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We study a variant of Min Cost Flow in which the flow needs to be
connected. Specifically, in the Connected Flow problem one is given a di-
rected graph G, along with a set of demand vertices D ⊆ V (G) with demands
dem : D → N, and costs and capacities for each edge. The goal is to find a min-
imum cost flow that satisfies the demands, respects the capacities and induces
a (strongly) connected subgraph. This generalizes previously studied problems
like the (Many Visits) TSP.

We study the parameterized complexity of Connected Flow parameter-
ized by |D|, the treewidth tw and by vertex cover size k of G and provide:

1. NP-completeness already for the case |D| = 2 with only unit demands and
capacities and no edge costs, and fixed-parameter tractability if there are no
capacities,

2. a fixed-parameter tractable O?(kO(k)) time algorithm for the general case,
and a kernel of size polynomial in k for the special case of Many Visits
TSP,

3. a |V (G)|O(tw) time algorithm and a matching |V (G)|o(tw) time conditional
lower bound conditioned on the Exponential Time Hypothesis.

To achieve some of our results, we significantly extend an approach by Kowalik
et al. [ESA’20].

1 Introduction

In the Connected Flow problem we are given a directed graph G = (V,E)
with costs and capacities on the edges and a set D ⊆ V such that each v ∈ D has
a fixed demand. We then ask for a minimum cost connected flow on the edges
that satisfies the demand for each v ∈ D, i.e. we look for a minimum cost flow
conserving function f : E → N, such that the set of edges with strictly positive
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flow f is connected and the total flow coming into v ∈ D is equal to its demand
(see below for a formal definition of the problem).

One arrives (almost) directly at the Connected Flow problem by adding
a natural connectivity constraint to the well known Min Cost Flow problem
(from now on abbreviated with simply ‘Flow’, see Appendix A for details).
But unfortunately, Connected Flow has the same fate as many other slight
generalizations of Flow: The additional requirement changes the complexity
of the problem from being solvable in polynomial time to being NP-complete
(see [9, Section A2.4] for more of such NP-complete generalizations).

The problem generalizes a number of problems, including the Many Vis-
its TSP (MVTSP)3. This problem has a variety of potential applications in
scheduling and computational geometry (see e.g the discussion by Berger et
al. [1]), and its study from the exponential time perspective recently witnessed
several exciting results. In particular, Berger et al. [1] improved an old nO(n)

time algorithm by Cosmadakis and Papadimitriou [4] to O?(5n) time and poly-
nomial space, and recently the analysis of that algorithm was further improved
by Kowalik et al. [10] to O?(4n) time.

The Connected Flow problem also generalizes other problems studied in
parameterized complexity, such as the Eulerian Steiner Subgraph problem,
that was used in an algorithm for Hamiltonian Index by Philip et al. [11], or
the problem of finding 2 short edge disjoint paths in undirected graphs (whose
parameterized complexity was for example studied by Cai and Ye [3]).

Based on these connections with existing literature on in particular the
MVTSP, its appealing formulation, and it being a direct extension of the well-
studied Flow problem, we initiate the study of the parameterized complexity
of Connected Flow in this paper.

Our Contributions. We first study the (arguably) most natural parameterization:
the number of demand vertices for which we require a certain amount of flow.
We show that the problem is NP-complete even in a very special case:

Theorem 1. Connected Flow with 2 demand vertices is NP-complete.

The reduction heavily relies on the capacities and we show that this is indeed
what makes the problem hard. Namely, using the algorithm for MVTSP from
[10], we get an algorithm that can solve instances of Connected Flow if all
capacities are infinite:

Theorem 2. Any instance instance (G,D, dem, cost, cap) of Connected Flow
where cap(e) =∞ for all e ∈ E can be solved in time O?(4|D|).

Next we study a typically much larger parameterization, the size k of a vertex
cover of G. One of our main technical contributions is that Connected Flow
is fixed-parameter tractable, parameterized by k:
3 In this problem a minimum length tour is sought that satisfies each vertex a given
number of times. The generalization is by setting the demand of a vertex to the
number of times the tour is required to visit that vertex and using infinite capacities.
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Theorem 3. There is an algorithm solving a given instance (G,D, dem, cost, cap)
of Connected Flow such that G has a vertex cover of size k in time O?(kO(k)).

Theorem 3 is interesting even for the special case of MVTSP as it generalizes
the O?(nn) time algorithm from Cosmadakis and Papadimitriou [4], though it
is a bit slower than the more recent algorithms from [1,10]. For this special case,
we even find a polynomial kernel:

Theorem 4. MVTSP admits a kernel polynomial in the size k of the vertex
cover of G.

The starting point of the proofs of both Theorem 3 and Theorem 4 is a strength-
ening of a non-trivial lemma from Kowalik et al. [10] which proves the existence
of a solution s′ that is ‘close’ to a solution r of the Flow problem instance ob-
tained by relaxing the connectivity requirement. Since such an r can be found in
polynomial time, it can be used to determine how the optimal solution roughly
looks.

This is subsequently used by a dynamic programming algorithm that aims
to find such a solution close to r to establish Theorem 3; the restriction to
solutions being close to r crucially allows us to evaluate only O?(kO(k)) table
entries. Additionally this is used in the kernelization algorithm of Theorem 4 to
locate a set of O(k5) vertices such that only edges incident to vertices in this set
will have a different flow in r and s′.

The last parameter we consider is the treewidth, denoted by tw, of G, which
is a parameter that is widely used for many graph problems and that is smaller
than k. We present a Dynamic Programming algorithm for Connected Flow:

Theorem 5. Let M be an upper bound on the demands in the input graph G,
and suppose a tree decomposition of width tw of G is given. Then a Connected
Flow instance with G can be solved in time |V (G)|O(tw) and an MVTSP in-
stance with G can be solved in time min{|V (G)|,M}O(tw)|V (G)|O(1).

We also give a matching lower bound for MVTSP. This lower bound heavily
builds on previous approaches, and in particular, some gadgets from Cygan et
al. [6].

Theorem 6. Assuming the Exponential Time Hypothesis, MVTSP cannot be
solved in time f(tw)|V (G)|o(tw) for any computable function f(·).

Note that since MVTSP is a special case of Connected Flow this lower
bound extends to Connected Flow.

Notation and Formal Problem Definitions. We let O?(·) omit factors polynomial
in the input size. We assume that all integers are represented in binary, so in
this paper the input size will be polynomial in the number of vertices of the
input graph and the logarithm of the maximum input integer. For a Boolean b
we define [b] to be 1 if b is true and 0 otherwise. For integers a and b we denote
[a, b] as the set of all integers i such that a 6 i 6 b. All graphs in this paper are
directed unless stated otherwise.
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We use the notion of multisets, which are sets in which the same element may
appear multiple times. Formally, a multiset is an ordered pair (A,mA) consisting
of a set A and a multiplicity function mA : A→ Z+. We slightly abuse notation
and let mA(e) = 0 if e 6∈ A. We can see flow f as a multiset of directed edges,
where each edge appears f(e) number of times. We then say that f(e) is the
multiplicity of e. Given a function f : E → N, we define Gf = (V ′, E′) as
the multigraph where e ∈ E′ has multiplicity f(e) and V ′ is the set of vertices
incident to at least one e ∈ E′. We let E(Gf ) be equal to the multiset E′. We also
define supp(f) = {e ∈ E : f(e) > 0} as the support of f . The formal statement
of Connected Flow is as follows:

Connected Flow
Input: G = (V,E), D ⊆ V , dem : D → N, cost : E → N, cap : E → N∪{∞}
Task: Find a function f : E → N such that
– Gf is connected,
– for every v ∈ V we have

∑
(u,v)∈E f(u, v) =

∑
(v,u)∈E f(v, u),

– for every v ∈ D we have
∑

(u,v)∈E f(u, v) = dem(v),
– for every e ∈ E : f(e) 6 cap(e),

and the value cost(f) =
∑
e∈E cost(e)f(e) is minimized.

Note that Gf in the above definition is Eulerian (every vertex has the same in
and out degree), so it is strongly connected if and only if it is weakly connected.
We define Flow as the Connected Flow problem without the connectivity
requirement, which can be solved in polynomial time4. MVTSP is a special
case of Connected Flow, where D = V and capacities are infinite. Formal
definitions of these problems can be found in Appendix A.

Organization. The remainder of this paper is organized as follows: in Section 2
we study the parameterization by the number of demand vertices. We show NP-
completeness and discuss the reduction of the infinite capacities case of Con-
nected Flow to MVTSP.

