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Topographic numerosity maps cover subitizing
and estimation ranges
Yuxuan Cai 1,2✉, Shir Hofstetter1, Jelle van Dijk1, Wietske Zuiderbaan1, Wietske van der Zwaag1,

Ben M. Harvey 3 & Serge O. Dumoulin1,2,3✉

Numerosity, the set size of a group of items, helps guide behaviour and decisions. Non-

symbolic numerosities are represented by the approximate number system. However, dis-

tinct behavioural performance suggests that small numerosities, i.e. subitizing range, are

implemented differently in the brain than larger numerosities. Prior work has shown that

neural populations selectively responding (i.e. hemodynamic responses) to small numer-

osities are organized into a network of topographical maps. Here, we investigate how neural

populations respond to large numerosities, well into the ANS. Using 7 T fMRI and

biologically-inspired analyses, we found a network of neural populations tuned to both small

and large numerosities organized within the same topographic maps. These results

demonstrate a continuum of numerosity preferences that progressively cover both the

subitizing range and beyond within the same numerosity map, suggesting a single neural

mechanism. We hypothesize that differences in map properties, such as cortical magnifi-

cation and tuning width, underlie known differences in behaviour.
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Perception of numerosity (the set size of a group of items)
guides human and animal behaviour and decisions1–4. Both
humans and animals perceive numerosity over a wide

numerical range. The approximate number system (ANS) is a core
system that is commonly recognized to process non-symbolic
number (i.e., numerosity) and relates to symbolic number
processing5,6. The ANS is thought to produce an intuitive “number
sense” across species7 and throughout human development8, and
represent increasing numerosities with decreasing precision in
accord with Weber’s law9. Primarily based on the distinct beha-
vioural performances, a separate system termed object tracking
system (OTS)10 is thought to process small numerosities, typically
up to four, known as subitizing range11. This system is thought to
be distinct from larger numerosities, known as estimation range12.
Evidence supporting the distinct systems for numerosity processing
comes from the discontinuous behavioural performances, such as
reaction time and accuracy, and distinct neural signatures13,14. For
example, numerosity judgements within the subitizing range yields
accurate enumerations, which fails for larger numerosities, and
may violate Weber’s law15.

However, the separate numerosity systems are not universally
accepted16–18. Neurophysiological studies on non-human pri-
mates found neurons that selectively respond to different
numerosities19,20. These numerosity-selective neurons respond to
small and large numerosities with similar logarithmic tuning
functions as human21. Single neuron recording studies conducted
on monkeys and crows found no sudden change in the beha-
vioural performance and no distinct neural responses between
small and large numerosities22,23. Moreover, numerosity dis-
crimination follows Weber’s law in both small and large
numerosities24,25. Thus, these studies suggest that there is no
need to assume separate systems for small and large numerosities.

Here we investigate the neural mechanisms underlying the
representation of small and large numerosities in the human
brain. We refer to the numerosity ranges as small and large,
because subitizing range varies between participants and we did
not tailor our experiment for individual participants26. We mea-
sured BOLD responses of numerosity-selective neural populations
within functional magnetic resonance imaging (fMRI) recording
sites27. We have previously shown these populations to respond
maximally to numerosities in a small range (i.e., 1–7) and to
be arranged in orderly topographic maps28. Here we measure
their responses to a wider range of numerosities, well into the ANS
(i.e., 1–64).

Based on prior knowledge about topographic maps29,30 and
numerosity processing31,32, we will evaluate two hypotheses. First,
small and large numerosities may be processed in distinct cortical
regions. We have previously described neural populations
responding maximally to small numerosities in an extensive
network of topographically organized brain areas27,28. As per-
ception of larger numerosities shows some different properties,
such as more time-consuming and error-prone, larger numer-
osities may produce responses in distinct neural populations in a
distinct set of areas. Second, neurons responding maximally to
large numerosities could be placed in the same topographic map,
i.e., along the systematic topographic progression including both
the small and large ranges. This would be akin to stimulating
greater eccentricities in the same visual field map30. Even if small
and large numerosities are represented at the same topographic
map, there may still be perceptual differences between small and
large numerosities. For example, central versus peripheral vision
are processed in the same topographic visual field map, but their
perception differs considerably30. Following this hypothesis,
neural populations responding to large numerosities may display
distinct properties, such as broader tuning, thus leading to dif-
ferent perceptual properties.

