
Generalized Belief Propagation to break trapping sets in

LDPC codes

Jean-Christophe Sibel, Sylvain Reynal, David Declercq

To cite this version:

Jean-Christophe Sibel, Sylvain Reynal, David Declercq. Generalized Belief Propagation to
break trapping sets in LDPC codes. 2014 Australian Communications Theory Workshop
(AusCTW), Feb 2014, Sydney, Australia. pp.132, 2014. <hal-00968251>

HAL Id: hal-00968251

https://hal.archives-ouvertes.fr/hal-00968251

Submitted on 1 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract—In this paper, we focus on the Generalized Belief
Propagation (GBP) algorithm to solve trapping sets in Low-
Density Parity-Check (LDPC) codes. Trapping sets are topo-
logical structures in Tanner graphs of LDPC codes that are
not correctly decoded by Belief Propagation (BP), leading to
exhibit an error-floor in the Bit-Error Rate (BER). Stemming
from statistical physics of spin glasses, GBP consists in passing
messages between clusters of Tanner graph nodes in another
graph called the region-graph. Here, we introduce a specific
clustering of nodes, based on a novel local loopfree principle,
that breaks trapping sets such that the resulting region-graph
is locally loopfree. We then construct a hybrid decoder made of
BP and GBP that proves to be a powerful decoder as it clearly
improves the BER and defeats the error-floor.

Index Terms—LDPC codes, Generalized Belief Propagation,
trapping sets, error-floor, local clustering

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes, discovered by

Gallager [1] and rediscovered by MacKay and Neal [2], are

known as powerful codes to make information robust against

transmission channel noise. Great advantage is that they make

decoders fast and accurate. Among them, the Belief Propa-

gation (BP) algorithm, introduced by Pearl [3], still arouses

much interest as it does not require for complex hardware

implementation and it may help LDPC codes to approach

Shannon’s limit [4]. BP has been widely studied according to

messages behavior [5], [6], convergence and stability [7], [8],

[9] and dynamics [10], [11]. In [12] Richardson introduced the

problem of error-floor: an abrupt degradation of the Bit-Error-

Rate of BP when channel noise power is very low. In [13],

[14] were connected failures responsible for this phenomenon

to trapping sets. These topological structures of LDPC codes

Tanner graph are combinations of loops that prevent BP from

correctly decoding. In [15], [16] authors examined in detail

Finite Alphabet Iterative Decoders (FAID) to solve trapping

sets and decrease error-floor, overcoming BP performance.

In spite of clear domination of FAID over BP in error-floor

region, these decoders are not always defined for LDPC codes

of arbitrary nodes degrees. In addition, they are aimed at

treating error events from discrete channels, e.g. the Binary

Symmetric Channel (BSC) [17], therefore error events induced

by continuous channels, as the Gaussian channel, are not

easily handled. In parallel work in [18], [19], Yedidia et al.

focused on another decoding approach based on inference in

spin glasses [20], [21]: Region-Based Approximation (RBA).

This method consists in clustering the Tanner graph to create a

new graph, the region-graph, which nodes are called regions.

Messages are iteratively exchanged between regions according

to the Generalized Belief Propagation (GBP) algorithm. The

way clusters are chosen totally determines decoding perfor-

mance of GBP, given that many clusterings may emerged from

a single Tanner graph, [22], [23]. In this paper we propose an

application of RBA and GBP on LDPC codes full of small

trapping sets to outperform BP especially in error-floor region.

We experimentally show that splitting trapping sets clearly

makes GBP decoding more powerful and accurate than BP.

In section II, we shortly describe LDPC codes and BP

update rules. We present in section III statistical physics

connected to BP, that we extend in section IV to present the

GBP algorithm. Follows in section V an introduction of our

novel principle of the region-graph construction that locally

breaks trapping sets. We end with experimental results in VI

that demonstrate the relevancy of our novel method on the

Tanner code [24]. This is an LDPC code of column-weight

three, length 155 and rate 2/5, entirely covered with 155
small trapping sets, providing BP performance far enough

from Maximum Likelihood Decoding (MLD) such that im-

provements on iterative decoding are visible [25].

