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DERIVATIONS OF NEGATIVE DEGREE ON QUASITHOMOGENEOUS
ISOLATED COMPLETE INTERSECTION SINGULARITIES

MICHEL GRANGER AND MATHIAS SCHULZE

ABSTRACT. J. Wahl conjectured that every quasihomogeneous isolated normal singu-
larity admits a positive grading for which there are no derivations of negative weighted
degree. We confirm his conjecture for quasihomogeneous isolated complete intersec-
tion singularities of either order at least 3 or embedding dimension at most 5. For
each embedding dimension larger than 5 (and each dimension larger than 3), we give a
counter-example to Wahl’s conjecture.
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INTRODUCTION

By a singularity we mean a quotient A of a convergent power series ring over a valued
field K of characteristic zero (see §1). We use the acronym negative derivation for a
derivation of negative weighted degree on a quasihomogeneous singularity. The question
of existence of such negative derivations has important consequences in rational homotopy
theory (see [ , Thm. A]) and in deformation theory (see | , Thm. 3.8]).

By a result of Kantor | |, quasihomogeneous curve and hypersurface singularities
do not admit any negative derivations. J. Wahl | , Thm. 2.4, Prop. 2.8] reached the
same conclusion in (the much deeper) case of quasihomogeneous normal surface singular-
ities. Motivated by his cohomological characterization of projective space in | ],
he formulates the following conjecture in [ , Conj. 1.4].

Conjecture (Wahl). Let R be a normal graded ring, with isolated singularity. Then there
is a normal graded R, with R R, so that R has no derivations of negative weight.

In case R is a graded normal locally complete intersection with isolated singularity,
R becomes a quasihomogeneous normal isolated complete intersection singularity (ICIS)
and Wahl’s conjecture can be rephrased as follows (see Lemma 5 and Remark 7).
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Conjecture (Wahl, ICIS case). Any quasihomogeneous normal ICIS has no negative
deriwations with respect to some positive grading.

For quasihomogeneous normal ICIS, there is an explicit description of all derivations
due to Kersken | ]. Based on this description, we prove our main

Theorem 1. For any quasihomogeneous normal ICIS of order at least 3 there are no
negative derivations with respect to any positive grading.

Proof. This follows from Corollary 12 and Proposition 16. O

Our investigations lead to a family of counter-examples to Wahl’s Conjecture. In
order to describe it, we first fix our notation. A quasihomogeneous singularity can be
represented as

(0.1) A=Pla, a={g1,...,0) IK{x1,...,2,)) = P
where ¢1,...,g; are homogeneous polynomials of degree p; := deg(g;) with respect to
weights wy, ..., w, € Z, on the variables 1, ..., x, (see §1). We order these weights and
degrees decreasingly as
(0.2) wy > > w, >0,

P12 2 Dr

Example 2. Let n > 6 and pick ¢z, ..., ¢, € K\ {1} pairwise different such that ¢} +1 # 0
for all 7. Assigning weights 8,8,5,2,...,2 to the variables z1,...,x,, the equations

(0.3) g1 :=T174 + ToTs + 25 — T + Z 7
=T

g2 :=T1X5 + Tokg + x% + xg + Z CZ’ZE?
=7

define a quasihomogeneous complete intersection A as in (0.1) with isolated singularity.
On A there is a derivation

01 0y O3
(04) n:i=|Tg Ts 2.173 = 2!E3(375 — x6)81 — 2[[’3(1‘4 — 1'5)62 + (1'41‘6 — l‘g)ag

Ty Tg 2$3
of degree —1. We work out the details of this example in §4.

We show that Example 2.8 gives a counter-example to the ICIS case of Wahl’s conjec-
ture of minimal embedding dimension n = 6.

Theorem 3. Exactly up to embedding dimension 5, all quasihomogeneous ICIS have no
negative deriwations with respect to some positive grading.

Proof. This follows from Kantor | ], [ , Thm. 2.4, Prop. 2.8], Proposition 18,
Example 2 and Corollary 12. (|

As a consequence of our arguments we obtain a simple special case of the following
conjecture due to S. Halperin.

