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ABSTRACT

Under heterotic/F-theory duality it was argued that a wide class of heterotic five-branes

is mapped into the geometry of an F-theory compactification manifold. In four-dimensional

compactifications this identifies a five-brane wrapped on a curve in the base of an elliptically

fibered Calabi-Yau threefold with a specific F-theory Calabi-Yau fourfold containing the

blow-up of the five-brane curve. We argue that this duality can be reformulated by first

constructing a non-Calabi-Yau heterotic threefold by blowing up the curve of the five-brane

into a divisor with five-brane flux. Employing heterotic/F-theory duality this leads us to the

construction of a Calabi-Yau fourfold and four-form flux. Moreover, we obtain an explicit

map between the five-brane superpotential and an F-theory flux superpotential. The map of

the open-closed deformation problem of a five-brane in a compact Calabi-Yau threefold into

a deformation problem of complex structures on a dual Calabi-Yau fourfold with four-form

flux provides a powerful tool to explicitly compute the five-brane superpotential.
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1 Introduction

The study of string compactifications leading to N = 1 supersymmetric four-dimensional

low-energy effective theories is of conceptual as well as of phenomenological interest. Two

prominent approaches to obtain such effective theories are either to consider heterotic E8×E8

string theory on a Calabi-Yau manifold with non-trivial vector bundles, or to study F-theory

compactifications on singular Calabi-Yau fourfolds. At first, these two approaches appear to

be very different in nature, since the data determining the effective dynamics are encoded by

seemingly different objects. However, at least if one focuses on certain compact geometries,

the heterotic and F-theory picture are believed to be dual descriptions of the same physics

[1, 2]. The dictionary of this duality not only contains the map for the vector bundles of the

heterotic string, but also includes heterotic five-branes wrapped on curves in the Calabi-Yau

threefold [3, 4, 5]. These are often necessary in a consistent heterotic compactification to

ensure anomaly cancellation. Using this duality either of the two descriptions can be used to

answer specific questions about the four-dimensional physics. In this work we will focus on

parts of the effective action which are efficiently calculable in F-theory, but admit a natural

physical interpretation in the heterotic theory.

An important question in the study of the four-dimensional N = 1 low-energy effective

action is the explicit computation of the superpotential and gauge-coupling functions which

depend holomorphically on the chiral multiplets. In the following we will mainly focus on the

study of the superpotential of a heterotic five-brane wrapped on a curve C in a Calabi-Yau

threefold Z3. It was shown in ref. [6] that this superpotential depends on the deformation

modes of the curve C and the complex structure moduli of Z3 via the chain integral
∫

Γ
Ω,

where Ω is the holomorphic three-form on Z3, and Γ is a three-chain which admits C as a

boundary component. We will argue by using heterotic/F-theory duality that this chain inte-

gral is mapped to the flux superpotential of an F-theory compactification upon constructing

an appropriate Calabi-Yau fourfold X̂4 encoding the five-brane dynamics, and the associ-

ated four-form flux G4. The F-theory flux superpotential can then be computed explicitly

by solving Picard-Fuchs differential equations determining the closed period integrals of the

holomorphic four-form on X̂4, and using mirror symmetry to identify the superpotential so-

lution [7]. Earlier discussions and computations of the periods of the holomorphic four-form

can be found in refs. [8, 9, 10].

The computation of brane superpotentials given by chain integrals has been of significant

interest in the D-brane literature. Starting with [11] the superpotential for D5-branes has

been studied intensively for non-compact Calabi-Yau threefolds [12, 13]. More recently, there

has been various attempts to extend this to compact threefolds [14, 15, 16, 17, 18, 19, 20, 21].
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In particular, it was proposed in refs. [13] to use the variation of mixed Hodge structure

for an auxiliary divisor capturing the variations of the curve C. While initially studied in

non-compact geometries, extensions to compact Calabi-Yau threefolds with D5-branes have

appeared in refs. [16, 19, 20]. In this proposal the deformations of an appropriately chosen

divisor are effectively identified with the deformations of the curve. In contrast, it was

argued in [18] that the deformation problem of the curve C in Z3 admits a natural map to

a geometric setup in which the curve is blown up into a divisor. In this case, the divisor is

rigid2 and the deformations of the curve appear as new complex structure deformations of

the blown-up threefold Ẑ3. In this work we will use the blow-up construction to study the

duality of an heterotic five-brane to an F-theory compactification fourfold. Let us note that

in refs. [22, 19, 20, 23] it was proposed to use non-compact Calabi-Yau fourfolds to compute

the D5-brane superpotential and a connection with F-theory was indicated. Let us stress

that the approach we are using here is different in nature, and rather completes the approach

initiated in our works [18, 7].

The map of heterotic string theory on a Calabi-Yau threefold Z3 with five-branes to an F-

theory compactification is best studied for elliptically fibered Z3. It was shown in ref. [24] that

there exist elegant constructions of heterotic vector bundles on these threefolds. Furthermore,

a five-brane wrapped on a curve C in the base B2 of this elliptic fibration was argued to map

entirely into the geometry of an F-theory compactification. Using the adiabatic argument of

[25] the heterotic string on Z3 is equivalent to F-theory on an elliptic K3- fibered Calabi-Yau

fourfold X4 with base B2. This implies, in particular, that the three-dimensional base B3 of

the elliptically fibered F-theory fourfold X4 is a holomorphic P1-fibration over B2. It was

then argued in refs. [4, 5, 26] that in the presence of a heterotic five-brane one has to blow up

the curve C into a rigid divisor in B3. The deformations of the curve C then map to complex

structure deformations of the blown-up Calabi-Yau fourfold X̂4, and hence can be constrained

by a calculable flux superpotential. Note that certain five-branes can also be interpreted as

special gauge bundle configurations of the heterotic string, the so-called small instantons. In

the small instanton/five-brane transition the deformation moduli of the curve C are identified

with heterotic bundle moduli. This yields yet another identification of superpotentials, since

the five-brane superpotential arises as a localization of the Chern-Simons superpotential

for the bundle moduli [11]. Both types of superpotentials are efficiently calculable on the

F-theory side using the geometric tools for Calabi-Yau fourfolds.

To study the duality map between the heterotic and F-theory setup, one can alternatively

start by blowing up the heterotic threefold Z3 along the five-brane curve C into Ẑ3 [18].

This can be made explicit by realizing Ẑ3 as a complete intersection. The non-Calabi-Yau

2More accurately, such a divisor is described as an isolated divisor.
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threefold Ẑ3 contains the five-brane moduli as a subsector of its complex structure moduli.

The heterotic superpotential crucially depends on the pull-back Ω̂ of the holomorphic three-

form Ω to Ẑ3. Since Ω̂ vanishes along the blow-up divisor D, the heterotic flux, specifying

the five-brane, localizes on elements in H3(Ẑ3 − D,Z). This is equivalent to considering

relative three-forms in H3(Ẑ3, D,Z).3 Identifying the elements of this relative group with

elements in the dual fourfold cohomology, one finds an explicit map between the heterotic

five-brane and F-theory fluxes. We propose, and explicitly demonstrate for examples, that

the F-theory geometry X̂4 can in turn be entirely constructed from Ẑ3. In particular, this

identification becomes apparent when also realizing X̂4 as a complete intersection. In this

way the complex structure moduli of Ẑ3 naturally form a subsector of the complex structure

moduli of X̂4. In summary, the general idea of this discussion is to reformulate and slightly

extend the heterotic/F-theory duality map schematically as:

Heterotic string on CY threefold Z3,

vector bundle E, 5-brane on C

((RRRRRRRRRRRR

oo //
F-theory on CY fourfold X̂4

blown up along C, G4-flux

non-Calabi-Yau Ẑ3 blown up along C,

vector bundle Ê

77nnnnnnnnnnn

where the horizontal arrow indicates the action of heterotic/F-theory duality.

Following this general strategy the paper is organized as follows. In section 2 we first

recall the connection between small instantons and heterotic five-branes. This allows us to

introduce the respective heterotic superpotentials. Moreover, we discuss the general blow-up

procedure of the heterotic Calabi-Yau threefold, and comment on the representation and

properties of the holomorphic three-form on the blown-up geometry Ẑ3. In section 3, we

first review the heterotic/F-theory duality, highlighting the map of five-branes into a Calabi-

Yau fourfold geometry. We then discuss the F-theory flux superpotential and describe how

it is matched with its heterotic counterpart. In the last section we study two classes of

examples. Firstly, we discuss the geometrical construction of the heterotic blow-up threefold

and its associated Calabi-Yau fourfold constructed as complete intersections. Secondly, we

investigate an example for which we explicitly compute the superpotential and confirm the

map between five-brane deformations and fourfold complex structure moduli.

3This should be compared with the use of relative cohomology for the auxiliary non-rigid divisor in the

constructions of refs. [13, 16, 19, 20].
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2 Heterotic Five-Branes and Superpotentials

In this section we review the construction ofN = 1 vacua by compactification of the heterotic

string on a Calabi-Yau threefold Z3 with vector bundle E and a number of space-time filling

five-branes. We discuss the relation of the bundle moduli and five-brane deformations via a

small instanton transition in section 2.1. The heterotic superpotential for these moduli fields

will be introduced in section 2.2. It will be argued that the motion of the five-brane inside Z3

is constraint by a superpotential given by the integral of the holomorphic three-form Ω over

a chain ending on the five-brane. In section 2.3 we discuss the general blow-up procedure

and some properties of the resulting geometry.

2.1 Transition between Heterotic Vector Bundles and Five-Branes

Let us begin by reviewing the heterotic compactifications. Besides the choice of a Calabi-Yau

threefold Z3, a consistent heterotic vacuum requires a choice of stable holomorphic vector-

bundles E = E1⊕E2 over Z3 which determine the gauge group preserved in the perturbative

E8 × E8 of the heterotic theory. In general we can additionally have five-branes wrapping

holomorphic curves C in the threefold Z3. This setup is further constrained by the general

heterotic anomaly cancellation condition

λ(E1) + λ(E2) + [C] = c2(Z3) , (2.1)

where λ(E) is the fundamental characteristic class of the vector bundle E, which, for example,

is c2(E) for SU(N) bundles and c2(E)/60 for E8 bundles. This condition dictates consistent

choices of the cohomology class [C] of the curve C in the presence of non-trivial vector bundles

to match the curvature of the threefold Z3 as measured by the second Chern class c2(Z3).

In particular, it implies that C corresponds to an effective class in H2(Z3,Z) [27].

The analysis of the moduli space of the heterotic string on Z3 requires the study of three

a priori very different pieces. Firstly, we have the geometric moduli spaces of the threefold

Z3 consisting of the complex structure as well as Kähler moduli space. Secondly, there are

the moduli of the bundles E1 and E2 which parameterize different gauge-field backgrounds

on Z3. Finally, if the five-brane is wrapped on a non-rigid curves C, the deformations of C

within Z3 of the various five-branes have to be taken into account. The entire moduli space

is in general very complicated and difficult to analyze. This problem, however, becomes

more tractable if one focuses on elliptically fibered Calabi-Yau threefolds Z3. It was shown

in ref. [24] that there exist elegant constructions of the vector bundle E on these threefolds.

Moreover, the moduli space of five-branes on elliptically fibered Z3 has been discussed in
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great detail in ref. [28]. In general, it admits several different branches corresponding to

the number and type of five-branes present. However, there are distinguished points in the

moduli space corresponding to enhanced gauge symmetry [29, 30] of the heterotic string that

allow for a clear physical interpretation and that we now discuss in more detail. It will turn

out that at these points an interesting transition is possible where a five-brane completely

dissolves into a finite size instanton of the bundle E and vice versa.

Let us start with a threefold Z3 with c2(Z3) 6= 0 and no five-branes. Thus, the anomaly

condition (2.1) forces us to turn on a background bundle E with non-trivial second Chern

class c2(E) in order to cancel c2(Z3). Then the bundle is topologically non-trivial and carries

bundle instantons characterized by the topological second Chern number [31]

[c2] = −

∫

Z3

J ∧ F ∧ F , (2.2)

where J denotes the Kähler form on Z3 and F the field strength of the background bundle.

