, if r ∈ B represents
F w.r.t. h, then zr (which is always defined) represents the largest fixpoint of F w.r.t. g.
Clearly, this implies the proposition, for we have zr ∈ B# if r ∈ B#.

27

So suppose that r ∈ B represents F w.r.t. h. Define the sequence fγ as in the proof of
Proposition 6.7, so that the largest fixpoint of F is fζ for some ordinal ζ. We will show, using
transfinite induction, that zr ∈ h(fγ) for all ordinals γ. In particular, we will have zr ∈ h(fζ),
which means that zr represents fζ w.r.t. g, as desired.
First of all, we have h(f0) = h(∅) = B, so the base case is trivial. Now suppose that zr ∈ h(fγ)
for a certain ordinal γ. Then r(zr) ∈ h(F (fγ)) = h(fγ+1), i.e., r(zr) represents fγ+1 w.r.t.
g. Now, since zrb � r(zr)b for all b ∈ B, it follows that zr also represents fγ+1 w.r.t. g, i.e.,
zr ∈ h(fγ+1). Finally, Lemma 6.6 tells us that h is chain-continuous, from which the limit
case immediatelt follows. This completes the induction.

Now let us introduce the type-2 functionals that we want to adjoin to a PCA A.

Definition 6.10. Let A be a PCA.

(i) The set B2A is defined as the set of all partial functions BA ⇀ A such that α ≤ β
implies F (α) � F (β) for all α, β ∈ BA.

(ii) For F,G ∈ B2A, we say that F ≤ G if F (α) � G(α) for all α ∈ BA.

Remark 6.11. Observe that, even for discrete PCAs A, the set B2A does not consist of all
partial functions BA ⇀ A. Indeed, in the discrete case, we have that F ∈ B2A if and only
if the following holds: whenever α is a subfunction of β and F (α) ↓, we have that F (β) is
defined as well and equal to F (α). One may view this as an ‘extensionality’ requirement: if
F (α) is defined, then this must be based solely on the values specified by α. Note, however,
that we do not require that F (α) ↓ implies that the value of F (α) is already determined by
finitely many values of α. In other words, it is possible that F ‘consults’ infinitely many
values of α. The paper [FvO16] shows how to adjoin partial functions AA ⇀ A, which are
always in B2A (if A is discrete).

Definition 6.12. Let A be a PCA and let F ∈ B2A.

(i) We say that r ∈ A represents F if: whenever α ∈ domF and a ∈ A represents α, we
have ra ≤ F (α). We say that F is representable (resp. effectively representable) if F is
represented by some r ∈ A (resp. r ∈ A#).

(ii) If g : A ⇀ B is a partial applicative morphism, then we say that s ∈ B represents F
w.r.t. g if: whenever α ∈ domF and b ∈ B represents α w.r.t. g, we have sb ∈ g(F (α)).
We say that F is representable (resp. effectively representable) w.r.t. g if F is represented
w.r.t. g by some s ∈ B (resp. s ∈ B#).

Again, the first item is a special case of the second item, by taking g = idA.

Remark 6.13. The effective representability of second-order functionals is not transfer-
able along partial applicative morphisms. Below, we present an instructive example of this
phenenomenon. It is also the reason why Theorem 6.15 below cannot be restated as a ‘uni-
versal property’ in the same vein as Corollary 4.10. In this sense, the representability of
second-order functionals is categorically ill-behaved when compared to the first-order case.

Example 6.14. Consider Kleene’s first model K1 and let F : NN → N be defined by:

F (f) =

{
0 if f is recursive;

1 otherwise.