In Section 3 we first introduce an extension of a lemma from Kowalik et
al. [10] that shows that we can transform an optimal solution to the Flow
relaxation to include a specific edge set from an optimal solution of the original
Connected Flow instance, without changing too many edges. This lemma is
subsequently used in Section 3.2 to prove Theorem 3 and in Section 3.3 to prove
Theorem 4.

In Section 4 we discuss the parameterization by treewidth and pathwidth,
giving a Dynamic Programming algorithm for Connected Flow and a match-
ing lower bound for MVTSP.

We conclude the paper with a discussion on further research opportunities.
In Appendix A we provide formal problem definitions for Flow and prove it is
equivalent to Min Cost Flow.

4 In Appendix A we show that Flow is equivalent to the Min Cost Flow problem,
which is polynomial-time solvable.
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2 Parameterization by number of demand vertices

In this section we study the parameterized complexity of Connected Flow
with parameter |D|, the number of vertices with a demand. We first prove that
the problem is NP-hard, even for |D| = 2, by a reduction from the problem
of finding two vertex disjoint paths in a directed graph. Next we show that, if
cap(e) =∞ for all e ∈ E, the problem can be reduced to an instance of MVTSP,
and hence solved in time O?(4|D|).

Theorem 1. Connected Flow with 2 demand vertices is NP-complete.

Proof. We give a reduction from the problem of finding two vertex-disjoint paths
in a directed graph to Connected Flow with demand set D of size 2. The
directed vertex-disjoint paths problem has been shown to be NP-hard for fixed
k = 2 by Fortune et al. [8], so this reduction will prove our theorem for |D| = 2.
Note that the case of |D| > 2 is harder, since we can view |D| = 2 as a special
case, by adding isolated vertices with demand 0.

Given a graph G and pairs (s1, t1) and (s2, t2), we construct an instance
(G′, D, dem, cost, cap) of Connected Flow. Let V0 = V \ {s1, s2, t1, t2}, we
define

V (G′) = {s1, s2, t1, t2} ∪ {vin : v ∈ V0} ∪ {vout : v ∈ V0}

We let D = {s1, s2} and set dem(s1) = dem(s2) = 1. We also define

E(G′) ={(vin, vout) : v ∈ V0}
∪ {(si, vin) : (si, v) ∈ E(G), i = 1, 2}
∪ {(vout, ti) : (v, ti) ∈ E(G), i = 1, 2}
∪ {(uout, vin) : u, v ∈ V0, (u, v) ∈ E(G)}
∪ {(t1, s2), (t2, s1)}.

We now set cost(u, v) = 0 and cap(u, v) = 1 for every (u, v) ∈ E(G′). We prove
that G has two vertex-disjoint paths (from s1 to t1 and from s2 to t2) if and
only if (G′, D, dem, cost, cap) has a connected flow of cost 0.

Let P1 and P2 be two vertex disjoint paths in G, from s1 to t1 and from s2
to t2 respectively. Intuitively we will simply walk through the same two paths in
G′ and then connect the end of one to the start of the other. More formally, we
construct a flow f in G′ as follows. Let P1 = s1, v

1, . . . , v`, t1, we set f(s1, v1in) =
f(v`out, t1) = 1 as well as f(viin, v

i
out) = f(viout, v

i+1
in ) = 1 for all i ∈ [1, `]. We do

the same for P2. Finally we set f(t1, s2) = f(t2, s1) = 1 and set f to 0 for all
other edges. We note that all capacities have been respected and all demands
have been met. The resulting flow is connected, since the paths were connected
and f(t1, s2) = 1.

For the other direction, let f be a connected flow for (G′, D, dem, cost, cap).
Since dem(s1) = dem(s2) = 1 and s1 and s2 only have one incoming edge, we
have that f(t1, s2) = f(t2, s1) = 1. We argue that Gf−{(t1, s2), (t2, s1)} consists
of two vertex disjoint paths in G′, one from s1 to t1 and the other from s2 to t2.
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First we note that for every vertex in G′, it has either in-degree 1 or out-degree
1 (or possibly both). This means that since we have cap(u, v) = 1 for every
(u, v) ∈ E(G′), every vertex in V (Gf ) has in- and out-degree 1 in Gf . Since Gf
is connected we find that Gf is a single cycle and thus Gf −{(t1, s2), (t2, s1)} is
the union of two vertex-disjoint paths. We now find two vertex-disjoint paths in
G by contracting the edges (vin, vout) in Gf − {(t1, s2), (t2, s1)}. ut

Lemma 1. Given an instance (G,D, dem, cost, cap) of Connected Flow where
cap(e) =∞ for all e ∈ E, we can construct an equivalent instance of MVTSP
on |D| vertices.

Proof. We construct an equivalent instance (G′, dem, cost′) of MVTSP as fol-
lows. First we let V (G′) = D and for u, v ∈ D we let (u, v) ∈ E(G′) if and
only if there is a u − v path in G, disjoint from other vertices in D. We then
set cost(u, v) to be the total cost of the shortest such path. We keep dem(v) the
same.

We now show equivalence of the two instances. Let s′ : E(G′)→ N be a valid
tour on (G′, dem, cost′). We construct a connected flow f on (G,D, dem, cost, cap)
by, for each (u, v) ∈ E(G′) adding s′(u, v) copies of the shortest D-disjoint u-
v-path in G to the flow. Note that the demands are met, since the demands in
both instances are the same. Also note that by definition the total cost of s′(u, v)
copies of the shortest D-disjoint u − v path is equal to s′(u, v) · cost′(u, v) and
thus the total cost of f is equal to that of s′. Finally we note that the capacities
are trivially met.

In the other direction, let f : E(G) → N be an optimal connected flow on
(G,D, dem, cost, cap). Note that Gf is connected and that every vertex in this
multigraph has equal in- and out-degrees. This means we can find some Eulerian
tour on Gf . We now construct an MVTSP tour s′ on G′ by adding the edge
(u, v) every time v is the first vertex with demand to appear after an appearance
of u in the Eulerian tour. Again it is easy to see that s′ is connected and that
the demands are met. The total cost of s′ is the same as f , namely if it is larger,
then there is some pair u, v ∈ D such that the cost of some path in the Eulerian
tour from u to v is less than cost′(u, v), which contradicts the definition of cost′.
If it were smaller, then there is some D-disjoint path in the Eulerian tour from
some u to some v which is longer than cost′(u, v). We can then find a cheaper
flow by replacing this path with the shortest path, contradicting the optimality
of f . ut

Since MVTSP can be solved in O?(4n) time by Kowalik et al. [10], we get
as a direct consequence:

Theorem 2. Any instance instance (G,D, dem, cost, cap) of Connected Flow
where cap(e) =∞ for all e ∈ E(G) can be solved in time O?(4|D|).

3 Parameterization by vertex cover

In this section, we consider Connected Flow and MVTSP, parameterized by
the cardinality k of a vertex cover of the input graph. We first extend a lemma
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from Kowalik et al. [10] to instances of Connected Flow. Then we use this
lemma to obtain a fixed-parameter tractable algorithm for Connected Flow
and a polynomial-sized kernel for MVTSP.

3.1 Transforming the flow relaxation to enforce some edges

Let s be an optimal solution of Connected Flow and let T ⊆ supp(s). We
prove that, given any optimal solution r for Flow, there is always a flow f
that is close to r and T ⊆ supp(f). Furthermore it has cost cost(f) 6 cost(s).
Note that if T connects all demand vertices to each other, this implies that f is
connected and thus an optimal solution of Connected Flow.

The basic idea and arguments are from Kowalik et al. [10], where a similar
theorem for MVTSP was proved. We adjusted their proof to the case with
capacities and where not all vertices have a demand. Furthermore, we noted
that we can restrict the tours C ∈ C in the proof to be inclusion-wise minimal,
which allows us to conclude a stronger inequality.

Lemma 2. Fix an input instance (G,D, dem, cost, cap) with G = (V,E). Let s
be an optimal solution of Connected Flow and let T ⊆ supp(s). For every
optimal solution r of Flow, there is a flow f with cost(f) 6 cost(s), with
f(e) > 0 for all e ∈ T and such that for every v ∈ V :∑

u∈V
|r(u, v)− f(u, v)| 6 2|T |, and

∑
u∈V
|r(v, u)− f(v, u)| 6 2|T |.