The heterotic gauge group G1 in four dimensions is generically broken and given by the

commutant of the holonomy group of the bundle E in E8. Varying the moduli of E1 one can

ask whether it is possible to restore parts or all of the broken gauge symmetry by flattening

out the bundle as much as possible [32]. To show how this can be achieved, one first

decomposes c2(E) into its components each of which being dual to an irreducible curve Ci in

Z3. Since the invariant [c2] has to be kept fixed, the best we can do is to consecutively split

off the components of c2(E) and to localize the curvature of E on the corresponding curves

Ci. This should be contrasted with the generic situation, where the curvature is smeared

out all over Z3. In the localization limit the holonomy of the bundle around each individual

curve Ci becomes trivial and the gauge group G enhances accordingly. Having reached this

so-called small instanton configuration at the boundary of the moduli space of the bundle,

the dynamics of (this part of) the gauge bundle can be completely described by a five-brane

on Ci [29].

Small instanton configurations thus allow for transitions between branches of the moduli

space with different numbers of five-branes, that consequently map bundle moduli to five-

brane moduli and vice versa [33]. This is precisely what we need for our later F-theory

analysis. Note that this transition is completely consistent with (2.1) since we have just

shifted irreducible components between the two summands c2(E) and [C]. Thus, we are

in the following allowed to think about the small instanton configuration as the presence

of a five-brane. In particular, doing this transition for all components of c2(E) the full

perturbative heterotic gauge group E8×E8 can be restored. Turning this argument around,

a heterotic string with full E8×E8 gauge symmetry on a threefold Z3 with non-trivial c2(Z3)

has to contain five-branes to cancel the anomaly according to (2.1). In our concrete example
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of section 4 we will precisely encounter this situation guiding us to the interpretation of the

F-theory flux superpotential in terms of a superpotential for a particular class of five-branes.

To precisely specify the five-branes we will consider later, we note that on an elliptically

fibered Calabi-Yau threefold the five-brane class [C] can be decomposed as

C = nfF + CB , (2.3)

where CB denotes a curve in the base B2 of the elliptic fibration, F denotes the elliptic

fiber, and nf is a positive integer. This is a split into five-branes vertical to the projection

π : Z3 → B2, where the integer nf counts the number of five-branes wrapping the elliptic

fiber, and into horizontal five-branes on CB in the base B2. Both cases are covered by (2.1),

but lead to different effects in the F-theory dual theory. Vertical five-branes correspond to

spacetime filling three-branes at a point in the base B3 of the F-theory fourfold X4 [3, 24].

Conversely, horizontal five-branes on the curve CB map completely to the geometry of the

F-theory side. They map to seven-branes supported on a divisor in the fourfold base B3

which projects onto the curve C in B2 [2, 34, 35] that has to be blown-up in B3 into a divisor

D [4, 5, 26]. Of course, there can be mixed types of five-branes as well. It will be precisely

the horizontal five-branes corresponding to blow-ups into exceptional divisors D for which

our analysis and calculation of the superpotential will be performed.

2.2 The Heterotic Superpotential

The small instanton transition implies a transition between bundle and five-brane mod-

uli [33]. Since both types of moduli are generally obstructed by a superpotential also the

superpotentials for bundle and five-brane have to be connected by the transition. As was ar-

gued in [6] in the context of M-theory on a Calabi-Yau threefold, a spacetime-filling M5-brane

supported on a curve C in general induces a superpotential

WM5 =

∫

Γ

Ω , (2.4)

where Γ denotes a three-chain bounded by C and an unimportant reference curve C0 in the

homology class of C. It depends on both the moduli of the five-brane on C as well as the

complex structure moduli of Z3 in the holomorphic three-form Ω. On the other hand, the

perturbative superpotential for the heterotic bundle moduli is given by the holomorphic

Chern-Simons functional [31]

WCS =

∫

Z3

Ω ∧ (A∂̄A +
2

3
A ∧A ∧A) , (2.5)
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where A denotes the gauge connection that depends on the bundle moduli. The dependence

on the complex structure moduli of Z3 is implicit through Ω.

To see how the two superpotentials (2.4) and (2.5) are mapped onto each other in the

transition, let us assume a single instanton solution F with F ∧ F dual to an irreducible

curve C. Displaying the explicit moduli dependence of the configuration F [36], in the small

instanton limit F ∧F reduces to the delta function δCi of four real scalar parameters. They

describe the position moduli of the instanton normal to the curve in the class [Ci] on which

it is localized. Inserting the gauge configuration F into WCS, the holomorphic Chern-Simons

functional is effectively dimensionally reduced to the curve C [11]. In the vicinity of C we may

write the holomorphic three-form as Ω = dω which we insert into (2.5) in the background

F ∧ F to obtain

WCS =

∫

C

ω (2.6)

after a partial integration. Adding a constant given by the integral of ω over the reference

curve C0 this precisely matches the chain integral (2.4). Applying the above discussion, we

can think about the M5-brane moduli in WM5 as the bundle moduli describing the position

of the instanton configuration F , that in the small instanton limit precisely map to sections

H0(Ci, NZ3Ci) of the normal bundle to Ci.

We will verify this matching of moduli explicitly from the perspective of the F-theory dual

setup later on. There we will on the one hand identify some of the fourfold complex structure

moduli with the heterotic bundle moduli, on the other hand, however, show that part of

the F-theory flux superpotential depending on the same complex structure moduli really

calculates the superpotential of a five-brane on a curve. This way, employing heterotic/F-

theory duality, we show in the case of an example the equivalence of the small instanton/five-

brane picture.

To complete the discussion of perturbative heterotic superpotentials, let us also comment

on the flux superpotential due to bulk fluxes. In general, the heterotic B-field can have a

non-trivial background field strength Hflux
3 that has to be in H3(Z3,Z) due to the flux

quantization condition. The induced superpotential will be intimately linked to (2.4) and

(2.5) due to the anomaly cancellation condition

dH3 = Tr (R ∧R)− Tr (F ∧ F)−
∑

i

δCi , (2.7)

which yields, with an appropriate definition of the traces, the condition (2.1) if one restricts

to cohomology classes. The superpotential in terms of this H3 reads [37, 38]

Whet =

∫

Z3

Ω ∧H3 = Wflux +WCS +WM5 , (2.8)
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where the different terms can be associated to the various contributions in H3 in (2.7). In

order to discuss the flux part, we expand Hflux
3 = N iαi −Miβ

i in the integral basis αi, β
i of

H3(Z3,Z) with integer flux numbers N i, Mi. Then one can write the flux superpotential as

Wflux =

∫

Z3

Ω ∧Hflux
3 = MiX

i −N iFi , (2.9)

where we introduced the period expansion Ω = X iαi−Fiβ
i. In general, the periods (X i, Fi)

admit a complicated dependence on the complex structure deformations of Z3. It is the

great success of algebraic geometry that this superpotential can be calculated explicitly for

a wide range of examples, see [39] and [40, 41] for reviews. This is due to the fact that the

periods X i, Fi obey differential equations, the so-called Picard-Fuchs equations4, that can

be solved explicitly and thus allow to determine the complete moduli dependence of Wflux.

To end our discussion of the flux superpotential, let us stress that strictly speaking there is

a back-reaction of Hflux
3 which renders Z3 to be non-Kähler [43]. Since our main focus will

be on the five-brane superpotential, we will not be concerned with this back-reaction in the

following.

2.3 The Blow-Up of the Heterotic Calabi-Yau Threefold

The form of the superpotential WM5 of (2.4) is rather universal. It occurs, for example, also

for D5-branes on curves in Type IIB orientifold compactifications.5 In the following we will

apply the blow-up procedure suggested in ref. [18] for the study of the chain integral for

D5-branes to the heterotic setup. The idea is to find a purely geometric description that

puts the dynamics of the five-brane and the geometry of Z3 on an equal footing. To achieve

this, we blow up the curve C into a rigid divisor D in a non-Calabi-Yau threefold Ẑ3. This

embeds the deformation modes of C in Z3 as well as the complex structure deformations of

Z3 into the deformation problem of only complex structures of Ẑ3. We will see explicitly

later that this alternative view on the heterotic string with five-branes allows for a direct

geometric interpretation of the fate of the five-brane dynamics in heterotic/F-theory duality.

Here we provide the geometrical tools to describe the blow-up of Z3 along a curve C which

we will later use in the construction of explicit examples in section 4.

For concreteness, let us consider a Calabi-Yau threefold Z3 described as the hypersurface

{P = 0} in a projective or toric ambient space V4. Consider then a curve C specified by two

additional constraints {h1 = h2 = 0} in the ambient space intersecting transversally Z3. For

4See for example [42] for a review.
5Similar expressions arise for higher dimensional branes with world-volume flux inducing D5-charge sup-

ported on the same curves.
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the example of horizontal curves C supporting horizontal five-branes in an elliptic Z3, the

constraints take the form

h1 ≡ z̃ = 0 , h2 ≡ g5 = 0 , (2.10)

where {z̃ = 0} restricts to the base B2 and g5 specifies C within B2. In general, the constraints

h1, h2 describe divisors in the ambient space that descend to divisors6 in Z3 as well upon

intersecting with {P = 0}, called D1 and D2. Locally, (h1, h2) can be considered as normal

coordinates to the curve C in Z3. Thus, the normal bundle NZ3C of the curve takes the form

NZ3C = OZ3(D1)⊕ OZ3(D2), where OZ3(Di) denotes the line bundle of Di as read of from

the scalings of the section hi. As the divisors Di, also their line bundles OZ3(Di) are induced

from the bundles O(Di) on the ambient space V4.

To describe the blown-up threefold Ẑ3, we introduce the total space of the projective

bundle P(O(D1)⊕O(D2)). This total space describes a P1-fibration over the ambient space

V4 on which we introduce the P1-coordinates (l1, l2) ∼ λ(l1, l2). Then, the blow-up Ẑ3 is

given by the complete intersection [44]

P = 0 , Q = l1h2 − l2h1 = 0 , (2.11)

in the projective bundle. This is easily checked to describe Ẑ3. The first constraint depending

only on the coordinates of the base V4 of the projective bundle restricts to the threefold Z3.

The second constraint then fibers the P1 non-trivially over Z3 to describe the blow-up along

C. Away from h1 6= 0 or h2 6= 0 we can solve (2.11) for l1 or l2 respectively. Thus, (2.11)

describes a point in the P1-fiber for every point in Z3 away from the curve. However, if

h1 = h2 = 0 the coordinates (l1, l2) are unconstrained and parameterize the full P1, which

is fibered over C as its normal bundle NZ3C. Thus, we have replaced the curve by the

exceptional divisor D that is given by the projectivization of its normal bundle in Z3, i.e. the

ruled surface D = P(NZ3C) over C. We denote the blow-down map by

π : Ẑ3
// Z3 . (2.12)

Having described the construction of the blow-up, one can also determine details on the

cohomology of D and Ẑ3 [44]. For a single smooth curve C the non-vanishing Hodge numbers

of D are determined to be

h0,0 = h2,2 = 1 , h1,0 = g , h1,1 = 2 (2.13)

as usual for a ruled surface D over a genus g curve C. One element, which we denote by

η|D, of H1,1(D) is induced from the ambient space Ẑ3 and given by η = c1(NẐ3
D). The

6The Lefshetz-Hyperplane theorem tells us that indeed any divisor and line bundle in Z3 is induced from

the ambient space [44].
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second element spanning H1,1(D) is given by the Poincaré dual [C]D of the curve C in D,

[C]D = c1(NDC). It is related to the first Chern class c1(C) and thus to the genus as

c1(NDC) = −c1(C)− 2η , (2.14)

by using the adjunction formula in Ẑ3. Note that as a blow-up divisor D is rigid in Ẑ3. The

first and second Chern class of Ẑ3 are affected by the blow-up as

c1(Ẑ3) = π∗(c1(Z3))− c1(NẐ3
D) , (2.15)

c2(Ẑ3) = π∗(c2(Z3) + [C])− π∗(c1(Z3))D . (2.16)

Clearly, if Z3 is a Calabi-Yau manifold one can use c1(Z3) = 0 to find

c1(Ẑ3) = −η , c2(Ẑ3) = π∗(c2(Z3) + [C]) , (2.17)

in particular that Ẑ3 is no more Calabi-Yau.