II. PRELIMINARIES

A. LDPC codes

An LDPC code is defined as a set of N -codewords C ⊂
{0, 1}N such that any codeword x = [x1 . . . xN ] is in the

kernel of M parity-check equations c = {c1, . . . , cM}. Any bit

xi is represented by a random variable Xi valued in {0, 1}, any

parity-check equation cj is represented by a random variable

fj valued in {0 (unsatisfied), 1 (satisfied)}. As an example,

the Hamming code is defined by 16 codewords that satisfy

altogether the following parity-check equations:

(fa) X1 ⊕X2 ⊕X3 ⊕X5 = 0

(fb) X1 ⊕X2 ⊕X4 ⊕X6 = 0

(fc) X1 ⊕X3 ⊕X4 ⊕X7 = 0



X1 X2 X3 X4 X5 X6 X7

fa fb fc

Fig. 1. Tanner graph of Hamming code

We usually represent an LDPC code by its graphical repre-

sentation called the Tanner graph G = X ∪ F ∪ E, in which

X = [X1 . . . XN ] and F = {f1, . . . , fM}. We draw an edge

eia ∈ E between variable node Xi and check node fa if and

only if Xi is an argument of fa, e.g. the Tanner graph of the

Hamming code depicted in Fig.1.

Given N channel observations y1, . . . , yN , decoding an

LDPC codes is searching for the most likely word x̂ ∈ {0, 1}N

of following distribution:

p(x, y) = p(y|x)p(x) ∝

N
∏

i=1

pi(yi|xi)

M
∏

a=1

fa(xa). (1)

where xa is the state of all variable nodes connected by edges

to the check node fa, denoted by Xa = {Xi ∈ X|eia ∈ E},

and pi(yi|xi) is called the likelihood of Xi.

B. Belief Propagation

Computing x̂ = argmaxx p(x, y) is intractable as it requires

to scan 2N words. N usually reaches several hundreds in

tests, as the Tanner code of length N = 155, and several

thousands in practice, as DVB-S2 codes of length N = 64800
[26]. BP algorithm is a tractable and practical solution to (1)

by approximating all marginal distributions, or marginals, on

variable nodes with beliefs {bi}1≤i≤N s.t.:

x̂ =
N
⋃

i=1

argmax
xi

bi(xi). (2)

BP is an iterative decoder that passes messages along edges

of G, which equations, given in [4], are for any edge eia ∈ E,

for any value xi ∈ {0, 1}, at any iteration k ≥ 1:

n
(k)
ia (xi) ∝ pi(yi|xi)

∏

Xb∋Xi,fb 6=fa

m
(k−1)
bi (xi) (3)

m
(k)
ai (xi) ∝

∑

xa∪xi

fa(xa)
∏

Xj∈Xa\Xi

n
(k)
ja (xj). (4)

Quantity n
(k)
ia (resp. m

(k)
ai ) is the message from Xi to fa

(resp. from fa to Xi). These messages are usually initialized

with likelihoods of adjacent variable nodes. Belief on Xi is

computed at any iteration k ≥ 1 for any state xi ∈ {0, 1} as:

b
(k)
i (xi) ∝ pi(yi|xi)

∏

Xa∋Xi

m
(k)
ai (xi). (5)

BP runs while messages still vary from k to k+1, i.e. messages

have not converged yet, or while output word x̂
(k)

does not

satisfy all parity-check equations.