Conjecture (Halperin). On any graded zero-dimensional complete intersection there are
no negative derivations.

The following result bounds the degree of negative derivations (see also | , Prop.]).
The bound does not require a complete intersection hypothesis and it is independent of
further hypotheses as for instance in | , Thm. 2.
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Proposition 4. For any quasihomogeneous zero-dimensional singularity A as in (0.1)
there are no derivations of degree strictly less than p, — p1. In particular, Halperin’s
congecture holds true if p1 = py,.

Proof. As A is assumed to be zero-dimensional, condition (k) on page 4 must hold true
for all k =1,...,n. Then the claim follows from Remark 14 and Lemma 15. U

Acknowledgments. The second author would like to thank the LAREMA at the University
of Angers for providing financial support and a pleasant working atmosphere during his
research visit in February 2014.

1. GRADED ANALYTIC ALGEBRAS

Consider a (local) analytic algebra A = (A, my) over a (possibly trivially) valued field K
of characteristic zero. We assume in addition that A is non-regular and can be represented
as a quotient A = P/a of a convergent power series ring P := K({xy,...,2,)) > a. In
the sequel such an A will be referred to as a singularity. We choose n minimal such that
n = embdim A and set d := dim A.

A K,-grading on A is given by a diagonalizable derivation x € Derg A =: ©O4

which means that m, is generated by eigenvectors xi,...,xz, (see | , (2.2),(2.3)]).
Such a derivation is also called an Fuler deriwvation. We refer to wy,...,w, defined by
w; = x(x;)/z; as the eigenvalues of y. More generally, we call y-eigenvectors f € A

homogeneous and define their degree to be the corresponding eigenvalue denoted by
deg(f) := x(f)/f € k. We denote by A, the K-vector space of all such eigenvector
f € A with deg(f) = a. This defines a K-subalgebra

(1.1) A=A, cAcA
a€K

The derivation x € O 4 lifts to y € ©p := Derg P (see | , (2.1)]). In particular,
P is K,-graded and a < P is a y-invariant ideal and hence homogeneous (see [ ,
(2.4)]). Pick homogeneous gy, ..., g; € a inducing a K-vector space basis of a/m4a. Then
a = (g1,...,9:) by Nakayama’s Lemma. We set p; := deg(g;) ordered as in (0.2). To
summarize, we can write A as in (0.1).

A K -grading is called a positive grading if w; € Z, for all i = 1,...,n (see | ,
§3, Def.]). We call A quasihomogeneous if it admits a positive grading. In this case, we
shall always normalize x to make the w; coprime and order the variables according to
(0.2). Positivity of weights enforces g; € P = K[zy,...,z,] and that

(12) A:@A’L:‘P/a’ a:<gl7agt>ﬁK[l‘l7axn]:Pa

120

is a (positively) graded-local k-algebra with completion

fay A

(1.3) A=A

and graded maximal ideal mz = m, := @,., A;. The preceding discussion enables us to
reformulate Wahl’s Conjecture in the language of Scheja and Wiebe as follows.

Lemma 5. The following supplementary structures on a singularity A are equivalent:
(1) an Euler derivation x on A with positive eigenvalues,
(2) a positive grading on A,
(3) a positive grading on A,
(4) a (positively) graded K -algebra A such that A=A
3



Proof. The equivalences of (1), (2), and (3) are due to Scheja and Wiebe (see [ )

(2.2),(2.3)] and | , (1.6)]). For the equivalence with (4), note that the obvious Euler
derivation on a graded K-algebra A lifts to an Euler derivation on the completion A = A.
The converse follows from from (1.1), (1.2) and (1.3). O

Let us assume now that A is an isolated complete intersection singularity (ICIS). We
may then take gy, ..., g; to be a regular sequence and d +t = n. The isolated singularity
hypothesis can be expressed in terms of the Jacobian ideal

(1.4 I :=< %9 | | ) :t> aA

ox,
of A as follows.

Proposition 6. A complete intersection singularity A is isolated if and only if J4 is
ma-primary. An analogous statement holds for A.