It was argued in [18] that the complex structure moduli space of Ẑ3 contains the complex

structure moduli of Z3 as well as the deformation of C within Z3. The basic reason for

this is roughly that the complex structure deformations of the rigid divisor D contain the

deformation moduli of the curve C and thus embed them into the complex structure of

Ẑ3. This way the deformations of the pair (Z3, C) form a subsector of the geometrical

deformations of Ẑ3. This allows for the study of the combined superpotential of five-brane

(2.4) and flux (2.9) as well. First we use the formal unification of the two superpotentials in

terms of the relative homology group H3(Z3, C,Z) consisting of three-cycles H3(Z3,Z) and

three-chains ΓC ending on the curve C. Then the superpotential can be written as [13]

Wflux +WM5 =
∑

i

Ñ i

∫

Γi
C

Ω (2.18)

with respect to an integral basis Γi
C of the relative group H3(Z3, C,Z). Here the integers Ñ i

correspond to the three-form flux quanta (Mi, N
i) in (2.9) and the five-brane windings. In

particular Ω has to be interpreted as a relative form.

It has been argued in ref. [18] that in the blow-up π : Ẑ3 → Z3 the superpotential (2.18)

is lifted to Ẑ3 as follows. First we have to replace Ω by its equivalent on Ẑ3, the pullback

form

Ω̂ = π∗(Ω) , Ω̂|D = 0 (2.19)

that can be shown to vanish on D, see [18] for details and references. Consequently we can

write the heterotic superpotentials as

Wflux +WM5 =

∫

Ẑ3

H3 ∧ Ω̂ =

∫

Ẑ3−D

H3 ∧ Ω̂ =

∫

ΓH3

Ω̂ (2.20)
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such that it only depends on the topology of the open manifold Z3 − C = Ẑ3 −D. Here, we

naturally obtain ΓH3 as the Poincaré dual of the flux H3 in the group H3(Ẑ3 −D,Z).

These replacements can also be understood in the language of relative (co)homology. On

the one hand we can treat Ω̂ as a relative form exploiting the fact that any element in the

relative group H3(Ẑ3, D,Z) can be represented by a form vanishing on D. On the other

hand the element ΓH3 maps to the relative homology since Lefshetz and Poincaré duality

relate the de Rham homology of the open manifold to the relative homology as

H3(Ẑ3 −D,Z) = H3(Ẑ3, D,Z) (2.21)

This identification of (co-)homology groups gets completed by the equivalence H3(Z3, C,Z) =

H3(Ẑ3, D,Z) telling us that we have consistently replaced all relevant topological quantities

on Z3 by those on the blow-up Ẑ3. Finally, we expand the element ΓH3 in a basis Γi
D of

H3(Ẑ3 − D,Z) = H3(Ẑ3, D,Z) to obtain an expansion of the superpotential by relative

periods of Ω̂ as

Wflux +WM5 =
∑

i

Ñ i

∫

Γi
D

Ω̂ =
∑

i

Ñ i

∫

Ẑ3

Ω̂ ∧ γD
i . (2.22)

Here γD
i are the Poincaré duals in H3(Ẑ3, D,Z).

Similar to the Calabi-Yau threefold case where every element in H3(Z3,Z) can be ob-

tained upon differentiating Ω with respect to the complex structure, it is possible to obtain

a basis of H3(Ẑ3, D,Z) the same way. More precisely we can write the basis elements γD
i as

differentials of Ω̂ evaluated at the large complex structure point,

γD
i = RiΩ̂|z=0 . (2.23)

The operators Ri are polynomials in the differentials θa = za
d

dza
. Such a representation can

be made explicit by noting that Ω̂ can be written as a residue integral [45]

Ω̂ =

∫

ǫ1

∫

ǫ2

∆

PQ
, (2.24)

where P,Q are the two constraints (2.11) which define Ẑ3. The form ∆ denotes a top-form

on the five-dimensional ambient space P(O(D1) ⊕ O(D2)) that is invariant under its torus

actions and the ǫi are loops around {P = 0}, {Q = 0}. For the type of ambient space we

consider, the measure ∆ takes the schematic form [46]

∆ = ∆V ∧ (l1dl2 − l2dl1) , (2.25)

where ∆V denotes the invariant form on the toric base V4 and (l1, l2) the coordinates of

the P1-fiber. This makes it possible to study some of the afore-mentioned properties of Ω̂

explicitly.
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The crucial achievement of the blow-up to Ẑ3 is the fact that all moduli dependence of

the superpotential is now contained in the complex structure dependence of Ω̂. Thus it is

possible, analogous the Calabi-Yau case, to derive Picard-Fuchs type differential equations

for Ω̂ by studying its complex structure dependence explicitly. Upon the algebraic represen-

tation of Ẑ3 by the complete intersection (2.11) it is now possible to find an explicit residue

representation of Ω̂ such that Griffiths-Dwork reduction can be used to derive the desired

differential equations for Ω̂, among whose solutions we find the superpotential W .

So far the discussion of the blow-up procedure and the determination of the brane and

flux superpotential was entirely in the heterotic theory Z3. However, we will shed more light

on the connection between the brane geometry of (Z3, C) and the classical complex geometry

of the blow-up Ẑ3 in the context of heterotic/F-theory duality. More precisely, we argue that

the five-brane superpotential is mapped to a flux superpotential for F-theory compactified

on a dual Calabi-Yau fourfold X̂4. Starting with Ẑ3, the fourfold X̂4 can be represented

as a complete intersection generalizing (2.11). However, in contrast to Ẑ3 the fourfold X̂4

can also be represented as a hypersurface. This fact allows us to directly compute the flux

superpotential. Such a computation has been performed in ref. [7] for a set of examples,

and confirmed that the five-brane superpotential is naturally contained in the F-theory flux

superpotential. In the next section we will discuss this duality in detail and outline the

construction of X̂4 and the F-theory flux G4.

3 F-Theory Blow-Ups and the Superpotential

Here we turn to the discussion of F-theory compactifications on elliptic Calabi-Yau fourfolds

X4 yielding N = 1 effective theories in four dimensions. We will discuss the basic geometric

ingredients encoding the seven-brane content as well as the three-brane tadpole in its most

general form including G4-flux in section 3.1. There, we will readily restrict to F-theory

fourfolds X4 with a heterotic dual on an elliptic threefold Z3. The F-theory dual to an

E8×E8 heterotic string with small instantons/five-branes is discussed in section 3.2 requiring

a blow-up in the F-theory base B3 along curves C in B2. We will argue that the five-brane

moduli and superpotential are mapped to complex structure moduli of X4 and the flux

superpotential. Finally in section 3.4, we will construct the appropriate G4-flux inducing the

flux superpotential dual to the heterotic brane superpotential.
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3.1 F-Theory and Heterotic/F-Theory Duality

We prepare for our further discussion by briefly reviewing the necessary aspects of F-theory

and heterotic/F-theory duality.

An F-theory compactification to four dimensions is in general defined by an elliptically

fibered Calabi-Yau fourfold X4 with a section. This section can be used to express the

fourfold X4 as an analytic hypersurface in the projective bundle P(OB3 ⊕ L2 ⊕ L3) with

coordinates (z, x, y) for which the constraint equation can be brought to the Weierstrass

form

y2 = x3 + fxz4 + gz6 . (3.1)

The Calabi-Yau condition on X4 implies L = K−1
B3

and f , g have to be sections of L4 and L6

for the constraint (3.1) to transform as a section of L6. F-theory defined on X4 automatically

takes care of a consistent inclusion of spacetime-filling seven-branes. These are supported

on the in general reducible divisors ∆ in the base B3 determined by the degeneration loci of

(3.1) given by the discriminant

∆ = {∆ = 27g2 + 4f 3 = 0} . (3.2)

The degeneration type of the fibration specified by the order of vanishing of f , g and ∆

along the irreducible components ∆i of the discriminant have an ADE–type classification

that physically specifies the four-dimensional gauge group G [34].

There are further building blocks necessary to specify a consistent F-theory setup. This

is due to the fact that a four-dimensional compactification generically has a three-brane

tadpole of the form [47, 48, 49]

χ(X4)

24
= n3 +

1

2

∫

X4

G4 ∧G4 . (3.3)

In the case that the Euler characteristic χ(X4) of X4 is non-zero a given number n3 of

spacetime-filling three-branes on points in B3 and a specific amount of quantized four-form

flux G4 have to be added in order to fulfill (3.3).

For a generic setup with three-branes and flux, the four-dimensional gauge symmetry

as determined by the seven-branes is not affected. However, if the three-brane happens to

collide with a seven-brane, it can dissolve, by the same transition as discussed in section 2.1,

into a finite-size instanton on the seven-brane worldvolume that breaks the four-dimensional

gauge group G. During this transition the number n3 of three-branes jumps and a flux G4

is generated describing the gauge instanton on the seven-brane worldvolume [41]. In par-

ticular, in case of a heterotic dual theory the three-branes on the F-theory side precisely
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correspond to vertical five-branes on the heterotic threefold [24]. Thus, under duality the

three-brane/instanton transition is precisely the F-theory dual of the transition of a vertical

five-brane into a finite size instanton breaking the gauge group on the heterotic side accord-

ingly. However, we will not encounter this any further since we restrict our discussion to the

case that the gauge bundle on those seven branes dual to the perturbative heterotic gauge

group is trivial and no three-branes sit on top of their worldvolumes.

Let us now come to a more systematic discussion of heterotic/F-theory duality. The

fundamental duality that underlies it in any dimensions is the eight-dimensional equiva-

lence of the heterotic string compactified on T 2 and F-theory on elliptic K3 [1]. The eight-

dimensional gauge symmetry G is determined in the heterotic string as the commutant of an

E8 × E8-bundle on T 2 with structure group H . This precisely matches the singularity type

G of the elliptic fibration of K3 in the F-theory formulation. Using the adiabatic argument

[25] it is possible to consider a family of dual eight-dimensional theories parameterized by

a base manifold Bn to obtain dualities between the heterotic string and F-theory in lower

dimensions.

This way a four-dimensional heterotic string on the elliptic threefold Z3 is equivalent

to F-theory on the elliptic K3-fibered Calabi-Yau fourfold X4. Consequently, the three-

dimensional base B3 of the elliptic fibration of X4 has to be ruled over the base B2 of the

heterotic threefold Z3, i.e. B3 is a holomorphic P1-fibration over B2. It turns out that

precisely this fibration data of B3 is crucial for the construction of the dual heterotic theory,

in particular the stable vector bundle E on Z3 that determines the four-dimensional gauge

group G. To analyze this issue in a more refined way it is necessary to use the methods

developed in [24], in particular the spectral cover. However, instead of delving into the

technical details, we will focus on the results essential for our further discussion.

The basic strategy of the spectral cover is to obtain the stable holomorphic bundle E on

the elliptic threefold Z3 roughly speaking by fibering the stable bundles on the fiber torus so

that they globally fit into a stable bundle on the threefold Z3 [24]. This way, the topological

data of the bundle E can be determined in terms of the cohomology of the two-dimensional

base B2. For example, for our case of interest, H = SU(n) and E8,
7 the second Chern class

c2(E) of the bundle E schematically reads

λ(E) = ησ + π∗(ω) , (3.4)

where η and ω are up to now arbitrary classes in H2(B2,Z) and σ = c1(O(σ)) is Poincaré

dual to the section σ of π : Z3 → B2. The class η is essential in the general construction of

7Strictly speaking, there is no spectral cover description of E8 bundles. However, upon application of the

method of parabolics very similar results to the SU(n) case can be obtained [24].
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the spectral cover. However, its meaning is further clarified in heterotic/F-theory duality,

where it can be constructed from the base B3 of the dual F-theory.