C. Failures

When Tanner graph is tree-like, BP is ensured to converge

to optimal MLD. In case the graph presents loopy structures,

BP may be trapped into infinite process as neither it converges

nor it results in a codeword. Decoding performance are then

hard to expect and might present non trivial behavior, see

oscillations in Fig.2(a), studied in [11].
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Fig. 2. BP decoding of Tanner code on BSC(p)

Here we focus on specific low-weight error events connected

to Tanner graph topology: trapping sets. They are particularly

harmful for low channel noise power, reflected by the error-

floor of the BER exhibited in Fig.2(b). A trapping set TS(a, b)
is a structure of a variable nodes such that induced subgraph

has b odd-degree, or unsatisfied, check nodes, see TS(5, 3)

depicted on Fig.3.

X1 X2

X3

X4 X5

fa

fb

fd fc

fe

ff

fg

fh

fi
: variable node

: check node

: unsatisfied

check node

Fig. 3. Trapping-set of a = 5 variable nodes and b = 3 unsatisfied check
nodes

Overcoming error-floor may be done according to two strate-

gies: either we construct codes free of small trapping sets as

proposed in [27], or we design dedicated decoders able to

handle trapping sets as proposed in this paper.

III. STATISTICAL PHYSICS OF LDPC CODES

A. Spin glasses

A spin glass [20] is a vector of N spins S = [S1 . . . SN ],
each one randomly valued in {−1,+1}, that are correlated

according to coupling constants {Jij}1≤i,j≤N , as bits of an

LDPC code are correlated by parity-check equations. Coupling

constants are summarized by an energy function defined for

any state s ∈ {−1,+1}N :

EJ(s) = −
∑

<i,j>

Jijsisj . (6)



where < i, j > stands for spins s.t. Jij 6= 0. Noise on a

spin glass is typically modeled by an external magnetic field

h = [h1 . . . hN ] that independently influences all spins such

that associated energy function is the scalar product between

h and s:

EH(s, h) = −

N
∑

i=1

hisi (7)

According to Boltzmann’s law, a noisy spin glass is described

by the following distribution for any state s ∈ {−1,+1}N :

p(s, h) ∝ e−EH(s,h)−EJ (s) (8)

which is equivalent to:

p(s, h) ∝
N
∏

i=1

ehisi
∏

<i,j>

eJijsisj (9)

This distribution equals distribution Tanner graphs distribution

(1) when check nodes degree is two, then solving a spin glass

is decoding the equivalent LDPC code which the parity-check

equation related to Jij is:

Jijsisj







> 0 ⇐⇒ xi ⊕ xj = 0 (parity satisfied),
< 0 ⇐⇒ xi ⊕ xj = 1 (parity unsatisfied),
= 0 ⇐⇒ no parity-check equation.

B. Variational approach

Again, computing (9) for all spin states s is not tractable.

According to [18], we may use a variational approach by

means of a tractable distribution b, called belief, that we make

vary to approximate p. The usual fair indicator to estimate

relevancy of b is the Kullback-Liebler divergence [28] defined

as:

KL(b, p) =
∑

s

b(s, h) log
b(s, h)

p(s, h)
. (10)

Anyone can show that minimizing KL(b, p) is minimizing

variational free energy:

Fb = Ub − Sb (11)

with Ub and Sb the variational averaged energy and entropy,

which depend on the arbitrary expression of b.
Bethe Approximation (BA) [29] is a variational approach

coming from mean field theory [30] in which b is factorized

over variable and check nodes:

∀x ∈ {0, 1}N , b(x) ∝

∏M
a=1 ba(xa)

∏N
i=1 b

di−1
i (xi)

. (12)

Denoting by di the degree of variable node Xi, variational

quantities Ub and Sb are then defined as:

Ub = −

M
∑

a=1

∑

xa

ba(xa) log fa(xa), (13)

Sb = −

M
∑

a=1

∑

xa

ba(xa) log ba(xa)

−

N
∑

i=1

(1− di)
∑

xi

bi(xi) log bi(xi). (14)

As proved in [7], [19], stationary points of Fb computed by

BA strictly equal BP fixed-points, i.e. minimizing Fb is deter-

mining beliefs {bi}1≤i≤N of variable nodes (5). Messages (3)

and (4) stand for Lagrange multipliers [31] used to constrain

the optimization [23].