Proof. We follow the structure of the proof of Lemma 3.2 from Kowalik et al. [10].
We build a flow f (not necessarily optimal for Flow), containing T and with
multiplicities close to r. Recall that mB denotes the multiplicity function of the
multiset B. We define the multisets of edges As, Ar and A such that for all
e ∈ E:
– mAs(e) = max{s(e)− r(e), 0},
– mAr (e) = max{r(e)− s(e), 0}, and
– mA(e) = max{mAr

(e),mAs
(e)} = max{s(e)− r(e), r(e)− s(e)}.

Note that A is the symmetric difference of s and r, and therefore any e ∈ A,
is exactly either in Ar or in As, but never in both.

Let H be a tour (i.e. a closed walk) of undirected edges. We then say that
−→
H is a cyclic orientation of H if it is an orientation of the edges in H such
that

−→
H forms a directed tour. A directed edge e that overlaps with H is in

positive orientation with respect to
−→
H if it has the same orientation, and negative

otherwise. We now define (s − r) directed tours, of which an example is shown
in Figure 1.

Definition 1. Let C = (e0, . . . , e`) ⊆ A be a set of edges such that its underlying
undirected edge set H is a tour. We then say that C is an (s− r) directed tour
if there is an orientation

−→
H of H such that:

– if e ∈ C is in positive orientation with respect to
−→
H , then e ∈ As,
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– if e ∈ C is in negative orientation with respect to
−→
H , then e ∈ Ar,

– if two subsequent edges ei, ei+1 of C have the same orientation, then their
shared vertex, v, is not in D. This also holds for the edge pair (e`, e0).

v ∈ D
v 6∈ D

e ∈ Ar
e ∈ As
e ∈
−→
H

Fig. 1. Example of an (s − r) directed tour. Note that every time the tour visits a
vertex v ∈ D, the orientation changes. However if the tour visits a vertex v 6∈ D, the
orientation might not change.

We give a construction such that A can be partitioned into a multiset of
(s−r) directed tours. We take (u, v) ∈ A arbitrarily as our first edge of our walk
and iteratively add edges until we find an (s− r) directed tour. We assume the
current edge (u, v) is in As (if the edge is in Ar, the arguments are similar). If
v ∈ D, then there exists (v, w) ∈ Ar, because v is visited dem(v) times by both
r and s. If v 6∈ D, there exists either (v, w) ∈ Ar or (w, v) ∈ As because A is the
symmetric different of the flows r and s. We take this edge as the next edge in
our (s− r) directed tour. This way we can keep finding the next edges, until we
can take our first edge (u, v) as our next edge and we find an (s − r) directed
tour. We then remove this tour and inductively find the next until A is empty.

It follows that A can be partitioned into a multiset C of (s−r) directed tours,
i.e.

mA =
∑
C∈C

mC ,

where mC is the multiplicity of (s− r) directed tour C.
We may assume that these (s− r) directed tours are inclusion-wise minimal,

i.e. for each (s− r) directed tour C ∈ C, no subset C ′ ⊂ C is an (s− r) directed
tour. Otherwise, C can be split into two disjoint (s − r) directed tours C ′ and
C \ C ′.

Claim 1 For any v ∈ V and any inclusion-wise minimal C ∈ C:∑
u∈V

[(u, v) ∈ C] 6 2 and
∑
u∈V

[(v, u) ∈ C] 6 2. (1)

Proof of Claim. We only prove the first inequality. The second inequality can be
proved with an analogous argumentation. Assume not, i.e. assume there exists
C ∈ C and v ∈ V such that there exist x1, x2, x3 ∈ V with (xi, v) ∈ C for
i = 1, 2, 3. Each of these edges must be either in As or Ar. Assume without
loss of generality that (x1, v), (x2, v) ∈ As. (We will only need the fact that at
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least two of these edges are either both in Ar or both in As. The case of at
least two edges in Ar has equivalent reasoning.) Both (x1, v) and (x2, v) can be
paired with the edge it traverses v with, i.e. its subsequent edge in the tour, as
(x1, v), (x2, v) ∈ As are positively oriented. Let e1, e2 be these subsequent edges.
Then note that C can be split into two smaller (s − r) directed tours C1 and
C2, with C1 starting with edge e1 and ending with (x2, v), and C2 starting with
edge e2 and ending with (x1, v). This contradicts the assumption that C was
inclusion-wise minimal. �

We denote T+ = E(T ) \ supp(r) as the set of edges of T that are not yet
covered by r. Hence, if e ∈ T+, then e ∈ As and there is at least one C ∈ C
that contains e. We choose for each e ∈ T+ such an (s− r) directed tour Ce ∈ C
arbitrarily. Let C+ = {Ce : e ∈ T+} be the set of chosen (s− r) directed tours.
We define f as follows: for each u, v ∈ V we set

f(u, v) = r(u, v) + (−1)[(u,v)∈Ar]
∑
C∈C+

[(u, v) ∈ C]. (2)

In other words, f is obtained from r by removing one copy of edges in C ∩ Ar
and adding one copy of edges in C ∩As for all C ∈ C+.

Notice that |C+| 6 |T+| 6 |T |. By using (2) and subsequently (1), we get for
all v ∈ V : ∑

u∈V
|r(u, v)− f(u, v)| 6

∑
u∈V

∑
C∈C+

[(u, v) ∈ C]

=
∑
C∈C+

∑
u∈V

[(u, v) ∈ C]

6
∑
C∈C+

2 6 2|T |.

Similarly we can conclude for all v ∈ V that
∑
u∈V |r(v, u)− f(v, u)| 6 2|T |.

Claim 2 For all e ∈ T , f(e) > 0 and f is a flow for the given instance.

Proof of Claim. We first show that for all e ∈ E:

min{r(e), s(e)} 6 f(e) 6 max{r(e), s(e)}.

If e 6∈ A, equation (2) implies that r(e) = f(e) = s(e). If e ∈ As, by definition
r(e) < s(e) and we can see from (2) that if the multiplicity of e changes, it is
because copies of e are added to r to form f (and none are removed). Because
mA(e) 6 s(e)− r(e), at most this many copies of e can be added to r to form f .
Hence r(e) 6 f(e) 6 r(e) + (s(e)− r(e)) = s(e). Similarly, if e ∈ Ar, r(e) > s(e)
and at most r(e)− s(e) copies of e are removed from r to form f .

Next we prove that f is an allowed solution to the given Flow instance. Let
C ∈ C+ and let e, e′ be two subsequent edges from C with common vertex v.
If e ∈ As and e′ ∈ Ar, then the in- and out-degrees of v do not change while
adding a copy of e and removing a copy of e′ (in equation (2)), because the
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orientation of e and e′ is different. This is also true if e ∈ Ar and e′ ∈ As. If
e, e′ ∈ Ar, then both e and e′ have a copy removed in equation (2). Since the
orientation of e and e′ is the same, both the in- and out-degree of v go down by
one. We remark that this situation only happens if v 6∈ D by definition of (s− r)
directed tours. Similarly, if e, e′ ∈ As, the in- and out-degree of v increases by
one. Since r was an allowed solution, this implies that the number of incoming-
and outgoing edges of v in f are equal, in other words, the flow is preserved.
Since for v ∈ D, the total incoming (and total outgoing) edges do not change, the
demands are satisfied by f . Furthermore, the capacity constraints are satisfied
since f(e) 6 max{r(e), s(e)} 6 cap(e).

We show that T ⊆ supp(f). Let e ∈ T+, then e ∈ As so copies of e are added
to r to form f in equation (2). Since e ∈ T+, at least one tour C ∈ C+ contains
e. Hence, f(e) > 0. If e ∈ T \ T+, then r(e) > 0 because T+ = T \ supp(r) by
definition. We also see that s(e) > 0 because T ⊆ supp(s) by assumption. Using
our earlier result that min{r(e), s(e)} 6 f(e), we conclude that f(e) > 0. �

We are left to prove that cost(f) 6 cost(s). For any C ∈ C define δ(C) =
cost(As∩C)−cost(Ar∩C) as the cost of adding all edges in As∩C and removing
all edges in Ar ∩ C. Notice that δ(C) > 0 for all tours C ∈ C, as otherwise r
would not have been optimal since we could improve it by augmenting along C.
We note that

∑
C∈C+ δ(C) 6

∑
C∈C δ(C) as C+ ⊆ C. Therefore:

cost(f) = cost(r) +
∑
C∈C+

δ(C) 6 cost(r) +
∑
C∈C

δ(C) = cost(s). ut

3.2 Fixed Parameter Tractable algorithm

Now we use Lemma 2 to show that Connected Flow is fixed-parameter tractable
parameterized by the size of a vertex cover of G:

Theorem 3. There is an algorithm solving a given instance (G,D, dem, cost, cap)
of Connected Flow such that G has a vertex cover of size k in time O?(kO(k)).

