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ABSTRACT

The four-dimensional N = 1 effective action of F-theory compactified on a Calabi-

Yau fourfold is studied by lifting a three-dimensional M-theory compactification. The

lift is performed by using T-duality realized via a Legendre transform on the level of the

effective action, and the application of vector-scalar duality in three dimensions. The

leading order Kähler potential and gauge-kinetic coupling functions are determined. In

these compactifications two sources of gauge theories are present. Space-time filling non-

Abelian seven-branes arise at the singularities of the elliptic fibration of the fourfold.

Their couplings are included by resolving the singular fourfold. Generically a U(1)r

gauge theory arises from the R-R bulk sector if the base of the elliptically fibered Calabi-

Yau fourfold supports 2r harmonic three-forms. The gauge coupling functions depend

holomorphically on the complex structure moduli of the fourfold, comprising closed and

open string degrees of freedom. The four-dimensional electro-magnetic duality is studied

in the three-dimensional effective theory obtained after M-theory compactification. A

discussion of matter couplings transforming in the adjoint of the seven-brane gauge group

is included.
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1 Introduction

In connecting string theory with effectively four-dimensional observable physics one

breaks the high amount of symmetry present in the ten-dimensional formulation on a

compactification background. Demanding the existence of an effective four-dimensional

N = 1 supergravity theory improves the stability of the compactifications while still

leading to interesting phenomenological scenarios. However, even if one is able to guar-

antee the presence of the observed particle spectrum, the symmetry breaking induces a

massless moduli sector which would be in conflict with experiment. There has been vast

progress to establish scenarios to stabilize these scalar fields [1, 2, 3]. This is particularly

important due to the fact, that these fields determine the value of the four-dimensional

couplings and scales. Global consistency conditions restrict valid scenarios, but are not

believed to single out specific effective theories, or select a preferred vacuum. Thus, it is a

crucial task to determine the realized N = 1 effective theories with a realistic observable

sector and evaluate their generic features.

In the last years there has been much progress in the study of Type II string compacti-

fications with D-branes. These set-ups allow to localize non-Abelian gauge theories in the

internal geometry, which arise on space-time filling D-branes or via light D-brane states on

vanishing cycles in a singular geometry. Charged matter fields can arise on intersections

of these branes. This allows for the possibility to construct set-ups resembling the four-

dimensional particle spectrum and couplings of the MSSM [4, 2]. However, intersecting

D-brane models do not naturally support GUT theories, since the required couplings are

only generated at the non-perturbative level [5, 6]. Moreover, despite much progress, the

implementation of moduli stabilization for D-brane deformations poses additional com-

plications. Both of these issues are naturally addressed in F-theory compactifications

which provides a geometrization of general seven-brane configurations.

In this work we will focus on Type IIB compactifications in which the gauge sym-

metries arises from space-time filling seven-branes or from vector zero modes of the

R-R four-form. Type IIB compactifications with general seven-brane sources and vary-

ing dilaton-axion τ are known as F-theory compactifications [7]. F-theory provides a

geometrization of the seven-branes by considering backgrounds which admit two extra

dimensions confined on an auxiliary two-torus with complex structure parameter τ . The

aim of this work is to study the four-dimensional effective supergravity actions arising

in such F-theory compactifications. Demanding N = 1 supersymmetry implies that F-

theory has to be compactified on Calabi-Yau fourfolds X4. The existence of the auxiliary

two-torus then translates to the fact that X4 has to be an elliptic fibration over some

base B3. The singularities of this fibration determine the four-cycles in B3 wrapped by
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the seven-brane of Type IIB string theory on B3.

In general F-theory compactifications the elliptic fibration X4 can admit singularities

associated with exceptional groups. This fact permits the existence of four-dimensional

models with induced couplings following the selection rules of the representation theory

of exceptional groups. This is crucial for many minimal constructions of GUT models

with unified gauge-groups SU(5) or SO(10). This fact has revived a recent interest in the

construction of realistic GUT models in F-theory starting with [8, 9, 10].2 However, in

the aim to connect these models with a moduli stabilizing sector the coupling to gravity

is essential. Compact F-theory GUT models have been recently studied in [19, 20, 21,

22, 23], while F-theory up-lifts of orientifold models have been constructed in [24, 25]. In

particular, the explicitly resolved Calabi-Yau fourfolds with a single non-Abelian gauge

group of [20, 21, 22] can be viewed as simple examples for which the effective action

computed in this work can be evaluated. A landscape of semi-realistic GUT models can

thus be studied in an effective theory with a GUT sector coupled to a moduli stabilization

sector.

Aiming to derive such a four-dimensional effective theory one immediately faces the

problem that F-theory is not a fundamental theory with a twelve-dimensional weak cou-

pling formulation. The detour which one has to take is to consider first a compactification

of M-theory on the Calabi-Yau fourfold X4 to three space-time dimensions [7]. Using the

fact that X4 is an elliptic fibration, one then identifies a limit which shrinks the fiber

torus and grows the fourth non-compact dimension [3]. The basic idea is to fiberwise ap-

ply the duality between M-theory on T 2 and Type IIB string theory on S1 after applying

T-duality [26, 27]. Sending the volume of the T 2 to zero corresponds to the F-theory limit

in which the S1 becomes large. Since this will be our way to extract the four-dimensional

effective action it will be crucial to formulate this limit very explicitly. M-theory vacua on

Calabi-Yau fourfolds have been analyzed in refs. [28, 29].3 The effective three-dimensional

action of M-theory on a general, non-singular Calabi-Yau fourfold at large volume has

been studied in ref. [30].4 We simplify the computations of [30] and provide the tools to

implement the F-theory limit.

To keep control of the M-theory reduction in the F-theory limit all Euclidean M5-

branes wrapped on holomorphic six-cycles in X4 have to be of large action. We argue

that this requirement can be fulfilled even in the limit of a small elliptic fiber, and can

be traced back to the fact that the appropriately identified vanishing T 2-volume R is

2In particular, phenomenological issues concerning the flavor structure have been addressed in local
F-theory models. An incomplete list of recent refs. is [11, 12, 13, 14, 15, 16, 17, 18].

3In this paper we will neglect the effects of warping by working at very large compactification volume.
4See also refs. [31, 32], and references therein, for discussions on the F-theory action in compactifica-

tions with more supersymmetry.
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connected with the action of a corresponding Euclidean M5-brane on B3 via a Legendre

transform. The F-theory limit can be obtained by following Euclidean M5-branes in M-

theory which map to finite action Euclidean D3-branes in F-theory [33]. Furthermore, it

will be crucial to use the existence of a well-defined four-dimensional theory arising after

decompactification.

The F-theory limit will be extended to set-ups with non-Abelian gauge symmetry

on seven-brane in which case a more subtle scaling of the fields has to be applied. The

four-dimensional gauge field degrees of freedom in the Coulomb branch arise in the three-

dimensional action as vector modes of the M-theory three-form paired with blow-up

modes of the singular fibration of X4. In three-dimensional theories with four super-

charges vectors pair with real scalars into multiplets. We will use this fact and show that

the four-dimensional Kähler potential and gauge-kinetic coupling function can be encoded

by a single three-dimensional kinetic potential KM. Expanding KM for small fiber vol-

umes R of the elliptic Calabi-Yau fourfold, one can directly read of the four-dimensional

F-theory Kähler potential and gauge-coupling functions. In this way we show that for

a non-Abelian gauge group the gauge-coupling function is to leading order given by the

volume of the wrapped seven-branes and explore the structure of further corrections.

We show that matter transforming in the adjoint of the seven-brane gauge group can

be coupled in the M-theory reduction. In the F-theory lift this matter corresponds to

deformations of the seven-branes as well as Wilson line degrees of freedom. The D-terms

together with the flux induced contribution are computed using the four-dimensional

Kähler metric along the gauged directions. Also the flux induced superpotential together

with a direct coupling of the adjoint deformations and Wilson lines on the seven-branes

are discussed.

A second source of four-dimensional gauge symmetry arises from the scalars appearing

as coefficients of an expansion of the M-theory three-form into a basis of non-trivial three-

forms on B3. In three dimensions, one uses the complex structure of X4 to combine

these scalars into complex fields which span a complex torus bundle T over the moduli

space of complex structure deformations of X4. In three dimensions massless vectors

and scalars are dual, and we show that these scalars indeed lift to four-dimensional

vectors in the F-theory limit. The holomorphic gauge coupling functions dependents

on the complex structure moduli of the fourfold X4, and encodes the geometry of the

torus bundle T. Four-dimensional electro-magnetic duality can be studied in the three-

dimensional theory and allows to constrain the form of the gauge-couplings and non-

perturbative superpotentials.

The paper is organized as follows. In section 2 we systematically introduce the lift

of three-dimensional M-theory compactifications to four-dimensional F-theory compact-
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ifications. The Kähler moduli sector is discussed from a Type IIB and an M-theory

perspective, and we introduce the usage of Legendre transforms in the effective theories.

In section 3 we discuss non-Abelian seven-branes, and show how their couplings can be

studied in an M-theory reduction. It will be crucial to resolve the singularities of the

elliptic fibration and later define an appropriate scaling limit in the F-theory lift. The

Abelian gauge theories arising from the R-R four-form of Type IIB string theory is intro-

duced in section 4 using the M- to F-theory lift. We discuss the action of electro-magnetic

duality on the three-dimensional variables and comment on the properties of the gauge

coupling function and the three-dimensional superpotential. Finally, in section 5, matter

transforming in the adjoint of the seven-brane gauge group is included. The corrections

to the Kähler potential are determined in the F-theory lift. This allows to study the

D-terms and to comment on the N = 1 superpotential of the effective theory.

For the convienience of the reader, the main equations and results of this work are

summarized in appendix A.

2 Systematics of F-theory compactifications

In this section we summarize the general strategy which we use to study F-theory com-

pactifications. A first look at Calabi-Yau fourfolds with seven-branes in subsection 2.1

allows us to summarize the uncharged four-dimensional spectrum of a general F-theory

compactification in subsection 2.2. In subsection 2.3 simple aspects of the Kähler moduli

space are discussed from a Type IIB perspective. Our main tool in the determination

of the effective action will be to understand F-theory compactifications as a limit in the

M-theory Kähler moduli space in which a new non-compact dimension grows. This lift

from a three- to a four-dimensional compactification is introduced in subsection 2.4, and

will be extend in the following sections. Finally, in subsection 2.5 we summarize some

basics about complex structure deformations on smooth Calabi-Yau fourfolds.

2.1 Type IIB string compactifications with seven-branes

Recall that ten-dimensional Type IIB string theory is believed to admit a non-perturbative

Sl(2,Z) symmetry. This group acts non-trivially on the dilaton-axion τ = C0 + ie−φ,

where C0 is the R-R axion and e〈φ〉 = gs is the string coupling. Since eight-dimensional

branes couple to τ this implies that in addition to the well-known D7-branes also more

general seven-branes obtained by an Sl(2,Z) transformation can be included in a con-

sistent Type IIB compactification. In this work we will focus on four-dimensional Type

IIB string theory compactified on a complex three-dimensional manifold B3. The seven-
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branes are wrapped on four-cycles, i.e. divisors, in B3. In consistent solutions the tension

of the seven-branes is locally canceled by the positive curvature of a Kähler base manifold

B3. All 7-branes are sources for τ and hence are identified by the behavior of the dilaton-

axion τ profile on the compactification background. Close to the seven-branes τ can

vary significantly and one is not generically at weak string coupling. The weak coupling

limit is only approached when moving the seven-branes together to form O7-planes with

the remaining branes being D7-branes [34]. In this limit the cancellation of seven-brane

tension with the curvature of B3 translates to the standard cancellation condition of the

D7-brane tadpole.

Type IIB compactifications with general seven-brane sources and varying complex

dilaton-axion τ are known as F-theory vacua [7]. F-theory provides a geometrization of

the seven-branes by considering backgrounds M3,1 ×X4 which admit two auxiliary extra

dimensions. Such extended solutions are constructed by attaching at each point of the

original ten-dimensional Type IIB target space M3,1 × B3 an auxiliary two-torus with

complex structure parameter τ . The profile of τ translates to the non-trivial torus fibra-

tion structure of the fourfold X4 when moving along B3. The supersymmetry conditions

and equations of motion for τ enforce this fibration to be an elliptic fibration, with τ

varying holomorphically in the complex coordinates u of B3. Note that in order for the

four-dimensional effective theory to be N = 1 supersymmetric the fourfold X4 has to be

a Calabi-Yau manifold.

Examples of such fourfolds can be represented by a complex polynomial constraints

in a projective or toric ambient space. In particular, one can consider X4 encoded by the

Weierstrass equation

PW = x3 − y2 + f(u)xz4 + g(u)z6 = 0 , (2.1)

as well as a number of additional constraints Pi(u) = 0. The coordinates (x, y, z, u) are

in general restricted by a number of scaling relations. In particular, for (y, x, z) one has

the scaling relation (y, x, z) ∼= (λ3y, λ2x, λz). Note that for f and g constant (2.1) indeed

defines a a two-torus given by a degree 6 hypersurface in weighted projective space P3,2,1.

This two-torus can degenerate over divisors in B3. These degeneration loci precisely

locate the seven-branes on the base, and are determined by the discriminate

∆ = 27 g2 + 4 f 3 . (2.2)

The dilaton-axion profile τ(u) is then specified by the value of the classical SL(2,Z)

modular invariant j-function j(τ) = 4(24 f)3/∆.

In general ∆ can factorize into several components corresponding to different inter-

secting seven-branes. The singularities of the elliptic fibration over these seven-brane
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divisors in B3 determine the gauge groups on the seven-branes. In the rest of the paper

we will restrict to configurations with a single stack of seven-branes on a surface S leading

to non-Abelian gauge group G. More precisely, we will restrict to examples where the

class of ∆ splits as

[∆] = rk(G)[S] + [∆′] , (2.3)

where rk(G) is the number of seven-branes wrapped on S. Such a non-trivial factorization

might be imposed by tuning the complex structure of a smooth X4 to appropriately

degenerate the elliptic fibration over S to obtain the non-Abelian gauge symmetry. A

number of examples of this type have been constructed in refs. [20, 21], with the aim to

build compact SU(5) GUT models.

It is important to note that in case one has a non-Abelian gauge group on S the

degeneration of the elliptic fibration is so severe that the Calabi-Yau fourfold itself be-

comes singular. Let us denote this singular space by Xsing
4 . In this case it is not possible

to work with the singular space Xsing
4 directly since the topological quantities such as

the Euler characteristic and intersection numbers are not well-defined. In many cases,

however, the singularities can systematically be blown up to obtain a smooth geometry

X̂4 [35, 36, 37, 20, 21]. We will discuss this blow-up process in more detail in section 3.1.

In summary, a possible way to construct examples is

X4
fix complex str.−−−−−−−−−−→ Xsing

4

Kähler blow-up−−−−−−−−−→ X̂4 . (2.4)

It is important to stress that many singular elliptic Calabi-Yau fourfolds Xsing
4 might

not admit a corresponding smooth X4 obtained by complex structure deformation. In

principle, this does not mean that F-theory on such spaces is not defined. Examples

which do not admit a X4 have a minimal gauge-group and have been studied intensively

(see e.g. refs. [35, 36, 37], for Calabi-Yau threefold examples). For the discussion in this

work, it will be necessary for Xsing
4 to at least admit a resolution X̂4 as described in

section 3.1.

Using such a set-up, we can determine the spectrum of the four-dimensional effective

theory. The precise number of zero modes will be determined by the topological data

of the Calabi-Yau fourfold and the surface S together with the non-trivial gauge-field

configuration on S. To summarize this spectrum will be the task of the next subsection.