IV. GENERALIZED BELIEF PROPAGATION

A. Region-based approximation

In [19], [32] authors introduced a generalization of (12)

called the Region-Based Approximation (RBA). Instead of

factorizing b according to variable and check nodes, RBA

consists in factorizing b over subgraphs of G, called regions,

any of them being denoted by r = {Xr ⊆ X} ∪ {Fr ⊆
F} ∪ {Er ⊆ E}. A set of regions R is constrained to cover

the whole Tanner graph:

• any region that includes a check node fa has also to

include Xa,

• all variable and check nodes must be included in at least

one region.

A set R that fulfills these constraints may be used to approx-

imate joint distribution with:

b(x) ∝
∏

r∈R

bcrr (xr) (15)

where br is the belief of region r. Bayesian rule constrains,

by means of counting numbers {cr}r∈R, each variable node

to only contribute once to RBA, i.e. any Xi must participate

once on each side of the equation, as in a chemical equation.

According to [19], counting numbers are computed as:

∀s ∈ R, cs = 1−
∑

r⊃s

cr (16)

where s ⊂ r is equivalent to Xs ⊂ Xr, Fs ⊂ Fr, Es ⊂ Er.

We define a restrictive inclusion law: s ≺ r if and only if

s ⊂ r and no region t could be found in R s.t. s ⊂ t ⊂ r.

Relationships between regions are shared such that:

• s ≺ r means that s belongs to Er the set of children of

region r and r belongs to Ps the set of parents of s,

• s ⊂ r means that s belongs to Dr the set of descendants

of r and r belongs to As the set of ancestors of s,

• r ∪ Dr is the family of r denoted by Fr.

By associating to each region a node and to each restrictive

inclusion an edge, we associate to any set of regions R a

graphical representation called a region-graph which construc-

tion rules are given in [33]. First regions selected to cover the

whole Tanner graph are called clusters. Once they have been

selected, we construct a second generation of regions made

of intersections between nodes of the clusters. We continue

this rule to build any generation l from the former region

l − 1. A single Tanner graph may be mapped to numerous

region-graphs, each one offering a RBA of specific accuracy.

The main issue when dealing with RBA is thus the way the

Tanner graph is clustered.



B. Message-passing

Equation (15) makes variational averaged energy and en-

tropy be:

Ub = −
∑

r∈R

cr
∑

xr

br(xr) log
∏

fa∈Fr

fa(xa) (17)

Sb = −
∑

r∈R

cr
∑

xr

br(xr) log br(xr). (18)

Minimizing variational free energy Fb provides regions belief

equation. For any r ∈ R, for any state xr ∈ {0, 1}|Xr|:

br(xr) ∝
∏

Xi∈Xr

pi(yi|xi)
∏

p∈Pr

mpr(xr)
∏

q∈Dr

∏

s∈Pq\Fr

msq(xq)

(19)

where mrs is a message between connected regions r, s ∈ Er
with:

• fr(xr) =
∏

fa∈Fr\Fs
fa(xa),

• pr(yr|xr) =
∏

Xi∈Xr\Xs
pi(yi|xi).

These messages are iteratively passed according to GBP

equations where for any couple of regions r, s ∈ Er, for any

state xr ∈ {0, 1}|Xr|, at any iteration k ≥ 1:

m(k)
rs (xs) =

∑

xr∪xs

fr(xr)pr(yr|xr)
∏

u∈R\Fr

v∈Fr\Fs

m(k−1)
uv (xv)

∏

u∈Dr\Fs

v∈Ds

m(k)
uv (xv)

.

(20)

As BP, GBP runs while messages do not converge or while

output word x̂, computed according to (2), is not a codeword.

To compute x̂ are needed beliefs on variable nodes. As

region-graph does not systematically contain regions reduced

to single variable nodes, these beliefs are determined by

marginalization, e.g. for a variable node Xi ∈ X, for any value

xi ∈ {0, 1}:

b
(k)
i (xi) =

∑

xr∪xi

b(k)r (xr) (21)

where region r is the smallest region that contains Xi in R.