Proof. Let X be a vertex cover of size k of G = (V,E), let s be an arbitrary
optimal solution of Connected Flow and let X ′ ⊆ X be the set of vertices of
X that are visited at least once by s. We will guess this set X ′ as part of our
algorithm, i.e. go through all possible sets. Hence we do the following algorithm
for all X ′ such that (D ∩X) ⊆ X ′ ⊆ X, which is at most 2k times.

For any X ′, we adjust G such that the vertex cover is an independent set
and all x ∈ X ′ are visited at least once in any solution as follows. We remove
any edge (xi, xj) ∈ E for xi, xj ∈ X ′ and replace this edge by adding a new
vertex y to V . This y has no demand and has edges (xi, y) and (y, xj), with
capacities equal to the old capacity cap(xi, xj) and cost(xi, y) = cost(xi, xj) and
cost(y, xj) = 0. This removes any edges between vertices in the set X ′, making
it an independent set. We note that X ′ is still a vertex cover of size k.

The vertices x ∈ X ′ ∩D are visited at least once because of their demand.
For all x ∈ X ′ \D we add a vertex bx to V , with dem(bx) = 1 and we add edges
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(x, bx) and (bx, x), both with 0 cost and a capacity of 1. As bx has a demand of
1 and has only x as its neighbor, this ensures that x is visited at least once.

We remove all x ∈ X \ X ′ from V and denote the resulting graph as G′ =
(V ′, E′). Note that ifX ′ is guessed correctly, the optimal solution s of the original
instance, is also optimal for this newly created instance (by adding flow over the
newly created edges between x and bx, and replacing any edge (xi, xj) by the
edges (xi, y) and (y, xj)). We compute a relaxed solution r for this newly created
instance, which can be done in polynomial time.

Let T be any directed tree of size at most 2k such that T ⊆ supp(s) and all
x ∈ X ′ are incident to at least one edge e ∈ T . We argue why such tree T exists.
Since s is connected and visits all x ∈ X ′, we can find a tree T ⊆ supp(s) that
covers all x ∈ X ′. If |T | > 2k, we remove all the leaves from T not in X ′. Since
V ′ \X ′ is an independent set (as X ′ is a vertex cover), this means that the size
of T is bounded by 2k. Note that all x ∈ X ′ are still incident to an edge e ∈ T .

We apply Lemma 2, to s and T to find that there is a flow f such that
cost(f) 6 cost(s) and for every v ∈ V :∑

u∈V ′
|r(u, v)− f(u, v)| 6 4k, and

∑
u∈V ′

|r(v, u)− f(v, u)| 6 4k. (3)

Since T ⊆ supp(f), f visits all the vertices in X ′ at least once. As X ′ is a vertex
cover, this means that f is a connected flow and hence an optimal solution of the
instance of Connected Flow. We will use a dynamic programming method
to find solution f . Namely, we iteratively add vertices from the independent
set B = V ′ \ X ′ and keep track of the connectedness of our vertex cover X ′
with a partition π. We later will restrict the number of table entries we actually
compute with the help of equation (3).

Denote X ′ = {x1, . . . , xk′} and let B = {b1, . . . , bn}. For j ∈ [0, n] let Bj be
the set of the first j vertices of B, i.e. Bj = {b1, . . . , bj} and define Vj = X ′∪Bj .
For any f : (Vj)

2 → N and v ∈ Vj define

fout(v) =
∑
u∈Vj

f(v, u) and f in(v) =
∑
u∈Vj

f(u, v).

Let cin = (cin1 , . . . , c
in
k′) ∈ Nk′ and cout = (cout1 , . . . , coutk′ ) ∈ Nk′ be two vectors of

integers and let π be a partition of the vertices of X ′.
For j ∈ [0, n] we define the dynamic programming table entry Tj(π, cin, cout)

to be equal to the minimal cost of any partial solution f : (Vj)
2 → N having

the specified in and out degrees (cin and cout) for vertices in X ′ and connecting
all vertices x ∈ S for each S ∈ π. More formally, Tj(π, cin, cout) is equal to
minf cost(f) over all f : (Vj)

2 → N such that the following conditions hold:

1. for all blocks S of the partition π, the block is weakly connected in G′f ,
2. for all xi ∈ X ′: fout(xi) = couti , f in(xi) = cini ,
3. for all v ∈ Bj : fout(v) = f in(v), and if v ∈ Bj ∩D, then f in(v) = dem(v),
4. for all u, v ∈ Vj : f(u, v) 6 cap(u, v).
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We set Tj(π, cin, cout) =∞ if no such f exists.

Claim 3 Each table entry Tj(π, cin, cout) can be computed from all table entries
Tj−1.

Proof of Claim. Compute table entries for j = 0 as follows. Set T0({{x1, }, . . . , {xk′}},0,0)
to 0, and all other entries of T0 to ∞, as V0 = X ′ is an independent set and so
a flow of zero on every edge is the only possible flow.

Now assume j > 0. We compute the values of Tj(π, cin, cout) as the mini-
mum of the following value over all suitable hin

i = (hin1 , . . . , h
in
k′) ∈ Nk′ , hout

i =

(hout1 , . . . , houtk′ ) ∈ Nk′ , and all suitable partitions π′ of X ′:

Tj−1(π
′, cin − hin, cout − hout) +

k′∑
i=1

(
hini · cost(bj , xi) + houti · cost(xi, bj)

)
.

Here we interpret hini as the multiplicity of the edge (bj , xi) and houti as the
multiplicity of the edge (xi, bj). Therefore, we require hini 6 cap(bj , xi) and houti 6
cap(xi, bj) so that the capacity constraints hold. Furthermore, we require that
the solution is flow preserving in bj , i.e.

∑k′

i=1 h
in
i =

∑k′

i=1 h
out
i and

∑k′

i=1 h
in
i =

dem(bj) if bj ∈ D. For π′ we require for all S ∈ π that either S ∈ π′ or there
exist S′1, . . . S′` ∈ π′ such that S′1 ∪ · · · ∪ S′` = S and S′1, . . . , S′` are all connected
to bj . This latter can be formalized by requiring that for each t ∈ [1, `], there is
an xi ∈ S′t such that hini + houti > 0.

Notice that with this recurrence, the table entries are computed correctly as
only the vertex bj was added, compared to the table entries Tj−1. Therefore we
may assume that only the edges incident to bj were added to another solution
for some table entry in Tj−1. �

We restrict this dynamic program using equation (3). AsX ′ is an independent
set, there are only edges between x ∈ X ′ and b ∈ Bj . Therefore, there exists a
solution f such that for every x ∈ X ′ and j ∈ [0, n]:∑

b∈Bj

|r(b, x)− f(b, x)| 6 4k, and
∑
b∈Bj

|r(x, b)− f(x, b)| 6 4k (4)

We restrict the dynamic program to only compute table entries Tj respecting
equation (4), by requiring for all i ∈ [1, k′]:

couti ∈

∑
b∈Bj

r(xi, b)− 4k,
∑
b∈Bj

r(xi, b) + 4k

 , and
cini ∈

∑
b∈Bj

r(b, xi)− 4k,
∑
b∈Bj

r(b, xi) + 4k

 .
(5)

Note that the dynamic program is still correct with this added restriction, as∑
b∈Bj−1

|r(b, x)−f(b, x)| 6
∑
b∈Bj

|r(b, x)−f(b, x)| 6 4k, so any table entry Tj
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respecting equation (5) can be computed from all table entries Tj−1 respecting
equation (5).

The dynamic program returns the minimum value of Tn({X ′}, c, c) for all c
such that ci = dem(xi) for all xi ∈ D∩X ′. This returns the value of a minimum
cost solution f for G′, respecting equation (4), if one exists. Let fX′ be solution
the dynamic program found in the iteration using X ′. Then min{fX′ : (D∩X) ⊆
X ′ ⊆ X} is equal to the minimum cost connected flow.