2.2 The four-dimensional spectrum

In order to study F-theory compactifications, it is crucial to identify the fields which

appear as the light degrees of freedom in the four-dimensional effective theory. In general,

this is a hard task since the precise number does not only depend on the topological data
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of the Calabi-Yau fourfold X̂4, but also will require a knowledge of the flux background

used in the reduction. To get a clue on the spectrum we take the standard strategy to

first consider the case where all background fluxes are switched off. However, this will

particularly be problematic when determining the chiral spectrum from the seven-branes,

since four-dimensional chirality is only induced by a non-trivial flux background on the

branes. We will need to return to this issue in section 5.

To summarize the spectrum in the absence of fluxes, we first summarize a few facts

on the dimension of the cohomology groups of Calabi-Yau fourfolds X̂4. Let us denote

by hp,q(B3) and h
p,q(X̂4) the Hodge numbers of the base B3 and the resolved Calabi-Yau

fourfold X̂4 respectively. Note that a Calabi-Yau fourfold has three independent non-

trivial Hodge numbers h1,1(X̂4), h
2,1(X̂4), and h3,1(X̂4). The remaining non-vanishing

Hodge numbers are given by

X̂4 : h4,0 = h0,0 = h4,4 = 1 , h2,2 = 2(22 + 2h1,1 + 2h3,1 − h2,1) . (2.5)

For the basis B3 one only finds two non-trivial Hodge numbers h1,1(B3) and h2,1(B3).

Note that the fact that hi,0(X̂4) = 0, i = 1, 2, 3 implies that also hi,0(B3) = 0.

In the absence of background flux the number of four-dimensional chiral multiplets

with scalar components being a complex scalar can be given in terms of the Hodge

numbers of X4, X̂4 and B3. The number of chiral multiplets is given by

nc = h3,1(X4) + h1,1(B3) + (h2,1(X̂4)− h2,1(B3)) . (2.6)

To see this, one has to enter the precise prescription of the dimensional reduction. The

first contribution h3,1(X4) is readily seen to arise from the deformations of the complex

structure of X4.
5 These fields include the deformation moduli of the seven-branes and we

will discuss this sector in subsection 2.5. The second contribution h1,1(B3) arises from the

zero modes of the Kähler form J of X̂4 expanded in harmonic two-forms on B3. These

are complexified by scalars arising from the R-R four-form C4 of Type IIB string theory.

The third contribution h2,1(X̂4)− h2,1(B3) is harder to identify in the Type IIB context,

since it involves the full fourfold X̂4. We will come back to the explanation in the later

parts of this work. In the next sections we will stepwise consider more and more general

compactifications with fourfolds X̂4 with non-trivial h2,1(X̂4), h
2,1(B3) and identify the

corresponding fields and their effective couplings.

Let us also display the equation for the number of vector multiplets in the four-

dimensional spectrum. As we will discuss in more detail below, the number of possible

5If a smooth X4 does not exist, one can analyze h3,1(X̂4) complex structure deformations which

preserve the singularities of Xsing
4 . Additional deformations can exist locally and are included as two-

form variations on S as discussed in section 5.
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U(1) vector multiplets is given by

ñv = (h1,1(X̂4)− h1,1(B3)− 1) + h2,1(B3) . (2.7)

Here nv includes the number of U(1)’s in the non-Abelian gauge group G over S, as we

recall in section 3. However, in the actual F-theory compactification the Coulomb branch

of the seven-brane gauge theory is not accessible and these U(1)’s enhance to the full

non-Abelian gauge connection of G. Hence, the actual number of U(1) vector multiplets

in a four-dimensional F-theory compactification is

nU(1) = ñv − rank(G) , (2.8)

with ñv as given in (2.7). Finally, it is straightforward to identify the h2,1(B3) U(1)’s in

(2.7) which arise by expanding the R-R four-form into h2,1(B3) harmonic three-forms.

2.3 Remarks on the Type IIB dimensional reduction

The aim of this work is to study the four-dimensional effective action of a Type IIB

compactification with seven-branes as sketched in sections 2.1 and 2.2. More precisely,

we aim to determine the N = 1 characteristic data in the general four-dimensional

supergravity action [38]

S(4) = −
∫

1
2
R4∗1+KIJ̄DM I∧∗DM̄ J̄+ 1

2
RefΛΣ F

Λ∧∗FΣ+ 1
2
ImfΛΣ F

Λ∧FΣ+V ∗1 , (2.9)

where the scalar potential is given by

V = eK
(

KIJ̄DIWDJ̄W̄ − 3|W |2
)

+ 1
2
(Re f)−1 ΛΣDΛDΣ . (2.10)

The complex fieldsM I are the bosonic fields of chiral multiplets, and might be gauged by

vectors AΛ in the derivative DM I . Such gaugings will lead to the appearance of D-terms

DΛ in V (2.10). Note that KIJ̄ and KIJ̄ are the Kähler metric and its inverse, where

locally one has KIJ̄ = ∂I ∂̄J̄K(M, M̄) with ∂I = ∂/∂M I . The scalar potential is expressed

in terms of the Kähler-covariant derivative DIW = ∂IW + (∂IK)W .

In order to study the effective four-dimensional dynamics of an F-theory compact-

ification one first might attempt to start with Type IIB supergravity and perform a

dimensional reduction on B3. However, one immediately encounters the problem that

the fields

τ = C0 + ie−φ , G2 = C2 − τB2 , (2.11)

cannot be used in a Kaluza-Klein expansion, since they vary non-trivially over the three-

fold B3. This is due to the fact that these fields transform under the Sl(2,Z) symmetry
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of Type IIB string theory as

τ → aτ + b

cτ + d
, G2 → G2

cτ + d
, (2.12)

where the matrix (a, b|c, d) is an element of Sl(2,Z). There will in general be effectively

invariant modes on the fourfold X4 and we will show in the following sections that one

can systematically perform a Kaluza-Klein reduction of F-theory via M-theory.

Type IIB string theory, however, also admits D3-branes which couples to the R-R

four-form C4. Neglecting the induced lower-dimensional brane charges on their world-

volume, these D3-branes are invariant under the Sl(2,Z) transformations. Using such

D3-brane probes one thus is able to study at least part of the four-dimensional effective

action. For example, let us consider an Euclidean D3-brane wrapped on some divisor Db
α

of B3. At large volume of B3 this brane will have a classical instanton action

T b
α =

1

2ℓ4s

∫

Db
α

Jb ∧ Jb + i

∫

Db
α

C4 , (2.13)

where Jb is the Kähler form on B3 in the ten-dimensional Einstein frame in units ℓ2s. To

render T b
α dimensionless one has to multiply the first term by ℓ−4

s . Clearly, this expression

is only valid up to corrections in the fields (2.11). A key observation is, that the volumes

of four-cycles together with the R-R four-form C4 appear as complex fields in the four-

dimensional N = 1 effective theory [39, 40]. The volumes vαb of two-cycles in the usual

expansion Jb = vαbωα, with a basis ωα of H2(B3,Z), are in fact scalars in dual linear

multiplets (vα, C
(2)
α ), where the C

(2)
α are two-forms (see ref. [40] for a detailed discussion).

This general fact implies that T b
α can be obtained by a Legendre transformation from a

kinetic potential K̃F as

T b
α = ∂Lα

b
K̃F + i

∫

Db
α

C4 , Lα
b =

vαb
Vb

, (2.14)

where Vb is the quantum volume of B3. In general, the kinetic potential K̃F depends on

Lα and the other complex fields M I of the effective theory. It is related to the Kähler

potential KF via

KF(T, T̄ |M, M̄) = K̃F − 1
2
(T b

α + T̄ b
α )L

α
b , (2.15)

where the right-hand side has to be evaluated as a function of T b
α by solving (2.14) for

Lα
b . Clearly, to reproduce the simple form (2.13) with Lα

b as given in (2.14), one has to

take

K̃F = −2 logVb = log
(

1
3!
Lα
bL

β
bL

γ
bKαβγ

)

, Vb =
1

3!

∫

B3

Jb ∧ Jb ∧ Jb (2.16)

where Kαβγ is the triple intersection of three divisors Dα, Dβ, Dγ. Note that the simple

forms (2.13), (2.16) of T b
α , K

F are obviously not complete. This can already be inferred
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by comparing these expressions with the ones obtained in the orientifold picture [39, 40].

There various known corrections to both T b
α and KF, which do, however, depend on the

dilaton-axion τ . It will be crucial to understand how these corrections are captured in

an F-theory compactification. One of the aims of this paper is to compute part of these

corrections to the Kähler potential KF (or K̃F), and T b
α including the other light fields

arising as complex structure deformations, seven-brane moduli, matter fields, and fields

from the combinations of the form (2.11). In order to deal with varying dilaton-axion

τ it thus will be necessary to analyze the higher-dimensional geometry M3,1 ×X4 which

turn out to be tractable in an M-theory framework.

2.4 From M-theory to F-theory

In this subsection we describe four-dimensional F-theory vacua as special limits of M-

theory compactifications. To begin with, let us recall the basic steps to link M-theory and

Type IIB string theory [3]. Consider M-theory compactified on a two-torus T 2, naming

one of the one-cycles, the A-cycle, and the other one-cycle, the B-cycle. The metric

background is thus of the form

ds211 =
v0

Im τ

(

(dx+ Re τdy)2 + (Im τ)2dy2
)

+ ds29 , (2.17)

where τ is the complex structure modulus of the T 2, and v0 describes its volume. If the

volume v0 of the two-torus is small, one can pick one of the one-cycles, say the A-cycle,

to obtain type IIA string theory. T-duality along the B-cycle leads to the corresponding

Type IIB set-up, and identifies τ = C0+ ie
−φ. One can then decompactify the T-dualized

B-cycle to grow an extra non-compact direction.

This construction can be applied fiber-wise for the elliptically fibered Calabi-Yau

fourfold X4. Hence, one considers M-theory on X4, which leads to a three-dimensional

theory with N = 2 supersymmetry. The reduction and T-duality on the elliptic fiber

leads to Type IIB string theory on B3×S1, where B3 is the base. A fourth non-compact

dimension is grown by decompactifying the S1. Due to the T-duality operation this limit

corresponds to sending the T 2 volume v0 → 0. One thus finds the duality

M-theory on X4 → Type IIB on B3 × S1 with varying τ

M-theory on X4 with v0 → 0 → F-theory on X4 (2.18)

Let us note that this duality can only be performed in such a simple way, at points

of the fibration were the two-torus does not degenerate. If singularities appear, one

has to carefully identify the corresponding M-theory and F-theory non-perturbative con-

stituents. In particular, singularities of the elliptic fibration in M-theory lead to Kaluza-
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Klein monopoles descending to Type IIA six-branes, while they yield seven-branes in the

Type IIB set-up.

From the M-theory perspective it is not surprising that the theory can be trusted

for a varying τ , since this parameter simply encodes the complex structure of an ac-

tual two-torus in the eleven-dimensional space. The expansion parameters kept small

in the dimensional reduction will turn out to be the inverse volumes of the six-cycles in

the Calabi-Yau fourfold X4. Despite the fact that a complete formulation of M-theory

is not known, one can attempt to include corrections which are known either via du-

ality or in specific limits. For example, this indirect approach is used in the study of

compactifications on singular fourfolds Xsing
4 , where M2 branes on vanishing cycles are

believed to complete enhancements to non-Abelian gauge groups. However, also the limit

from M-theory to F-theory is in general subtle. Note that a supersymmetric M-theory

compactifications demands that one works with a Ricci flat metric on the Calabi-Yau

fourfold. These metric properties are inherited by Type IIB on B3, and it is non-trivial

that an extension to the fiber directions exists. Fortunately, we will not need to make

use of an explicit metric on X4 or B3. Nevertheless even on the level of cohomology and

deformations a non-trivial mixing of open and closed string degrees of freedom will arise.

To make some first steps in analyzing the effective action, let us consider M-theory

on a non-singular Calabi-Yau fourfold X4 with an elliptic fibration. Since X4 is smooth

there will be no non-Abelian gauge symmetries in three dimensions. On such a fibration

there is a natural set of divisors which span H6(X4,R). Firstly, one has the section of

the fibration which is homologous to the base B3. Secondly, there is the set of vertical

divisors Dα which are obtained as Dα = π−1(Db
α), where D

b
α is a divisor of B3 and π

is the projection to the base π : X4 → B3. For these smooth elliptic fibrations one has

h1,1(B3) = h1,1(X4)− 1 such divisors. One can now attempt to use a probe M5-brane to

analyze Kähler coordinates. At large volume the naive action for an M5-brane on such

a DA = (D0, Dα) then reduces as

TA =
1

6

∫

DA

J ∧ J ∧ J + i

∫

DA

C6 , (2.19)

where v0 is the volume of the elliptic fiber. In order to make TA dimensionless one would

need to multiply the first term in (2.19) with ℓ−6
M . We will suppress units in most of

the equations below. To determine the Kähler potential KM for the fields T0, Tα one

analyses the Weyl rescaling to the three-dimensional Einstein frame. In a large volume

compactification, only the classical volume V arises as pre-factor of the Einstein-Hilbert

term. Comparing this with the eK
M
pre-factor in the scalar potential, on infers [30]

KM = −3 logV , V =
1

4!

∫

X4

J ∧ J ∧ J ∧ J . (2.20)
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To evaluate KM as a function of T + T̄ one first expands the Kähler form J as

J = v0ω0 + vαωα . (2.21)

where ω0, ωα are the two-forms Poincaré dual to B3, Dα. Using this expansion on has to

solve (2.19) for the modes v0, vα of J and insert the result into (2.20). This evaluation

is more conveniently performed in a dual picture, which we explain in more generality

next.

In general, one notes that the vα, v0 appear as elements of vector multiplets (vα, Aα)

and (v0, A0) with the vectors arising in the expansion of the M-theory three-form C3 as

C3 = A0 ∧ ω0 + Aα ∧ ωα . (2.22)

Hence, again one expects the TA = (T0, Tα) to be given by

TA = ∂LAK̃M + iρA , (2.23)

where ρA generalize the imaginary parts in (2.19), and LA = (R,Lα) are defined as

R =
v0

V , Lα =
vα

V . (2.24)

This is the analog of (2.14), but now for some M-theory kinetic potential K̃M, and V
being the quantum volume of X4. Again, the Kähler potential KM is related to the

kinetic potential via the Legendre transform

KM(T, T̄ |M, M̄) = K̃M − 1
2
(TA + T̄A)L

A , (2.25)

whereM I are other complex scalars in the three-dimensional theory. It is straightforward

to evaluate K̃M at large volume to obtain the simple expression (2.19) for TA = (T0, Tα).

One finds

K̃M = log(R) + log
(

1
3!
LαLβLγKαβγ +

1
2
RLαLβKαβ +

1
2
R2LαKα +R3K

)

. (2.26)

The intersection numbers we introduced are

Kαβγ = B3 ·Dα ·Dβ ·Dγ =

∫

B3

ωα ∧ ωβ ∧ ωγ , (2.27)

and similarly for Kαβ = K00αβ and the remaining terms. Note that for an elliptic fibration

the intersection numbers satisfy

Kαβγδ = Dα ·Dβ ·Dγ ·Dδ = 0 , (2.28)
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for the vertical divisors. This allows us to split of the factor log(R) in (2.26). Furthermore,

it implies that for an elliptic fibration one has

T0 =
1

R
+ p(R) + iρ0 , Tα =

v0

2

∫

Db
α

J ∧ J + iρα , (2.29)

where p(R) is a power-series in R regular in the limit R → 0. Observe that ReT0 starts

precisely with an inverse of R, with R being proportional to the volume of the elliptic

fiber v0 as introduced in (2.17) and (2.21). This will be the key to study the F-theory

limit.