We investigate these hypotheses using ultra-high field (7 Tesla)
fMRI and population receptive field (pRF) modelling33. We
measured BOLD response of neural populations that tuned to
small and large numerosities and compared estimated neural
numerosity preferences to investigate how different numerosity
ranges are represented in the brain. We find that both numerosity
ranges are represented in the same topographic maps, and we
suggest that differences in neural response selectivity and topo-
graphic map properties, such as tuning width and cortical mag-
nification respectively, underlie the different perceptual and
behavioural properties of small and larger numerosities.

Results
Neural populations in the same cortical regions respond to
small and large numerosities. When participants viewed the
small numerosity range, i.e., 1–7, we found neural populations
tuned to these small numerosities. These neural populations were
organized in a network of topographic numerosity maps in line
with our previous observations27,28. This network consisted of six
numerosity maps, in the temporo-occipital cortex (NTO),
parieto-occipital cortex (NPO), parietal cortex (NPC1-3), and in
the superior frontal cortex (NF) (Fig. 1a, b). Within each map, the
numerosity-selective neural populations changed gradually along
the cortical surface in their preferred numerosity (the numerosity
producing the largest response in each population). For example,
in NTO (Fig. 1a), neural populations preferring smaller numer-
osities clustered at the inferior temporal gyrus while numerosity
preferences increased posteriorly along the map (white lines).
When participants viewed the large numerosity range, i.e., 1–64,
we found a similar network of topographic numerosity maps as
the one derived from viewing the small range (Fig. 1b). Similar
networks of topographic numerosity maps were also found in all
other participants Supplementary Fig. 1b.

To illustrate the tuned responses, we extracted the response time
courses of two example recording sites (voxels) elicited by viewing
the small (Fig. 1a, c, e) and large (Fig. 1b, d, f) numerosity ranges.
These example sites are located in the anterior and posterior regions
of the NTO map (Fig. 1a, b). For the anterior recording site, the
neural response models captured more than 80% of the response
variance in both conditions (Fig. 1c, d). This site had similar
preferred numerosities in both conditions, i.e., 2.2 and 2.3,
respectively (Fig. 1g, h). When viewing the small numerosity range,
the posterior recording site’s response increased monotonically over
the presented range, reflecting a preferred numerosity above 7
(Fig. 1i). However, this preferred numerosity could not be
determined accurately as this response reached a maximum beyond
the presented range (Fig. 1e). When viewing the large numerosity
range, the maximum response occurred at the presentation of larger
numerosities (above 7) (Fig. 1f). As this maximum was within the
large stimulus range, this allowed us to determine the preferred
numerosity at 16 (Fig. 1j). This demonstrates that neural
populations with larger preferred numerosities are found near
those with the small preferred numerosities at the same cortical
area.