We count the number of different table entries Tj computed by the dynamic
program for fixed j. There are at most (8k)k possible values for both cin and
cout and at most kk different partitions π of X ′, so a total of kk · (8k)2k different
entries. To compute one table entry of Tj , we only need (the at most kk · (8k)2k)
table entries of Tj−1. Note that we compute this dynamic programming table
for each X ′ such that (D∩X) ⊆ X ′ ⊆ X, that is at most 2k different X ′. Hence
the algorithm runs in time O?(kO(k)). ut

3.3 Kernel for Many Visits TSP with O(k5) vertices

We now present how to find a kernel with O(k5) vertices for any instance of
MVTSP, where k is the size of a vertex cover of G. We do this by first finding
an optimal solution r to the relaxed Flow problem and then fixing the amount
of flow on some edges based on this r. We prove that there is an optimal solution
s of MVTSP such that for all except O(k5) vertices, all edges incident to these
vertices have exactly the same flow in r and s, as a consequence of Lemma 2.

Theorem 4. MVTSP admits a kernel polynomial in the size k of the minimum
vertex cover of G.

Proof. Fix an input instance on MVTSP. Let k be the number of vertices in
the vertex cover X = {x1, . . . , xk} of G and let n be the size of the independent
set B = V \X. Let r be an optimal solution of the instance of Flow obtained
by relaxing the connectivity constraint from in the given instance of MVTSP.

Define multisets
−→
F = (X × B) ∩ r (i.e. all edges in r going from vertices in

X to vertices in B) and
←−
F = (B ×X) ∩ r.

Claim 4 We may assume that for both
−→
F and

←−
F , their underlying undirected

edge sets do not contain cycles.

Proof of Claim. We change r such that for both
−→
F and

←−
F , their underlying

undirected edge sets do not contain cycles. Assume that there is an alternating
cycle C ⊆

←−
F , meaning that its underlying edge set is a cycle and (hence) the

edges alternate between being in positive and negative orientation. We can then
create solutions r′ and r′′ of Flow by alternatingly adding and removing edges
from C. Note that we can start by either adding or removing, giving us these two
different solutions r′ and r′′. Since the edges added to r to form r′ are exactly
the edges that were removed from r to form r′′, and vice versa, it holds that
cost(r) − cost(r′) = −(cost(r) − cost(r′′)). Since r is an optimal solution, we
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conclude cost(r) = cost(r′) = cost(r′′). We can therefore choose either r′ or r′′

to replace r, such that
←−
F now has one alternating cycle less without changing

any of the edges of r outside C. Hence we can iteratively remove the cycles from←−
F and

−→
F and obtain an optimal solution r to the Flow instance in which both←−

F and
−→
F are forests in polynomial time. �

We partition B as follows: B = Y ∪
(⋃

i,j∈[1,k]Bij

)
, where for each b ∈ Bij :

r(xi, b) > 0, r(b, xj) > 0, and

r(xa, b) = 0 for all a 6= i and r(b, xa) = 0 for all a 6= j,

and Y = B \
(⋃

i,j∈[1,k]Bij

)
.

We argue that |Y | 6 k. Recall that mB denotes the multiplicity function of
a multiset B. Let F = supp(m←−

F
) ∪ supp(m−→

F
) (note that F is a set and not a

multiset). Then |F | >
∑
i,j∈[1,k] 2|Bij |+ 3|Y | = 2n+ |Y |, as any vertex v ∈ Bij

must be responsible for exactly 2 edges in F and each vertex in Y must add at
least 3 edges to F . Here we use that each vertex has a demand and therefore
must have at least one incoming and outgoing edge from r. As F is a union of
two forests on n+ k vertices, we see that |F | 6 2(n+ k − 1). We conclude that
2(n+ |Y |) 6 2(n+ k − 1), i.e. |Y | 6 k.

Let s be an optimal solution of the MVTSP instance, so s visits every vertex
at least once. Hence there exists a directed tree T ⊆ supp(s), covering all vertices
of X, of size at most 2k. This tree exists by similar arguments as in the proof of
Theorem 3. We apply Lemma 2 to s and T , to find that there exists an optimal
solution f to the given MVTSP instance such that∑

v∈V
(|r(xi, v)− f(xi, v)|+ |r(v, xi)− f(v, xi)|) 6 8k ∀i ∈ [1, k]. (6)

We note that Gf is connected because T ⊆ supp(f) and T connects all the
vertices of the vertex cover. Equation (6) implies that at most 8k2 edges of

←−
F

and
−→
F are different in an optimal solution f of MVTSP that is close compared

to r.
For every i, j, ` ∈ [1, k], we define

−→
Aij(`) as the set of 8k2+2 vertices v ∈ Bij

with the smallest values of cost(x`, v) − cost(xi, v) (arbitrarily breaking ties if
needed). Intuitively, the vertices in

−→
Aij(`) are the vertices for which re-routing

the flow sent from xi to v to go from x` to v is the least expensive. Similarly we
define

←−
Aij(`) as a set of size 8k2+2 containing vertices v ∈ Bij with the smallest

values of cost(v, x`)− cost(v, xj).
We also define a set Rij of ‘remainder vertices’ as follows:

Rij = Bij \

 ⋃
`∈[1,k]

←−
Aij(`)

 ∪
 ⋃
`∈[1,k]

−→
Aij(`)

 for all i, j ∈ [1, k].

Claim 5 There exists an optimal solution f ′ of the MVTSP instance such that
for all i, j ∈ [1, k], b ∈ Rij and x` ∈ X it holds that r(x`, b) = f ′(x`, b) and
r(b, x`) = f ′(b, x`).
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Proof of Claim. We build this f ′ iteratively from f , by removing any edges
(xi′ , b) and (b, xj′) for i′ 6= i and j′ 6= j for each b ∈ Rij . In particular, this
implies that r(xi, b) = f ′(xi, b) and r(b, xj) = f ′(b, xj), as b then only has edges
coming from xi and to xj and since b has a fixed demand.

Throughout the process we retain optimality and connectivity for f ′. Fur-
thermore, after each step, the solutions r and f ′ differ at at most 8k2 edges. We
start by setting f ′ = f .

Let us consider b ∈ Rij and suppose that f ′(x`, b) > 0 for some ` 6= i. Note
that we can tackle the case where f ′(b, x`) > 0 for some ` 6= j with similar
steps. We remark that |

−→
Aij(`)| = 8k2 + 2 as Rij 6= ∅. As at most 8k2 edges

are different between r and f ′, there are vertices v, w ∈
−→
Aij(`) such that all

of the edges adjacent to v and w have the same multiplicities in r and f ′, i.e.
f ′(x, v) = r(x, v) and f ′(x,w) = r(x,w) for all x ∈ X.

Define flow f ′′ with at most the same costs as f ′ by removing one copy of
the edges (x`, b) and (xi, v) and adding one copy of the edges (xi, b) and (x`, v),
see Figure 2. As b 6∈

−→
Aij(`) and v ∈

−→
Aij(`), the cost of f ′′ is indeed at most the

cost of f ′ by definition of the set
−→
Aij(`).

We now argue that f ′′ is connected. As f ′ is a solution to MVTSP, it must
be connected. Since we removed (x`, b) and (xi, v) from f ′ to form f ′′, proving
that the pairs x`, b and xi, v are connected in f ′′ proves f ′′ to be connected. The
edges (xi, w), (w, xj) and (v, xj) in f ′′ connect xi and v. As a consequence, x`
and b are also connected, because of the edges (x`, v) and (xi, b).

We remark that the number of edges that differ between f ′′ and r has not
changed. Hence, we continue with setting f ′ = f ′′ and repeat until f ′ has the
required properties. �

xi

xj

x`

b ∈ Rij

v ∈
−→
Aij(`)

w ∈
−→
Aij(`)

xi

xj

x`

b ∈ Rij

v ∈
−→
Aij(`)

w ∈
−→
Aij(`)

Fig. 2. Adjusting flow f ′, depicted on the left, to get flow f ′′, depicted on the right.
The blue edges are replaced by the red edges, the rest of the solutions are equal. The
vertex w assures the new solution remains connected

Therefore, we may assume that, in Gf ′ , the vertices in Rij are adjacent only
to xi and xj for all i, j ∈ [1, k]. This proves that the following reduction rule is
correct: contract all vertices in Rij into one vertex rij with edges only (xi, rij)
and (rij , xj) of cost zero and let the demand dem(rij) =

∑
v∈Rij

dem(v). Hence,
we require any solution to use the vertices in rij exactly the number of times
that we would traverse all the vertices of Rij . By applying this rule, we get a
kernel with the vertices from the sets X, Y ,

←−
Aij(`),

−→
Aij(`), and rij , which is of
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size

|X|+|Y |+
∑

i,j,`∈[1,k]

(∣∣∣←−Aij(`)∣∣∣+ ∣∣∣−→Aij(`)∣∣∣)+k2 6 k+k+k3 ·(8k2+2)+k2 = O(k5).