Let us now turn to the discussion of the F-theory limit. This limit will identify the

M-theory compactification on X4 to three dimensions with a four-dimensional F-theory

compactification. Let us consider Type IIB string theory on S1 × B3. Before taking

the limit there is one distinguished dimension which corresponds to one of the torus

directions in the elliptic fiber of X4. Labeling this fourth dimension by x3 the Type IIB

metric is of the form

ds2IIB = r−2g3µνdx
µdxν + r2(dx3 + A0

µdx
µ)2 + ds2B3

, µ, ν = 0, 1, 2 , (2.30)

where r is the radius of the fourth dimension, g3µν is the three-dimensional Einstein frame

metric, and A0
µ is a three-dimensional vector. As recalled above, the F-theory limit is

obtained by performing the reduction and T-duality, and sending r → ∞ to decompactify

the fourth dimension. Note that A0 in (2.30) is identified in the M-theory to F-theory

lift with the vector A0 in the multiplet (R,A0) introduced in (2.22) and (2.24). Also A0

in the dimensional reduction with metric (2.30) is in a vector multiplet (r−2, A0). Hence,

one identified the radius r in (2.30) with R in (2.24) as

R = r−2 . (2.31)

One thus realizes that the shrinking of the elliptic fiber R → 0 corresponds to growing

an extra dimension. Furthermore, due to the Legendre transform from R to T0 one sees

that R → 0 corresponds to ReT0 → ∞. This pushes the analysis into a regime, where

Euclidean M5-branes wrapped on the base B3 become very massive and do not correct

the N = 1 data [33].

The F-theory lift can be studied further by realizing that M5-branes on vertical divi-

sors will turn into D3-branes wrapped on the four-cycles Db
α in B3 with finite action [33].

Hence, in the F-theory limit, one indeed identifies the T b
α introduced in section 2.3 and

Tα of section 2.4, given e.g. in (2.13) and (2.19). Equivalently, one can use the fact that

LA in the M-theory reduction are elements of vector multiplets. Since, T b
α introduced in

(2.23) remains finite in the F-theory limit, also Lα defined in (2.24) has to remain finite.
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Hence, we conclude that the F-theory limit is more accurately given by

R = ℓ6M · v
0

V → 0 , Lα = ℓ6M · v
α

V → Lα
b = ℓ4s ·

vαb
Vb

finite , (2.32)

or, equivalently, by

ReT0 → ∞ , Tα → T b
α finite , (2.33)

where we have restored the ℓs and ℓM dependence to elucidate the limit. Let us stress

that (2.32) implies a non-trivial scaling of the vα. Taking the volume V to be quartic in

v0, vα one finds for v0 ∝ ǫ that vα ∝ 1/
√
ǫ and V ∝ 1/

√
ǫ in the limit ǫ→ 0. Using (2.32)

for a quartic V the elliptic fiber volume R scales in the F-theory limit as R ∼= V2
b/V3.

The claim is that the limit and identification (2.32) also holds if one includes further

corrections and other moduli. In this case, however, one has to replace V with the

appropriate quantum volume, as we will discuss below.

The key objects we will study in the following sections are the two three-dimensional

kinetic potentials K̃M and KM and their four-dimensional lifts. The latter potential KM

is obtained from K̃M via a Legendre transform of only the vector multiplets (Lα, Aα),

since these vectors lift to four-dimensional chiral multiplets T b
α . K

M is given by

KM = K̃M − 1
2
(Tα + T̄α)L

α , (2.34)

where Lα is replaced by its Legendre transform ReTα = ∂LαK̃M. This will be discussed in

more detail in section 3.3. Even in the presence of vector multiplets and further complex

scalars, we will argue that the full M-theory kinetic potential KM admits in the limit

(2.32) the expansion

KM = logR +KF − 1

R
g +O(R) , (2.35)

where KF is the Kähler potential of the four-dimensional F-theory compactification and

the real function g will encode the dynamics of four-dimensional vector fields. The

expression (2.35) is readily checked when inserting the kinetic potential K̃M given in

(2.26) into (2.34), together with KF given in (2.15), (2.16). Clearly, in this simple case

one has g = 0.

Let us remark that in principle one should explicitly evaluate the M-theory Kähler

potential around the F-theory limit (2.32), including corrections to the large volume

expressions. To some extend this is indeed possible by using mirror symmetry for Calabi-

Yau fourfolds. The basic strategy is to construct the mirror X ′
4 to X4 and rewrite the

Kähler potential KM = −3 logV using the mirror periods of the mirror (4, 0) form Ω′

using the techniques described in subsection 2.5. In other words, one needs to compute

KM = −3 log

∫

X′
4

Ω′ ∧ Ω̄′ . (2.36)
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However, it is important to stress, that this potential has to be restricted to a real

submanifold of dimension h1,1(X4) in the mirror complex structure moduli space. This

is analog to the description of Type IIA orientifolds [41]. Moreover, KM will need to be

evaluated as a function of the coordinates TA, with real parts given by the real parts of

certain Ω′ periods. Giving a precise formulation of this mirror identification is beyond

the scope of this work. However, let us note that certain corrections have already been

computed in [42]. In particular, it was shown that the Calabi-Yau fourfold volume V of

X4, appearing in (2.20), is corrected by the terms

∆V =
5ζ(4)

24(2πi)6

∫

X4

c2(X4)
2 + k1

∫

X4

J ∧ c3(X4) + k2

∫

X4

J2 ∧ c2(X4) + . . . , (2.37)

where c2, c3 is the second and third Chern class of TX4, and ki are some numerical con-

stants. In particular, there is no correction proportional to the Euler number χ(X4).
6

This seems to be crucial when taking the F-theory limit in the corrected N = 1 coordi-

nates TA.

2.5 Complex structure deformations

In this section we recall some basic facts about the complex structure deformations of a

non-singular Calabi-Yau fourfold X̂4 mainly following [43, 44, 45]. Around a fixed back-

ground complex structure these arise as metric deformations with purely holomorphic

and anti-holomorphic indices

δgı̄̄ = − 1

3||Ω||2 Ω̄
klm
ı̄ (χK)klm̄ δz

K , (2.38)

where Ω is holomorphic (4, 0)-form on X̂4. Hence, the complex structure deformations are

counted by the basis χK,K = 1, . . . , h3,1(X̂4) of H
3,1(X̂4). As for Calabi-Yau threefolds

the infinitesimal deformations δzK are unobstructed in the absence of background fluxes

and can be extended to a complex h3,1(X̂4)-dimensional moduli space Mcs. The metric

on this moduli space is given by

GKL̄ = ∂zK∂z̄LK
cs =

∫

X̂4
χK ∧ χ̄L

∫

X̂4
Ω ∧ Ω̄

, Kcs = − log

∫

X̂4

Ω ∧ Ω̄ , (2.39)

where we also recalled that GKL̄ is Kähler and is thus locally given by the derivative of

the Kähler potential Kcs.

The Kähler potential Kcs for the complex structure deformations zK can be expressed

through the periods of Ω as we discuss momentarily. It is important to stress that in

6This is in contrast to the case of Calabi-Yau threefolds, where the Euler number of the threefold
corrects the threefold volume.
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the fourfold case the variations of the (4, 0) form Ω with respect to the complex struc-

ture deformations do not span the full cohomology H4(X̂4), but rather only a subspace

H4
H(X̂4), known as the primary horizontal subspace of H4(X̂4) [43]. It takes the form

H4
H(X̂4,C) = H4,0 ⊕H3,1 ⊕H2,2

H ⊕H1,3 ⊕H0,4 , (2.40)

where H2,2
H consists of the elements in H2,2 which can be obtained as second variation of

Ω with respect to the complex structure on X4.
7 In the fourfold case, however, one has

to introduce a special basis γ
(i)
a of HH

4 (X̂4,C) which inherits the integrality properties of

a mirror dual basis of ⊕qH
q,q(X̂ ′

4,Z) [43], where X̂
′
4 is the mirror of X̂4. This allows to

define the periods

Π(i) ai =

∫

γ
(i)
ai

Ω , i = 0, . . . , 4 , ai = 1, . . . , h4−i,i
H (X̂4) , (2.41)

Π ≡ (Π(0),Π(1)a,Π(2)α,Π(3)a,Π(4)) ≡ (X0, Xa,Gα,Fa,F0) , (2.42)

where h4−i,i
H (X̂4) denote the dimensions of the respective cohomologies in (2.40). The

basis γ
(i)
ai can be chosen to admit the intersections

Σ ≡
(

γ(i)ai
∩ γ(j)bj

)

=













0 0 0 0 1
0 0 0 η 0
0 0 Q 0 0
0 ηT 0 0 0
1 0 0 0 0













(2.43)

which only yields for j = 4 − i the non-zero intersection matrices ηab, Qαβ. The group

preserving Σ will be denoted by GΣ:

N ∈ GΣ : NTΣN = Σ . (2.44)

Inserting (2.41) and (2.43) into (2.39) the Kähler potential Kcs can be expressed in terms

of the periods Π using
∫

X̂4

Ω ∧ Ω̄ = ΠTΣΠ̄ = X0F̄0 + ηabX
aF̄ b +QαβGαḠβ + c.c . (2.45)

Using the (p, q)-structure of forms obtained as derivative of Ω one derives a number

of vanishing conditions which translate into non-trivial conditions on the periods Π.8

However, in contrast to the Calabi-Yau threefold case there does not exist a prepotential

which determines the periods.

7The fact that not all H4(X̂4) can be reached as variation of Ω is in contrast to the Calabi-Yau
threefold case. In the threefold case one can simply define the periods of the holomorphic (3, 0)-form by
introducing an integral homology basis of H3(Y3,Z).

8See, e.g., refs. [44, 46] for a summary of these conditions.
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In principle the periods Π can be computed explicitly as a function of the com-

plex structure deformations zK by methods discussed, for example, in refs. [43, 44, 45].

More precisely, given specific constraints (2.1) which determine X4 as a hypersurface

or complete intersection in a toric or projective ambient space, one can compute a set

of differential equations, the Picard-Fuchs equations, which admit a linear combination

of the Π as solution. The precise linear combination of the solutions to Picard-Fuchs

equations at a given point in moduli space Mcs can be fixed by analytic continuation

and the analysis of monodromies around special loci in Mcs (see [47] for the original

work on Calabi-Yau threefolds, and [42] for extensions to Calabi-Yau fourfolds). While

technically rather involved this gives, at least for Calabi-Yau fourfolds with few complex

structure moduli, a prescription to compute Kcs explicitly at various points in the moduli

space for a given X̂4.

In the computation of the periods Π it is crucial to have a detailed understanding

of the global structure of the moduli space Mcs. As already mentioned this structure is

largely captured by the monodromies around the special loci, such as the fourfold conifold

[42]9, the large complex structure point, and the orbifold locus. More precisely one has

to determine the monodromy matrices M and their generated group Gsym

Π → MΠ, M ∈ Gsym ⊂ GΣ , (2.46)

when encircling the special loci of Mcs. Gsym is typically only defined via the specifica-

tions of its generators M , and encodes the global symmetries of Mcs.

Let us end this section by noting that the complex structure deformations of X̂4 can

be obstructed when allowing for non-trivial background fluxes [1, 2, 3]. More precisely,

in an M-theory reduction on X̂4, the complex structure moduli of X̂4 are obstructed by a

non-trivial flux background G4 appearing in the Gukov-Vafa-Witten superpotential [49]

W =

∫

X̂4

Ω ∧G4 . (2.47)

This superpotential can be computed explicitly by evaluating the periods Π in an integral

basis [42, 50]. However, this is only the correctW for a compactification on a non-singular

X̂4 of M-theory. In the F-theory limit the superpotential (2.47) will be further refined

due to the appearance of non-Abelian gauge symmetries at singularities of Xsing
4 .

9The deformed fourfold conifold is also known as Stenzel space [48].
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3 Non-Abelian seven-branes in F-theory compactifi-

cations

In this section we systematically include non-Abelian gauge groups into the discussion

of the four-dimensional F-theory effective action. Recall that in compactifications with

multiple seven-branes on a divisor S in B3 the gauge-theory on their world-volume will be

a non-Abelian groupG. In the following we will concentrate on simply laced gauge groups

which reside in the ADE series and can be obtained by singularities of the elliptic fibration

of a Calabi-Yau fourfold Xsing
4 . Hence, we will concentrate on groups SU(N), SO(N) and

the exceptional groups E6, E7, E8. More precisely, we consider a stack of seven-branes

on the divisor S on the base. We denote by F = dA + A ∧ A the eight-dimensional

field-strength on their world-volume W = M3,1 × S. The gauge field transforms in the

adjoint of the group G, and an overall U(1)-factor might split off, as familiar for the case

U(N) = SU(N)×U(1). Such U(1) factors often play a special role, and can be included in

the analysis of the effective action as described in [51]. In order to determine the effective

four-dimensional theory one splits F into contributions with two four-dimensional indices,

mixed indices and two indices on S:

F = F4 + Fw + Fflux . (3.1)

The modes of the first set F4 correspond to four-dimensional gauge fields and will be

discussed in more detail in subsections 3.2 and 3.3. The second set Fw in (3.1) are

defined to be one-forms on S and one-forms in M3,1 and hence capture the Wilson line

degrees of freedom as discussed in subsection 5.3. The last set Fflux captures non-trivial

flux configurations on the seven-branes as briefly discussed in section 5. Note that in an

F-theory compactification the underlying group theory is actually encoded geometrically,

due to the presence of the singularities of the fibration over S. In subsection 3.1 we discuss

that this remains to be the case after the resolution of these singularities.

3.1 Singularity resolutions for seven-brane gauge theories

Recall that the elliptic fibration will be singular over the discriminant ∆ given in (2.2). If

the discriminant ∆ factorizes the components will correspond to different seven-branes.

As already noted in (2.3) we will restrict to the case that ∆ has two components [∆] =

rk(G)[S] + [∆′]. Here rk(G) is the rank non-Abelian gauge group on the rk(G) seven-

branes wrapped on S. The gauge groups over the divisors S can be determined explicitly

using generalizations of the Tate formalism [36]. Let us split the basis of vertical divisors

Dα, α = 1, . . . h1,1(B3) introduced in section 2 as

Dα = (S,D′
β) . (3.2)
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This split will be convenient in the following, since S plays a distinguished role in the

analysis of the gauge symmetries.

In case of non-Abelian gauge groups the elliptic fibration and the Calabi-Yau fourfold

Xsing
4 itself becomes singular as in (2.4). The singularities can systematically be blown

up to obtain a smooth geometry [35, 36, 37, 20, 21]. In the following we will consider

cases where Xsing
4 admits a split simultaneous resolution

π : X̂4 → Xsing
4 , (3.3)

where π is the blow-down map from the smooth fourfold X̂4 to Xsing
4 . The existence of

a split simultaneous resolution implies that one can identify rank(G) irreducible divisors

D̂i describing the resolution of the ADE singularity over S. Each of these divisors is a

P1 bundle over S, and the D̂i intersect at generic points in S as the Dynkin diagram of

G in the elliptic fiber of X̂4. Note that it is important to shift

S → S ′ = S +
∑

i

aiD̂j , (3.4)

where ai are the Dynkin numbers associated to the Dynkin node D̂i. In the following we

will use the basis

Dα = (S ′, D′
β) , (3.5)

which, by a slight abuse of notation, replace the Dα introduced in (3.2). The redefinitions

(3.4) and (3.5) are performed to ensure that the intersection numbers satisfy

Kiαβγ ≡ D̂j ·Dα ·Dβ ·Dγ = 0 . (3.6)

We will show below, that the existence of such a condition in an appropriately chosen

basis is in accord with constraints of four-dimensional N = 1 supersymmetry. On the

resolved geometry of the ADE singularity one then has

(D̂i · D̂j + Cij S
′ · B3) ·Dα ·Dβ = 0 , (3.7)

for all vertical divisors Dα in (3.5). Here Cij is the Cartan matrix of G. Furthermore,

one can now include in the intersection form (3.7) the extended node

D̂0 = S ′ −
∑

i

aiD̂i = S , (3.8)

such that

(D̂i · D̂j + Cij S
′ · B3) ·Dα ·Dβ = 0 , i, j = 0, ..., rk(G) , (3.9)

where now Cij is the Cartan matrix of the extended Dynkin diagram. If X̂4 is realized as

a hypersurface or complete intersection in a projective/toric ambient space, a resolution
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of the ambient space itself can consistently resolve the enhanced ADE singularities on S
[35, 37, 20]. In these examples one can check explicitly by computing the intersection

numbers that (3.7) and (3.9) are satisfied in the properly chosen topological phase.