Consider the heterotic string with an E8 × E8-bundle on Z3. Besides the required sin-

gularities of the elliptic fibration of X4 to match the heterotic gauge group G only the part

B2 of the F-theory geometry is fixed by duality. The threefold B3 can be freely specified by

choosing the P1-fibration over B2 as follows. Fixing a line bundle L over B2 the threefold

B3 is described as the total space of the projective bundle P(O ⊕ L). There are two dis-

tinguished classes in H2(B3,Z), namely the B2-independent class of the hyperplane of the

P1-fiber denoted by r = c1(O(1)) and the line bundle L with c1(L) = t. Then, the heterotic

bundle E = E1 ×E2 is specified by [24]

η(E1) = 6c1 + t , η(E2) = 6c1 − t , (3.5)

meaning that the choice of P1-fibration uniquely determines the η-classes of the two bundles.

In particular, we note that the heterotic anomaly (2.1) is trivially fulfilled without the

inclusion of any horizontal five-branes.

So far, the above discussion is not the most general setup possible since it does not allow

for the presence of horizontal five-branes. It turns out that the F-theory dual to the E8×E8

heterotic string has to a be analyzed more thoroughly in order to naturally include horizontal

five-branes to the setup.

3.2 The Five-Brane Dual: Blowing Up in F-Theory

In this section we will discuss the F-theory dual of horizontal five-branes [5, 26] as will be

essential for our understanding of the five-brane superpotential.

Thus, we now restrict our considerations completely to F-theory compactifications with

a heterotic dual. Then B3 is the total space of the projective bundle P(OB2 ⊕ L) where we

now assume L = OB2(−Γ) for an effective divisor Γ in B2. This fibration p : B3 → B2 has

two holomorphic sections denoted C0, C∞ with

C∞ = C0 + p∗Γ . (3.6)

Then, the perturbative gauge group G = G1 ×G2, where we denote the group factors from

the first E8 as G1 and from the second E8 as G2, is realized by seven-branes over C0 and C∞

with singularity type G1 and G2, respectively [2, 35]. On the other hand, components of the

discriminant on which ∆ vanishes of order greater than one that project onto curves Ci in

B2 correspond to heterotic five-branes on the same curves in Z3 [2, 34, 35]. Consequently,
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the corresponding seven-branes induce a gauge symmetry that is a non-perturbative effect

due to five-branes on the heterotic side.

Since the understanding of horizontal five-branes is the central point of our discussion

let us analyze the consequences of these vertical components of the discriminant for the F-

theory geometry more thoroughly. Guided by our example of section 4.3, we will consider the

enhanced symmetry point with G = E8 × E8 due to small instantons/five-branes such that

the heterotic bundle is trivial. In general, an analysis of the local F-theory geometry near

the five-brane curve C is possible [26] applying the method of stable degeneration [50, 24].

However, since the essential point in the analysis is the trivial heterotic gauge bundle, the

results of [26] carry over to our situation immediately.

As follows in general using (3.6) the canonical bundle of the ruled base B3 reads

KB3 = −2C0 + p∗(KB2 − Γ) = −C0 − C∞ + p∗(KB2) . (3.7)

From this we obtain the classes F , G and ∆ of the divisors defined by f , g and ∆ as sections

of K−4
B3

, K−6
B3

and K−12
B3

, respectively. To match the heterotic gauge symmetry G = E8 ×E8,

there have to be II∗ fibers over the divisors C0, C∞ in B3. Since II∗ fibers require that f ,

g and ∆ vanish to order 4, 5 and 10 over C0 and C∞, their divisor classes split accordingly

with remaining parts

F ′ = F − 4(C0 + C∞) = −4p∗(KB2) ,

G′ = G− 5(C0 + C∞) = C0 + C∞ − 6p∗(KB2) , (3.8)

∆′ = ∆− 10(C0 + C∞) = 2C0 + 2C∞ − 12p∗(KB2) .

This generic splitting implies that the component ∆′ can locally be described as a quadratic

constraint in a local normal coordinate k to C0 or C∞, respectively. Thus, ∆′ can be

understood locally as a double cover over C0 respectively C∞ branching over each irreducible

curve Ci of ∆′ ·C0 and ∆′ ·C∞. In fact, near one irreducible curve Ci intersecting say C0 the

splitting (3.9) implies that the sections f, g take the form

f = k4f ′ , g = k5(g5 + kg6) ≡ k5g′ (3.9)

with f ′ denoting a section of KB−4
3 and g5, g6 sections of KB−6

3 ⊗ L, KB−6
3 , respectively.

The discriminant then takes the form ∆ = k10∆′ where ∆′ is calculated from f ′ and g′. Thus,

the intersection curve is given by g5 = 0 and the degree of the discriminant ∆ rises by two

over Ci with f ′ and g′ vanishing of order zero and one. Precisely the singular curves Ci in X4

that appear in g as above are the locations of the small instantons/horizontal five-branes in

Z3 [5, 26] on the heterotic side. In the fourfold X4 the collision of a II∗ and a I1 singularity

over Ci induces a singularity of X4 exceeding Kodaira’s classification of singularities. Thus, it
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requires a blow-up π : B̃3 → B3 in the three-dimensional base of the curves Ci into divisorsDi.

This blow-up can be performed without violating the Calabi-Yau condition since the shift in

the canonical class of the base, KB̃3
= π∗KB3 +Di, can be absorbed into a redefinition of the

line bundle L′ = π∗L−Di entering (3.1) such that KX4 = p∗(KB3 +L) = p∗(KB̃3
+L′) = 0.

To describe this blow-up explicitly let us restrict to the local neighborhood of one irre-

ducible curve Ci of the intersection of ∆ and C0. We note that the curve Ci in B2 is given

by the two constraints

h′

1 ≡ k = 0 , h′

2 ≡ g5 = 0 , (3.10)

for k and g5 being sections of the normal bundle NB3C0 and of KB−6
3 ⊗L, respectively. Then

if X4 is given as a hypersurface P ′ = 0 we obtain the blow-up as the complete intersection

P ′ = 0 , Q′ = l1h
′

2 − l2h
′

1 = 0 , (3.11)

where, as in (2.11), we have introduced coordinates (l1, l2) parameterizing the P
1-fiber.

However, at least in a local description, we can introduce a local normal coordinate t

to Ci in B2 such that g5 = tg′5 for a section g′5 which is non-vanishing at t = 0. Then by

choosing a local coordinate k1 of the P1-fiber we can solve the blow-up relation Q′ of (3.11)

to obtain k = k1t. This coordinate transformation can be inserted into the constraint P ′ = 0

of X4 to obtain the blown-up fourfold X̂4 as a hypersurface. The f ′, g′ of this hypersurface

are given by

f ′ = k4
1f , g′ = k5

1(g5 + k1t g6 + . . .) (3.12)

In particular, calculating the discriminant ∆′ of X̂4 it can be demonstrated that the I1

singularity no longer hits the II∗ singularity over C0 [26]. This way we have one description

of X̂4 as the complete intersection (3.11) and another as a hypersurface. Both will be of

importance for the explicit examples discussed in sections 4.1, 4.3 and in particular section

4.2.

To draw our conclusions of this blow-up, we summarize what we just discussed. The

F-theory counterpart of a heterotic string with full perturbative gauge group is given by a

fourfold with II∗ fibers over the sections C0, C∞ in B3. The component ∆′ of the discriminant

enhances the degree of ∆ on each intersection curve Ci such that a blow-up in B3 becomes

necessary. On the other hand, each blow-up corresponds to a small instanton in the heterotic

bundle [2, 32], that we previously described in section 2.1 as a horizontal five-brane on the

curve Ci in the heterotic threefold Z3 . Indeed, this can be viewed as a consequence of

the observation mentioned above that a vertical component of the discriminant with degree

greater than one corresponds to a horizontal five-brane [35] as the degree of ∆′ on C0 and

C∞ is two.
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We finish this discussion by a brief look at the moduli map between F-theory and its

heterotic dual, where we focus on the fate of the five-brane moduli in the just mentioned

blow-up process. The first step in the moduli analysis is to relate the dimensions of the

various moduli spaces in both theories and to point to possible mismatches where moduli

of some ingredients are missing. In particular, this happens in the presence of heterotic

five-branes. Indeed it was argued in [5] that the relation of the fourfold Hodge numbers

h3,1(X4) and h1,1(X4) counting complex structure and Kähler deformations, respectively, to

h2,1(Z3), h
1,1(Z3) and the bundle moduli and characteristic data has to be modified in the

presence of five-branes. The extra contribution is due to deformation moduli of the curve Ci
supporting the five-brane counted by h0(Ci, NZ3Ci) as well as the blow-ups in B3 increasing

h1,1(B3) such that we obtain [5]

h3,1(X4) = h2,1(Z3) + I(E1) + I(E2) + h2,1(X4) + 1 +
∑

i

h0(Ci, NZ3Ci) ,

h1,1(X4) = 1 + h1,1(B3) + rk(G) . (3.13)

Here the sum index i runs over all irreducible curves Ci and we denote the rank of the four-

dimensional gauge group by rk(G). The index I(E1,2) counts a topological invariant of the

bundle moduli and is given by [24, 51]

I(Ei) = rk(Ei) +

∫

B2

(4(ηiσ − λi) + ηic1(B2)) . (3.14)

The map for h3,1(X4) reflects the fact that the four-dimensional gauge symmetry G is

on the heterotic side determined by the gauge bundle E whereas on the F-theory side G is

due to the seven-brane content defined by the discriminant ∆ that is sensitive to a change

of complex structure. For an explicit demonstration of this map exploiting the techniques of

[4] we refer to our work [7].

Let us now discuss how (3.13) changes during the blow-up procedure. To actually perform

the blow-up along the curve Ci it is necessary to first degenerate the constraint ofX4 such that

X4 develops the singularity over Ci described above. This requires a tuning of the coefficients

entering the fourfold constraint thus restricting the complex structure of X4 accordingly

which means h3,1(X4) is lowered. Then, we perform the actual blow-up by introducing the

new Kähler class associated to the complexified volume of the exceptional divisor Di. Thus,

we end up with a new fourfold with decreased h3,1 and h1,1(B̃3) increased by one. This

is also clear from the general argument [35] that, enforcing a given gauge group G in four

dimensions, the complex structure moduli have to respect the form of ∆ dictated by the

singularity type G. Since the blow-up which is dual to the heterotic small instanton/five-

brane transition enhances the gauge symmetry G, the form of the discriminant becomes
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more restrictive, thus fixing more complex structures. In this picture the blow-down can be

understood as switching on moduli decreasing the singularity type of the elliptic fibration.

Similarly, we can understand (3.13) from the heterotic side. For each transition between

small instanton and five-brane, the bundle loses parts of its moduli since the small instanton is

on the boundary of the bundle moduli space. Consequently, the index I reduces accordingly.

In the same process, the five-brane in general gains position moduli counted by h0(Ci, NZ3Ci),

that have to be added to (3.13).

We close the discussion of moduli by making a more refined and illustrative statement

about the heterotic meaning of the Kähler modulus of the exceptional divisors Di. To do so

we have to consider heterotic M-theory on Z3 × S1/Z2. In this picture the instanton/five-

brane transition can be understood [52] as a spacetime-filling five-brane wrapping Ci and

moving on S1/Z2 onto the end-of-the-world brane where one perturbative E8 gauge group

is located. There, it dissolves into a finite size instanton of the heterotic bundle E. With

this in mind the distance of the five-brane on the interval S1/Z2 away from the end-of-world

brane precisely maps [26] to the Kähler modulus of the divisor Di resolving Ci in B3.