Proof. We denote by QY s the universally finite module of differentials of A over k. By
the standard sequence

a/a’ — A®p Qp) —— QY — 0,

the Jacobian ideal Jy4 is the Oth Fitting ideal F3Q} . By | , (6.4),(6.9)], reducedness
of A is equivalent to rk Q} = d and A, is regular if and only if Q}% s 18 free. Hence,
A, being regular is equivalent to p 2 FgQi‘/k = Ja by | , Lem. 1.4.9]. In particular,
A having an isolated singularity means exactly that A/.J4 is supported at m,4 and hence
that J4 is my-primary as claimed. The analogous statement for A is proved similarly. [

Remark 7. Let A be a quasihomogeneous singularity. By (1.2),

_ dg _
(1.5) Ji = A_<8xl, |\y|—t>ﬁA
is the Jacobian ideal of A defined analogous to (1.4). By (1.3), A is a complete intersection
if and only if A is locally a complete intersection (see | , Def. 2.3.1, Ex. 2.3.21.(c)]).
By Proposition 6, A is an ICIS if and only if J4 is ms-primary. This is equivalent to Jz
being m z-primary. The latter is then equivalent to A being locally a complete intersection
with isolated singularity by (1.5) and Proposition 6. Complete intersections are Cohen—
Macaulay and hence (S2) so normality is equivalent to (R;) by Serre’s Criterion (see
[ , §2.3, Thm. 2.2.22]). Since d = dim A = dim A by (1.3) (see | , Cor. 2.1.8)),
normality for both A and A reduces to d > 2.

Scheja and Wiebe | , (3.1)] (see also | , Satz 1.3]) proved that any K -graded
ICIS is quasihomogeneous unless ¢ = 1 and g; ¢ m%. Their starting point (see | ,
(2.5)] and | , Lem. 1.5]) is that A being an ICIS implies, by Proposition 6, that for
each k =1,...,n one of the following two conditions must holds true.

20(k) For some m > 2 and 1 < j <, the monomial z}* occurs in g;.
B (k) For some pairwise different 1 < v1,...,1; < n, each g; contains a monomial z, ’ T,
for some m; > 1.

The following result gives numerical constraints for A to be a quasihomogeneous ICIS.
Lemma 8. If A is a quasihomogeneous ICIS then

(1.6) pr+--tpi 2w+ twi+g

forallj=1,... t.



Proof. We proceed by induction on j. Assume that py+---+p;_1 > wi+---+w;_1+j—1
but p; +---+p; <wy+---+w; +j— 1. Then p; < w; and hence g; = ¢;(zj41,...,2,)

for all = 7,...,n. Then J4 maps to zero in
A/<x]’+1’ Ce 7$n> = K<<LE1, e ,xj>>/<gl, Ce 7gj71>
and hence J4 cannot be m4-primary as required by Proposition 6. U

2. NEGATIVE DERIVATIONS

Let A be a quasihomogeneous singularity as in §1. The target of our investigations
is the positively graded A-module ©4 = Derg A of K-linear derivations on A. More
precisely, we are concerned with the question whether its negative part

6A,<0 = 6A,<0 = @ @A,i
i<0
is trivial. A priori this condition depends on the choice of a grading. In Proposition 9

below, we shall prove the independence of this choice for a general singularity under a
strong hypothesis satisfied in the ICIS case (see Corollary 12). To this end, we write (see

[ , (2.1)])
(2.1) ©4 = O4cp/aOp
as a quotient of a (k, P)-Lie algebra
Oucp:={0 €0Op|daCa}>aOp
of logarithmic derivations along a by the (k, P)-Lie ideal a©p.

Proposition 9. Let A be a quasihomogeneous singularity with positive grading given by
X and assume that

(22) @ucp:PX—i-@/p—i-a@p,
(2.3) for some O, C m%Op.

Then the condition ©4 <o = 0 and the py,...,p: in (0.2) are independent of the chosen
positive grading.