The equations (3.7), (3.6) and (3.9) can also be written in terms of two-forms which

are Poincaré dual to B3, D̂i, Dα. We list them for completeness:

1. A two-form ω0 Poincaré dual to the base B3 of the elliptic fibration.

2. Two-forms ωα, α = 1, . . . h1,1(B) on X4 which are Poincaré dual to vertical divisors

Dα = π−1(Db
α), as in section 2.4.

3. Two-forms wi, i = 1, . . . , rank(G) which are Poincaré dual to the blow-up divisors

D̂i which were introduced after (3.3). The two-form w0 corresponding to the ex-

tended node of the Dynkin diagram D̂0 can be canonically included in the discussion

[51, 52]. w0 is not linearly independent of the two-forms so far, and thus is not

needed to form a basis of H1,1(X̂4).

The intersection conditions (3.7) and (3.9) translate to

Kijαβ ≡
∫

X̂4

wi ∧ wj ∧ ωα ∧ ωβ = −Cij

∫

S

ωα ∧ ωβ ≡ −Cij KS|αβ , (3.10)

where we have used in the second equality that ω0, ωS′ are Poincaré dual to B3, S
′. The

last equality defines the intersection form KS|αβ on S of the Dα of the ambient space. It

is a well-known fact that there can be additional non-trivial two-cycles on S which are

not induced from intersections of S with the Dα. These elements will be included later

on, but do not alter the intersection analysis presented here.

It is important to stress that the singularity of the elliptic fibration can vary over S
and enhance to groups larger than G along complex curves and points. In this case the

resolution of the singularity becomes more involved, as discussed in detail in refs. [53].

However, if X̂4 is realized as a hypersurface or complete intersection in a projective/toric

ambient space, a resolution of the ambient space itself can consistently resolve the en-

hanced ADE singularities at all co-dimensions on S [35, 37, 20, 21]. In this case one

systematically resolves the ambient space with divisors D̃i, i = 1, . . . , rk(G) which at

generic points of S restrict to the resolving divisors D̂i introduced in this subsection.

In accord with the analysis of the effective action, this resolution increases the number

of two-forms on X̂4 by rk(G) forms wi. The resolution of further enhancements along

curves and points does not change h1,1(X̂4). However, one will find new four-forms on X̂4

which are not a wedge of two (1, 1)-forms. These new four-forms are crucial in defining

the G4 fluxes determining the chiral spectrum.
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3.2 Non-Abelian gauge groups in M-theory

To study the F-theory lift we first discuss the appearance of non-Abelian gauge groups in

the M-theory picture. In order to do that, we recall that in M-theory U(1) vector fields

can arise from the three-form C3 with field strength G4 = dC3. Considering M-theory

on the resolved fourfold X̂4 will correspond to the Coulomb branch of the gauge theory

where G is broken to U(1)rk(G) over S. To study the Coulomb branch one replaces the

general expression (3.1) by an expansion into the Cartan generators Ti of the adjoint

representation of G. We choose these to obey

Tr(TiTj) = Cij , i, j = 1, . . . , rk(G) , (3.11)

The expansion (3.1) translates into components of the four-form G4 by writing schemat-

ically

F = F i Ti → G4|brane ∼= F i ∧ wi = (F i
4 + F i

flux + F i
w) ∧ wi . (3.12)

Note that this cannot be a precise statement, since the M-theory reduction is to three

rather then four space-time dimensions. It will be the task of the next subsection to

make the lift more explicit. We start with the vectors with field strength F i
4, for which

the lift (3.12) is most directly applicable.

To obtain the complete set of massless three-dimensional vectors let us consider the

expansion three-form C3 into two-forms of H1,1(X̂4) as

C3|vector = A0 ∧ ω0 + Aα ∧ ωα + Ai ∧ wi , (3.13)

where A0, Aα, Ai are three-dimensional vector fields. In the three-dimensional N = 2

theory these vectors are combined with the real scalars arising in the expansion of the

Kähler form J of X̂4 into vector multiplets. One expands

J = v0ω0 + vαωα + viwi , (3.14)

where the vi measure the volumes of the blow-up P1’s. As noted above, the Ai are the r

U(1) vector fields which correspond to the Cartan generators of the non-Abelian gauge

group G. The non-Abelian gauge symmetry arises in the limit in which the volumes

of the blow-ups go to zero. Then M2 branes wrapped on chains of resolving P
1 fibers

become massless and provide the missing gauge degrees of freedom to form a non-Abelian

gauge group G. We will return to the restoration of G in the discussion of the F-theory

lift in the next section.

Let us next discuss the effective action of three-dimensional vector multiplets (A0, v0),

(Ai, vi) and (Aα, vα). Since we will be more general later on, we will include in the fol-

lowing expressions also a number of three-dimensional chiral multiplets M I . As in (2.24)
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we first introduce the rescaled variables which actually appear in the three-dimensional

N = 2 vector multiplets,

R =
v0

V , ξi = R · ζ i = vi

V , Lα =
vα

V , (3.15)

where we have defined also ζ i by splitting off a factor of R.10 Note that in the Kähler

cone one generically has ξi ≤ 0 as vi appears in front of a two-form Poincaré dual to

an exceptional divisor D̂i in (3.14). This ensures, in particular, that the volumes of the

divisors D̂i are positive as we will see below. The three-dimensional action for the vector

multiplets (AΛ̂, ξΛ̂) ∼= (A0, R), (Ai, ξi), (Aα, Lα) is of the form

S(3) =

∫

−1
2
R3 ∗ 1− K̃IJ̄ dM

I ∧ ∗dM̄J + 1
4
K̃Λ̂Σ̂ dξ

Λ̂ ∧ ∗dξΣ̂

−1
4
K̃Λ̂Σ̂ F

Λ̂ ∧ ∗F Σ̂ + F Λ̂ ∧ Im(K̃Λ̂I dM
I) , (3.16)

where the kinetic terms of the vectors and scalars are determined by a single real function,

the kinetic potential K̃(M I , M̄J |ξΛ̂) with

K̃IJ̄ = ∂MI∂M̄J K̃ , K̃Λ̂Σ̂ = ∂
ξΛ̂
∂
ξΣ̂
K̃ , K̃Λ̂I = ∂

ξΛ̂
∂MIK̃ . (3.17)

In the M-theory reduction we will denote the kinetic potential by K̃M as above.

In a next step we aim to find the leading kinetic potential which captures the new

degrees of freedom extending K̃M given in (2.26). One still has K̃M = −3 logV + Kcs,

but now one needs to include the fields ξi in the volume expansion. They appear as

K̃M = log[1
6
RLαLβLγKαβγ − 1

4
ξiξj Cij L

αLβKS|αβ +O(R3, ξ3)] +Kcs(z) , (3.18)

with Kcs given in (2.39). In this expression we have used (2.27) for Kαβγ , and (3.10) to

obtain the term involving KS|αβ. The expansion in the logarithm (3.18) does not contain

a linear term in ξi as ensured by (3.6) on the resolved X̂4. This turns out to be crucial for

the M-theory compactification to lift to a four-dimensional theory with gauge group on S.
Let us stress that the expression (3.18) is a large volume expression, since it simply arose

by expanding the quadruple intersections on a Calabi-Yau fourfold. Various corrections

to this expression are expected as discussed briefly in section 2.4. However, by simply

using (3.18) and performing a Taylor expansion for small R, ξi one nevertheless finds non-

trivial match with the three- and four-dimensional expectations from the gauge theory

and the gravity background. It would be very interesting to understand this match in

more detail and to extend the following considerations to include further corrections.

To prepare for the discussion of the F-theory limit, let us now Taylor expand the

above results for small R, |ζ i| = |ξi|/R. The three-dimensional gauge kinetic coupling

10This split will be convenient in the discussion of the F-theory lift.
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function in (3.16) can be determined as the second derivative of K̃M with respect to the

scalars which are in three-dimensional vector multiplets. In particular, one finds that

K̃M
ij = −Cij KS|βγL

βLγ

2RVL

+O(R, ζ2) , VL ≡ 1
6
KαβγL

αLβLγ . (3.19)

Furthermore, using K̃M one readily evaluates the real parts of the dual Kähler coordinates

Tα, Ti, T0 via (2.23). Firstly, we have

ReTα =
1

2

KαβγL
βLγ

VL

+O(R) , (3.20)

where we recall from (3.5) that one of these coordinates is TS′ corresponding to the divisor

S ′. Furthermore, one evaluates by using (3.18) and (3.15) that

ReTi = −Cijζ
j KS|βγL

βLγ

2VL

+O(R) , ReT0 =
1

R
+O(R, ζ2) . (3.21)

Note that in the Kähler cone one has ζ i ≤ 0 and one has ReTi ≥ 0, and ReTα ≥ 0,

ReT0 ≥ 0.

The expressions for Tα, Ti exactly match the expectations from the point of view of

a reduction from a four-dimensional to a three-dimensional gauge theory as discussed

in [54, 55, 56]. To make this more precise, we will denote by TS the complex scalar

corresponding to the divisors S ⊂ X4 introduced in (3.4), (3.8) such that

TS = TS′ −
rk(G)
∑

i=1

aiTi . (3.22)

One can qualitatively analyze the three-dimensional superpotential obtained in the M-

theory compactification from M5-brane instantons wrapped on divisors in X̂4. In ref. [56]

it was argued that M5-branes on the blow-up divisors D̂i as well as the extended node

D̂0, defined in (3.8), satisfy the necessary criteria [33] to yield a non-trivial instanton

correction to the superpotential. In addition also an M5-brane wrapped on the base B3

satisfies these criteria [33]. Hence, the superpotential is expected to contain the terms

WM =

rk(G)
∑

i=1

Aie
−Ti + Be−TS′+aiTi + Ce−T0 , (3.23)

where Ai,B, C generically depend holomorphically on the other complex scalars, e.g. the

complex structure deformations, of the compactification. The terms with pre-factors

Ai correspond to the gauge theory instantons discussed in ref. [54, 55], while the term

with B is associated with a four-dimensional gauge instanton [55] and vanishes in the
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3d limit r2 = 1/R → 0. To see this one identifies K̃M
ij ∝ −1/g23, where g3 is the three-

dimensional gauge coupling constant. Comparing (3.19) with (3.20),(3.21) one then finds

ReTi ∝ −ξi/g23, and ReTS′ ∝ R/g23 = 1/(r2g23).
11 Finally, one can also interpret the last

term in (3.23). One first notes that ReT0 ∝ r2. Following the duality described in

section 2.4 one notes that this instanton correction is due to a universal gravitational

instanton in a four-dimensional theory on M2,1×S1 [57]. In fact, the M5-brane becomes

an NS5-brane in going from M-theory to Type IIA. This NS5-brane T-dualizes into a

four-dimensional Taub-NUT geometry. The gravitational action is indeed proportional

to r2 [58, 59].

3.3 Seven-brane gauge theory in the F-theory lift

It is crucial to stress that in F-theory limit one necessarily takes the limit in which the

resolution of the singularities is blown down. In other words, while one is able to access

the Coulomb branch in M-theory this is no longer possible in F-theory. One thus has to

extend the F-theory limit (2.32) to include the blow-up volumes. This leads us to replace

(2.32) by

singular: R → 0 , ζ i = ξi/R → 0 , (3.24)

finite: Lα → Lα
b ,

or

ReT0 → ∞ , ReTi → 0 , Tα → T b
α . (3.25)

This implies the scaling of the vA as v0 ∝ ǫ, vi ∝ ǫ2 and vα ∝ 1/
√
ǫ in the limit ǫ → 0.

In other words, the low-energy expansion of the F-theory effective action is around the

special point (3.24) in the Kähler moduli space. However, the variations δR, δζ i are not

un-physical but rather will appear as degrees of freedom in four-dimensional fields. In

particular, four-dimensional vector Ai
4 fields are given by

Ai
4 = (Ai + δζ iA0, δζ i) , (3.26)

containing ζ i defined in (3.15). The lift of the three sets of three-dimensional vector

multiplets is: (v0, A0) lifts to the metric of the fourth non-compact dimension g33, g3µ,

(vα, Aα) lift to chiral multiplets in four dimensions, and (vi, Ai) lift to U(1) vectors

corresponding to the Cartan generators of G. This is summarized in table 3.1.

11The expression for ReTS appears to differ by a factor of r from the results of [55, 56]. However, this
difference is readily explained by noting that in our analysis we work with a three-dimensional action
Weyl rescaled to the three-dimensional Einstein frame with canonically normalized Einstein-Hilbert
term. In refs. [55, 56] such a Weyl rescaling was not performed, which explains the different dependence
on r. Also note that we have set Mp = 1 in three dimensions.
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3-dim multiplet 4-dim F-theory

(LA, AA)
h1,1(X4)− h1,1(B3)− 1 vector mult. (ξi, Ai) → A4 adjoint

h1,1(B3) chiral multiplets (Lα, Aα) → Tα

extra dimension (R,A0) → (g33, gµ3)

Table 3.1: The F-theory lift of the fields arising from the Kähler form of X̂4.

To proceed we first recall that the multiplets (vα, Aα) actually lift to four-dimensional

chiral multiplets. It is therefore convenient to rather work with KM(Tα|ξ, R) given by

KM(Tα + T̄α,M
I |ξi, R) = K̃M − 1

2
(Tα + T̄α)L

α , (3.27)

where Lα is replaced by its Legendre transform

Tα = ∂LαK̃M + i

∫

Dα

C6 . (3.28)

Note that we have included additional scalarsM I in the expressions for KM and Tα, since

their inclusion does not change the discussion presented here. These complex scalars are

specified later, and include complex structure moduli, Wilson line moduli, matter fields,

etc. The expressions (3.28) and (3.27) are very similar to the discussion to (2.23) and

(2.25). However, it is crucial to stress, that in KM, we have kept the vector multiplets

containing R, ξi, and only dualized the multiplets (vα, Aα). It is straightforward to check

that
∂KM

∂Tα
= −1

2
Lα ,

∂KM

∂M
=
∂K̃M

∂M
, M ∈ (M I , ξi, R) . (3.29)

Note that the right-hand sides of these expressions are evaluated by first taking derivatives

of K̃M viewed as a function of (Lα, ξi, R) and M I , and then use (3.28) to express the

result as a function of Tα, R, ξ
i,M I . Note that by differentiating (3.28) one also finds

∂Lα

∂Tβ
= K̃M LαLβ

,
∂Lα

∂M
= −K̃M LαLβ

∂MK̃
M
Lβ , M ∈ (M I , ξi, R) . (3.30)

In order to study the F-theory lift one has to evaluate the kinetic potential KM in

the limit (3.24). One thus performs a Taylor expansion of KM for small R, ξi around

the strict F-theory limit R = ξi = 0. In the following we will denote the restriction of

a function f(R, ξ) to the F-theory limit by f |∗. The reasoning that there exists a four-

dimensional N = 1 supergravity theory in the F-theory limit (3.24) significantly restricts

the form of the expansion of KM. Namely, from a reduction of a four-dimensional N = 1
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supergravity theory to three dimensions, as recalled in appendix B, one infers that the

kinetic potential has to admit the form

KM = logR +KF(T,M)− 1

2R
Refij(T,M) ξiξj + . . . , (3.31)

which resembles (B.4) in appendix B. Here KF(T,M) is the four-dimensional Kähler

potential depending on the complex scalars Tα,M
I , and fij(T,M) is the four-dimensional

holomorphic gauge coupling function. Note that the two terms involving R are precisely

the singular terms in the limit R → 0. Further terms in the (R, ξi)-expansion will not

be relevant in our computation of the four-dimensional effective theory. The expression

(3.31) implies that

∂ξjK
M
∣

∣

∗
= ∂ξjK̃

M
∣

∣

∗
= 0 , (3.32)

in a set-up which consistently lifts to a four-dimensional N = 1 F-theory compactifica-

tion. Similarly, comparing (3.31) with the general Taylor expansion, one concludes that

the four-dimensional gauge-coupling function is given by

Re fij = −R ·KM
ξiξj

∣

∣

∗
= −R ·

(

K̃M
ξiξj − K̃M

ξiLαK̃M LαLβ

K̃M
Lβξj

)∣

∣

∗

= −R ·KM
ξiξj

∣

∣

∗
, (3.33)

where one has to apply (3.30) and (3.32) to evaluate the last two equalities. fij is the

holomorphic gauge-coupling function of the vectors Ai
4.