3.3 The F-Theory Flux Superpotential

In this section we discuss the F-theory flux superpotential and recall how mirror symmetry

for Calabi-Yau fourfolds allows to compute its explicit form [8, 9, 10, 7]. Recall, that the

F-theory superpotential is induced by four-form flux G4 and given by [53]

WG4(t) =

∫

X4

G4 ∧ Ω4(t) = Na Πb(t) ηab, a, b = 1, . . . b4(X4) , (3.15)

where t collectively denote the h3,1(X4) complex structure deformations of X4. Note that

in order to compute WG4 it is necessary to expand in a basis γa of the integral homology

group H4(X4,Z). The Na =
∫

γa
G4 ∈ Z/2 are the flux quantum numbers in this basis,

while Πa(t) =
∫

γa Ω4(t) are the periods of the holomorphic (4, 0)-form Ω4. The constant

intersection matrix

ηab =

∫

X4

γ̂a ∧ γ̂b ,

∫

γa

γ̂b = δab , (3.16)

is defined for the integral basis γ̂a of the cohomology group H4(X4,Z) which is dual to

γa. Note that in contrast to H3(Z3,Z) of Calabi-Yau threefolds the fourth cohomology

group of X4 does not carry a symplectic structure which necessitates the introduction of ηab.

The last expression in formula (3.15) is therefore obtained by expanding G4 = Naγ̂a and

Ω4(t) = Πa(t)γ̂a in the cohomology basis.
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On the F-theory side one has the following consistency condition on the flux. The first

constraint comes from the quantization condition for G4, which depends on the second Chern

class of X4 in the following way [54]

G4 +
c2(X4)

2
∈ H4(X4,Z) . (3.17)

More restrictive is the condition that G4 has to be primitive, i.e. orthogonal to the Kähler

form of X4. In the F-theory limit of vanishing elliptic fiber this yields the constraints

∫

X4

G4 ∧ Ji ∧ Jj = 0 . (3.18)

for every generator Ji, i = 1, . . . , h1,1(X4) of the Kähler cone. To discuss the two conditions

further it is useful to remind us of the fact that the (co)homology of a Calabi-Yau splits into

a horizontal and a vertical subspace

H4
H(X4,Z) =

4
⊕

k=0

H4−k,k
H (X4,Z) , H4

V (X4,Z) =

4
⊕

k=0

Hk,k
V (X4,Z) . (3.19)

Since we have an even number of complex dimensions the group H2,2(X4,C) contains both

parts and splits accordingly into the vertical and the horizontal subspace as [8]

H2,2(X4) = H2,2
V (X4)⊕H2,2

H (X4) . (3.20)

Analogous to the two-dimensional case of K3 and in contrast to the Calabi-Yau threefold

case, the derivatives of Ω4 with respect to the complex structure modulo the differential ideal

given by the Picard-Fuchs operators generate only the horizontal subspace. The remaining

part is the vertical subspace which is the natural ring of polynomials in the Kähler cone

generators Ji modulo the ideal defining the intersection ring. Mirror symmetry exchanges

the vertical and the horizontal subspace. A corollary of these statements is that the allowed

fluxes in the superpotential (3.15) are in the horizontal subspace. On the other hand Chern

classes are in the vertical subspace, so that half integral flux quantum numbers are not

allowed if condition (3.18) is met. Now, the most important task on the fourfold side is to

find the periods which correspond to the integrals over an integral basis of H4(X4,Z).

The first step to determine the periods is to determine the Picard-Fuchs equations

LκΠ
a(t) = 0 satisfied by the periods. The Picard-Fuchs operators Lκ are differential op-

erators in the complex structure moduli t. In general, the Lκ can be determined by applying

Griffiths-Dwork reduction [45]. One identifies the Lκ which yield exact forms when applied

to Ω4, i.e.

LκΩ4 = dwκ , (3.21)
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where wκ are three-forms on X4. To derive the Picard-Fuchs operators Lκ one uses an

explicit expression for the holomorphic four-form Ω4 via the Griffiths residuum expression

[45]. For Calabi-Yau fourfold hypersurfaces and complete intersections {P1 = . . . = Ps = 0}

with dP1 ∧ . . . ∧ dPs 6= 0 in toric varieties P∆ of dimensions s + 4 the four-form Ω4 can be

expressed as

Ω4 =

∫

ǫ1

. . .

∫

ǫs

s
∏

k=1

a
(k)
0

Pk

∆ . (3.22)

Here ǫi are paths in P∆, which encircle Pi = 0 and ∆ is an measure invariant under the torus

action. The parameter a
(k)
0 denotes a distinguished coefficient in the defining constraint Pk

as introduced below. This method is general but tedious. However, the operators Lκ can also

be determined by the toric data. They are related to the scaling relations of the dual toric

variety P∆̃ that happens to be the ambient space of the mirror fourfold X̃4 of X4. This nicely

connects to the framework of toric mirror symmetry [55, 42, 56] where the charge vectors ℓ(a),

defining the Kähler cone of the mirror X̃4, determine a canonical set of differential operators,

the GKZ-system, from which the Picard-Fuchs system for the complex structure of X4 is

obtained. From these operators Lκ one can evaluate a finite set of solutions Πa(t).

In a second step, one has to identify the solutions corresponding to the integral basis

of H4(X4,Z). A strategy to do this was outlined in [7] (see also refs. [9, 10]) and made

concrete in simple examples. The key idea is to use the structure of the solution near

conifold divisors in the moduli space, where a four-cycle ν and therefore the corresponding

period
∫

ν
Ω4 vanishes. The vanishing cycle ν can often be identified directly with generators

of H4(X4,Z). Associated to each vanishing cycle, there will be a monodromy action on the

period vector that is generated by encircling the divisor in the moduli space and is patching

the, in general redundant, generators of these monodromies globally together.

Most information comes form the large complex structure, i.e. the point of maximal

unipotent monodromy whose location is the origin in the Mori cone coordinate system za =

(−1)ℓ
(a)
0

∏m

j=0 a
ℓ
(a)
j

j for a toric hypersurface X4. For every entry ℓ
(a)
j of the Mori vectors ℓ(a)

there are parameters aj that are just the coefficients of the constraint P1 = 0 defining X4.

At the point z = 0 several cycles γa vanish and we have one analytic solution X0(z) =
∫

γ0
Ω4

and h3,1(X4) logarithmic periods Xa(z) =
∫

γa
Ω4 = X0(z) log(za) + Σa(z). Then the mirror

map is given by

ta =
Xa

X0
. (3.23)

Noting that ta ∼ log(za) at this point we can use these flat coordinates to write the leading

logarithmic structure of the period vector as

ΠT =
(

∫

γ0

Ω4, . . . ,

∫

γ
b4
H

Ω4

)

= X0
(

1, ta, 1
2
Cδ

abt
atb, 1

3!
Ca

bcdt
btctd, 1

4!
Cabcdt

atbtctd
)

. (3.24)
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In particular, the grading ({k}) = (0, 1, 2, 3, 4) in powers of ta corresponds to a grading of

γa ∈ H4(X4). In the complex structure given by the point z the dual cohomology group has

the natural gradingH4
H(X4,Z). Mirror symmetry maps this group to the vertical cohomology

HV (X̃4,Z). Thus, the Greek indices in (3.24) run from 1 to h2,2
H (X4) = h2,2

V (X̃4), the Latin

indices from 1 to h3,1(X4) = h1,1(X̃4). Note that we have introduced the constant coefficients

Cδ
ab = η(2) δγC0

abγ, C
e
abc = η(1) edC0

abcd that are related to the classical intersection numbers

C0
abγ and C0

abcd. These are calculated in the classical geometry of X̃4 as follows. Let us denote

a basis of HV (X̃4,Z) by

A(k)
pk

= ai1,...,ikpk
J̃i1 ∧ . . . ∧ J̃ik , (3.25)

where the J̃in are the generators of the Kähler cone of the mirror X̃4. Then one has

C0
abcd =

∫

X̃4

A(1)
a ∧A

(1)
b ∧A(1)

c ∧ A
(1)
d , C0

abγ =

∫

X̃4

A(1)
a ∧A

(1)
b ∧ A(2)

γ (3.26)

and η
(1)
ab =

∫

X̃4
A

(1)
a ∧ A

(3)
b as well as η

(2)
γδ =

∫

X̃4
A

(2)
γ ∧ A

(2)
δ denote subblocks of ηab at grade

k = 1 and k = 2 respectively whose inverses are indicated by upper indices. By formally

replacing the J̃i with θi = zi
d
dzi

, we get a map

µ : HV (X̃4,Z) // H4
H(X4,Z) (3.27)

given by

µ : A
(k)
pk

� // R(k)
pk Ω4

∣

∣

∣

z=0
:= ai1,...,ikpk

θi1 · · · θikΩ4

∣

∣

∣

∣

z=0

, (3.28)

which preserves the grading. This implies that one can think of the integral basis γ̂a in terms

of their corresponding differential operators R(k)
pk acting on Ω4.

The representation of the integral basis as differential operators will be particularly use-

ful in the identification of the heterotic and F-theory superpotential. In particular, this

formalism allows us to express the flux G4 in an integral basis in the form

G4 =
4

∑

k=0

∑

pk

Npk(k) R(k)
pk
Ω4

∣

∣

z=0
. (3.29)

In the next section we will argue that the heterotic/F-theory duality map is obtained by a

matching of the operators R(k)
pk with their analogs in the heterotic blow-up.

3.4 Duality of the Heterotic and F-Theory Superpotentials

Let us finally turn to the matching of the heterotic and F-theory superpotentials. Recall,

that the heterotic superpotential (2.8), is formally given by

Whet(t
c, tg, to) = Wflux(t

c) +WCS(t
c, tg) +WM5(t

c, to) , (3.30)
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where tc, tg and to denote the complex structure, bundle and five-brane moduli respectively.

The last two terms are not inequivalent, since tuning the tg or to moduli one can condense or

evaporate five-branes and explore different branches of the heterotic moduli space. Clearly

the moduli spaces parametrized by tc and tg do not factorize globally in complex structure

and bundle moduli since the notion of a holomorphic gauge bundle on Z3 depends on the

complex structure of Z3. Similarly, tc and to do not factorize as the notion of a holomorphic

curve in Z3 does depend on the complex structure of Z3. This is also reflected in the fact

that flux and brane superpotential can be unified into one superpotential (2.18) for which

the splitting into WM5 and Wflux is just a matter of basis choice of H3(Z3, C,Z).

The key point of the construction is of course that we can map the heterotic moduli

(tc, tg, to) to the complex structure moduli t of X4 which are encoded in the fourfold period

integrals. To make the equivalence

Whet(t
c, tg, to) = WG4(t) , (3.31)

precise, we need to establish a dictionary between the topological data on the heterotic side,

which consist of the heterotic flux quanta, the topological classes of gauge bundles and the

class of the curves C, and the F-theory flux quanta.

In order to study the duality map, we will restrict our considerations to the map between

five-brane moduli and complex structure deformations of Z3 to complex structure deforma-

tions of X̂4. This can be achieved by restricting the heterotic gauge bundle E to be of trivial

SU(1) × SU(1) type. In this case one needs to include heterotic five-branes to satisfy the

anomaly cancellation condition (2.1). In accord with the discussion of section 3.2 the dual

fourfold X̂4 can be realized as a complete intersection blown up along the five-brane curves.

As above, we will restrict the discussion to a single five-brane. We want to match this

description with the heterotic theory on Ẑ3. One can now identify the blow-up constraints

Q = l1g5(u)− l2z̃
� // Q′ = l1g5(u)− l2k , z̃ � // k , (3.32)

where u denote coordinates on the base B2, {z̃ = 0} defines the base B2 in Z3, and {z =

0} ∩ {k = 0} defines the base B2 in X4.
8 The map (3.32) is possible since both Z3 and X4

share the twofold base B2 with the curve C. The identification of z̃ with k corresponds to

the fact that in heterotic/F-theory duality the elliptic fibration of Z3 is mapped to the P1-

fibration of B3. Clearly, the map (3.32) identifies the deformations of C realized as coefficients

in the constraint {Q = 0} of Ẑ3 with the complex structure deformations of X̂4 realized as

coefficient in {Q′ = 0}. We also have to match the remaining constraints {P = 0} and

8Note that the P1-fibration B3 → B2 has actually two sections. As in section 3.2, k = 0 is one of the two

sections, say, the zero section.
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{P ′ = 0} of Ẑ3 and X̂4, respectively. Clearly, there will not be a general match. However, as

was argued in ref. [4] for Calabi-Yau fourfold hypersurfaces, one can split P ′ = 0 as P + VE

yielding a map

P + VE
� // P ′ , (3.33)

where VE is describing the spectral cover of the dual heterotic bundles E = E1 ⊕E2. Again,

this requires an identification of z̃ and k. For SU(1) bundles this map was given in (3.32),

but can be generalized for non-trivial bundles. Note that the maps (3.32) and (3.33) can

also be formulated in terms of the GKZ systems of the complete intersections Ẑ3 and X̂4.