Selectivity of neural populations remains stable. We found
strong correlations between the preferred numerosities estimated
from the two numerosity ranges, especially for the overlapping
portion (Fig. 2a, b), in all maps and all participants (Supple-
mentary Fig. 2). We selected these preferred numerosities esti-
mates based on two criteria: variance explained exceeded 30%
and the preferred tuning fell within the presented ranges (i.e.,
1–7 and 1–64 for the small and large ranges, respectively). This
indicates a similar spatial organization of numerosity preferences
between the two conditions, though it does not test how similar
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Fig. 1 Neural population responses to small and large numerosities. a, b Cortical surface rendering of the right hemisphere shows a similar network of
numerosity maps in both presented ranges. Preferred numerosities of cortical recording sites, estimated from responses to the small range (a) and the
large range (b) for recording sites with over 30% of variance explained by the neural response model. Black lines outline the lateral borders of individual
numerosity maps. The borders denoting the lowest and the highest preferred numerosities in each map are marked by white lines. An example fMRI
recording site in anterior NTO shows different fMRI time courses (dots) for small (c) and large (d) numerosity ranges. Both time courses are similarly well
captured by the predictions (coloured lines) of similar neural response models. Dots represent mean response amplitudes; error bars represent the
standard errors over repeated measurements (n= 4). The presented numerosities are indicated at the top of the graph. e, f An example fMRI recording site
in posterior NTO shows a higher preferred numerosity. This response does not reach a maximum in the small numerosity range (e). Dots represent mean
response amplitudes; error bars represent the standard errors over repeated measurements (n= 4). g, h For both numerosity ranges, the anterior NTO
site’s response is predicted by similar neural response models. i, j For the large numerosity range, posterior NTO site’s response is well predicted by a
neural response model (j). However, this sites’ preferred numerosity is above the small numerosity range, so it could not be determined accurately (i),
produces only low-amplitude responses and yields poorer model fits (e) with this range. Preferred numerosity is indicated by the highest response
amplitude in the neural model, and tuning width is indicated by the full width at half maximum (FWHM). The neural response model within the presented
range is shown with solid lines, outside the range with dashed lines.
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these preferences are. To quantify their similarity, we computed
the extent to which the distribution of preferred numerosities
estimated from the small and large ranges deviated from the
unity line (where the two estimates are identical), i.e., the per-
centage deviation, for each map in each participant (see Meth-
ods). Zero percentage deviation indicates identical preferred
numerosity estimates between conditions. A Wilcoxon’s signed
rank test showed that the percentage deviations of all the maps
across participants were significantly above zero (two-sided,
p= 0.0006, z= 3.4, df = 47) (Fig. 2c). This demonstrated that
preferred numerosities were significantly larger when estimated
from the large numerosity range. However, the median percen-
tage deviation was only around 3.59%, far smaller than the
change in mean presented numerosities (454%), so, though sig-
nificant, the effect size is small. ANOVA analyses of the per-
centage deviations in all the maps and participants demonstrated
a significant effect of participant, but no effect of map and no
interaction. Post-hoc analysis showed that only one participant
had a significantly different percentage deviation from other
participants (two-way ANOVA; F(7,47) = 13.36, p= 3.0 × 10−8,
followed by post hoc analysis, Bonferroni corrected for multiple
comparisons) (Fig. 2d).

Furthermore, we performed a cross validation analysis (see
“Methods”). To estimate the model’s predictability and relia-
bility, we fit pRF estimates on one half split dataset to the
response elicited by the other half split dataset and computed the
cross-validated variance explained (i.e., cvR2) of the two
conditions, respectively (within-condition cross validation).
Next, we fit pRF estimates on small numerosity to the response
elicited by large numerosity and computed the cvR2, and vice
versa (cross-condition cross validation). We use the format of
“pRF predictor → test data” (e.g., “large → small”) to indicate
using data from large numerosity range to predict data acquired
while viewing small numerosity ranges. We averaged the cvR2

from all the possible iterations: “small→ small”, “small→ large”,
“large → large” and “large → small” cross validations,
respectively. We then performed a within-subject two-way
ANOVA analysis to compare the cvR2 between within- and
cross-condition validations. There were no significant differences
(p > 0.025, two-sided, Bonferroni corrected for multiple compar-
isons). As Fig. 2e shows, all of the half-split datasets show
considerably high predictive power, suggesting that the pRF
estimates are similar across conditions. The results of cross
validation analyses also show strong correlations between
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Fig. 2 Relationship between numerosity preferences estimated from small and large ranges indicates similar numerosity selectivity and topographic
progressions. a Participant 1’s NTO (see the maps in Fig. 1a & b) numerosity preferences estimated from the two ranges were strongly correlated (see
legend of the Pearson correlation coefficients and statistical significance). Dots show the estimates from individual recording sites (variance explained
>30%), the blue line shows the linear fit between the two estimates, the dashed line shows unity (i.e., identical preferences). b Linear fits from all six of this
participant’s maps. These also reflect strong correlations in each map (see legends), indicating a similar spatial organization of estimated numerosity
preferences, and are consistently above the unity line. c Bars show averaged percentage deviation quantifying the difference between the slopes of the
linear fits (in (b)) and the unity line for each map. Error bars show the standard errors of the mean over participants (n= 8). A two-sided Wilcoxon signed
rank test shows the percentage deviation of all these maps were above zero (z= 3.4, p= 0.0006, df = 47), suggesting a slight increase of preferred
numerosity estimates at the large range. d Bars show averaged percentage deviation (same as in (c)) for each participant. Error bars show the standard
errors of the mean (n= 6). Post hoc analysis shows significant difference between participant 6 and other participants (Bonferroni corrected for multiple
comparions; * indicates p= 3.0 × 10−8). e Bars represent averaged cross-validated variance explained of the within- and cross-condition cross validation
datasets. Error bars indicate standard errors of the mean over participants (n= 8). Within-subject two way ANOVA analysis shows no significant
differences between the cross validation datasets (p > 0.025, two-sided, Bonferroni corrected for multiple comparisons). Source data are provided as a
source data file.
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preferred numerosity estimated from the two ranges and a slight
increase of numerosity preference at the large range. (Supple-
mentary Fig. 5a, b).