In general, the holomorphic gauge coupling function fij can be of the form

Re fij = Re(Cα
ij Tα − f̃ij(M) +O(e−T )) , (3.34)

where Cα
ij are real constants and f̃ij(M) is a homomorphic function in the remaining

complex scalarsM I . Note that the perturbative shift symmetry for Tα in three dimensions

prevents Tα to appear with additional perturbative contributions. This can be traced back

to the fact that Tα arises by dualizing a three-dimensional vector multiplet (Aα, vα). We

next evaluate (3.33) and (3.34), neglecting Tα instanton corrections. Using the expression

(3.28) one obtains the differential equation

(

Cα
ij∂Lα +R∂ξi∂ξj

)

K̃M = Re f̃ij(M) , for R, ζ i → 0 . (3.35)

This equation poses constraints on the M-theory kinetic potential to ensure that this

three-dimensional theory can be obtained by dimensional reduction from a four-dimensional

effective theory with holomorphic gauge-coupling function fij. It is not hard to check

that K̃M as given in (3.18) satisfies (3.35) for CS′

ij = Cij with all other Cα
ij vanishing and

f̃ij = 0.
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In the limit (3.24) the A3
i , ξ

i are expected to combine into a non-Abelian potential

F4 = dA4 + [A4, A4] for the group G. Here the missing degrees of freedom appear due to

M2-branes wrapped on the vanishing P1’s in the fibers of the D̂i. This implies that

∫

M2,1

Refij F
i ∧ ∗3F j →

∫

M3,1

RefGTr(F4 ∧ ∗4F4) , (3.36)

where fG is the holomorphic gauge coupling function of the four-dimensional non-Abelian

gauge theory. Let us now apply the F-theory lift, to the large volume expression (3.18)

for K̃M. Performing the Legendre transform and a R, ξi Taylor expansion one finds that

KM is given by

KM = logR + log[VL(T + T̄ )] +Kcs(z)− 1

2R
ReTS′ Cijξ

iξj + ... . (3.37)

where we have to use (3.20) to evaluate Lα(T ) as a function of Tα + T̄α. The term pro-

portional to R−1 in this expansion is directly evaluated by using (3.33) and (3.19). Com-

paring (3.37) to the general expression (3.31) one easily determines the four-dimensional

Kähler potential KF and gauge coupling function fij,

KF(z, T ) = logVL(T + T̄ ) +Kcs(z)

= −2 logVb − log

∫

X̂4

Ω ∧ Ω̄ , (3.38)

fG(T ) = TS′ ,

where we inserted (2.39), and Lα
b = vαb/Vb after using (3.24). Note that this precisely

agrees with the expectation for a seven-brane wrapped on the divisor S in the base B3

[60, 9].

4 Gauge theories from the R-R sector

In this section we discuss the gauge theory arising from vector fields obtained by the

reduction of the R-R four-form C4 in an F-theory compactification on a Calabi-Yau

fourfold with 2r = 2h2,1(B3) harmonic three-forms. We begin to review some general facts

about the four-dimensional U(1)r gauge theory in subsection 4.1. The F-theory gauge

couplings are determined by lifting a three-dimensional M-theory compactifications onX4

to four dimensions in subsection 4.2. In the three-dimensional theory the vector fields are

dual to complex scalars. In subsection 4.3 we comment on the action of four-dimensional

electro-magnetic duality on the three-dimensional effective theory constraining the form

of the superpotential.
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4.1 Type IIB perspective and the four-dimensional action

Let us first recall some facts about the four-dimensional gauge theory arising from the

massless vector modes of C4. Explicitly the gauge fields arise in the expansion

C4|vec = V κ ∧ ακ − Ṽκ ∧ βκ , κ = 1, . . . , r , (4.1)

where we have displayed the ‘electric’ and ‘magnetic’ four-dimensional vectors V κ, Ṽκ.

The real symplectic basis (ακ, β
κ) of H3(B3,Z) obeys

∫

B3

αλ ∧ βκ = δκλ ,

∫

B3

ακ ∧ αλ =

∫

B3

βκ ∧ βλ = 0 . (4.2)

Note that C4 in Type IIB supergravity has a self-dual five-form field strength F5 = ∗10F5

and hence only half of the vectors in (4.1) parametrize independent degrees of freedom.

As we argue in the next subsection 4.2 one expects that this self-duality is generalized

in an F-theory compactification. Despite this generalization the choices for splitting the

gauge fields into sets V κ and Ṽκ will be related by symplectic rotations in Sp(2r,Z) of

the basis (ακ, β
κ) preserving (4.2). On the level of the four-dimensional effective action

these rotations correspond to electro-magnetic rotations as we recall next.

Let us summarize some general facts about electro-magnetic duality rotations. It is

well-known that the four-dimensional N = 1 action for U(1) gauge fields is of the form

S4
U(1) = −

∫

M3,1

1
2
RefκλFκ ∧ ∗4Fλ + 1

2
Imfκλ Fκ ∧ Fλ (4.3)

where Fκ = dV κ, and fκλ is a holomorphic function of the complex scalars in the chiral

multiplets. The electro-magnetic rotations mix Bianchi identities and equations of motion

for the gauge fields V κ. The elements of the symplectic group satisfy

(

A B
C D

)

∈ Sp(2r,Z) ,
DTA−BTC = 1 ,

ATC = CTA, BTD = DTB ,
(4.4)

where A,B,C,D are r×r matrices. The matrix (4.4) acts linearly on the vector (Gκ,Fκ),

where

Gκ = −δS4
U(1)/δFκ = Refκλ ∗4 Fλ + Imfκλ Fλ . (4.5)

Note that the gauge fields couple to the complex scalars of the theory via the holomorphic

function fκλ. Hence, a electro-magnetic rotation can be induced by a transformation of

the scalars and has to be accompanied with a rotation of the coupling matrix f with

entries fκλ ≡ −ifκλ as

f → (Af +B)(Cf +D)−1 . (4.6)
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The factor −i arises from the convention that Refκλ = (1/g2)κλ is positive definite since

it defines the inverse gauge-coupling.

In Type IIB supergravity Gκ given in (4.5) admits an identification as the field strength

of Ṽκ. However, in a general F-theory compactification it is not expected that this can

be inferred from the classical self-duality of F5, since fκλ will in general also depend on

other moduli, such as the deformations of the seven-branes. We determine the fκλ in

terms of the geometry of the Calabi-Yau fourfold in the next subsection.

4.2 Bulk gauge theory in the F-theory lift

In order to study the F-theory dynamics and couplings of the vectors in (4.1) in more

detail we again have to perform an M- to F-theory lift. In order to simplify the discussion,

we restrict ourselves in this section to Calabi-Yau fourfolds with

r ≡ h2,1(X̂4) = h2,1(B3) . (4.7)

Moreover, recall that h3,0(X̂4) = 0 such that the whole third cohomology splits as

H3(X̂4,C) = H2,1(X̂4)⊕H1,2(X̂4) = H2,1(B3)⊕H1,2(B3) . (4.8)

This split depends on the complex structure on X̂4 and hence varies non-trivially over the

complex structure moduli space Mcs discussed in section 2.5. Moreover, in the quantum

theory one actually has to consider the torus bundle T → Mcs with complex r-torus

fibers

Tz = H2,1(X̂4)/H
3(X̂4,Z) ∼= H2,1(B3)/H

3(B3,Z) , (4.9)

and base Mcs. At special points in Mcs the fibers Tz can become singular signaling that

the effective theory was not properly determined since light degrees of freedom have been

improperly discarded. At generic points in the moduli space one finds an N = 1, U(1)r

gauge theory after the lift of the three-dimensional M-theory compactification to a four-

dimensional F-theory compactification. Note that the study of such torus fibration has

recently attracted much attention in the context of reductions of N = 2 gauge theories

from four to three dimensions (see refs. [61] for recent progress and further references).

Clearly, our N = 1 set-up is much less constraint by supersymmetry. While in N = 2

the torus bundle is of dimension 4r and admits a Hyperkähler metric the N = 1 torus

bundle T is of dimension 2r+2h3,1(X̂4) and has a Kähler metric. One of the tasks of this

section is to determine the classical form of this metric in a theory coupled to gravity.

As already noted in section 2.2 imposing (4.7) ensures that all non-trivial three-forms

on X̂4 descend to four-dimensional vector multiplets in the F-theory limit. In the M-

theory reduction these vectors arise from expanding the M-theory three-form C3 into
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(ακ, β
κ) via the Kaluza-Klein Ansatz

C3 = AA ∧ eA + ãκ ακ − b̃κ β
κ

= AA ∧ eA +Nκ ψ
κ + N̄κ ψ̄

κ , (4.10)

where AA = (A0, Ai, Aα) are vectors which we already included in (3.13), and (ãκ, b̃κ), Nκ

are real and complex scalars in three dimensions. In three-dimensions massless scalars

are dual to vectors and we will show momentarily, that after dualizing b̃κ into a vector

V κ
3 , the fields (V κ

3 , a
κ) comprise the degrees of freedom of a four-dimensional vector V κ

in (4.1).

In (4.10) we have also introduced a complex basis of (2, 1)-forms ψκ of H2,1(X̂4). The

basis elements ψκ depend on the complex structure of X̂4 and naturally define complex

coordinates Nκ. Let us explore the relation between the complex and real basis for

H3(X̂4). In general, one can identify

ψκ = 1
2
Refκλ(αλ − if̄λµβ

µ) , ψκ − ψ̄κ = −iβκ , (4.11)

for a complex function fκλ of the complex structure moduli zK, with Refκλ ≡ (Refκλ)
−1

being the inverse of the real part of fκλ. One can now show that for an appropriate choice

of ψκ the function fκλ(z) is holomorphic in zK. This can be deduced from the fact that for

a complex manifold X̂4 the filtration F
3(X̂4) = H3,0, F 2(X̂4) = H3,0⊕H2,1, etc. consists

of holomorphic bundles F i(X̂4) over the space of complex structure deformations [62].

Since H3,0 is trivial one finds that F 2 = H2,1 is a holomorphic bundle and one can locally

choose a basis ψκ(z) as in (4.11). The matrix fκλ is readily extracted from ψκ using (4.2).

As an immediate consequence of (4.10) and (4.11) one concludes that

Nκ = fκλ(z) ã
λ − ib̃κ = −i(b̃κ − fκλã

λ) , (4.12)

where fκλ = −ifκλ as in (4.6). These expressions, together with the analysis of the

couplings of Nκ, allows to identify the Nκ as arising from four-dimensional vectors V κ

after reduction to three dimensions on a circle. Moreover, the function fκλ(z) is the

holomorphic four-dimensional gauge coupling function in (4.3). The reduction from four

to three dimensions is reviewed in appendix B. To fully justify this identification under

reduction one also has to analyze the couplings of the scalars Nκ, and hence derive the

three-dimensional kinetic potential including the Nκ.

To identify the appearance of the moduli Nκ in the M-theory kinetic potential one

dimensionally reduces the eleven-dimensional kinetic term for G4 = dC3 and the Chern-
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Simons term

S11
G4

= −
∫

1
4
G4 ∧ ∗G4 +

1
12
C3 ∧G4 ∧G4 (4.13)

= −
∫

M2,1

GκλDNκ ∧ ∗DNλ − 1
2
d κλ̄
A FA ∧ Im(N̄κDN λ) + . . . ,

where DNκ = dNκ − ReNλRef
λµ dfµκ. The metric on the space of three-forms is given

by

Gκλ =
1

2V

∫

X̂4

ψκ ∧ ∗ψ̄λ = −v
Ad κλ̄

A

2V , d κλ̄
A = i

∫

X̂4

ωA ∧ ψκ ∧ ψ̄λ , (4.14)

where we have used ∗ψ̄κ = −iJ∧ψ̄κ. The coupling d κλ̄
A depends on the complex structure

moduli through the complex three-forms ψκ. The crucial point to note is that (4.13) also

induces a coupling of Nκ and the complex structure moduli zK to the three-dimensional

vectors AA. Note that many of the above statements, in particular equations (4.11) and

(4.13), are independent of the restriction (4.7). However, in case we restrict to geometries

where all non-trivial three-forms arise from the base B3, i.e. (4.7) is obeyed, one can

further deduce that the only non-vanishing d κλ̄
A is along ω0, the two-form Poincaré dual

to B3 in X̂4. Explicitly, one has

Gκλ = −1
2
R · d κλ̄

0 , d κλ̄
0 = i

∫

B3

ψκ ∧ ψ̄λ = −1
2
Refκλ , (4.15)

where we inserted (4.11). By comparing (4.13) with (3.16) one thus infers that Nκ

appears in the kinetic potential KM as

KM = logR +KF (z, T )− 1

2R
ReTS′Cijξ

iξj +
1

2
R · Refκλ(z) ReNκReNλ , (4.16)

where KF (z, T ) is the Nκ-independent four-dimensional Kähler potential (3.38). Note

that this kinetic potential reproduces correctly the first term in the reduction of (4.13).

The second term in the reduction (4.13) is only reproduced up to a total derivative. It is

now readily checked that (4.16) indeed encodes the dynamics of four-dimensional vectors

V κ. Comparing (4.16) to the general expression (B.9), obtained by dimensional reduction

of the general N = 1 four-dimensional action, one finds

fG = TS′ , fRR
κλ = fκλ(z) . (4.17)

where fRR
κλ is the four-dimensional gauge coupling function of the R-R U(1)’s.
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4.3 Electro-magnetic duality in the three-dimensional action

Having established the couplings of the Nκ in the three-dimensional action, it is inter-

esting to investigate the action of the symplectic group (4.4) when acting linearly on the

basis vector (ακ, β
κ) and (b̃κ, ã

κ) in (4.10). To explore that in more detail, we compute

T0 = ∂RK
M + ic0 = T̃0 +

1
4
RefκλNκ(Nλ + N̄λ) , (4.18)

where T̃0 is invariant under the transformations (4.4).12 It is not hard to check that

fκλ = −ifκλ transforms as in (4.6). We evaluate the transformations of Nκ, T0 under

(4.4) by using the invariance of T̃0 as

Nκ → (Cf +D)−1λ
κ Nλ , T0 → T0 +

i
2
Cµκ(Cf +D)−1λ

κ NλNµ . (4.19)

As a further set of transformations one can evaluate the behavior under integral shifts

nκ of ãκ. One finds that

Nκ → Nκ + 2πi fκλn
κ , T0 → T0 − 2πnκNκ − 2π2i fκλn

κnλ . . (4.20)

Note that the non-trivial shifts (4.19) and (4.20) for T0 are expected from an analysis of

the M5-brane action [63, 64].