28

Since the domain of F consists only of total functions, which form a discrete subset of BK1,
we automatically have F ∈ B2K1. Moreover, F is effectively representable in K1. Indeed,
the only representable total functions in K1 are, by definition, the recursive functions, and
F is constant on those. However, F is not even representable w.r.t. i : K1 → BK1, let
alone effectively so. Indeed, the representability of F w.r.t. i would imply that the function
F̂ ∈ BBK1 given by:

F̂ (f) = F̂ (f) =

{
0̂ if f is recursive;

1̂ otherwise.

is representable in BK1. For, given f ∈ BK1, we can first effectively find a representer of

f w.r.t. i, and then use the representer for F w.r.t. i to obtain F̂ (f) = F̂ (f). However, F̂
cannot be representable in BK1. Indeed, suppose that it is represented by ρ ∈ BK1. Then

F (f) = F̂ (f)(0) = ρf(0)

for all f : N → N. In particular, ρ0̂(0) = 0. This computation consults the oracle 0̂ only
finitely many times, so there exists an N such that F (f) = ρf(0) = 0 for all f : N → N with
f(n) = 0 for all n < N . This is clearly a contradiction, since this includes non-recursive f .
(More generally, the point here is that a representer ρ can consult only finitely many values
of an f : N → N to determine ρf(0), but this does not suffice to determine whether f is
recursive.)

Now we state and prove the main result of this section.

Theorem 6.15. (Cf. [FvO16], Theorem 3.1.) Let A be a chain-complete PCA and let F ∈
B2A. Then there exists an f ∈ BA such that:

(i) F is effectively representable w.r.t. ιf : A → A[f];

(ii) if g : A ⇀ B is decidable and chain-continuous, and F is effectively representable w.r.t.
g, then g factors, up to isomorphism, through ιf .

Proof. Define the total function F̃ ∈ BBA by:

F̃ (α)(a) ≃ F (λa′.a⊙α a′).

We leave it to the reader to show that F̃ is well-defined and an element of BBA. Let f ∈ BA
be the largest fixpoint of F̃ , whose existence was asserted in Proposition 6.7.
(i). Suppose that a ∈ A represents α ∈ domF with respect to ιf . Then we have that
λa′.a⊙f a

′ ≤ α, which implies that f(a) ≃ F (λa′.a⊙f a
′) is defined and f(a) ≤ F (α). So any

representer of f w.r.t. ιf also represents F w.r.t. ιf . Since f is, by construction, effectively
representable w.r.t. ιf , it follows that F is effectively representable w.r.t. ιf as well.
(ii). Let h : BA ⇀ B be the largest partial applicative morphism such that hi ≃ g. In order
to show that g factors through ιf , it suffices to show that f is effectively representable w.r.t.
g. According to Proposition 6.9, this follows if we show that F̃ is effectively representable
w.r.t. h.
Let s ∈ B# be such that s · h(α) ⊆ g(F (α)) for all α ∈ domF . By employing the usual kind
of fixpoint argument, we may construct an r ∈ B# such that r ·h(α) · g(a) · g(a′) ⊆ g(a⊙α a

′)
whenever a⊙α a′ ↓. Now we claim that t := λ∗xy.s(λ∗z.rxyz) ∈ B# represents F̃ w.r.t. h.
In order to prove this, consider α ∈ BA and a ∈ A such that F̃ (α)(a) is defined, and
take b ∈ h(α) and c ∈ g(a). Moreover, consider a′ ∈ A such that a ⊙α a′ is defined, and

29

c′ ∈ g(a′). Then we have that ((λ∗z.rxyz)[b/x, c/y]) · c′ � rbcc′ ∈ g(a ⊙α a′), which means
that (λ∗z.rxyz)[b/x, c/y] represents λa′.a⊙α a′. This implies that

tbc � s · ((λ∗z.rxyz)[b/x, c/y]) ∈ g(F (λa′.a⊙α a′)) = g
(
F̃ (α)(a)

)
.

We can conclude that tb represents F̃ (α) w.r.t. g, in other words, that tb ∈ h(F̃ (α)), as
desired.

If A is chain-complete and F ∈ B2A, then we will denote A[f] and ιf constructed above by
A[F] and ιF , respectively.
We close this section with the counterexample announced at the end of Example 5.6. It shows
that, once we add an oracle to BA, elements of BA and their representers can start to behave
very differently. This is a serious obstruction to studying higher-order computability on A by
means of BA.