V. A NOVEL TANNER GRAPH CLUSTERING

A. Systematic clustering

In [19] is introduced a region-graph construction in which

each cluster is made of only one check node fa and its

neighborhood Xa, such that the region-graph is firstly made

of M clusters. The low density of LDPC codes implies that

parity-check equations does not intersect a lot. Therefore,

by this construction, the region-graph of any LDPC code is

made of only two generations according to the construction

rules mentioned before: the clusters generation and the next

generation in which any region is made of a single variable

node. The major advantage of this construction is that the

implementation is easy as only the knowledge of parity-

check equations is enough. Yet, RBA is aimed at offering

better performance than BA lowering the influence of harmful

topological structures of G. The systematic construction does

not exhibit any connection to the Tanner graph topology, then

GBP might not be more accurate than BP by this way.

The optimal but unrealistic clustering consists in gathering

all variable and check nodes in a single cluster, GBP is then

equivalent to compute Boltzmann’s distribution (9) which is

intractable. We specify that a relevant clustering is balanced

between two crucial properties:

• any cluster is aimed at absorbing a harmful topological

structure to reduce its effect on decoding,

• any cluster must be sensibly sized to make GBP of

practical interest as a decoder.

The systematic construction fulfills the first property as check

nodes of LDPC codes have several connections, but the first

property is not taken into account.

B. Novel principle

Here, we extend a study carried out in [22] that helps

improving GBP performance: for any region-graph, upper

clusters are added to split, merge and remove regions under

specific rules, detailed in this paper. The authors introduce

the following assumption:

Welling’s assumption: Region-based approximation will

improve if we add a new region to the region-graph.

This assumption appears wise in the sense that, at the expense

of the complexity as upper clusters are larger than former

clusters, it is aimed at removing loops in region-graph. Tanner

graph is a particular region-graph, therefore Welling’s addition

helps modify Tanner graph introducing clusters that we con-

nect to check nodes.

In our work, we take into account that adding upper

clusters might increase complexity in such a way that GBP

is not practical. Thus, instead of gathering nodes of harmful

structures inside clusters, we break them according to our

novel construction principle:

Local loopfree principle: Given a harmful subgraph T
of a Tanner graph G, when breaking T in nc clusters,

resulting region-graph Rs made of these nc clusters and their

descendants must be loopfree such that GBP algorithm is

locally optimal on Rs.

X1 X2

X4

fa

fd

fg

X2

X3

X4

fb

fe fh

X2

X4 X5

fc

ff

fi

Fig. 4. Breaking a TS(5, 3) into three clusters

This principle is an extension of the Welling’s addition that

helps GBP keep a practical interest as it improves its decoding



performance. As our goal is to annihilate the error-floor, we

apply our principle on trapping sets. We represent in Fig.4 the

way we break a TS(5, 3) and in Fig.5 the resulting local region-

graph on which GBP optimally performs as it is loopfree.

When applied on an LDPC code, e.g. the Tanner code,

this construction cannot provide a whole loopfree region-

graph, as trapping sets may have complex connections between

them, that entails suboptimal GBP performance. Fortunately,

we emphasize that region-graph loops are larger than Tanner

graph loops by our construction, GBP is then less influenced

by trapping sets than BP.

fa, fd, fg
X1, X2, X4

fb, fe, fh
X2, X3, X4

fc, ff , fi
X2, X4, X5

X2, X4

Fig. 5. Region-graph resulting from the split of a TS(5, 3)

VI. HYBRID DECODER

We introduced GBP to solve error events that are not

decoded by BP, then it appears irrelevant to systematically use

GBP even when BP well performs. In addition, even though

our local loopfree principle helps not unreasonably increase

complexity, BP is a faster decoder.