The transformation properties (4.6), (4.19) and (4.20) can be used to constrain the

couplings. In particular, a subgroup H ⊂ Sp(2r,Z) might provide an actual symmetry

group of the four-dimensional gauge theory. This group has to be determined by studying

the monodromies of the torus fibration (4.9) over the complex structure moduli space of

X̂4. In other words, since fκλ depends on the complex structure deformations of X̂4, a

symmetry of Mcs can induce an H action on the gauge-fields. Of particular interest are

the monodromy symmetries (2.46) of Mcs. Using intuition from the orientifold limes one

expects that there exist Calabi-Yau fourfolds with a natural lattice embedding

H3(X̂4,Z) →֒ H4(X̂4,Z) . (4.21)

This implies an action of the monodromy group (2.46) of Mcs on the gauge fields from

the R-R sector such that H ⊂ Gsym. This would be reminiscent of an underlying N = 2

theory. However, in contrast to the N = 2 theory the Kähler moduli sector discussed in

sections 2 and 3 can directly correct the gauge coupling functions in this N = 1 setting.

Nevertheless, as we show in a forthcoming publication, it is interesting to explore the

link between the geometry of the complex structure moduli space Mcs and the N = 1

gauge theory of this section.

12Note that as in [65] we have shifted the imaginary part c0 to ImT̃0 = c0 − 1
2
RefκλImNκReNλ

claiming that this T̃0 is the correct invariant combination.
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One can now proceed as in refs. [63, 64, 65] and constrain the form of the last term

in three-dimensional superpotential (3.23) as

WM(z,N , T0) = C̃ ·Θ(f ,N )e−T0 , (4.22)

where C̃ can still be a holomorphic function in zK. The key point to note is that Θ(f ,N )

transforms under (4.4) and the integral shifts of (aκ, b̃κ) such that it cancels the shifts of

T0. This allows to identify Θ(f ,N ) to be a Jacobi form [68]. It is an interesting task to

determine explicitly the form of Θ(f ,N ) for a given Calabi-Yau fourfold with h2,1(B3) >

0. Moreover, it would be interesting to investigate a four-dimensional interpretation of

(4.22), by recalling that the leading term in T0 is the action of a Taub-NUT gravitational

instanton [57].13

Let us end this section by giving one simple example of a Calabi-Yau fourfold in

which the above formalism can be applied. Namely, one can consider the elliptic fi-

bration over the cubic hypersurface B3 in P4. The cubic is a Fano threefold with

h2,1(B3) = 5, h1,1(B3) = 1. The corresponding elliptically fibered Calabi-Yau fourfold

X4 is constructed as complete intersection as summarized in appendix A of ref. [21]. Its

Hodge data are

h1,1(X4) = 2 , h2,1(X4) = 5 , h3,1 = 1483 , (4.23)

where the two (1, 1)-forms correspond to the hyperplane class in B3 and the fiber of

X4. Note that X4 is generically non-singular, so that no non-Abelian gauge symmetry

arises from space-time filling seven-branes.14 The cubic threefold and its intermediate

Jacobian H2,1(B3)/H
3(B3,Z) has been studied in detail in ref. [69]. In this case only the

dependence on the complex structure moduli of B3 was included. It would be interesting

to extend this analysis to the whole fourfoldX4. Moreover, such an analysis is particularly

interesting in the case that the R-R gauge theory can be traced through heterotic F-

theory duality. It was argued in refs. [70, 71, 72] that the U(1)’s in F-theory arise in

the heterotic dual as gauge fields on heterotic M5-branes wrapped on a curve C in the

heterotic compactification manifold.15 We hope to report on progress along these lines

in a future publication.

5 On matter couplings on seven-branes

In this section we discuss how certain matter couplings on seven-branes are encoded in the

N = 1 F-theory effective action. In subsection 5.1 we review briefly aspects of the local

13See refs. [66, 67], for recent progress on F-theory instantons.
14By tuning the complex structure non-trivial gauge-theories arise as discussed in [21].
15See refs. [73, 50] for recent discussions on this duality.
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seven-brane world volume theory. Adjoint matter encoding deformations of the seven-

branes is discussed in subsection 5.2, where we also present a detailed determination

the D-term supersymmetry conditions. Adjoint Wilson line moduli and scalars from the

Type IIB R-R and NS-NS two-forms are discussed in subsection 5.3.

5.1 Seven-brane world volume theory

In a local analysis of the world-volume theory on a stack of seven-branes wrapped on

S it was shown in ref. [13, 8, 9] that the zero modes can be obtained by solving eight-

dimensional F- and D-term equations.

To make this more explicit, we first specify a background seven-brane configuration

extracted from Xsing
4 or X̂4. Recall from section 3.1 that the local gauge group at a point

p in S is determined by the ADE degeneration of the elliptic fibration Xsing
4 at p. Let

us denote by Gmax the maximal local gauge group which appears when considering all

points on S. We will consider in the following cases where all other points of S have

local gauge groups inside Gmax. The actual physical gauge group G is obtained at generic

points in S where no further enhancement takes place. Further enhancements will arise

over complex matter curves obtained at the intersection of S with the locus ∆′ given in

(2.3), as well as Yukawa points on S where matter curves meet. This information can be

explicitly extracted for a given Xsing
4 , or X̂4. To specify the background of the local field

theory on the seven-brane, this data is conveniently encoded by a (2, 0) form 〈ϕ〉 on S.
In the simplest case, when the breaking of Gmax over the matter curves can be captured

by a vev in the Cartan subalgebra hmax to Gmax one has

〈ϕ〉 ∈ hmax ⊗KS , (5.1)

which is specified for a fixed complex structure of Xsing
4 . Each non-trivial entry of 〈ϕ〉

specifies a breaking of Gmax. Due to a minimal gauge group G on S one has at least

rk(G) vanishing entries in the background configuration. Moreover, note that over the

matter curves additional vanishing conditions apply, which ensure that the gauge group

locally enhances further. Further data specifying the background are given by 〈A〉, the
background value of the gauge field A on S. The four-dimensional effective theory is

computed for the fluctuations ϕ′ and A′ around such a background configuration, i.e. one

expands

ϕ = 〈ϕ〉+ ϕ′ , A = 〈A〉+ A′ . (5.2)

At low energies only the zero-modes for ϕ′, A′ will appear. These are determined by

solving the eight-dimensional F- and D-term equation expanded around the background

as we recall next.
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Let us denote by A the (1, 0)-part of the seven-brane gauge field A in a fixed complex

structure of Xsing
4 . The eight-dimensional F- and D-term equations in this complex

structure are given by

8d F-term : ∂̄Āϕ = 0 , F 0,2 = 0 , (5.3)

8d D-term : ω ∧ F + i
2
[ϕ̄, ϕ] = 0 , (5.4)

where ω = cJb|S with c constant on S as determined below, F = dA + A ∧ A, and

∂A = ∂ + A∧ is the gauge-covariant derivative on M3,1 × S. Note that the F-term

equations admit a gauge invariance

Ā → g−1Āg + g−1∂̄g , ϕ → g−1ϕg . (5.5)

In order to extract the light modes appearing in the four-dimensional effective action

one first expands the F- and D-term equations to linear order in the fluctuations ϕ′, A′

as

∂̄〈A〉Ā′ = 0 , ∂̄〈A〉ϕ
′ + [Ā′, 〈ϕ〉] = 0 , (5.6)

ω ∧ ∂〈A〉Ā′ + i
2
[〈ϕ̄〉, ϕ′] = 0 . (5.7)

It was argued in ref. [13] that finding the zero modes for the F-term equations (5.6), can

be studied by determining the cohomology to a particular differential operator. Each

class is independent of the Kähler form due to the gauge invariance (5.5). The linearized

D-term conditions (5.7) then determine a specific representative in a cohomology class.

Of course, that is similar to, for example, the standard Kaluza-Klein Ansatz for the M-

theory three-form (2.22), (3.13) and (4.10), where the expansion forms are representing

cohomology classes and are independent of the Kähler moduli. Despite such a cohomology

theory it is not immediately clear how to include the zero modes A′, ϕ′ into a Kaluza-

Klein reduction. One of the complications is the coupling of ϕ′ and A′ zero modes in the

second equation of (5.6).

In the following we will restrict to the simplest situation and consider the special

case of matter ϕ′ and A′ transforming in the adjoint of G, and set 〈A〉 = 0. Since the

background 〈ϕ〉 has zero entries along the adjoint of G on S, the conditions (5.6) reduce
to ∂̄Ā′ = 0 and ∂̄ϕ′ = 0. These conditions are satisfied if Ā′, ϕ′ are expanded in a basis

of H0,1(S) and H2,0(S) with coefficients transforming in the adjoint representation. In

the remaining two subsections we study this Kaluza-Klein Ansatz in an F- and M-theory

reduction.
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5.2 Adjoint matter on the seven-brane world volume

In this subsection we discuss the inclusion of adjoint matter ϕ′ localized on the world

volume of a seven-brane with gauge group G. In the four-dimensional effective theory ϕ′

is expanded into zero modes ρν forming a basis of H2,0(S), with coefficients being the

four-dimensional matter fields ϕ′ν . The degrees of freedom captured by ϕ can be turned

into additional complex structure deformations if one moves from the resolved Calabi-

Yau fourfold X̂4 to the deformed Calabi-Yau fourfold X4 as in (2.4). This suggests that

at leading order the deformations captured by ϕ′ appear in the Kähler potential as

Kcs(z, z̄, ϕ′, ϕ̄′) = − log
[

∫

X̂4

Ω ∧ Ω̄−
∫

S

Tr(ϕ′ ∧ ϕ̄′)
]

, (5.8)

where the trace is in the adjoint of G. In the following we compute the four-dimensional

D-term induced via the minimal coupling to adjoint matter and a non-trivial background

flux.

One first notes that there is now charged adjoint matter ϕ′ coupling via the covariant

derivative Dϕ′ν = dϕ′ν+[A4, ϕ
′ν ]. To compute the D-term arising due to this gauging, we

recall some general facts about supergravity theories with four supercharges. Denoting

byM I all complex scalars in chiral multiplets, the Killing vector XI
i (M, M̄) of vectors Ai

appear in the minimal coupling DM I = dM I + iXI
i A

i. The D-term for the vector mul-

tiplet with Ai is now evaluated using the general four-dimensional supergravity identity

[38]

∂MIDi = KIJ̄X̄
J̄
i , KIJ̄ = ∂MI∂M̄JK . (5.9)

One thus has to evaluate the Killing vector Xϕν

A4
and the derivative of the Kähler potential

for ϕ′ν . Using (5.8) one finds at leading order

Xϕν

A4
= −i[· , ϕ′ν ] , ∂ϕ′ν∂ϕ̄′µKcs =

∫

S ρν ∧ ρ̄µ
∫

X4
Ω ∧ Ω̄

. (5.10)

This yields the leading order D-term

Dϕ′

G =
i

∫

X4
Ω ∧ Ω̄

∫

S

[ϕ′, ϕ̄′] . (5.11)

Let us next include the G4 flux. The scalar identity (5.9) reduces trivially to three

space-time dimensions and can be directly evaluated for the M-theory reduction [30, 74].

One focuses on the following terms in the reduction of eleven-dimensional supergravity

action

SCS = − 1

12

∫

C3 ∧G4 ∧G4 = −1

2

∫

M2,1

Ai ∧ dAα

∫

X̂4

ωα ∧ wi ∧G4 + . . . , (5.12)
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where we inserted the expansion (3.13) for C3 and one of the G4 = dC3. The integral

over X̂4 arises due to the non-trivial flux. One realizes that this provides an additional

coupling involving the vector multiplets Ai. Recall that the Ai lift to four-dimensional

vectors, while the Aα lift to four-dimensional two-forms and are dualized into scalars

ImTα, via the Legendre transform (3.28). Hence, the term (5.12) is of Stückelberg type

and induces a gauging of Tα via the covariant derivative

DTα = dTα + iXα iA
i , Xα i =

1

2

∫

X̂4

ωα ∧ wi ∧G4 , (5.13)

where Xαi is the flux-dependent Killing vector of the gauged shift symmetry. Since Xα i

is independent of the chiral multiplets one can integrate (5.9) to Di = KTα
Xα i. Using

KTα
= −1

2
Lα for K = KM as given in (3.29), one finds

Di = −1

4
Lα

∫

X̂4

ωα ∧ wi ∧G4 =
1

4
Cij L

α

∫

S

ωα ∧ F j
flux , (5.14)

where we inserted the G4 flux given in (3.12), used the identity (3.10), and applied

Poincaré duality. It is worthwhile noting that the calculation of this D-term did not

depend on the precise form of the Kähler potential, since KTα
= −1

2
Lα is fixed by the

Legendre transform (3.27), (3.28) and corrections to K̃M will alter the definition of Tα

rather then KTα
. The D-term potential is then evaluated as

VD = 1
2
Ref−1 ijDiDj , (5.15)

where Refij is the real part of the holomorphic gauge coupling function of the seven-

branes on S given in (3.34), (3.37). It is not hard to check that this potential term

precisely arises from the dimensional reduction of the term
∫

G4 ∧ ∗G4 appearing in the

eleven-dimensional supergravity theory. In the F-theory lift, one thus combines (5.11)

and the lifted version of (5.14). This yields the D-term for a non-Abelian group G on S:

DG =
1

4Vb

∫

S

Jb ∧ Fflux +
i

∫

X4
Ω ∧ Ω̄

∫

S

[ϕ′, ϕ̄′] . (5.16)

Note that this agrees with the expression (5.4) obtained in ref. [9] for a seven-brane

decoupled from gravity if one includes the pre-factors Vb and
∫

X4
Ω ∧ Ω̄.

5.3 Wilson lines and R-R and NS-NS two-form moduli

In this subsection we will include the degrees of freedom corresponding to Wilson line

moduli on the seven-branes on a divisor S as well as the moduli from the Type IIB R-R

and NS-NS two-forms.
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The Wilson line degrees of freedom are present if the Hodge-numbers h1,0(S) are

non-zero. More generally they can arise for a non-trivial flux background, or be localized

along matter curves as briefly discussed in subsection 5.1. Here we will focus on the

simplest case where the Wilson lines transform in the adjoint of G and arise as h1,0(S)
zero modes. In the Kaluza-Klein zero mode expansion of the seven-brane gauge fields A

the complex Wilson line scalars Nb appear as

A|scalar = A+ Ā = N̄
b
γb +Nb γ̄b , (5.17)

where γb is a basis of H1,0(S). Note that we have used the split of the first cohomology

group on S by using the induced complex structure from X̂4. One can introduce a basis

(α̂a, β̂
b) of H1(S,Z) and write

γb = α̂b − if̄bcβ̂
c , (5.18)

for fcb(z) being a holomorphic function in the complex structure moduli zK of X̂4. Note

that (5.17) and (5.18) are consistent with the holomorphicity properties of the superpo-

tential induced in the presence of a non-Abelian gauge theory. In was argued in refs. [9, 8],

that the four-dimensional flux superpotential (2.47) is corrected byWbrane =
∫

S
Tr(F∧ϕ).

Thus, the effective four-dimensional superpotential is given by

W F =

∫

X̂4

G4 ∧ Ω(z) +

∫

S

Tr(Fflux ∧ ϕ′) + YabνTr(N
aNbϕ′ν) , (5.19)

with Yukawa couplings

Yabν(z) =

∫

S

γ̄a ∧ γ̄c ∧ ρν . (5.20)

Inserting (5.18) one sees that Yabν is holomorphic in the complex structure deformations

for a holomorphically varying basis ρν of (2, 0) forms on S. By using the duality with

the M-theory set-up, we discuss in the following how the Wilson line moduli Na appear

in the Kähler potential.