Proof. Consider a second positive grading with corresponding Euler derivation x’ (see
Lemma 5). By (2.1) and (2.2), any § € O 4 lifts to an element of ©4p of the form

(24) 6:CX+5+7 5+:CLX+77> CEK? a € mp, T]e@/Pv
denoted by the same symbol. By (2.3) and the Leibniz rule,
(2.5) ymh Cmh, 6, mhb c mhH

for all k& > 1. Specializing to § = ¥, this implies that y, = 0 and X’ = cx on my/m? =
mp/m% and hence ¢ = 1 by the definition of a positive grading and our normalization of
weights.

Using (2.1), we equip ©4 with the decreasing mp-adic filtration F** induced from ©p
which is defined as follows

Fk@A = (G)aCP N m];g@p)/(a@]: N m’;@p)
Due to (2.3), (2.4) and (2.5) this is a filtration by (k, P)-Lie ideals and

(5+Fk@A C Fk+1@,4
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for the adjoint action of 6. Therefore, for any k& > 1, the adjoint action of ¥ = x + x4
on the truncation

F<FQ, = 0,4/F"0,

is triangularizable with semisimple part equal to that of xy. Thus, X’ and y have the
same eigenvalues on F<*©, for any k > 1. The first claim then follows by choosing k
sufficiently large. A similar argument yields the second claim. O

For a Gorenstein singularity A, there is a natural way to produce elements of © 4. The
A-submodule ©', C © 4 of trivial derivations is by definition the image of the inclusion

(2:6) Qjﬁ( = wiﬁ( = Hom (), Wfalx/K) =0,®4 wféll/K =04
We return to the case of an ICIS singularity A. For 1 < vy < .-+ < 1y, < n with

complementary indices 1 < iy < --- < pg—1 < n, the lift to P of the image of dz,, A---A
dz,, , can be written (up to sign) explicitly as

By -0 Oy
(2 7) 6 [ — ayogl e aljtgl
0uogt ce 8ut9t
Note that
(2.8) deg5V:p1_|_...+pt_wV0_..._wl’”
5ng =0

forall y =1,...,t and v. Consider the P-module
(210) (“);;Z:<(S,/|1§V0<"'<Vt§n>PC@p.

The key to our investigations is the following result due to Kersken | , (5.2)]. From
now on we assume in addition that A is quasihomogeneous and normal, that is, dim A > 2.

Theorem 10 (Kersken). Let A be a quasihomogeneous normal ICIS. Then the module
O of K-linear derivations on A is generated by the Euler derivation x and the trivial
derivations ©';.

Although Kersken only states that ©’; is minimally generated by the §, in (2.7), his
arguments show that together with x they form a minimal set of generators of © 4. We
denote by p(—) the minimal number of generators.

Corollary 11. Let A be quasihomogeneous normal ICIS. Then © 4 is minimally generated
by the Euler derivation x and the trivial derivations o, in (2.7). In particular,

wen=(, 1)+t

Proof. Since the case d = 2 is covered by | , Prop. 1.12], we may assume that d > 3.

In this case, the inclusion (2.6) fits into the following commutative diagramm with exact
6



rows and columns (see | , Proof of (4.8)] or | , Prop. 1.7]).
(2.11) 0

>

o~ ma\""A/K
0 w% \/ K X wdAj}( X wj\;é
SR R
0 0

It follows that
X(wix) = x (k) = Q0 i/ X ()
where X(Qj/K) C mAQZ_/}( and hence
PO (% 50)) = Q) = 1(O),

Now the middle row of (2.11) yields an exact sequence

0——A—50,4 X(whk) © (Wi ) ——0
Since x ¢ m40 4, the claim follows. O

Note that ©’ in (2.10) satisfies (2.3) due to (2.7) unless t = 1 and ¢g; ¢ m%. As a
consequence of Proposition 9 and Theorem 10 we therefore obtain the following result.
It is crucial for Example 2 to be a counter-example to Wahl’s Conjecture.