Example 6.16. As in Example 6.14, we let A be Kleene’s first model K1. Consider the
Kleene functional E : NN → N defined by:

E(f) =

{
0 if ∀n ∈ N(f(n) = 0);

1 if ∃n ∈ N(f(n) > 0),

which is in B2K1 since its domain consists of total functions. Also, as in Example 6.14, we

define Ê ∈ BBK1 by Ê(f) = Ê(f) for f : N → N. We will now proceed to show the following
things about the composition

K1
i

−→ BK1
ι
Ê−→ BK1[Ê].

1. Every total function N → N which is representable w.r.t. ι
Ê
◦ i is arithmetical.

2. The composition ι
Ê
◦ i does not factor through ιE : K1 → K1[E].

3. The second-order functional E is not effectively representable w.r.t. ι
Ê
◦ i.

4. The morphism ι
Ê

is not the largest partial applicative morphism h : BK1 ⇀ BK1[Ê]
such that hi ≃ ι

Ê
◦ i.

For the first claim, we first observe the following: since the range of Ê is simply {0̂, 1̂} ⊆

(BK1)
#, we have

(
BK1[Ê]

)#
= (BK1)

#, which is just the set of partial recursive functions.

Now, if α, β, γ ∈ BK1 are partial functions, then the relation ‘αβ = γ’ can be expressed
arithmetically in terms of the graphs of α, β and γ, as is immediate from the definition of
application in BK1. Moreover, if α ∈ BK1 and i ∈ N, then Ê(α) = î can be expressed
arithmetically in terms of i and the graph of α. And we know that all the combinators
in BK1 are partial recursive functions, and therefore have arithmetically expressible graphs.
Finally, we assume for simplicity that the booleans in (BK1)

are simply 0̂ and 1̂, which we
can, because i : K1 → BK1 is decidable. Now suppose that f : N → N is represented w.r.t.

ι
Ê
◦ i by ρ ∈

(
BK1[Ê]

)#
= (BK1)

#. Then ρ is partial recursive, and since f is total, we

have f(a) = b iff ρ⊙
Ê
â = b̂. We see that ρ⊙

Ê
â = b̂ holds iff there exists a coded sequence

u = [u0, . . . , un−1] of natural numbers, such that:

30

• for all i < n, we have p0(ρ · [â, û0, . . . , ûi−1]) = 0̂ and Ê (p1(ρ · [â, û0, . . . , ûi−1])) = ûi,
and:

• p0(ρ · [â, û0, . . . , ûn−1]) = 1̂ and p1(ρ · [â, û0, . . . , ûn−1]) = b̂.

By the remarks above, this is an arithmetical relation in terms of a and b, so we see that
‘f(a) = b’ is arithmetical, as desired.
The paper [FvO16] shows that, when Theorem 6.15 is applied to Kleene’s first model, the
result is equivalent to Kleene’s original notion of computability w.r.t. a higher-order func-
tional. In particular, the partial functions N ⇀ N which are effectively representable w.r.t. ιE
are precisely the hyperarithmetical functions ([FvO16], Corollary 4.1). Now, if ι

Ê
◦ i were to

factor through ιE , then every hyperarithmetical functions would be effectively representable
w.r.t. ι

Ê
◦ i as well. But claim 1 tells us that this is not the case, since there are certainly

total hyperarithmetical functions which are not arithmetical (e.g., the characteristic function
of a hyperarithemtical set which is not arithmetical).
Claim 3 immediately follows from claim 2 by Theorem 6.15.
Finally, in order to prove claim 4, suppose for the sake of contradiction that σ ∈ (BK1)

real-
izes the inequality h ≤ ι

Ê
, where h(α) = {β ∈ BK1 | β represents α w.r.t. ι

Ê
◦ i}. Moreover,

let ρ ∈ (BK1)
represent Ê w.r.t. ι

Ê
. Then it easily follows that

λ∗x.ρ⊙
Ê
(σ ⊙

Ê
x) ∈ (BK1)

#

represents E w.r.t. ι
Ê
◦ i, which is not the case by claim 3.

7 The third-order case

In this final section, we investigate what can be achieved in the case of third-order functionals.
First, let us introduce the objects considered in this section.

Definition 7.1. Let A be a PCA.