To begin with, let us note that the base B3 has h1,0(B3) = 0, such that the one-

forms in H1,0(S) have to be trivial in B3. On the level of the Poincaré dual three-cycles

Ab
3 ∈ H3(S) this implies that Aa

3 has to be trivial in B3. Hence there exist four-chains

which admit Aa
3 as boundaries. In the Calabi-Yau fourfold X̂4, one has to check whether

or not the singular elliptic fibration makes the four-chains into five-cycles in H5(X̂4).

This can happen since the generic elliptic fiber admits one-cycles which pinch on the

location of the seven-branes. This construction is natural for S, since one has more than

one brane in the presence of a non-Abelian gauge group. These branes have been moved

apart once one blows up the singularity introducing new divisors D̂i and corresponding

two-forms wi. Using the complex structure of X̂4 to split H1,0(S)⊕H0,1(S) this yields a
map H1,0(S) →֒ H2,1(X̂4). Locally, one can write these (2, 1) forms as

Ψa i
∼= γa ∧ wi, (5.21)
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where wi are (1, 1) forms on X̂4 already introduced above. The local expressions for Ψa i

might patch together to harmonic forms representing elements of H2,1(X̂4). The Wilson

line scalars Na i in the M-theory reduction carry an extra index labeling the seven-brane.

Recall that in section 4.2 we discussed the h2,1(B3) vectors which correspond to scalars

Nκ in three dimensions. Here we will set h2,1(B3) = 0 and show that the remaining fields

in H2,1(X̂4) correspond to complex scalars Na in four dimensions. We will discuss the

general case in appendix C, where we include the full split

N I = (Nκ,N
a) , (5.22)

with Nκ descending to vectors and Na descending to scalars in the F-theory lift.

There is also a second set of scalars which is counted by elements inH2,1(X̂4). Namely,

also degrees of freedom from the R-R and NS-NS two-form C2, B2, combined into a

complex G2 in (2.11), can patch together and yields scalar fields in the dimensional

reduction. To make this more precise, let us introduce the ν(κ) complex one-forms on the

elliptic fiber

ν(κ) = i
2
(Imτ)−1(dx+ τ̄ dy) . (5.23)

These are defined in a patch Uκ on B3 labeled by κ. On the overlap Uκ ∩ Uλ of two

such patches these one-forms can transform with an Sl(2,Z) transformation as evaluated

using (2.12). We denote by C
(κ)
2 , B

(κ)
2 the two-forms in the patch Uκ. Locally one can

now introduce a three-form

B
(κ)
2 ∧ dx+ C

(κ)
2 ∧ dy = G

(κ)
2 ∧ ν(κ) + Ḡ

(κ)
2 ∧ ν̄(κ) . (5.24)

This three-form transforms invariantly when moving from patch to patch on the base B3,

and hence can lead to zero modes which have to be included in an F-theory reduction.

Clearly, the expression (5.24) will be part of the M-theory three-form when describing

F-theory via the M-theory lift. Hence, we have to perform a reduction very similar to

the one of section 4.2. We thus expand C3 as

C3 = AA ∧ eA + aa αa + ba β
a = AA ∧ eA + N̄

a
Ψa +Na Ψ̄a , (5.25)

where (aa, ba) are three-dimensional real scalars which combine into complex scalars Na.

The three-forms (αa, β
a), a = 1, . . . , h2,1(X̂4) in (5.25) comprise a basis of H3(X̂4,Z). In

contrast to the basis (ακ, β
κ) introduced in section 4.2, the basis (αa, β

a) is not canonically

symplectic, since it is generically not supported only on one divisor in X̂4. However, if

Na correspond exclusively to Wilson line degrees of freedom on S, one can make contact

with the discussion from the begin of this subsection. The Wilson lines Na i are labeled

with an extra index i counting the number of branes on S. The corresponding (2, 1)
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3-dim multiplet 4-dim F-theory

Na
h2,1(X̂4)− h2,1(B3) chiral multiplet

Wilson line scalars

B2, C2 scalars

Table 5.1: Chiral multiplets arising in the F-theory lift of complex scalars in C3.

forms Ψa i are near S of the form (5.21). However, in the following we will keep the

analysis general and only comment on the Wilson line case at the end of the section.

As in section 4.2 the complex structure defining Na is induced by the complex struc-

ture on X̂4, as captured by the (2, 1)-forms Ψa. However, one now choses a basis to

expand Ψa as

Ψa = αa − if̄abβ
b , ImΨa = −Refabβ

b , (5.26)

for a holomorphic function fab of the complex structure moduli zK. These are the analogs

of the forms introduced in (5.18). As an immediate consequence of (5.25) and (5.26) one

concludes that

Na = 1
2
Refab(f̄ab a

b + iba) , (5.27)

with Refab ≡ (Refab)
−1 being the inverse of the real part of fab. The couplings of the

fields Na are, as in (4.14), captured by the complex structure dependent function

dAab̄ = i

∫

X̂4

ωA ∧Ψa ∧ Ψ̄b . (5.28)

Note that in contrast to the case of section 4.2 the Ψa do not have all indices on B3 since

we have assumed h2,1(B3) = 0. Hence, the only non-vanishing couplings are actually

dαab̄, since only ωα has only indices on the base B3. Hence, a computation similar to the

one leading to (4.16), yields the kinetic potential

K̃M = K̃M
o (R,L, ξ) + Lαdαab̄(z, z̄) ReN

aReNb + . . . , (5.29)

where K̃M
o (R,L, ξ) is the original kinetic potential independent of the fields Na, and

Lα are the scalars in the three-dimensional vector multiplets (Aα, Lα) which dualize to

four-dimensional complex scalars Tα.

In considering the F-theory lift to four dimensions one realizes that (5.29) cannot be

the complete correction. To see this, one notes that the real part of the holomorphic

gauge coupling function fij has to obey (3.34). Since the corrections term in (5.29)

modifies the definition of the coordinates Tα, holomorphy of the four-dimensional gauge

coupling implies that that (5.29) is missing a correction proportional to ξ2. To ensure
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(3.35) with f̃ = 0, one finds that the correct expression for K̃M is

K̃M = K̃M
o (R,L, ξ) + (Lα − R−1Cα

ij ξ
iξj) dαab̄(z, z̄) ReN

aReNb . (5.30)

Note that the new term in K̃M which is linear in Lα is removed by the Legendre transform

to coordinates Tα and kinetic potential KM as in (3.28) and (3.31),(3.34). More precisely,

one has

Tα = ∂LαK̃M
o (R,L, ξ) + dαab̄(z, z̄) ReN

aReNb + iρα , (5.31)

and

KM = logR +KF − 1

2R
ReTS′ ξiξj +O(R) . (5.32)

In this expression KF is readily evaluated from the original KF
o by replacing Tα →

Tα + dαab̄ReN
aReNb. It is straightforward to evaluate this expression for the K̃M

o given

in (3.18).

In the F-theory lift of the expressions (5.32) one uses again the fact that gauge

fields descent to a non-Abelian theory removing the indices i, j and replacing the gauge

coupling function as in (3.38). Moreover, if all Na correspond to Wilson line moduli Na i

the expression (5.31) is lifted to

ReTα = ∂LαK̃M
o (R,L, ξ) + dαab̄Tr(ReN

aReNb) , (5.33)

where the four-dimensional Na transform in the adjoint of G, and we have inserted

dαab̄ = i

∫

S

ωα ∧ γa ∧ γ̄b , (5.34)

as can be evaluated using (5.21), (5.28), and an identity similar to (3.10). It is not hard

to check that this lift leads to the correct local expression for the kinetic terms of the

Wilson line moduli studied in [9]. Furthermore, (5.32) together with (5.33) yields the

correct expression in the orientifold limes [60] and orbifold limits [75, 2].

6 Conclusions

In this paper we studied the four-dimensional effective action of F-theory compactified

on an elliptically fibered Calabi-Yau fourfold X4. Many of the important equations

and results of this paper are summarized in appendix A. The main tool was to use a

non-trivial scaling limit to lift the three-dimensional supergravity theory obtained by

compactification of M-theory on X4. We have shown explicitly how the massless Kaluza-

Klein modes arising in the reduction of the M-theory three-form and the Kähler form

along the elliptic fiber of X4 encode the massless metric degrees of freedom along an
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S1 used in a compactification from four to three dimensions. The guiding principle to

formulate the M- to F-theory lift has been to demand finiteness of M5-brane actions

wrapped on vertical divisors. An M5-brane wrapped on the base B3 has infinite action

in the F-theory limit as it scales as the square of the S1 radius.

The M- to F-theory lift can be extended to singular elliptic fibrations if the singularity

has been resolved by blow-up yielding a fourfold X̂4. The degrees of freedom induced by

the new blow-up forms correspond to the massless degrees of freedom in the reduction of

four-dimensional U(1) vectors. The gauge-group enhances to a non-Abelian group due to

massless M2-branes on resolving cycles of vanishing volumes. In the four-dimensional F-

theory picture this corresponds to a stack of seven-branes with non-Abelian gauge group

on their world-volume. We considered the F-theory limit using the large volume ex-

pressions for the resolved Calabi-Yau fourfold X̂4 to compute the leading gauge-coupling

function for the seven-branes. It is of interest to study the corrections to these expres-

sions. In particular, the splitting of the gauge-couplings in the orientifold limit observed

in ref. [77], has to be investigated in the M- to F-theory lift. However, it is crucial to

note that these corrections depend on the dilaton-axion τ , and hence are expected to be

generalized via a holomorphic function of the complex structure moduli as in section 5.

From the M-theory reduction we were able to extract the four-dimensional Kähler

potential and gauge coupling functions. In three dimensions both are encoded by a single

function, the kinetic potential KM, which has to be expanded around the F-theory limit

in the Kähler moduli space. The expressions found in the F-theory reduction specialize

to the results found in the orientifold limit in refs. [40, 60]. It will be crucial to examine

corrections to these leading order results. While the KKLT scenario [78] of stabilizing

Kähler moduli has an implementation in F-theory, it remains to be shown how the large

volume compactifications of [79] can be realized. This is again due to the fact that the

corrections used in [79] dependent on the dilaton-axion and lift non-trivially to F-theory.

In addition to the seven-brane gauge theories we have also investigated the gauge

dynamics of the Abelian gauge theory arising in the reduction of the R-R four-from.

Massless vectors arise in the F-theory reduction if the base of the fourfold X̂4 admits

harmonic three-forms. The gauge-coupling function is determined by a holomorphic

function fκλ(z) encoding the fibration of a torus bundle T over the complex structure

moduli space of X̂4. It is an interesting task to compute this holomorphic function

explicitly for Calabi-Yau fourfold examples. There will be special loci in the complex

structure moduli space at which this Abelian theory enhances to a non-Abelian gauge

group, just as in Seiberg-Witten theory. To study the R-R gauge theory at various points

in open-closed complex structure moduli space might yield new insights for N = 1 gauge

theories. In particular, it will be interesting to explore how the singularities for non-
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Abelian seven-branes are seen by the R-R gauge theory.

In the last section we have focused on matter corresponding to seven-brane deforma-

tions and Wilson line moduli which transform in the adjoint of the non-Abelian gauge

group. Again we were able to determine their couplings in the N = 1 Kähler potential.

This allowed us to derive the matter D-term including the flux correction. The Wilson

line moduli non-trivially correct the Kähler moduli. We argued that in M-theory these

fields arise as zero modes along harmonic three-forms with one leg on the seven-brane

surface S. It will be a crucial task to extend the analysis to localized charged matter

arising at intersections of the seven-brane on S with other seven-branes. These fields can

be chiral if fluxes on the world-volume are turned on. It is conceivable that the results

of section 5 naturally extend to this case if one considers fields ϕ′, A′ transforming in the

adjoint of Gmax introduced in this section. However, the zero mode conditions appear to

mix contributions from the two sectors, and it will be interesting to establish a formula-

tion where this mixing is canonically captured. Let us conclude by noting that questions

concerning moduli stabilization and chirality both require a detailed understanding of

fluxes in F-theory, and the full picture needs yet to be explored.16
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Appendices

A Summary of results

In this appendix we summarize some of the key results of this work. Most of the details

are skipped and can be found in the main text. The general results for the Kaluza-Klein

reduction from four to three dimensions can be found in appendix B.

16For a recent discussion using heterotic/F-theory duality, see refs. [42, 73, 50, 80].
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General expressions for the M-theory reduction

Considering M-theory on a resolved Calabi-Yau fourfold X̂4 the Kähler potential in three

dimensions is

KM(z, T,N) = Kcs(z)− 3 logV (A.1)

= − log

∫

X̂4

Ω ∧ Ω̄− 3 log

∫

X̂′
4

Ω′ ∧ Ω̄′ ,

as discussed in (2.20), (2.36) and (2.39). The quantum volume V is determined by mirror

symmetry, where X̂ ′
4 is the mirror of X̂4, and Ω′ is the mirror (4, 0) form. KM depends

on the complex structure moduli zK through Ω. The second term has to be evaluated on

a real Lagrangian slice of dimension h1,1(X̂4) = h3,1(X̂ ′
4). We choose real coordinates vA

to parameterize this slice. The real part of the Kähler moduli ReTA are defined as real

parts of the mirror periods Π
(3)
A (v) corresponding to the mirror of six-cycles in X̂4 (see

e.g. (4.18), (5.31)):

TA = ReΠ
(3)
A (v) + dAIJ(v, z)N

IReNJ + iρ̃A , (A.2)

where dAIJ is in general a function of vA, zK. Chiral multiplets N I with axion-like ImN I

appear quadratically in TA. There can be other moduli corresponding to further matter

multiplets. The Kähler potential (A.1) has to be evaluated as a function of zK, TA, N
I .

In particular, one has to solve

2ReΠ
(3)
A (v) = TA + T̄A − 2 dAIJ(v, z)ReN

IReNJ (A.3)

for vA and insert the result into (A.1). If N I transforms as an adjoint under a non-

Abelian gauge group one has to replace ReN IReNJ → Tr(ReN IReNJ ). Depending on

the type of six-cycle one has the split

TA = (T0, Tα, Ti) , (A.4)

where T0 corresponds to the base B3, the Tα correspond to vertical divisors Dα, and

the Ti are associated with resolution divisors D̂i (subsection 3.1). If ImTA has a shift

symmetry all TA can be dualized to three-dimensional vector multiplets

(LA, AA) =
(

(R,A0) , (Lα, Aα) , (ξi, Ai)
)

, (A.5)

in accord with the split (A.4). This dualization corresponds to performing a Legendre

transform

K̃M(L, z,M) = KM − 1

2
(TA + T̄A)L

A ,
∂KM

∂TA
= −1

2
LA . (A.6)
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K̃M is a kinetic potential encoding the kinetic terms of the complex scalars zK, N I as well

as the vector multiplets (LA, AA) in the three-dimensional action (3.16). It is often useful

to work with K̃M since the dependence on LA can be much simpler as the TA-dependence

of KM. This is the case at large volume.

M-theory reduction at large volume

If all volumes in X̂4 are large the classical expressions for the mirror periods are inserted

into (A.1) and (A.2):

V =
1

4!

∫

J4 , TA =
1

3!