More cortical area devoted to smaller numerosities. The change
of numerosity preferences along each map was quantified by
measuring the distance of each data point from the borders of the
map with the highest and the lowest numerosity preferences
(white lines in Fig. 1a, b, see “Methods”). The numerosity pre-
ference progressed systematically along the cortical surface
(Fig. 3a). Consistent with previous studies27,28, we found a cor-
tical magnification effect, with less cortical surface responding to
larger numerosities, in all the maps of all the participants (Fig. 3b,
Supplementary Fig. 3).

To visualize the location of populations with large numerosity
preferences (above 7), we calculated the proportion of large
numerosity preferences in each 10% cortical distance interval. As
shown in Fig. 3c, neural populations tuned to large numerosities
are located towards the end of the maps. This suggests that
numerosity preferences progressed from small to large continu-
ously along the same topographic map. Last, we found a
significant correlation between the size of the maps (cortical
distance) and the largest preferred numerosity in these maps
(r= 0.51, p= 0.0003; Fig. 3d). This suggests that tuned responses
to larger numerosities are more detectable in larger maps. Using

cross validation datasets, similar systematic progressions were
found across all maps and all participants (Supplementary
Fig. 5c).

Tuning width increases with preferred numerosity. To illustrate
the change of tuning width with preferred numerosity, we plotted
tuning width against preferred numerosity estimated by viewing
the large numerosity range (Fig. 4). Population tuning widths
increase with preferred numerosities systematically across all
numerosity maps of all the participants (Supplementary Fig. 4), in
line with the observation at the small numerosity range27. The
cross validated datasets show similar changes of tuning width
increase with preferred numerosity (Supplementary Fig. 5d, e).

Discussion
We found a network of neural populations tuned to small and
large numerosities organized as topographic maps in the same
cortical regions. These neural populations exhibit stable numer-
osity selectivity regardless of presented numerosity range. When
the participants were viewing the large range, i.e., 1–64, we found
populations with larger numerosity preferences (above 7) located
at the end of the maps (near higher preferences within the small
range). These numerosity maps exhibit features akin to maps for
primary sensory organs (retinotopic maps, tonotopic maps and
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Fig. 3 Visualization of the large numerosity preference locations. a Cortical progression of small (dark blue) and large (light blue) preferred numerosities
with the cortical distance (between the white lines in Fig. 1a & b) across participant 1’s NTO map. The preferred numerosity increased systematically for
both conditions. Points represent the mean preferred numerosity in each distance bin (every 2 mm); error bars showing standard errors of the mean over
data points within each bin. Coloured lines show the best logarithmic fits. b Progression of numerosity preferences estimated from the large range as a
function of normalized cortical distance in all the numerosity maps of participant 1. The black line shows the best logarithmic fit that bins the data points
from all the maps across normalized cortical distance. Shade area shows the 95% confidence interval determined by bootstrapping fits (n= 1000) to the
binned points and p values indicate the probability of the observed change from permutation analysis (n= 10,000), in both (a) and (b). c Proportion of
tuned responses to large preferred numerosities (above 7) for each 10% interval of normalized cortical distance in all maps of all participants. Coloured
bars represent the proportion of preferred numerosities ranging from 7 to 16, 16 to 32, and 32 to 64. d Map size (cortical distance) correlates with the
largest preferred numerosities in the maps, i.e., large maps typically contain larger numerosity preferences. Source data are provided as a source data file.
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somatotopic maps), such as a larger extent of cortical surface
devoted to smaller numerosities, i.e., cortical magnification34,35.
These results demonstrate a continuum of small and large
numerosity preferences within the same numerosity map. We
therefore propose a single neural mechanism for the ANS up to
numerosities of 64. We suggest that small and large numerosities
are encoded in the same neural tuning, nevertheless, small and
large numerosities differ in their cortical representations. We
speculate that the differences of the map properties, such as
cortical magnification and tuning width, may underlie the dif-
ferent behavioural and perceptual qualities of small and large
numerosities.