(i) The set B3A consists of all partial functions Φ: B2A ⇀ A such that Φ(F) � Φ(G)
whenever F ≤ G.

(ii) We say that r ∈ A represents Φ ∈ B3A if: whenever F ∈ domΦ and a ∈ A represents
F , we have ra ≤ Φ(F). We say that Φ is representable (resp. effectively representable)
if Φ is represented by some r ∈ A (resp. r ∈ A#).

(iii) If g : A ⇀ B is a partial applicative morphism, then we say that s ∈ B represents Φ
w.r.t. g if: whenever F ∈ domΦ and b ∈ B represents F w.r.t. g, we have sb ∈ g(Φ(F)).
We say that Φ is representable (resp. effectively representable) w.r.t. g if Φ is represented
w.r.t. g by some s ∈ B (resp. s ∈ B#).

As the authors of [FvO16] mention as well, there is a fundamental obstacle when studying
the representability of third-order functionals. A PCA A can only ‘talk about’ first-order
functions by means of their representers. So as far as A is concerned, only representable
functions really exist. For representing second-order functionals F , this is not a problem. On
the contrary, is makes the task easier: if a first-order function α does not have a representer,
then we do not have to worry about α when constructing a representer for F . In other words,
from the point of view of A, the domain of F may look smaller than it actually is.

31

For a third-order functional Φ, on the other hand, the second-order functionals serve as
inputs, and A may lose information contained in these inputs. More precisely, there may be
two distinct F,G ∈ B2A such that Φ(F) and Φ(G) do not have a common lower bound, but
which are the same from the point of view of A. Let us give an example of this phenemenon.

Example 7.2. Again, we let A be Kleene’s first modelK1. Consider the third-order functional
Φ ∈ B3K1 defined by domΦ = {F ∈ B2K1 | N

N ⊆ domF} and

Φ(F) =

{
0 if ∀f ∈ NN (F (f) = 0);

1 if ∃f ∈ NN (F (f) > 0).

We leave it to the reader to check that Φ is actually in B3K1. Recall from Example 6.14 the
functional F : NN → N defined by

F (f) =

{
0 if f is recursive;

1 otherwise.

Consider also the function G ∈ B2K1, which is 0 on total functions, and undefined on non-
total functions. Then we clearly have Φ(F) = 1 6= 0 = Φ(G). However, from the point of
view of K1, the functionals F and G are equal, and both are represented by an index for the
constant 0 function.
This does not yet exclude the possibility that, as for the second-order case, we can construct a
partial function g : N ⇀ N such that Φ becomes representable w.r.t. ιg : K1 → K1[g]. However,
we can adjust the example above to show that this is impossible as well. Define Fg : N

N → N

by:

Fg(f) =

{
0 if f is representable w.r.t. ιg;

1 otherwise.

Once again, we have Φ(Fg) = 1 6= 0 = Φ(G), but A[g] cannot distinguish between Fg and
G. This means that Φ is not representable (let alone effectively representable) w.r.t. to ιg for
any partial function g.

This example shows that a construction as in the previous section, where A[F] was of the
form A[f] for an f ∈ BA, simply cannot work in the third-order case. On the other hand,
the example above would clearly be blocked if we move to a PCA in which every (partial)
function is representable. Fortunately, we have such a PCA, namely BA, which allows us to
prove the following ‘lax’ result about the third-order case.

Theorem 7.3. Let A be a chain-complete PCA and let Φ ∈ B3A. Then there exists a c.d.
total applicative morphism ιΦ : A → A[Φ] such that:

(i) Φ is effectively representable w.r.t. ιΦ;

(ii) if g : A ⇀ B is decidable and chain-continuous, and Φ is effectively representable w.r.t.
g, then there exists a largest h : A[Φ] ⇀ B such that hιΦ ≃ g.

Proof. Define Φ̃ ∈ B2BA by

Φ̃(F)(a) ≃ Φ(λα.F (α)(i)) for F ∈ BBA and a ∈ A.