Corollary 12. Let A be a quasihomogeneous normal ICIS. Unless t = 1 and g; ¢ m%,
the condition ©4 .o = 0 and the p1,...,p; in (0.2) are independent of the choice of a
positive grading. Il

We shall now derive numerical constraints for minimal negative trivial derivations. To
this end, suppose that 0 # 1 € ©4 <. For reasons of degree (see (0.2)), n can be written
as

(212) n= CJ181 + - qnanv qi = Qi(xi-i-lv s 7xn)

By Theorem 10, we may assume that n = 9, # 0 is a trivial derivation as in (2.7). By
(0.2) and (2.8), we may further assume that v; = i+1 for i =0, ..., ¢. Explicitly, we may
write

—

gy -+ Oig1 - Oih
(2.13) g =(-1y"" : : Sl Q2= =¢,=0.
a1gt s aigt s 8t+lgt

Now (2.8) and (2.9) specialize to the following simple
7



Lemma 13. Forn as in (2.12) with (2.13), we have

(2.14) ng; =0
forallj=1,...,t. If ©4 0 # 0 for a quasihomogeneous normal ICIS then
(2.15) pr+ e <wp A+ Wi 0

Remark 14. For degree reasons (see (0.2)), the identity (2.14) holds true for any n €
©4<p—p, and any quasihomogeneous singularity A as in (0.1).

We now link the conditions 2((k) and B (k) from page 4 to the existence of a negative
derivation as in (2.12).

Lemma 15. Assume that the identity (2.14) holds true for all j = 1,...,t. Then A(k)
implies qx = 0 in (2.12) for a suitable choice of coordinates.

Proof. Pick k € {1,...,t + 1} such that (k) holds. Then some g; contains z}', m > 1,
and all other monomials in g; contain only strictly lower powers of xp by homogeneity.
Let ty; =t j(21,. .., Tk, - . ., Ty) denote the coefﬁcient of '~ Lin g;j, and assume, without
loss of generality, that the coefﬁc1ent of " is —. Note that ¢, ; is independent of variables
of weight larger than wy. Expanding (2.14) Wlth respect to the variable x; and taking
the terms involving :EZ‘_I gives

akxy ! = @0k ( ) Zqz (tr ") = — Z%ai(tk,j)xk

ik i#k
and hence
(2.16) n= 6 (0 — 0iltr;)0)-
ik

The x-homogeneous coordinate change

’ LEk—Ftk’j, le:/{Z,

r—
‘ x;, else.

replaces 0; — 0;(tx )0k in (2.16) by 0;, and thus g, in (2.12) by 0. Iterating this process
yields the claim. O

Our main technical result is the following

Proposition 16. Let A be a quasihomogeneous normal ICIS such that © 4 <o # 0. Then
B(k) holds for at least two indices k < t + 1. Each such k satisfies k >t —d + 2 and
Gy -+, Gt & M3,
Proof. By hypothesis and Lemma 15, B(k) holds for some k < t+1 with gx # 0. Assuming
that k is unique, (2.9) reads ¢;0rg; = 0 which would imply that g, is independent of z,
for all j = 1,...,t. By the isolated singularity hypothesis, this is impossible.
Combining (1.6) and (2.15), we obtain
(217> pj++pt+j§wj+—|—wt+1
forall j =1,...,t. Using (0.2), *B(k) and (2.17) for j = k, we compute
mpwy, + -« - -+ muwy < (Mg + -+ -+ my)wy,

= deg (0,91 -+ 0 91)

=Pkt D= Wy — o Wy,

Swep+ - F Wy —k—wy, — - — Wy,

8



and hence

(mg — Dwg, + -+ (my — Dwy < wppy — b —wy, — -+ — wy,.
By (0.2), this forces
(2.18) mg=---=m =1,

Wip1 = Wy, + - Fw,y, + k.

In particular,
(2.19) Uky oo g 2+ 2
and hence k >t —d + 2. O

3. ICIS OF EMBEDDING DIMENSION 5

Lemma 17. Let A be a quasithomogeneous normal ICIS such that © 4 <o # 0. Then A(k,)
and B (ky) for {ki,ko} = {1,2} is impossible.
2

Proof. Assuming the contrary, one of the g; has a monomial divisible by x7 by (k1)
and each of the g; has a monomial divisible by zy, by B(k2). In particular,

P11+ -+ Dy 22wk1+(t—1)wk2 Z Wyt Wiy
contradicting (2.15). O

Proposition 18. For any quasihomogeneous ICIS A as in (0.1) withn =5 and t = 2,
we have © 4 o = 0.