It implies that the ℓ
(a)
i of X̂4 contain the GKZ system of Z3 and the five-brane ℓ-vectors,

similar to the situation encountered in refs. [19, 20, 7, 23, 21].

To match the superpotentials as in (3.31) one finally has to identify the integral basis of

H3(Ẑ3, D,Z) with elements of H4(X̂4,Z) and show that the relative periods of Ω̂3 can be

identified with a subset of the periods of Ω4. In order to do that, one compares the residue

integrals (2.24) and (3.22) for Ω̂3 and Ω4 represented as complete intersections. Using the

maps (3.32) and (3.33) one then shows that each Picard-Fuchs operator annihilating Ω̂3 is

also annihilating Ω4. Hence, also a subset of the solutions to the Picard-Fuchs equations

can be matched accordingly. As a minimal check, one finds that the periods of Ω3 on Z3

before the blow-up arise as a subset of the periods of Ω4 is specific directions [9, 7]. The

map between the cohomologies H3(Ẑ3, D,Z) →֒ H4(X̂4,Z) is also best formulated in terms

of operators R(i)
p applied to the forms Ω̂ and Ω4,

R(i)
p Ω̃3(z

c, zo)
∣

∣

∣

zc=zo=0

� // R(i)
p Ω4(z)

∣

∣

∣

z=0
. (3.34)

Note that the preimage of this map will in general contain derivatives with respect to the

variables zo and hence is an element in relative cohomology. It was shown in refs. [16] that

one can find differential operators R(i)
p which span the full space H3(Ẑ3, D,Z). One now

finds that by identifying the heterotic and F-theory moduli at the large complex structure

point z = 0, one obtains an embedding map of the integral basis.

One immediate application of this formalism is that if we know the classical quadratic

terms in Whet we can fix the dual G4-flux and use the periods of the fourfold to determine

the instanton parts. In particular, for the five-brane superpotential WM̂5(t
o, tc) one finds

that the dual flux GM5
4 can be expressed as

GM5
4 =

∑

p

Np(2) R(2)
p Ω4

∣

∣

z=0
(3.35)

Note that for G4 fluxes generated by operators R(2) the superpotential yields an integral

structure of the fourfold symplectic invariants at large volume of the mirror Mir(X̂4) of X̂4
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as [8, 9, 57]

W inst
G4

=
∑

β∈H2(Mir(X̂4),Z)

n0
β(γG4)Li2(q

β) , n0
β ∈ Z , (3.36)

where γG4 is co-dimension two cycle specified by the flux [7], and qβ = exp(
∫

β
J̃) is the

exponential of the mirror Kähler form J̃ integrated over classes β. This integrality structure is

inherited to the heterotic superpotentials in geometric phases of their parameter spaces. For

superpotential from five-branes wrapped on a curve C this matches naturally the disk multi-

covering formula of [58], since this part is mapped by mirror symmetry to disk instantons

ending on special Lagrangians L mirror dual to C. It would be interesting to explore a

generalization of this integral structure to the gauge sector of the heterotic theory.

Finally, there is geometric way to identify the flux which corresponds to a chain integral
∫

Γ
Ω3. The three-chain Γ can be mapped to a three-chain Γ in B3 whose boundary two-

cycles lie in the worldvolume of a seven-brane over which the cycles of the F-theory elliptic

fiber degenerates. By fibering the one-cycle of the elliptic fiber which vanishes at the seven-

brane locus over Γ, one gets a transcendental cycle in H4(X4,Z). Its dual form lies then

in the horizontal part H4
H(X4,Z) and therefore yields the flux (see ref. [41] for a review

on such constructions). For a recent very explicit construction of these cycles in F-theory

compactifications on elliptic K3 surfaces and Calabi-Yau threefolds see refs. [59].

4 Examples of Heterotic/F-Theory Dual Pairs

In this section we study concrete examples to demonstrate the concepts discussed in the

earlier sections. We will examine two geometries in detail. The first F-theory Calabi-Yau

fourfold geometry, discussed in section 4.1 and 4.2, will have few Kähler moduli and many

complex structure moduli. In this case we can use toric geometry to compute explicitly the

intersection numbers, evaluate both sides of the expression (3.13) yielding the number of de-

formation moduli of the five-brane curve, and check the anomaly formula (2.1). We also show

that the Calabi-Yau fourfold can be explicitly constructed from the heterotic non-Calabi-Yau

threefold obtained by blowing up the five-brane curve in section 4.2. The second Calabi-Yau

fourfold example, introduced in section 4.3, will admit few complex structure moduli and

many Kähler moduli. This allows us to identify the bundle moduli and five-brane moduli

under duality by studying the Weierstrass constraint. The F-theory flux superpotential for

this configuration was already evaluated in ref. [7], and we will discuss its heterotic dual in

section 4.3.
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4.1 Example 1: Five-Branes in the Elliptic Fibration over P
2

We begin the discussion of our first example of heterotic/F-theory dual theories by defining

the setup on the heterotic side. Following section 2.1 the heterotic theory is specified by

an elliptic Calabi-Yau threefold Z3 with a stable holomorphic vector bundle E = E1 ⊕ E2

obeying the heterotic anomaly constraint (2.1).

We choose the threefold Z3 as the elliptic fibration over the base B2 = P2 with generic

torus fiber P1,2,3[6]. It is given as a hypersurface P = 0 in the toric ambient space

∆(Z3) =





















-1 0 0 0 3B + 9H

0 -1 0 0 2B + 6H

3 2 0 0 B

3 2 1 1 H

3 2 -1 0 H

3 2 0 -1 H





















(4.1)

with the class of the hypersurface Z3 given by

[Z3] =
∑

Di = 6B + 18H . (4.2)

Here we denoted the two independent toric divisors Di by H and B, the pullback of the

hyperplane class of the P2 base respectively the class of the base itself. From the toric data

the basic topological numbers of Z3 are obtained as

χ(Z3) = 540 , h1,1(Z3) = 2 , h2,1(Z3) = 272 . (4.3)

The second Chern-class of Z3 is in general given in terms of the Chern classes c1(B2), c2(B2)

and the section σ : B2 → Z3 of the elliptic fibration by c2(Z3) = 12c1(B2)σ + 11c1(B2)
2 +

c2(B2). Here we have σ = B and thus obtain

c2(Z3) = 36H · B + 102H2 . (4.4)

To satisfy the heterotic anomaly formula (2.1), we have to construct the heterotic vec-

tor bundle E1 ⊕ E2 and compute the characteristic classes λ(Ei). Since Z3 is elliptically

fibered the classes λ(Ei) can be constructed using the basic methods of [24] that were

briefly mentioned in section 3.1. According to (3.4), we first need to specify the classes

η1, η2 ∈ H2(B2,Z) essential in the spectral cover construction. We furthermore restrict

E1 ⊕ E2 to be an E8 × E8 bundle over Z3 and choose both classes as η1 = η2 = 6c1(B2).

Then, we use the formula for the second Chern class of E8-bundles

λ(Ei) =
c2(Ei)

60
= ηiσ − 15σ2 + 135ηic1(B2)− 310c1(B2)

2 (4.5)

26



to obtain λ(E1) = λ(E2) = 18H · B − 360H2. The anomaly condition (2.1) then leads

to conditions on the coefficients of the independent classes in H4(Z3). For the class H · B

contributed by the base via σ ·H2(P2,Z) this is trivially satisfied by the choice of λ(Ei). This

implies that no horizontal five-branes are present. For the class of the fiber F the anomaly

forces the inclusion of vertical five-branes in the class C = c2(B2)+91c1(B2)
2 = 822H2 ≡ nfF .

Since F is dual to the base B2 the number nf of vertical branes is determined by integrating

C over P2,

nf =

∫

P2

C = 822. (4.6)

To conclude the heterotic side we compute the index I(Ei) since it appears in the identifica-

tion of moduli (3.13) and thus is crucial for the analysis of heterotic/F-theory duality. For

Z3 we use the formula (3.14) to obtain that I(E1) = I(E2) = 8 + 4 · 360 + 18 · 3 = 1502.

Next we include horizontal five-branes to the setup by shifting the classes ηi appropriately.

We achieve this by putting η2 = 6c1(B) − H . The class of the five-brane C can then be

determined analogous to the above discussion by evaluating (4.5) and imposing the anomaly

(2.1). It takes the form

C = 91c1(B2)
2 + c2(B2)− 45c1(B2) ·H + 15H2 +H · B = 702H2 +H · B , (4.7)

which means that we have to include five-branes in the base on a curve C in the class H of

the hyperplane of P2. Additionally the number of five-branes on the fiber F is altered to

nf = 702. Accordingly, the shifting of η2 changes the second index to I2 = 1019, whereas

I1 = 1502 remains unchanged.

Let us now turn to the dual F-theory description. We first construct the fourfold X4 dual

to the heterotic setup with no five-branes. In this case the base B3 of the elliptically fibered

fourfold is B3 = P1 × P2. This can be seen from the relation (3.5) of the classes ηi and the

fibration structure of B3 for E8-bundles. Since both classes equal 6c1 we have t = 0 and thus

the bundle L = OP2 is trivial as well as the projective bundle B3 = P(OP2 ⊕ OP2). Then

the fourfold X4 is constructed as the elliptic fibration over B3 with generic fiber given by

P1,2,3[6]. Again X4 is described as a hypersurface in a five-dimensional toric ambient space

V5 as described by the toric data in (4.11) if one drops the point (3, 2,−1, 0, 1) and sets the

divisor D to zero. The class of X4 is then given by

[X4] =
∑

i

Di = 6B + 18H + 12K , (4.8)

where the independent divisors are the base B3 denoted by B, the pullback of the hyperplane

H in P2 and of the hyperplane K in P1. Then, the basic topological data reads

χ(X4) = 19728 , h1,1(X4) = 3 , h3,1(X4) = 3277 , h2,1(X4) = 0. (4.9)
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Now we have everything at hand to discuss heterotic/F-theory duality along the lines of

section 3.2, in particular the map of moduli (3.13). As discussed there, the complex structure

moduli of the F-theory fourfold are expected to contain the complex structure moduli of Z3

on the heterotic side as well as the bundle and brane moduli of possible horizontal five-branes.

Indeed we obtain a complete matching by adding up all contributions in (3.13),

h3,1(X4) = 3277 = 272 + 1502 + 1502 + 1 , (4.10)

where it is crucial that no horizontal five-branes with possible brane moduli are are present.

To obtain the F-theory dual of the heterotic theory with horizontal five-branes, we have

to apply the recipe discussed in section 3.2. We have to perform the described geometric

transition of first tuning the complex structure moduli of the fourfoldX4 such that it becomes

singular over the curve C which we then blow up into a divisor D. This way we obtain a new

smooth Calabi-Yau fourfold denoted by X̂4. The toric data of this fourfold are given by

∆(X̂4) =



































−1 0 0 0 0 3D + 3B + 9H + 6K D1

0 −1 0 0 0 2D + 2B + 6H + 4K D2

3 2 0 0 0 B D3

3 2 1 1 0 H D4

3 2 −1 0 0 H −D D5

3 2 0 −1 0 H D5

3 2 0 0 1 K D7

3 2 0 0 −1 K +D D8

3 2 −1 0 1 D D9



































. (4.11)

where we included the last point (3, 2,−1, 0, 1) and a corresponding divisor D9 = D to

perform the blow-up along the curve C as follows.