To subsequently reduce all costs to be at most 2k
O(1)

we can use a method from
Etscheid et al. [7] in a standard manner.

We check that one can construct this kernel in polynomial time. First, com-
pute a relaxed solution r and remove any cycles in

−→
F and

←−
F in polynomial time.

Next for each i, j, ` ∈ [1, k], compute in polynomial time what the sets
−→
Aij(`)

and
←−
Aij(`) should be, by computing the values of cost(x`, v) − cost(xi, v) and

sorting. Finally we can contract all vertices in Rij into a vertex rij polynomial
time for all i, j ∈ [1, k]. ut

4 Parameterisation by Treewidth

In this section we consider the complexity of Connected Flow, when param-
eterized by the treewidth tw of G. We first give a |V (G)|O(tw) time dynamic
programming algorithm for Connected Flow. Subsequently, we give a match-
ing conditional lower bound on the complexity of MVTSP parameterized by
the pathwidth of G. Since MVTSP is a special case of Connected Flow this
shows that our dynamic programming algorithm is in some sense optimal.

4.1 An XP algorithm for Connected Flow

In this subsection we show the following:

Theorem 5. Let M be an upper bound on the demands in the input graph G,
and suppose a tree decomposition of width tw of G is given. Then a Connected
Flow instance on G can be solved in time |V (G)|O(tw) and an MVTSP instance
on G can be solved in time min{|V (G)|,M}O(tw)|V (G)|O(1).

Proof. The algorithm is based on a standard dynamic programming approach;
we only describe the table entries and omit the recurrence to compute table en-
tries since it is standard. We assume we have a tree decomposition T = ({Xi}, R)
on the given graph. For a given bag Xi, let π be a partition on Xi. Further-
more let din = (dinv )v∈Xi

∈ NXi and dout = (doutv )v∈Xi
∈ NXi be two vectors

of integers, indexed by Xi. We define the dynamic programming table entry
T (Xi, π,d

in,dout) to be the cost of the cheapest partial solution on the graph
‘below’ the bag Xi, among solutions whose connected components agree with the
partition π and whose in and out degrees agree with the vectors din and dout.
More formally, for r ∈ V (R) the root of the tree decomposition, we consider a
bag Xj to be below another bag Xi if one can reach j from i by a directed path
in the directed tree obtained from R by orienting every edge away from r. We
will denote this as Xj 4 Xi and define Yi = ∪Xj4Xi

Xj . For each bag Xi, a
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partition π of Xi and sequences din and dout satisfying (i) 0 6 dinv , d
out
v 6 dem(v)

for each v ∈ D and (ii) 0 6 din(v), dout(v) 6 M |V (G)| for each v /∈ D, define
T (Xi, π,d

in,dout) = mins cost(s) over all s : Y 2
i → N such that the following

conditions hold:

1.
∑
u∈Yi

s(u, v) =
∑
u∈Yi

s(v, u) = dem(v) for all v ∈ D ∩ (Yi \Xi),
2.
∑
u∈Yi

s(u, v) = dinv for all v ∈ Xi,
3.
∑
u∈Yi

s(v, u) = doutv for all v ∈ Xi,
4. all blocks of the partition π are weakly connected in Gs,
5. s(u, v) 6 cap(u, v) for all (u, v) ∈ E(G[Yi]).

We can compute the table starting at the leaves of R and work our way towards
the root.

Let us examine the necessary size of this dynamic programming table. First
we note that there are at most |V (G)|O(1) bags in the tree decomposition. Next
we consider the values dinv and doutv . Note that we can assume that an optimal
solution only visits any vertex without demand at most M |V (G)| times: Any
solution can be decomposed into a collection of paths between vertices with
demand. Each such path can be assumed to not visit any vertex more than once
(except possibly in the end points of the path) since the solution is of minimum
weight and all costs are non-negative. We find that each vertex gets visited at
mostM |V (G)| times and thus we only need to considerM |V (G)| many values of
dinv and doutv . Thus the degree values of the partial solutions contribute a factor of
(M |V (G)|)O(tw) to the overall running time of the algorithm if the given instance
is a Connected Flow instance, and only MO(tw) if the given instance is an
MVTSP instance (in which all vertices are demand vertices).

We argue that we may assume that M = |V (G)|O(1). Together with the fact
that the number of possibilities for π is twO(tw) 6 |V (G)|O(tw), the claimed result
for Connected Flow follows. We support this assumption using a variation
on the proof of Theorem 3.4 from Kowalik et al. [10]. Let r be some optimal
solution to Flow, then by applying Lemma 2 with T being some subtree of Gs
spanning all demand vertices, we find that there is some optimal solution s of
Connected Flow such that |r(u, v)− s(u, v)| 6 2n at every edge (u, v).

We now construct a flow f from r by subtracting simple directed cycles
from r. Note that each time that we subtract such a cycle, the result is again
a flow. We start with f = r everywhere. Now if there is an edge (u, v) ∈ E
for which f(u, v) > max{r(u, v) − 2n − 1, 0}, we can find a simple directed
cycle C ∈ Gf , containing (u, v), as f is a flow and thus Gf is Eulerian. Then
define f ′(u, v) = f(u, v)− [(u, v) ∈ C]. Note that f ′ is again a flow. Set f = f ′.
We then repeat this process of subtracting simple directed cycles from f until
f(u, v) 6 max{r(u, v)− 2n− 1, 0} for every edge (u, v).

Note that 0 6 s(u, v) − f(u, v) for all (u, v) ∈ E. Then define the instance
with dem′(v) = dem(v) −

∑
u∈V f(u, v) and cap′(u, v) = cap(u, v) − f(u, v) for

which s(u, v) − f(u, v) is an optimal connected flow. If dem′(v) 6 2n2 + n we
are done. Otherwise let r′ be a relaxed solution for the new instance. Note
that there is some edge (u′, v′) for which r′(u′, v′) > 2n + 1 and thus we can
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repeat the previous argument to find a non-zero flow f ′ such that f ′(u, v) 6
max{r′(u, v)−2n−1, 0} on every edge and define a corresponding new instance.
Since each time we subtract a non-zero flow, after some number of repetitions
we find dem′(v) 6 2n2 + n.

For the result for MVTSP, the above approach would give a running time
of min{|V (G)|,M}O(tw)twO(tw)|V (G)|O(1). However, the factor twO(tw) in the
running time needed to keep track of all partitions π can be reduced to 2O(tw)

via a standard application of the rank based approach (see e.g. [5, Section 11.2.2]
or [2,6]). ut

4.2 Lower bound

We now present a modified version of a reduction from 3-CNF-SAT to Hamil-
tonian Cycle parameterized by pathwidth from Cygan et al. [6]. We modify
it to be a reduction to MVTSP instead.

We will produce an instance of MVTSP that is symmetric in the sense that
the graph G is undirected, hence we denote edges as unordered pairs of vertices
(i.e. {u, v} = {v, u}). As a consequence, when c is a tour on G, then we say
c(u, v) = c(v, u). The general proof strategy is as follows. For a given 3-CNF-
SAT formula φ on n variables5 we will construct an equivalent MVTSP instance
(G, d). This graph will consist of n/s paths, for some value s, with each path
propagating some information encoding the value of s variables of φ. For each
clause of φ we will add a gadget which checks if the assignment satisfies the
clause. We then bound the size and the pathwidth of the constructed graph G.
This allows us to conclude a lower bound based on this reduction.

Gadgets We start by borrowing the following gadget from Cygan et al.[6],
called a 2-label gadget.

v1

v2

v3

v4 v5 v6

v7

v8

v9

Fig. 3. A 2-label gadget.

The key feature of this gadget is that if all vertices in the gadget have demand
equal to 1, then if a solution tour enters the gadget at v3, it has to leave the
5 In this section, we will only use n to refer to the number of variables of a 3-CNF-

SAT instance.
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gadget at v9 and vice versa. A similar relation holds for v1 and v7. We will refer
to any edge connected to either v1 or v7 as having label 1 and any edge connected
to v3 or v9 as having label 2. We will use this gadget to construct a gadget that
can detect certain multisets of edges in a part of a graph. In this construction
we will chain 2-label gadgets together using label 1 edges. Whenever we do this,
we always connect the vertex v7 of one gadget to the vertex v1 in the next. To
keep things concise, in the rest of this section we will refer to any 2-label gadget
as if it were a single vertex.