32

Observe that if Φ̃(F) is defined, then it is a constant function. We leave it to the reader
to check that Φ̃ is actually in B2BA. As before, if F ∈ B2A, then we define F̂ ∈ BBA by

F̂ (α) ≃ F̂ (α). Since

Φ̃(F̂)(a) ≃ Φ(λα.F̂ (α)(i)) ≃ Φ(λα.F (α)) ≃ Φ(F),

we have Φ̃(F̂) ≃ Φ̂(F) for all F ∈ B2A.
We will show that ιΦ : A → A[Φ] can be taken to be the composition:

A BA BA[Φ̃]i ι
Φ̃

For the sake of readbility, we will just write ι for ιΦ̃, and we write ⊙ for the application in

BA[Φ̃].
(i) By construction, Φ̃ is representable w.r.t. ι by means of a ρ ∈ (BA[Φ̃])#. By Theorem 5.4,
we also know that there exists a σ ∈ (BA[Φ̃])# such that σ⊙α represents α w.r.t. ι ◦ i for all
α ∈ BA. We will show that

τ = λ∗x.ρ⊙ (λ∗y.x⊙ (σ ⊙ y)) ∈ (BA[Φ̃])#

represents Φ w.r.t. ι ◦ i. So let F ∈ B2A be such that Φ(F) is defined, and suppose that
β ∈ BA represents F w.r.t. ι ◦ i. First of all, we claim that (λ∗y.x⊙ (σ ⊙ y))[β/x] represents
F̂ w.r.t. ι. In order to show this, let α ∈ BA be such that F̂ (α) is defined. Then:

(λ∗y.x⊙ (σ ⊙ y))[β/x] ⊙ α � β ⊙ (σ ⊙ α) � F̂ (α) = F̂ (α),

since σ⊙α represents α w.r.t. ι ◦ i and β represents F w.r.t. ι ◦ i. This proves the claim, and
it follows that

τ ⊙ β � ρ⊙ ((λ∗y.x⊙ (σ ⊙ y))[β/x]) � Φ̃(F̂) = Φ̂(F),

as desired.
(ii) Suppose that s ∈ B# represents Φ w.r.t. g, and consider h : BA ⇀ B defined by h(α) =
{b ∈ B | b represents α w.r.t. g}. Since h is also decidable and chain-continuous, it suffices
to show that Φ̃ ∈ B2BA is representable w.r.t. h. Then Theorem 6.15 tells us that h is also
a morphism BA[Φ̃] ⇀ B, and Theorem 5.4 implies that this is the largest partial applicative
morphism by means of which g factors through ι ◦ i.
We will show that

t = λ∗x.k(s(λ∗y.xyj)) ∈ B#

represents Φ̃ w.r.t. h, where j is any element from g(i) ∩ B#. So let F ∈ BBA be such
that Φ̃(F) is defined, and suppose that b ∈ B represents F w.r.t. h. First of all, we claim
that (λ∗y.xyj)[b/x] represents λα.F (α)(i) as a second-order functional w.r.t. g. In order to
prove the claim, let α ∈ BA be such that F (α)(i) is defined, and let c ∈ B represent α w.r.t.
g. Then c ∈ h(α), which means that bc is defined and in h(F (α)), i.e., bc represents F (α)
w.r.t. g. Since j ∈ g(i), this yields that ((λ∗y.xyj)[b/x]) c � bcj is defined and an element of
g(F (α)(i)), which proves the claim. Now we find that s ((λ∗y.xyj)[b/x]) ∈ Φ(λα.F (α)(i)), so
it follows that tb � k (s ((λ∗y.xyj)[b/x])) is defined and represents Φ̃(F). In other words, we
have tb ∈ h(Φ̃(F)), as desired.