Since the curve C on the heterotic theory is in the class H we have to blow-up over the

hyperplane class of P2 in B3. First we project the polyhedron ∆(X̂4) to the base B3 which is

done just by omitting the first and second column in (4.11). Then the last point maps to the

point (−1, 0, 1) that subdivides the two-dimensional cone spanned by (−1, 0, 0) and (0, 0, 1)

in the polyhedron of B3. Thus, upon adding this point the curve C = H in B2 corresponding

to this cone is removed from B3 and replaced by the divisor D corresponding to the new

point. Thus we see that the toric data (4.11) contain this blown-up base B3 in the last three

columns.

The fourfold is then realized as a generic constraint P = 0 in the class

[X̂4] = 6B + 18H + 12K + 6D . (4.12)
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Note that this fourfold has now three different triangulations which correspond to the various

five-brane phases on the dual heterotic side. The topological data for the new fourfold X̂4

are given by

χ(X̂4) = 16848 , h1,1(X̂4) = 4 , h3,1(X̂4) = 2796 , h2,1(X̂4) = 0 , (4.13)

where the number of complex structure moduli has reduced in the transition as expected.

If we now analyze the map of moduli (3.13) in heterotic/F-theory duality we observe

that we have to put h0(C, NZ3C) = 2 in order to obtain a matching. This implies, from

the point of view of heterotic/F-theory duality, that the horizontal five-brane wrapped on

C has to have two deformation moduli. Indeed, this precisely matches the fact that the

hyperplane class of P2 has two deformations since a general hyperplane is given by the linear

constraint a1x1 + a2x2 + a3x3 = 0 in the three homogeneous coordinates xi of P
2. Upon the

overall scaling it thus has two moduli parameterized by the P2 with homogeneous coordinates

ai. This way we have found an explicit construction of an F-theory fourfold with complex

structure moduli encoding the dynamics of heterotic five-branes.

In section 4.2 we provide further evidence for this identification by showing that one

can also construct X̂4 as a complete intersection starting with a heterotic non-Calabi-Yau

threefold. Unfortunately, it will be very hard to compute the complete superpotential for

the fourfold X̂4 since it admits such a large number of complex structure deformations. It

would be interesting, however, to extract the superpotential for a subsector of the moduli

including the two brane deformations.9 Later on we will take a different route and consider

examples with only a few complex structure moduli which are constructed by using mirror

symmetry.

4.2 Calabi-Yau Fourfolds from Heterotic Non-Calabi-Yau Threefolds

In this section we discuss the example of section 4.1 employing the blow-up proposal of

ref. [18] as discussed in section 2.3. More precisely, we will explicitly construct a non-Calabi-

Yau threefold Ẑ3 which is obtained by blowing up the horizontal five-brane curve into a

divisor. This translates the deformations of C into new complex structure deformations of

Ẑ3. The F-theory Calabi-Yau fourfold X̂4 is then naturally obtained from the base of Ẑ3 by

an additional P1 fibration. X̂4 is identical to the fourfold considered in section 4.1, despite

the fact that it is now realized as a complete intersection.

9If one considers exactly the mirror of X̂4, as we will in fact do in section 4.3, it might be possible to

embed this reduced deformation problem into the complicated deformation problem of X̂4 constructed in

this section.
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As in section 4.1 the starting point is the elliptic fibration Z3 over B2 = P
2 with a five-

brane wrapping the hyperplane class of the base. Let us describe the explicit construction

of Ẑ3. The blow-up geometry Ẑ3 is given by P(NZ3C). Z3 is a hypersurface {P = 0} in

a toric variety V4 and the curve C is given as a complete intersection of two hypersurfaces

in Z3, i.e. C = {h1 = 0} ∩ {h2 = 0} ⊂ Z3. The charge vectors of V4 are given by {ℓ(i)}

with i = 1, . . . , k. We are aiming to construct a five-dimensional toric variety which is given

by V̂5 = P(NV4C) and use the blow-up equation described in section 2.3. Let us denote

the divisor classes defined by hi by Hi and the charges of hi by µi = (µ
(1)
i , . . . µ

(k)
i ). Then,

the coordinates li of NV4Hi transform with charge µ
(m)
i under the k scaling relations. The

normal bundle NV4C is given by NV4H1 ⊕ NV4H2. Since we have to projectivize NV4C, we

have to include another C∗-action with charge vector ℓ
(k+1)

V̂5
acting non-trivially only on the

new coordinates li. The new charge vectors of V̂5 are thus given by the following table

coordinates of V4 l1 l2

ℓ
(1)

V̂5
ℓ(1) µ

(1)
1 µ

(1)
2

...
...

...
...

ℓ
(k)

V̂5
ℓ(k) µ

(k)
1 µ

(k)
2

ℓ
(k+1)

V̂5
0 1 1

As in (2.11), the blown-up geometry Ẑ3 is now given as a complete intersection

P = 0 , l1h2 − l2h1 = 0 . (4.14)

To apply this to the elliptic fibration over P2 with the polyhedron (4.1), one picks the curve C

given by {z̃ = 0} and {x1 = 0}. C is a genus zero curve and we will find that the exceptional

divisor D will be the first del Pezzo surface dP1 in accord with the discussion of section 2.3.

We construct the five-dimensional ambient manifold as explained above,

∆(Ẑ3) =





























-1 0 0 0 0 3B + 3D + 9H

0 -1 0 0 0 2B + 2D + 6H

3 2 0 0 0 B

3 2 1 1 1 H

3 2 -1 0 0 H

3 2 0 -1 0 H

3 2 0 0 -1 D

0 0 0 0 -1 H −D





























. (4.15)

Note that one has to include the inner point (3, 2, 0, 0, 0) which corresponds to the base of

the elliptic fibration Ẑ3. Furthermore, one shows that the point (0, 0, 0, 0, 1), required for the
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above scalings, can be omitted since the associated divisor does not intersect the complete

intersection Ẑ3. Explicitly the complete intersection Ẑ3 is given by a generic constraint in

the class

Ẑ3 : (6B + 6D + 18H) ∩H , (4.16)

where H,B,D are the divisor classes of the ambient space (4.15). The first divisor in (4.16)

is the sum of the first seven divisors in (4.15) and corresponds to the original Calabi-Yau

constraint P = 0 in (4.14). The second divisor in (4.16) is the sum of the last two divisors

and is the class of the second equation of (4.14). This complete intersection threefold has

χ(Ẑ3) = −538 = χ(Z3) − χ(P1) + χ(dP1), and one checks that the exceptional divisor D

has the characteristic data of a del Pezzo 1 surface. This means that we have replaced the

hyperplane isomorphic to P
1 in the base with the exceptional divisor which is dP1. It can

be readily checked that the first Chern class of Ẑ3 is non-vanishing and equals −D.

Having described the blow-up geometry, we now turn to the construction of the fourfold

X̂4 for F-theory. This fourfold will also be constructed as complete intersection, but it will

be the same manifold as the fourfold described in section 4.1, equation (4.11). We fiber an

additional P1 over P(∆(Ẑ3)) which is only non-trivially fibered along the exceptional divisor.

This is analogous to the construction of the dual fourfold in the heterotic/F-theory duality

where one also fibers P1 over the base twofold of the Calabi-Yau threefold to obtain the

F-theory fourfold. Here we proceed in a similar fashion but construct a P1-fibration over

the base of the non-Calabi-Yau manifold Ẑ3. This base is a complete intersection and thus

leads to a realization of X̂4 as a complete intersection. Concretely, we have the following

polyhedron

∆(X̂4) =







































−1 0 0 0 0 0 3D + 3B + 9H + 6K D1

0 −1 0 0 0 0 2D + 2B + 6H + 4K D2

3 2 0 0 0 0 B D3

3 2 1 1 1 0 H D4

3 2 −1 0 0 0 H D5

3 2 0 −1 0 0 H D6

3 2 0 0 0 1 K D7

3 2 0 0 0 −1 K +D D8

0 0 0 0 −1 1 D D9

0 0 0 0 −1 0 H −D D10







































. (4.17)

The fourfold X̂4 is given as the following complete intersection

X̂4 : (6B + 6D + 18H + 12K) ∩H . (4.18)

Note that this fourfold is indeed Calabi-Yau as can be checked explicitly by analyzing the

toric data (4.17). For complete intersections the Calabi-Yau constraint is realized via the two
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partitions, so-called nef partitions, in (4.17) as in refs. [62]. The first nef partition yields the

sum of the first eight divisors
∑8

i=1Di in (4.17) and gives the first constraint in (4.18). The

second nef partition yields the sum of the last two divisors D9 +D10 in (4.17) and yield the

second constraint in (4.18). The divisors D7 and D8 correspond to the P1 fiber in the base

of X̂4 obtained by dropping the first two columns in (4.17). This fibration is only non-trivial

over the exceptional divisors D9 = D in the second nef partition of (4.17). Note that if one

simply drops K from the expression (4.18) one formally recovers the constraint (4.16) of Ẑ3.

To check that the complete intersection X̂4 is precisely the fourfold constructed in section

4.1, one has to compute the intersection ring and Chern classes. In particular, it is not hard

to show that also (4.17) has three triangulations matching the result of section 4.1.

In summary, we have found that there is a natural construction of X̂4 as complete in-

tersection with the base obtained from the heterotic non-Calabi-Yau threefold Ẑ3. Let us

stress that this construction will straightforwardly generalize to dual heterotic/F-theory se-

tups with other toric base spaces B2 and different types of bundles. For example, to study

the bundle configurations on Z3 of section 4.1 with η1,2 = 6c1(B2)± kH, k = 0, 1, 2 one has

to replace

D4 → (3, 2, 1, 1, k) , D4 → (3, 2, 1, 1, 1, k) , (4.19)

in the polyhedra (4.11) and (4.17), respectively. Moreover, also bundles which are not of

the type E8 ×E8 can be included by generalizing the form of the P1 fibration just as in the

standard construction of dual F-theory fourfolds.

4.3 Example 2: Five-Brane Superpotential in Heterotic/F-Theory Duality

Let us now discuss a second example for which the F-theory flux superpotential can be

computed explicitly since the F-theory fourfold admits only few complex structure moduli.

Clearly, using mirror symmetry such fourfolds can be obtained as mirror manifolds of ex-

amples with few Kähler moduli. To start with, let us consider heterotic string theory on

the mirror of the Calabi-Yau threefold which is an elliptic fibration over P2. This mirror is

the heterotic manifold Z3. One shows by using the methods of ref. [60], that this Z3 is also

elliptically fibered, such that, at least in principle, one can construct the bundles explicitly.

The polyhedron of Z3 is the dual polyhedron to (4.1) and the Weierstrass form of Z3 is as

follows

µ3 = x3 + y2 + xyz̃a0u1u2u3 + z̃6(a1u
18
1 + a2u

18
2 + a3u

18
3 + a4u

6
1u

6
2u

6
3). (4.20)

The coordinates {ui} are the homogeneous coordinates of the twofold base B2. Note that

one finds that the elliptic fibration of this Z3 is highly degenerate over B2. The threefold

is nevertheless non-singular since the singularities are blown up by many divisors in the

32



toric ambient space of Z3. In writing (4.20) many of the coordinates parameterizing these

additional divisors have been set to one.10 Turning to the perturbative gauge bundle E1⊕E2

we will restrict in the following to the simplest bundle SU(1)× SU(1) which thus preserves

the full perturbative E8 × E8 gauge symmetry in four dimensions. To nevertheless satisfy

the anomaly condition (2.1) one also has to include five-branes. In particular, we consider a

five-brane in Z3 given by the equations

h1 = b1u
18
1 + b2u

6
1u

6
2u

6
3 = 0 , h2 = z̃ = 0 . (4.21)

The curve C wrapped by the five-brane is thus in the base B2 of Z3. Unfortunately, it is hard

to check (2.1) explicitly as in the example of section 4.1 since there are too many Kähler

classes in Z3. However, one can proceed to construct the associated Calabi-Yau fourfold X̂4

which encodes a consistent completion of the setup.