We then introduce a hybrid decoder that first runs BP,

then runs GBP if BP fails. This decoder results in improved

BER performance without seriously enlarging computation

complexity. We performed it on the Tanner code entirely

covered of trapping sets TS(5, 3) breaking them into three

clusters as in Fig.5. We considered BSC and Additive White

Gaussian Channel (AWGNC). BP and GBP decoders are run

for at most 100 iterations, and quantities depicted in this

section are averaged over L = 1012 channel realizations to

observe behavior in BP error-floor region.
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Fig. 6. GBP call rate in hybrid decoder on Tanner code

First quantity to observe in Fig.6 is the GBP call rate defined

as the ratio between the number of BP failures and L. As

channel noise power is lowered, GBP is less called given that

BP is more and more efficient. A slope degradation takes place

on BSC around p = 3.10−2 and around 5.95dB on AWGNC

that matches with the error-floor emergence. Consequently,

even though GBP calls still diminishes, GBP is necessary to

decode problematic low-weight error events.
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Fig. 7. GBP success rate in hybrid decoder on Tanner code

This change in GBP calls is shown in Fig.7 that depicts the

success rate of GBP defined as the ratio between the number of

GBP decodings that converge or that reach codewords and the

number of GBP calls. We observe that as p is decreased and

Eb/N0 is increased, GBP is more successful. This confirms

that our novel region-graph construction entails a decline in

trapping sets influence. In addition, when approaching error-

floor region, slope of success rate gradually increases, i.e.

robustness against low-weight error events is stronger.
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Fig. 8. Number of iterations of BP and GBP on Tanner code

Trapping sets are deeply connected one with each other,

preventing region-graph from being loopfree. It entails that

GBP decoding may not be as fast as BP when dealing with

non problematic error events. We display in Fig.8 the number

of iterations K needed to converge or to reach a codeword

for BP and GBP. We see that for small values of p and large

values of Eb/N0, BP does not require for many iterations as it

is considered only if it performs well in our hybrid decoder. In

contrast, GBP needs for a non-negligible number of iterations

as it is used to treat non trivial error events. As an example, for

p = 10−2 and Eb/N0 = 6dB, KBP = 0.9 and KGBP = 49.9.

Fortunately, as noise power is lowered, we see that KGBP

is gradually reduced, meaning that for very low values of p
and very high values of Eb/N0, when BP fails, i.e. kBP =
100, time spent to decode by GBP is not significant. Peculiar

behavior around p = 0.1 and 1dB where decoders suffers from



an unexpected resonance are due to problem of dynamics that

is extensively studied in [11].
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Fig. 9. Hybrid decoder BER on Tanner code

To evaluate decoding performance of hybrid decoder com-

pared with BP, we represent in Fig.9 corresponding BER.

Breaking trapping sets proves to be relevant as hybrid decoder

outperforms BP, particularly for low values of channels noise

power. As examples, we see for p = 5.10−2 that BER of

hybrid decoder is ten times less than BER of BP, and that BP

error-floor on AWGNC occurs around 5.8dB whereas GBP

does not exhibit such a phenomenon even at 7.0dB. Especially

on BSC, slope decreases less than BP slope, that indicates that:

• GBP also suffers from an error-floor,

• all TS(5, 3) though wield less influence on GBP.

Error-floor is not completely defeated, as Tanner graph also

contains other trapping sets of various topologies and sizes, see

[14] for detail. Nevertheless, we succeed in making a decoder

more robust against noise.

VII. CONCLUSION

In this paper, we introduced GBP algorithm to decode

pathological error events for BP. We brought out a novel

principle for constructing region-graph, that ensures local

optimality of GBP. This helped break trapping sets to reduce

their harmful influence on performance. Simulation results

demonstrated that GBP running on the new region-graph

clearly offers reliability and robustness compared with BP,

at the expense of a slight increase in computation time

that is though reduced as we increase channel noise power.

Error-floor is then decreased, proving that breaking trapping

sets ensures a better error correction capability, i.e. a better

tolerance to low-weight error events.
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