In Section 6, we investigated the possibility of making an F ∈ B2A effectively representable
by adjoining F̂ ∈ BBA to BA. It turned out that this will not work in general, the Kleene

33

functional E ∈ B2K1 being a counterexample. Therefore, it may seem strange that a similar
strategy does work for the third-order case! Let us explain why this is so. In the second-
order case, the task was to construct, given a representer of F̂ , a representer of F . Now, a
representer of F eats representers of α ∈ BA, whereas a representer of F̂ wants to eat α itself.
So the task really is to effectively find, given a representer of α, the function α itself so that
it can be fed to the representer of F̂ . But the problem is exactly that, once we add an oracle
to BA, this is no longer possible in general. On the other hand, the converse construction
obviously does work, i.e., given a representer of F , we can construct a representer of F̂ (see

also Example 6.14). Since we constructed Φ̃ in such a way that Φ̃(F̂) ≃ Φ̂(F), this is precisely
what we need to construct a representer for Φ, given a representer for Φ̃. We can also put
this as follows: in the business of representing Φ, the representers of second-order functionals
F ∈ B2A are not the things to be constructed, but the things that are given. Unfortunately,
this also reveals that the current strategy can probably not be pushed beyond the third-order
case, because in the fourth-order case, things will be ‘the wrong way around’ again.
We close the paper with an interesting corollary of Theorem 7.3. Suppose we have a decidable
partial applicative morphism g : A ⇀ B and an f ∈ BA which is effectively representable w.r.t.
g. Then we know that, besides f and the functions that were already effectively representable
in A, other functions must become effectively representable w.r.t. g as well. So a natural
question to ask here is: what is the minimal set of elements of BA that must become effectively
representable w.r.t. a partial applicative morphism as soon as f is effectively representable?
We can reformulate the question as follows. Let ER(f) denote the class of all decidable partial
applicative morphism g : A ⇀ B with respect to which f is effectively representable. Then
we are interested in the set:

FOE(f) :=
⋂

g∈ER(f)

{α ∈ BA | α is effectively representable w.r.t. g},

where FOE should be read as ‘first-order effect’. The construction from Section 4 tells us
what this set is: indeed, we know that ιf : A → A[f] is in ER(f) and that every element of
ER(f) factors through ιf . This means that FOE(f) is simply the set of α ∈ BA that are
effectively representable w.r.t. ιf , which we know to be 〈(BA)# ∪ {f}〉.
As we know, the representability of second-order functionals does not behave as nicely from the
point of view of pPCA. But we can still ask, given an F ∈ B2A, which first-order functions are
forced to become effectively representable if F is effectively representable. For simplicity, we
will assume that A is discrete, so that we do not have to worry about chain-completeness and
chain-continuity. As above, we let ER(F) denote the class of all decidable partial applicative
morphisms g : A ⇀ B such that F is effectively representable w.r.t. g, and we write

FOE(F) :=
⋂

g∈ER(F)

{α ∈ BA | α is effectively representable w.r.t. g},

for the ‘first-order effect’ of F . Then FOE(F) is also of the form 〈(BA)# ∪ {f}〉 for some
f ∈ BA, namely, the f as in Theorem 6.15.
For the third-order case, we can pose the analogous question. Let A be a discrete PCA and
consider Φ ∈ B3A. Let ER(Φ) denote the class of all decidable partial applicative morphisms
g : A ⇀ B such that Φ is effectively representable w.r.t. g, and we write

FOE(Φ) :=
⋂

g∈ER(Φ)

{α ∈ BA | α is effectively representable w.r.t. g},

34

for the ‘first-order effect’ of Φ. Then Theorem 7.3 tells us that FOE(Φ) consists of all α ∈ BA
that are effectively representable w.r.t. ιΦ. We can now ask: is this set also of the form
〈(BA)# ∪ {f}〉 for some f ∈ BA? In order to show that the answer is ‘yes’, we first need the
following definition.

Definition 7.4. Let A be a discrete PCA and let g : A ⇀ B be a partial applicative morphism.
Then g is called discrete if g(a) ∩ g(a′) = ∅ for every two distinct a, a′ ∈ A.

The following result is based on Theorem 2.12 of [FvO14].

Lemma 7.5. Let A be a discrete PCA and let g : A → B be a total applicative morphism
which is discrete, projective and c.d. Then there exists an f ∈ BA such that:

{α ∈ BA | α is effectively representable w.r.t. g} = 〈(BA)# ∪ {f}〉.