∫

DA

J3 + dAIJ(z)N
IReNJ + iρ̃A . (A.7)

For an elliptic fibration with a resolved G-singularity over S one has the following con-

ditions for the quadruple intersections:

Dα ·Dβ ·Dγ ·Dδ = D̂i ·Dβ ·Dγ ·Dδ = 0 , (A.8)

(D̂i · D̂j + Cij S
′ · B3) ·Dα ·Dβ = 0 , (A.9)

where Cij is the Cartan matrix for G. The dAIJ in (A.7) are independent of vA at large

volume, and given by

dAIJ = i

∫

X̂4

ωA ∧ ψI ∧ ψ̄J , (A.10)

where ψI are (2, 1) forms on X̂4. These (2, 1)-forms vary over the complex structure

moduli space. The complex structure dependence is encoded by a holomorphic function

fIJ(z) as in (4.11) and (5.26). The kinetic potential K̃M at large volume is (see (3.18)

and (5.29))

K̃M = log[1
6
RLαLβLγKαβγ − 1

4
ξiξj Cij L

αLβKS|αβ +O(R3, ξ3)] +Kcs(z)

+LAdAIJReN
IReNJ +O(ξ2, R2) . (A.11)

Using the index structure of the (2, 1)-forms on X̂4 one splits N
I = (Na,Nκ) as in (5.22),

and appendix C, and has

LAdAIJN
INJ = LαdαabN

aNb +Rd κλ
0 NκNλ + 2ξid κ

ia NaNκ . (A.12)

The ψκ in d κλ
0 have all indices in the base B3 as in (4.11). The Ψa are the remaining

(2, 1) forms in (5.26).
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F-theory lift, moduli matching, and the N = 1 characteristic data

The F-theory limit is a limit in Kähler moduli space given by

R → 0 , Lα → Lα
b , ξi/R → 0 , (A.13)

ReT0 → ∞ , Tα → T b
α , ReTi → 0 .

This limit sets the background values of the fields R, ξi. Their variations appear in the

effective action. The three-dimensional M-theory compactification expanded around this

limit has to be compared with the dimensional reduction of a general four-dimensional

N = 1 supergravity theory reduced to three dimensions on an S1 of radius r. The elliptic

fiber volume R is identified as R = r−2. The three-dimensional fields lift non-trivially to

four dimensions as summarized in table A.1.

3-dim. multiplet 4-dim. F-theory

(LA, AA)
h1,1(X̂4)− h1,1(B3)− 1 vector multiplets (ξi, Ai) → Ai

h1,1(B3) chiral multiplets (Lα, Aα) → Tα

extra dimension (R,A0) → (g33, gµ3)

N I h2,1(B3) vector multiplets Nκ → V κ

h2,1(X̂4)− h2,1(B3) chiral multiplets Na → Na

zK h3,1(X̂4) chiral multiplets zK → zK

Table A.1: The four-dimensional F-theory spectrum without matter fields.

Since among the TA in (A.4) only Tα lifts to a complex scalar in four dimensions, the

key object to work with is the kinetic potential

KM(Tα, z, N |ξ, R) = K̃M − 1
2
(Tα + T̄α)L

α , ReTα = ∂LαK̃M . (A.14)

This potential depends on the scalars ξi, R which are in vector multiplets. The Nκ lift

to four-dimensional vectors, but appear as complex scalars in KM. One expands KM

around the F-theory limit (A.13), ReNκ → 0, as

KM = logR +KF(z, T,N)|∗ + 1
2
K̃M

ξiξj |∗ξiξj + 1
2
K̃M

ReNκReNλ
|∗ReNκReNλ + . . . , (A.15)

where |∗ indicates evaluation in the strict limit. There is no linear term in Nκ due to

its quadratic appearance in (A.2). Linear terms in ξi have to be absent to ensure match
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with a kinetic potential obtained by dimensional reduction. Using appendix B a general

KM obtained by reduction is

KM = logR +K(M, M̄)− 1
2
R−1∆ij ξ

iξj + 1
2
R∆κλ ReNκReNλ − ∆λ

i ξ
iReNλ , (A.16)

where K is the four-dimensional Kähler potential and ∆ is given in (B.10). For ∆λ
i = 0

one has: ∆ij = Refij, ∆
κλ = Refκλ, where fij and fκλ are holomorphic gauge coupling

functions. In order that Tα can arise holomorphically in fij the kinetic potential K̃
M has

to satisfy
(

Cα
ij∂Lα +R∂ξi∂ξj

)

K̃M = Re f̃ij(M) , for R, ξi/R→ 0 . (A.17)

Here f̃ij is a holomorphic function which can in general appear in the gauge-coupling

function. It was found to be zero at leading order.

Since the indices i, j parameterize the blow-up divisors of a G singularity over S,
they label Cartan U(1)′s in G. In the F-theory limit (A.13) the indices i run over all

generators, and the gauge group enhances as U(1)rk(G) → G, due to light M2-branes.

Similarly, one can treat matter deformations ϕ′ and Wilson line moduli transforming in

the adjoint of G, as discussed in section 5. To display the formulas, we assume that all

Na are Wilson line moduli, since otherwise we have to introduce new indices and split

the set Na. For the simple K̃M given in (A.11) one compares (A.14) with (A.16). One

then finds

KF(z, T, ϕ′,N) = −2 logVb − log
[

∫

X̂4

Ω ∧ Ω̄−
∫

S

Tr(ϕ′ ∧ ϕ̄′)
]

, (A.18)

Tα =
1

2!

∫

Db
α

Jb ∧ Jb + dαab(z)Tr(N
aReNb) + iρ̃α , (A.19)

together with the gauge coupling functions

fG = TS′ , fRR
κλ = fκλ(z) . (A.20)

Note that the couplings dαab(z), fκλ(z) as well as the correction ϕ′ ∧ ϕ̄′ depend on all

complex structure moduli of X̂4. In particular, this includes couplings to seven-brane

moduli. Note that various additional corrections can be computed using this formal-

ism. For example, we have indicated volume corrections to KF in (2.37). Finally, the

superpotential was given in (5.19), (5.20) and reads

W F =

∫

X̂4

G4 ∧ Ω(z) +

∫

S

Tr(Fflux ∧ ϕ′) + YabνTr(N
aNbϕ′ν) , (A.21)

while the leading order D-term is computed in section 5.2 and reads

DG =
1

4Vb

∫

S

Jb ∧ Fflux +
i

∫

X4
Ω ∧ Ω̄

∫

S

[ϕ′, ϕ̄′] . (A.22)
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B 4d→ 3d reduction and scalar-vector duality

In this appendix we discuss the reduction of the bosonicN = 1 action (2.9) to three space-

time dimensions on a circle S1 of radius r (see, e.g., refs. [30]). The four-dimensional

metric, and the four-dimensional vectors split as

g(4)µν =

(

g
(3)
pq + r2A0

pA
0
q r2A0

q

r2A0
p r2

)

, AΛ
µ = (AΛ

p + A0
p ζ

Λ, ζΛ) , (B.1)

where A0
p, A

Λ
p , p = 0, 1, 2 are vectors and ζΛ as well as r are scalars in three dimen-

sions. Note that we will use the same symbol AΛ for four- and three-dimensional vectors.

However, it should be clear by the context whether we are working in four or three di-

mensions. Performing the Kaluza-Klein reduction of the action (2.9) and employing a

Weyl rescaling to the three-dimensional Einstein frame, the three-dimensional action can

be brought into the standard form

S(3) =

∫

−1
2
R3 ∗ 1− K̃IJ̄ dM

I ∧ ∗dM̄J + 1
4
K̃Λ̂Σ̂ dξ

Λ̂ ∧ ∗dξΣ̂

−1
4
K̃Λ̂Σ̂ F

Λ̂ ∧ ∗F Σ̂ + F Λ̂ ∧ Im(K̃Λ̂I dM
I) , (B.2)

where the kinetic terms of the vectors and scalars are determined by a single real function,

the kinetic potential K̃(M I , M̄J |ξΛ̂), as K̃IJ̄ = ∂MI∂M̄J K̃, K̃Λ̂Σ̂ = ∂
ξΛ̂
∂
ξΣ̂
K̃, and K̃Λ̂I =

∂
ξΛ̂
∂MI K̃. In order to do that, we identify

R = r−2 , ξΛ̂ = (R,RζΛ) , AΛ̂ = (A0, AΛ) . (B.3)

It is straightforward to determine the kinetic potential K̃. Clearly, it will contain the

four-dimensional Kähler potential K(M I , M̄J), and additional terms encoding the kinetic

terms of the vector multiplets (AΛ̂, ξΛ̂). Explicitly it takes the form17

K̃ = K(M, M̄) + logR− 1

2R
RefΛΣ(M) ξΛξΣ . (B.4)

It is important to stress that in three dimensions massless vectors are dual to real scalars

with Peccei Quinn shift symmetries. However, in the kinetic potential (B.4) one can still

distinguish the four-dimensional origin of the term by considering the power n of the

Rn pre-factor. In fact, four-dimensional scalars carry no pre-factor in the D = 3 kinetic

potential and action, while three-dimensional scalars ζΛ ≡ ξΛ/R which arise from D = 4

vector multiplets carry a pre-factor R−1 in (B.4).

To study the F-theory reduction it turns out to be convenient to dualize some of the

vectors AΛ in (B.3) into scalars. Note that only those vectors are dualizable which do

17Note that we have included a factor 1/2, by rescaling the vector fields.
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not gauge any scalar fields in the effective theory. For example, in an F-theory reduction

these correspond to the U(1) vectors Aκ which arise in the reduction of the R-R four-form

C4 as discussed in section 4. We thus split

AΛ = (Aκ, Ai) , ξΛ = (ξκ, ξi) , fΛΣ = (fij , fκj, fκλ) . (B.5)

To dualize the vectors Aκ into scalars ξ̃κ one adds a Lagrange multiplier term ∝ F κ ∧
dξ̃κ to the effective action (B.2) and eliminates F κ by its equation of motion. At the

level of the kinetic potential K̃ and coordinates this amounts to performing a Legendre

transformation with respect to K̃. The scalars (ξκ, ξ̃κ) then combine into a complex

coordinates Nκ. More precisely, one introduces new complex coordinates

Nκ = −∂ξκK̃ − iξ̃κ , (B.6)

and transforms the kinetic potential as

K̃(1)(M, M̄,N + N̄ |L, ξi) = K̃ − 1
2
(Nκ + N̄κ)ξ

κ . (B.7)

It is important to stress that in this expression one has to evaluate ξκ as function of

Nκ,M
I and R, ξi by solving (B.6).

The explicit evaluation of Nk and K̃(1) is straightforward since K̃, given in (B.4), has

such a simple form in this situation. Evaluating ∂ξκK̃ one finds

Nκ = R−1RefκΛξ
Λ − iξ̃κ = fκΛζ

Λ − ib̃κ , (B.8)

where we defined b̃κ = ξ̃κ + ImfκΛζ
Λ. Solving for ξκ and inserting the result in (B.7)

yields the expression

K̃(1) = K(M, M̄) + logR− 1
2
R−1∆ij ξ

iξj + 1
2
R∆κλReNκReNλ − ∆λ

i ξ
i ReNλ , (B.9)

where

∆ij = Refij − RefκiRef
κλRefλj , ∆κλ = Refκλ , ∆λ

i = Refκλ Refκi . (B.10)

Using this kinetic potential in (B.2) one obtains the three-dimensional effective action for

the chiral multiplets with complex scalars (M I ,Nκ) and the vector multiplets (ξi, Ai).

The four-dimensional N = 1 Kähler potential K(M, M̄) and gauge-kinetic coupling

function fΛΣ(M) are then determined comparing the F-theory kinetic potential with the

general expression (B.9).
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C Compactifications with general three-forms on the

Calabi-Yau fourfold

In order to proceed we need to dualize some of the vector multiplets (LA, AA) into chiral

multiplets. We will precisely pick those which correspond to divisors Dα. We thus split

LA = (Lα|ξi, R) , α = 1, . . . , h1,1(B3) (C.1)

AA = (Aα|Ai, A0) , i = h1,1(B3) + 1, . . . , h1,1(X̂4)− 1 .

Our aim is to dualize the vector multiplets (Lα, Aα) into chiral multiplets with two scalars

(Lα, ρα) which combine into complex coordinates Tα. We also split the set of complex

scalars N I as

N I = (Nκ,N
a) , κ = 1, . . . , h2,1(B3) , (C.2)

a = h2,1(B3) + 1, . . . , h2,1(X̂4) .

This is again done to distinguish three-dimensional multiplets which descend to chiral

or vector multiplets in four dimensions. More precisely, the Na will descend to complex

scalars while the Nκ become vectors in four space-time dimensions. We summarize this

spectrum in table A.1.

The chiral multiplets and their corresponding kinetic potential are obtained by a

Legendre transformation similar to the analysis of section B. One thus defines the new

complex coordinates

Tα = ∂LαK̃M + iρα , (C.3)

and evaluates the effective action starting with a new kinetic potential

K̃F(z, z̄, N + N̄ , T + T̄ |ξi, R) = K̃M − 1
2
(Tα + T̄α)L

α , (C.4)

such that

∂K̃F

∂Tα
= −1

2
Lα ,

∂K̃F

∂M
=
∂K̃M

∂M
, M ∈ (N I , ξi, R, z) . (C.5)

Note that the right-hand sides of these expressions are evaluated by first taking derivatives

of K̃M viewed as a function of LA = (Lα, ξi, R) and N I , and then use (C.3) to express

the result as a function of Tα, R, ξ
i, N I . One thus uses, for example, the identity

∂ξi
[

K̃M(T,N |ξ)
]

= ∂ξi
[

K̃M(N |ξ, L(T, ξ, N))
]

(C.6)

= ∂ξi
[

K̃M(N |ξ, L)
]

+ ∂Lα

[

K̃M(N |ξ, L)
]∂Lα

∂ξi
,

51



where we have suppressed the dependence on z and R to make the expressions more

readable. Note that by differentiating (C.3) one also finds

∂Lα

∂Tβ
= K̃M LαLβ

,
∂Lα

∂M
= −K̃M LαLβ

∂MK̃
M
Lβ , M ∈ (N I , ξi, R, z) . (C.7)

However, since the kinetic potential K̃M before dualization is in general very compli-

cated the resulting expression for the dual theory turns out to be rather involved. Let

us make some observations first. Note that ξi only appears linearly and quadratically in

the general expression (B.9) since ξi arises as the fourth component of D = 4 vectors and

we only included the standard Yang-Mills terms for these fields. Hence, we expand K̃F,

given in (C.4), to quadratic order around ξi = 0, Nκ = 0 and note that it should take

the form

K̃(1) = K̃F
∣

∣

∗
− 1

2
R−1 ∆ij ξ

i ξj + 1
2
R ∆κλ ReNκReNλ −∆κ

i ξ
iReNκ . (C.8)

where the ∗ indicates that the expression has to be evaluated at ξi = 0,ReNκ = 0. Here

we have abbreviated

∆ij = −R∂ξi∂ξjK̃F
∣

∣

∗

!
= Refij − Refiκ Refκλ Refλj ,

∆κ
i = −∂ξi∂ReNκ

K̃F
∣

∣

∗

!
= Refiκ Refκλ ,

∆κλ = R−1 ∂ReNκ
∂ReNλ

K̃F
∣

∣

∗

!
= Refκλ .

(C.9)

Here the expressions after the second equal signs in each line are the expected expressions

obtained by comparison with (B.9). It will be the kinetic potential (C.8), which one

compares to the expression (B.9) to extract the N = 1, D = 4 characteristic data of

F-theory on a Calabi-Yau fourfold. Since there is no linear term in (B.9) we thus expect

to find

∂ξjK̃
F
∣

∣

∗
= ∂ξjK̃

M
∣

∣

∗
= 0 , ∂Nκ

K̃F
∣

∣

∗
= ∂Nκ

K̃M
∣

∣

∗
= 0 , (C.10)

in a set-up which consistently lifts to a four-dimensional N = 1 F-theory compactifica-

tion. Similarly one evaluates the second derivatives and translates the derivatives of K̃F

into derivatives of K̃M.

References

[1] M. R. Douglas and S. Kachru, “Flux compactification,” Rev. Mod. Phys. 79 (2007)

733 [arXiv:hep-th/0610102].

52

http://arxiv.org/abs/hep-th/0610102
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