This next gadget is also inspired by a construction from Cygan et al. [6].

Definition 2. A scanner gadget in an unweighted MVTSP instance (G, d) is
described by a tuple (X, a, b,F), where X ⊆ V , a, b ∈ V \ X with dem(a) =
dem(b) = 1, F is a family of multisets of edges in6 E(X,X) and ∅ /∈ F . A tour
c of G is consistent with (X, a, b,F) if its restriction cE(X,X) is in F and if
c(a, b) > 0.

When refering to the gadget as a subgraph, we will useGF . We implement the
scanner gadget using the following construction, obtaining a different instance
(G′, dem′) of MVTSP.

– Remove the edges in E(X,X).

– Add an independent set I = {s1, . . . , s`} and edges {a, s1} and {s`, b}, for
` = |F|.

– Let F = {F1, . . . , F`}. For i = 1, . . . , ` we do the following.

• Let Fi = {eq11 , . . . , eqzz }, that is Fi contains qi copies of ei.
• Add a path Pi = {p1i , . . . , p

ti
i } of 2-label gadgets, where ti = |Fi| =∑z

i=j qj . We connect the gadgets in a chain using label 1 edges.

• Connect p1i to si−1 and si using label 1 edges (green edges in Figure 4)
and connect p|Fi|

i to si and si+1 using label 1 edges (blue edges in Fig-
ure 4).

• For all j = 1, . . . , z add label 2 edges from x pj
′

i and from y to pj
′

i for
ej = {x, y} and for qj different, previously unused values of j′ (red edges
in Figure 4).

– We set the demand of all added vertices to 1.

6 Here E(X,X) are all edges with both endpoints in X and the restriction cY are all
edges in c in Y (keeping multiplicities).
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a b

Xx1 x2

x3

x4

x5

x6 x7

s1 s2 s`

p11 pt11 p12 pt22 p1` p
t`
`

. . .

. . .

Fig. 4. Example of the scanner gadget.

The function of the gadget is captured by the following lemma.

Lemma 3. There exists an tour on (G, dem) that is consistent with (X, a, b,F)
if and only if there exists a tour on (G′, dem′).

The proof will closely follow that in Cygan et al. [6].

Proof. Suppose we have a tour on (G, dem) which is consistent with a gadget
(X, a, b,F). Let Fi ∈ F be the restriction of the tour on E(X,X). Then the tour
on (G, dem) can be extended to a tour on (G′, dem′) by replacing the qj instances
of an edge {u, v} ∈ Fi with two edges {u, pj

′

i } and {v, p
j′

i } for qj different values
of j′. We also replace the edge {a, b} by the path

a, s1, P1, . . . , Pi−1, si, Pi+1, si+1, . . . , P`, s`, b.

Since the obtained tour visits all vertices in the gadget exactly once and since
the restriction of the adjusted tour connects the same pairs of vertices in X as
the restriction of the original tour, the obtained tour will be a solution for the
instance (G′, dem′).

For the other direction, suppose we have a tour c′ on (G′, dem′). Note that
by the nature of the 2-label gadgets any tour cannot cross from some si into X
through one of the 2-label gadgets in one of the paths Pi. Thus the tour can
only travel from outside the gadget to si, by going through a or b. Therefore the
tour must include the edges {a, s1} and {s`, b}. Furthermore s1 and s` must be
connected by some path P ′ in the tour. Because I is an independent set, P ′ has
to jump back and forth between the Pi’s and the si’s and has to include every
si, since this is the only way to reach a vertex si with a tour.

This means that there will be exactly one path Pi0 which is not covered by
P ′. We can now obtain a tour c of (G, dem) by first setting c(u, v) = c′(u, v) for
{u, v} 6= {a, b} for u or v not in X. We then include any edge in X a number of
times according to its multiplicity in Fi0 i.e. we set c(u, v) = Fi0(u, v). Finally
we set c(a, b) = 1. Note that since c(a, b) > 0 and Fi0 ∈ F , we find that c is
consistent with (X, a, b,F). ut
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The following lemma will allow us to implement the gadget without increasing
the pathwidth of the graph too much.

Lemma 4. The scanner gadget has pathwidth at most |X|+ 21.

Proof. We define the bags of the decomposition as follows

Ba := X ∪ {a, s1}
Bi,j := X ∪ {si−1, si, si+1, p

j
i , p

j+1
i }

Bb := X ∪ {b, s`}.

We now have the following path decomposition of GF

Ba, B1,1, B1,2, . . . B1,t1 , B2,1, . . . B`,t` , Bb.

It is easy to check that every vertex/edge is covered by some bag and that for
every vertex v the set of bags containing v form an interval in the decomposition.

ut

Construction Suppose we are given a 3-CNF-SAT formula φ = C1 ∧ · · · ∧ Cm.
We will construct an equivalent unweighted MVTSP instance Γφ using scan-
ner gadgets. We will interpret a tuple (q, j) ∈ {1, . . . , 2s} × {1, . . . , n/s} as an
assignment of x(j−1)s+1, . . . , xjs by first decomposing

q − 1 =

s∑
i=1

ci2
i−1

and setting x(j−1)s+i as true if ci = 1 and false if ci = 0. We say a clause C is
satisfied by a set Q of such tuples, if j 6= j′ for all (q, j), (q, j′) ∈ Q, and if the
partial assignment collectively given by the tuples satisfies C.

– We start by creating vertices li,1, . . . , li,n/s and ri,1, . . . , ri,n/s for i = 1, . . . ,m
and some constant s to be determined later7.

– We set the demand of l1,j to 2s + 1 for j = 1, . . . , n/s and add edges
{l1,j , l1,j+1} for j = 1, . . . , n/s− 1.

– We set the demand of every other li,j and every ri,j to 2s and add edges
{li,j , ri,j}, {ri,j , li+1,j} and {rm,j , l1,j} for i = 1, . . . ,m−1 and j = 1, . . . , n/s.

– We connect l1,1 to l1,n/s using a path a1, . . . , am+1.
– For i = 1, . . . ,m let xa, xb, xc be the variables appearing in Ci. We set
j1 = da/se, j2 = db/se, j3 = dc/se. Let

X = {li,j1 , li,j2 , li,j3 , ri,j1 , ri,j2 , ri,j3}

and let FCi
be the set of all

F = {{li,j1 , ri,j1}q1 , {li,j2 , ri,j2}q2 , {li,j3 , ri,j3}q3 , }

such that Q = {(q1, j1), (q2, j2), (q3, j3)} satisfies Ci.
7 If n is not divisible by s, we may either add dummy variables until it is, or lower the
demand of li,n/s and ri,n/s.
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l1,1

l1,2

l1,n
s

r1,1

r1,2
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s

lm,1
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s

rm,1
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s

GC1 GC2 GCm

a1

a2 a3 am

am+1

...
...

...
...

. . .

. . .

. . .

. . .

Fig. 5. Construction of the graph Γφ.

– For i = 1, . . . ,m we implement a scanner gadget GCi
using the tuple

(Xi, ai, ai+1,FCi
)

We prove the following useful facts about this graph.

Lemma 5. Γφ is a yes instance of MVTSP if and only if φ has a satisfying
assignment.

Proof. Let x1, . . . , xn be the variables used in the formula φ. Let χ1, . . . , χn
be some satisfying assignment. We first define the tour on the construction be-
fore implementing the scanner gadgets, which we will refer to as Γ ′φ, and then
use Lemma 3 to find the desired tour on Γφ. Set c(li,j , li+1,j) = c(l1,1, a1) =
c(am+1, l1,n/s) = c(ai, ai+1) = 1. We choose

c′(li,j , ri,j) = 1 +

s∑
k=1

2k−1χ(j−1)s+k

for i = 1, . . . ,m and j = 1, . . . , n/s. Due to the chosen demands we need to
choose

c′(ri,j , li+1,j) = 2s+1 − c′(li,j , ri,j)

for i = 1, . . . ,m and j = 1, . . . , n/s, where we interpret imodulom, i.e.m+1 ≡ 1.
Note that c′ is connected and satisfies the demands on Γ ′φ. Also note that since
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χ is a satisfying assignment, c′ is consistent with all the scanner gadgets GCi

and thus by Lemma 3 we there is some valid tour c on Γφ.
Now suppose we find a valid tour c on Γφ. Then by Lemma 3 there exists a

tour c′ on Γ ′φ consistent with each gadget GCi
. By definition of GCi

the values
of c′(li,j , ri,j) encode an assignment satisfying Ci for i = 1, . . . ,m. Since for
i > 2 the demands of li,j and ri,j equal 2s we have that c′(li,j , ri,j) = 2s+1 −
c′(ri,j , li+1,j) = c′(li+1,j , ri+1,j) and therefore the values of c′(l1,j , r1,j) encode an
assignment satisfying all clauses C1, . . . , Cm, which means we find an assignment
which satisfies φ. ut

Lemma 6. Γφ has pathwidth at most 3n/s+ 21.