Proof. Since g is total, projective and c.d., Theorem 3.13(i) tells us that g has a right adjoint
h : B ⇀ A in pPCA. We claim that the partial applicative morphism hg : A ⇀ A is discrete.
Suppose we have a, a′ ∈ A such that hg(a) ∩ hg(a′) is nonempty. Since g preserves the order
up to a realizer, it follows that ghg(a) ∩ ghg(a′) is also nonempty. Since g ⊣ h, we have
ghg ≃ g, so this implies that g(a) ∩ g(a′) is nonempty, so a = a′ by the discreteness of g.
Now define the partial function f : A ⇀ A by: f(a) = a′ if and only if a ∈ hg(a′), which
is well-defined by the discreteness of hg. Then g(a) ⊆ ghg(f(a)), so if s ∈ B# realizes
ghg ≤ g, then s also represents f w.r.t. g. This means that g factors through ιf by means of
a g′ : A[f] → B, which is defined simply by g′(a) = g(a) for a ∈ A. Now g′ is total, projective
and c.d. as well, so it has a right adjoint h′ : B ⇀ A. Moreover, we recall that ιf has a right
adjoint k : A[f] → A satisfying ιfk ≃ idA[f].

A B

A[f]

ιf

g

h

h′

g′

k

Since g ≃ g′ιf , we also have h ≃ kh′, hence ιfh ≃ ιfkh
′ ≃ h′. This means we can assume

without loss of generality that h′(b) = h(b) for all b ∈ B. In particular, h′g′(a) = hg(a) for all
a ∈ A. But now it is clear that any representer r ∈ (A[f])# of f will also realize the inquality
h′g′ ≤ idA[f]. Combining this with g′ ⊣ h′ yields g′h′ ≃ idA[f]. This implies that α ∈ BA is
effectively representable w.r.t. g ≃ g′ιf if and only if α is effectively representable w.r.t. ιf ; if
and only if α ∈ 〈(BA)# ∪ {f}〉.

Remark 7.6. Observe that the proof of Lemma 7.5 also implies that the image topos of
the geometric morphism RT(B) → RT(A) induced by g is also a realizability topos, namely
RT(A[f]).

Corollary 7.7. Let A be a discrete PCA and let Φ ∈ B3A. Then there exists an f ∈ BA
such that FOE(Φ) = 〈(BA)# ∪ {f}〉.

Proof. This follows from Lemma 7.5 if we can show that ιΦ is total, discrete, projective and
c.d. All of these are easy to check.

35

References

[FvO14] E. Faber and J. van Oosten. More on geometric morphisms between realizability
toposes. Theory and Applications of Categories, 29(30):874–95, 2014.

[FvO16] E. Faber and J. van Oosten. Effective operations of type 2 in pcas. Computability,
5(2):127–45, 2016.

[HvO03] P. Hofstra and J. van Oosten. Ordered partial combinatory algebras. Math. Proc.
Camb. Phil. Soc., 134(3):445–463, 2003.

[Joh13] P. T. Johnstone. Geometric morphisms of realizability toposes. Theory and Appli-
cations of Categories, 28(9):241–249, 2013.

[LN15] J. Longley and D. Normann. Higher-Order Computability. Springer-Verlag Berlin
Heidelberg, 2015.

[Lon94] J. Longley. Realizability Toposes and Language Semantics. PhD thesis, University
of Edinburgh, 1994.

[vO06] J. van Oosten. A general form of relative recursion. Notre Dame Journal of Formal
Logic, 47(3):311–18, 2006.

[vO08] J. van Oosten. Realizability: An Introduction to its Categorical Side, volume 152 of
Studies in Logic and the Foundations of Mathematics. Elsevier, 2008.

[vO11] J. van Oosten. Partial combinatory algebras of functions. Notre Dame Journal of
Formal Logic, 52(4):431–48, 2011.

[Zoe20] J. Zoethout. Internal partial combinatory algebras and their slices. Theory and
Applications of Categories, 35(52):1907–1952, 2020.

36

	1 Introduction
	2 Relative ordered PCAs
	3 Partial applicative morphisms
	4 Adjoining a partial function to a PCA
	5 The PCA of partial functions
	6 Adjoining a type-2 functional
	7 The third-order case