Proof. Assume that ©4 ¢ # 0. By Proposition 16 and Lemma 17, we must have B(1)
and B(2). Using (0.2), (2.18), and (2.19), we may write

_ J
g1 = T1X4 + 15X, + -+ -
g2 = T1T5 + CoToTp, + * -~

with {k1, ko} = {4,5} and ¢1, 2 € K*. As in the proof of Lemma 17, the inequality (2.15)
can only hold true if j = 1. In this case,
dg >

A/ (Ja+(zs,... 2n)) = K<<I1’x2>>/< Oy, 25)

for degree reasons (see (0.2)), and hence J, is not my-primary. This contradicts to the
isolated singularity hypothesis. O

4. COUNTER-EXAMPLES

Proof of Example 2. The sequence g is clearly regular and defines a complete intersection
as in (0.1). Note that n in (0.4) agrees with 7 = 123 in (2.12). Since deg(g;) = 10 =
deg(g2), (2.9) shows that i has negative degree degn = —1.

It remains to check that A has an isolated singularity, that is, the Jacobian ideal Jy
from (1.4) is my-primary. To this end, we may assume that K = K which enables us to
argue geometrically on the variety

X :=Spec A C A%
with A as in (1.2) using the Nullstellensatz.

The ideal J, is the image in A of the Jacobian ideal J, < P of g generated by the
2 X 2-minors

_| 99
Mg = ‘3(%‘%‘)
9




of the Jacobian matrix of g which reads
@: Ty 5 213 T — DTF Ty 0 Sry ... bat
ox Ts Tg 2T 0 Ty To+Hxg berrs -+ Beyrs
With this notation we have to show that
Sing X =V (g, J,) = {0}.

Due to those 2 x 2-minors of % which involve only the columns 3,7,8,9,...,n, only one
of components 3, x7, g, Tg, ..., T, of any x € Sing X can be non-zero. We may therefore
reduce to the case n < 7. B

Because of the 3rd column of %, we have J, N K[x1,...,x6] D w3/ where

I := <x4 — X5, Ty — T, L1 — Lo, L1 — ij, To + 5xé>.

Note that V(1) is the z3-axis which is not contained in V' (g). It follows that Sing XNV (x7)
is contained in the hyperplane V(z3). Similarly because of the 7th column of % and
setting ¢ := ¢y, we have J, N K[zy,...,T3,...,27] 2 x7I’ where

! 4 4
I = <ca:4 — 5, CT5 — Tg, CTy — T, L1 — DTy, To + 51:6>.

Using ¢? +1 # 0, we find that V/(I’) is the 27-axis and conclude Sing X NV (z3) C V (27)
as before. Summarizing the two cases, Sing X is in fact contained in V (3, z7).
Fix a point (21, x9,0, x4, x5, 26,0) € Sing X. Successively using the the equations
Mo = 2476 — x% =0,
My s = x175 — 2976 = 0,
g2 = T1T5 + ToXe + :)32 =0,
M475 = $1<.Z'1 — 5!]33) = 0,
M5,6 = 132<33'2 —+ 5.1'%1) = 0,
we derive
Ta=0=>25=0=2326=0=>26=0= 21 =29 =0.
Similarly x4 = 0 leaves no possibility except x = 0 and x5 = 0 reduces to one of these
two cases by Mo = 0.
Assume now that x4, x5, 26 are all non zero. Then the minors M; 5, Moy, Mas, Mag
give equations
T1T4 = ToTs, T1 = 53:3, T1T5 = XToTg, To = —51’%.

Substituting into g, we obtain

g1 = 21134 — xi = 9:)32, g9 = 2x9x¢ + xg = —9332
and hence x4, = x4 = 0 contradicting our assumption. U
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