Proof. We define the bags of the decomposition as follows. First we add

A = {l1,1, . . . , l1,n/s}

to every bag. Let W1, . . . ,Wli be a path decomposition of GCi . We define bag
Xi,j as follows

Xi,j = A ∪ {li,k}n/sk=1 ∪ {ri,k}
n/s
k=1 ∪Wj .

We then define Yi as {li+1,k}n/sk=1 ∪ {ri,k}
n/s
k=1 The final path decomposition then

becomes

X1,1, . . . , X1,l1 , Y1, X2,1, . . . , Xi,li , Yi, Xi+1,1, . . . , Xm,lm .

Note that all vertices and edges are covered by the decomposition. The set of
bags containing any of the vertices of A gives the whole decomposition. The set
of bags containing any li,j or ri,j for i > 2 gives the path Xi,1 . . . Xi,l1 with Yi
at the end for ri,j and Yi−1 at the beginning for li,j . Any vertex in the gadgets
gives a single set Xi,j . By Lemma 4 the width of this path decomposition is at
most8

3
n

s
+ 21.

ut

Now we use our reduction to prove the following lower bound:

Theorem 7. Let M be an upper bound on the demands in a graph G. Then
MVTSP cannot be solved in time f(pw)min{|V (G)|,M}o(pw)|V (G)|O(1), unless
ETH fails.

Proof. We start by proving the following claim.

Claim 6 |V (GCi)| = O(23s) for i = 1, . . . ,m.

8 We don’t include the term |X|, since X ⊆ {li,k}n/sk=1 ∪ {ri,k}
n/s
k=1.
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Proof of Claim. Note that FCi
is defined on at most three unique edges with

each edge being chosen at most 2s times9. Therefore we can represent FCi
by

tuples (z1, z2, z3) ∈ [2s]3. Since each tuple contributes a path of z1 + z2 + z3
vertices, we find that

|V (GCi)| = 8 + |FCi |+
∑

(z1,z2,z3)∈FCi

z1 + z2 + z3

6 23s+1 +

2s∑
z1,z2=1

(
2s(z1 + z2) +

2s∑
z3=1

z3

)

6 23s+1 +

2s∑
z1,z2=1

(
2s(z1 + z2) + 2s+1

)
6 23s+1 +

2s∑
z1=1

(
22sz1 + 22s+1 + 22s+1

)
6 23s+3.

�
Note that by Lemma 5, solving a 3-CNF-SAT instance φ reduces to solving

MVTSP on Γφ for some choice of s. We remark that

O(f(pw)min{|V (G)|,M}o(pw)|V (G)|O(1)) 6 O(f(pw)Mo(pw)|V (G)|O(1)).

It is therefore sufficient to show that there is no O(f(pw)Mo(pw)|V (G)|O(1)) time
algorithm for MVTSP, unless ETH fails.

Suppose we have a O
(
f(pw)Mo(pw)|V (G)|O(1)

)
time algorithm for MVTSP.

Let s = 4n/g(n) for some strictly increasing function g(n) = 2o(n) such that
f(g(n)) = 2o(n). Note that s = o(n) and pw 6 g(n) for large enough n. We
construct the instance Γφ as previously described. We first note that by claim 6

|V (Γφ)| = 2m
n

s
+

m∑
i=1

|V (GCi)| = O
(
m
(n
s
+ 23s

))
and by Lemma 6 we have that for any choice of s and large enough n, Γφ has
pathwidth at most 4n/s. By applying our hypothetical algorithm for MVTSP
to Γφ we now find an algorithm for 3-CNF-SAT running in time

O
(
f(pw)Mo(pw)|V (Γφ)|O(1)

)
= O

(
f(4n/s)(2s)o(n/s)

(
m
(n
s
+ 23s

))O(1)
)

= O
(
f(g(n)) · 2o(n) ·

(
m
(
g(n)/4 + 2o(n)

))O(1)
)
.

9 Due to the way we interpret the multiplicities as truth assignments (in particular
the ‘−1’) we know each edge gets chosen at least once.
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We may assume that m = 2o(n) by the sparsification lemma. Using this and the
fact that g(n) = 2o(n) we find

= O
(
2o(n) ·

(
2o(n)

)O(1)
)

= O
(
2o(n)

)
.

This contradicts ETH, completing our proof. ut

5 Conclusion and Further Research

We initiated the study of the parameterized complexity of the Connected
Flow problem and showed that the problem behaves very differently when pa-
rameterized by the number of demand vertices, the size of the vertex cover of
the graph, or treewidth of the input graph.

While we essentially settled the complexity of the variants of the problem
parameterized by the number of demands or by the treewidth, we still leave the
following questions open for the vertex cover parameterization:

Can Connected Flow be solved in O?(cO(k)) time, with c a constant and
k the size of the vertex cover of the input graph? Such an algorithm would be
a strong generalization of the algorithms from [1,10]. While we believe our ap-
proach from Theorem 3 makes significant progress towards solving this question
affirmatively, it seems that non-trivial ideas are required.

Does Connected Flow admit a kernel polynomial in k where k is the size
of the vertex cover if the input graph? It seems that especially the capacities can
make the problem a lot harder. It would be interesting to see if our arguments
for Theorem 4 can be extended to kernelize this more general problem as well.
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A Problem Definitions

In this section we formally introduce and discuss a number of computational
problems that are relevant for this paper.

Formally, we define the Flow problem as follows.

Flow
Input: Given digraph G = (V,E), D ⊆ V , dem : D → N, cost : E → N,
cap : E → N ∪ {∞}
Task: Find a function f : E → N such that

– for every v ∈ V we have
∑
u∈V f(u, v) =

∑
u∈V f(v, u),

– for every v ∈ D we have
∑
u∈V f(u, v) = dem(v),

– for every e ∈ E : f(e) 6 cap(e),

and the value cost(f) =
∑
e∈E cost(e)f(e) is minimized.

From the definition it is clear that apart from the connectivity requirement,
it is indeed equivalent to Connected Flow.

We will use the following standard definition of Min Cost Flow.

Min Cost Flow
Input: Digraph G = (V,E) with source node set S ⊆ V and sink nodes
T ⊆ V , cost : E → N, cap : E → N ∪∞
Task: Find a function f : E → N such that

– for every v ∈ V \ (T ∪ S) we have
∑
u∈V f(u, v) =

∑
u∈V f(v, u),

– for every e ∈ E : f(e) 6 cap(e),
– the value of

∑
v∈S

∑
u∈V f(v, u) is maximal,

and the value cost(f) =
∑
e∈E cost(e)f(e) is minimized.

Equivalence of Flow and Min Cost Flow. We argue that Flow is equivalent
to Min Cost Flow by simple reductions. First we reduce in the forward way.
For each d ∈ D, create vertices dout, din where dout is a source node with outgoing
flow dem(d) and din is a sink node with ingoing flow dem(d). For all other vertices
in V \D, create a node and connect to all its neighbors, where all outgoing edges
to a vertex in D go to din and all ingoing edges from a vertex in D connect to
dout.

For the other way, let S be the set of source nodes and T be the set of sink
nodes of the Min Cost Max Flow problem. Then add one ‘big’ node x to the
graph, with demand equal to the outgoing flow from all the source nodes. Then
add (t, x) for all t ∈ T with cost(t, x) = 0, cap(t, x) = out(t). Furthermore add
(x, s) for all s ∈ S with cost(x, s) = 0, cap(x, s) = in(s).

Since Min Cost Flow is well-known to be solvable in polynomial time, we
can therefore conclude that Flow is solvable in polynomial time as well.

In Kowalik et al. [10], the Many Visit TSP (MVTSP) is defined as follows.
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Many Visits TSP (MVTSP)
Input: Digraph G = (V,E), dem : V → N, cost : V 2 → N
Task: Find a minimal cost tour c, such that each v ∈ V is visited exactly
dem(v) times.

Note that MVTSP is a special case of Connected Flow, where D = V
and the capacities of all edges are infinite.


	On the Parameterized Complexity of the Connected Flow and Many Visits TSP Problem