The associated fourfold X̂4 cannot be constructed as it was done in section 4.1. However,

one can employ mirror symmetry to first obtain the mirror fourfold Mir(X̂4) of X̂4 as Calabi-

Yau fibration

Mir(Z3) // Mir(X̂4)

��

P1

(4.22)

where Mir(Z3) is the mirror of the heterotic threefold Z3 [4]. This naturally leads us to

identify X̂4 as the mirror to the fourfold (4.11) from section 4.1. This fourfold is also the

main example discussed in detail in ref. [7]. In the following we will check that this is indeed

the correct identification by using the formalism of refs. [4, 26]. The Weierstrass form of X̂4

can be computed using the dual polyhedron of (4.11) yielding

µ4 = y2 + x3 +m1(ui, wj, km)xyz +m6(ui, wj, km)z
6 = 0 , (4.23)

where

m1(wj, ui) = a0u1u2u3w1w2w3w4w5w6k1k2 ,

m6(wj, ui) = a1(k1k2)
6u18

1 w18
1 w18

2 w6
5w

6
6 + a2(k1k2)

6u18
2 w18

3 w12
5

+a3(k1k2)
6u18

3 w18
4 w12

6 + a4(k1k2)
6(u1u2u3w1w2w3w4w5w6)

6 (4.24)

+b1k
12
2 u18

1 w24
1 w12

2 w6
3w

6
4 + b2k

12
2 (u1u2u3)

6(w1w3w4)
12

+c1k
12
1 (u1u2u3)

6(w2w5w6)
12.

The coordinates ui are the coordinates of the base twofold B2 as before and wi, k1, k2 are

the additional coordinates of the base threefold B3. Again, note that we have set many

10Note that the blow-down of these divisors induces a large non-perturbative gauge group in the heterotic

compactification.
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coordinates to one to display µ4. The chosen coordinates correspond to divisors which

include the vertices of ∆(X4) and hence determine the polyhedron fully. In particular, one

finds that k1, k2 are the coordinates of the fiber P
1 over B2. The coefficients ai, b1, b2, c1 denote

coefficients encoding the complex structure deformations of X̂4. However, since h
3,1(X̂4) = 4,

there are only four complex structure parameters rendering six of the ai redundant. As the

first check that X̂4 is indeed the correct geometry, we use the stable degeneration limit [24]

and write µ4 in a local patch with appropriate coordinate redefinition as follows [4]

µ4 = p0 + p+ + p− , (4.25)

where

p0 = x3 + y2 + xyz̃a0u1u2u3 + z̃6
(

a1u
18
1 + a2u

18
2 + a3u

18
3 + a4u

6
1u

6
2u

6
3

)

,

p+ = vz̃6
(

b1u
18
1 + b2u

6
1u

6
2u

6
3

)

, (4.26)

p− = v−1z̃6c1u
6
1u

6
2u

6
3 .

The coordinate v is the affine coordinate of the fiber P1. In the stable degeneration limit

{p0 = 0} describes the Calabi-Yau threefold of the heterotic string. In this case p0 coincides

with µ3 which means that the heterotic Calabi-Yau threefold of X̂4 is precisely Z3. This

shows that the geometric moduli of Z3 are correctly embedded in X̂4. The polynomials p±

encode the perturbative bundles, and the explicit form (4.26) shows that one has a trivial

SU(1)× SU(1) bundle. This fact can also be directly checked by analyzing the polyhedron

of X̂4 using the methods of [34, 61]. One shows explicitly that over each divisor ki = 0 in

B3 a full E8 gauge group is realized. Since the full E8 ×E8 gauge symmetry is preserved we

are precisely in the situation of section 3.2, where we recalled from ref. [26] that a smooth

X̂4 contains a blow-up corresponding to a heterotic five-brane. We will now check that this

allows us to identify the brane moduli in the duality.

Let us now make contact to section 3.2. To make the perturbative E8 × E8 gauge

group visible in the Weierstrass equation (4.23), we have to include new coordinates (k̃1, k̃2)

replacing (k1, k2). This can be again understood by analyzing the toric data using the

methods of [61, 34]. We denote by (3, 2, ~µ) the toric coordinates of the divisor corresponding

to k̃1 in the Weierstrass model. Then the resolved E8 singularity corresponds to the points11

(3, 2, n~µ), n = 1, ..., 6 , (2, 1, n~µ), n = 1, ..., 4 , (4.27)

(1, 1, n~µ), n = 1, 2, 3 , (1, 0, n~µ), n = 1, 2 , (0, 0, ~µ)

11Note that we have chosen the vertices in the P1,2,3[6] to be (−1, 0), (0,−1), (3, 2) to match the discussion

in refs. [34, 61]. However, if one explicitly analyses the polyhedron of X̂4 one finds that one has to apply a

Gl(2,Z) transformation to find a perfect match. This is due to the fact that X̂4, in comparison to its mirror

Mir(X̂4), actually contains the dual torus as elliptic fiber.
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While (3, 2, 6~µ) corresponding to k1 is a vertex of the polyhedron, (3, 2, ~µ) corresponding to

k̃1 is an inner point. Using the inner point for k̃1, the Weierstrass form µ4 changes slightly,

while the polynomials p0, p+ and p− can still be identified in the stable degeneration limit.

To determine g5 in (3.9), we compute g of the Weierstrass form in a local patch where k̃2 = 1

g = k̃5
1

(

b1u
18
1 + b2u

6
1u

6
2u

6
3 + k̃1

(

a1u
18
1 + a2u

18
2 + . . .

)

)

. (4.28)

The dots contain only terms of order zero or higher in k̃1. Comparing this with (3.12), g5 is

given by

g5 = b1u
18
1 + b2u

6
1u

6
2u

6
3. (4.29)

This identifies {g5 = 0} with the curve of the five-brane in the base B2 of Z3 and is in

accord with (4.21). One concludes that X̂4 is indeed a correct fourfold associated to Z3

with the given five-brane. As we can see from (4.29), the five-brane has one modulus. If we

compare g5 with p+, we see that p+ = vz̃6g5. This nicely fits with the bundle description. In

our configuration, p+ and p− should describe SU(1)-bundle since we have the full unbroken

perturbative E8×E8-bundle as described above. The SU(1)-bundles do not have any moduli,

such that the moduli space corresponds to just one point [24]. In the explicit discussion of

the Weierstrass form in our setting, p+ has one modulus which corresponds to the modulus

of the five-brane. Note that the Calabi-Yau fourfold X̂4 is already blown up along the curve

k̃1 = g5 = 0 in the base of X̂4. This blow-up can be equivalently described as a complete

intersection as we discussed in the previous sections. A simple example of such a construction

was presented in section 4.2.

Finally, we consider the computation of the flux superpotential. Here, we do not need to

recall all the details, since the superpotential for this configuration was already studied in

ref. [7]. The different triangulations of Mir(X̂4) correspond to different five-brane configu-

rations. The four-form flux, for one five-brane configurations, was shown to be given in the

basis elements

γ̂
(2)
1 = 1

2
θ4(θ1 + θ3)Ω4|z=0 , γ̂

(2)
1 = 1

7
θ2(θ2 − 2θ1 + 6θ4 − θ3)Ω4|z=0 , (4.30)

where the θi = zi
d
dzi

are the logarithmic derivatives as introduced in (3.28). The moduli z1, z2

can be identified as the deformations of the complex structure of the heterotic threefold Z3,

while z3 corresponds to the deformation of the heterotic five-brane.12 A non-trivial check

of this identification was already provided in [7], where it was shown that the F-theory

flux superpotential in the directions (4.30) matches with the superpotential for a five-brane

configuration in a local Calabi-Yau threefold obtained by decompactifying Z3. This non-

compact five-brane can be described by a point on a Riemann surface in the base B2 of

12The deformation z4 describes the change in p
−
.

35



Z3. Using heterotic F-theory duality as in section 3, one can now argue that the flux (4.30)

actually describes a compact heterotic five-brane setup.

5 Conclusion

In this work we have studied the dynamics of heterotic five-branes using the duality between

the heterotic string and F-theory compactifications. In particular, we have exploited the

fact that five-branes wrapped on the base of an elliptically fibered Calabi-Yau threefold

Z3 map under duality into the geometry of the F-theory Calabi-Yau fourfold X4. This

implies that the heterotic five-brane superpotential has to be identified with a F-theory flux

superpotential. On the heterotic side the five-brane superpotential is given by a chain integral
∫

Γ
Ω over the holomorphic three-form of Z3. Upon identifying the F-theory four-form flux

which corresponds to this three-chain Γ, the determination of the superpotential becomes

a tractable task [7]. This is due to the fact that the deformation moduli of the five-brane

are mapped to complex structure deformations of the dual Calabi-Yau fourfold X4. Their

dynamics is then captured by the periods of the holomorphic four-form on X4.

The construction of the F-theory fourfold dual to a five-brane has been argued to involve

a blow-up of the five-brane curve [5, 4]. We have provided further evidence for this proposal

by noting that this blow-up can also be performed in the heterotic Calabi-Yau threefold.

Following our discussion in ref. [18], the deformation moduli of the five-brane curve become

new complex structure deformation of the blown-up Kähler threefold. This space is no

longer Calabi-Yau and the vanishing of Ω̂ implies, that the heterotic flux naturally maps

to the relative cohomology of Ẑ3. This allows for an equal treatment of the different parts

of the superpotential by expressing the complete heterotic flux supporting both the five-

brane and flux superpotential as derivatives of Ω̂ with respect to the complex structure of

Ẑ3. Finally, we were able to explicitly show that there exists a natural map of this non-

Calabi-Yau threefold to the F-theory Calabi-Yau fourfold. In an upcoming publication [63]

such maps from a more general class of non-Calabi-Yau threefolds to Calabi-Yau fourfolds

is constructed and verified by explicit computations on both geometries.

By the identification of the fourfold variables (3.23) with the heterotic variables in the

superpotentials WG4(t) = Whet(t
c, tg, to), the integral structure (3.36) of the fourfold sym-

plectic invariants at large volume [8, 57] is now inherited to the heterotic superpotentials in

geometric phases of their parameter spaces. For the superpotential from five-branes wrapped

on a curve C this matches naturally the disk multi-covering formula of [58], since this part

is mapped by mirror symmetry to disk instantons ending on special Lagrangians L mirror
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dual to C. Similar for the heterotic flux superpotential it matches the expectations from

the rational curve counting on threefolds as encoded in the period of the threefold. For the

Chern-Simons part of the potential we obtain by our construction integer geometric invariants

for the gauge bundles on Calabi-Yau threefolds whose precise relation to Donaldson-Thomas

invariants is an interesting subject of research. Finally the Picard-Fuchs system of the four-

fold allows to analytically continue the superpotential away from the geometric phases of the

open/gauge and closed moduli space into the interior of this moduli space and to find the

correct open and closed flat coordinates in these regions, see e.g. for the orbifold points [64].

Let us point out some applications of our results. Firstly, the computation of the su-

perpotential is crucial in the study of moduli stabilization. The F-theory fourfold setup

provides powerful tools to determine heterotic vacua in which five-brane and bundle moduli

are stabilized. As the F-theory flux superpotential can be determined at an arbitrary point

in the moduli space, one is able to study a landscape of heterotic vacua with five-branes and

gauge-bundle configurations far inside the moduli space. Since the F-theory Kähler potential

for the complex structure moduli of the Calabi-Yau fourfold is computable as a function of

the periods of the holomorphic four-form, one also expects to determine the kinetic terms

of the five-brane and bundle moduli at different points in the moduli space. It will be an

interesting task to explicitly determine the heterotic Kähler potential close to singular con-

figurations and to search for interesting supersymmetric and non-supersymmetric vacua in

analogy to the Type IIB analysis [39, 40, 41].

A second application will be the study of the heterotic compactifications which are dual

to phenomenologically appealing F-theory vacua. Recently, in refs. [65], a promising class

of Calabi-Yau fourfolds for GUT model building was constructed by blowing up singular

curves in the base of an elliptic fourfold. The geometries were explicitly realized as complete

intersections in a toric ambient space. Remarkably, these manifolds share various proper-

ties with the geometries constructed in this work. To explore this relation and the use of

heterotic/F-theory duality in more detail will be an interesting and important task [66].
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