For the overlapping numerosities between the small and large
ranges, i.e., 1–7, the numerosity maps were similar. When sti-
mulating with larger numerosities (above 7), the numerosity
maps extended in the direction of the higher preferences within
the small range condition in a continuous fashion. This is akin to
visual field maps, when stimulating with a greater eccentricity a
larger proportion of the map is revealed30. Likewise, a wider
numerosity range reveals a larger proportion of the
numerosity map.

We propose that there are two main theories to explain the
results. On one hand, we speculate that the numerosity tuning
remains stable but that the stimulus range influences the
numerosity responses. A single recording site (1.75 × 1.75 ×
1.75 mm3) will have about 250,000 neurons36. In line with this
notion, the tuning width of the total population within a single
recording site is quite large: neural populations tuned to 2 have a
tuning width of about 10 (see for example in Fig. 1g, h). There-
fore, we assume that at a single neuron level, different preferred
tunings are present in the same fMRI recording site, i.e., the
population consists of neurons with different preferred numer-
osities. In other words, the heterogeneity of the neural population
alters the overall numerosity preference depending on the pre-
sented range. More specifically, the overall numerosity preference
of a recording site is an average of the preferred numerosities of
the neural populations within this recording site. For example, at
the same recording site, the averaged population tuning would be
higher for the large numerosity range because the neurons sen-
sitive to larger numerosities in the recording site will contribute
more to the population responses when the larger numerosities
are presented, and less when smaller numerosities are presented.
We found only a slight increase of preferred numerosity at the

same recording site (i.e., the slope is slightly above the unity line)
when stimulated with the large range, even in the lower portion of
the range (i.e., 1–7). However, the overall deviation is small
(around 3.59%). This suggests that the majority of neurons within
a recording site tend to have similar preferred numerosities.
Furthermore, neural tuning estimated from the large range pre-
dicts a large signal variation of the responses derived from the
small range, and vice versa (Fig. 2e). Therefore, we suggest that
the numerosity preference of single neurons is likely stable, but
the heterogeneity of the neural population may give rise to dif-
ferent preferred numerosity estimations when the stimulus
changes.

On the other hand, another possible explanation is that the
tuning of neural population depends on the presented stimuli
and the numerosity maps are dynamic remapping of the tuning
properties. Previous studies have demonstrated that numerosity
is susceptible to adaptation akin to primary sensory
perceptions2,21,37. Recently, Tsouli et al.38 found that numerosity
adaptation altered the preferred numerosity within the numer-
osity map, resulting a predominantly attractive biases towards
the numerosity of the adaptor. Moreover, the adaptation effect
increases as the numerical distance between the unadapted
preferred numerosity and the adaptor increases. Let us assume
that the neural population at a recording site responded selec-
tively to the numerosity 4. When stimulated repeatedly and
sequentially with larger numerosities (e.g., 8–64), the preferred
numerosity of the neural population could shift to a higher
number, due to the attractive bias of adaptation towards the
larger numerosities. Thus, the numerosity maps would show
some systematic changes in numerosity preference depending on
the numerosity range, i.e., dynamic remapping of the neural
population tuning properties. As we note in the “Methods”, our
stimulus sequence presented the numerosities changed system-
atically in both ascending and descending directions and the
small and large ranges were interleaved during scanning. By
doing so, we aim to balance opposing effects of preceding lower
and higher numerosities and habituation effects of the small or
large range. Furthermore, as Supplementary Fig. 1 shows, sti-
mulating with only large numerosities (>7) resulted in poor
estimates of the maps and only elicited responses at the maps
consisting of neural populations tuned to larger numerosities.
This suggests that the neural population tuning is less likely
to change dynamically to follow the presented stimulus. Thus,
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though we cannot exclude context-depending remapping, we are
not convinced of this theory given the possibility of range-
dependent differences in the contributions of different parts of a
heterogeneous neural population (the first theory). Therefore, we
favour the interpretation that under our stimulus design the
numerosity tuning remains predominantly stable.

In line with our findings, the stability of numerosity selectivity
is also evident at a temporal scale. At a single neuron level,
neurophysiological recordings on non-human primates demon-
strated that numerosity-selective neurons maintain reliable tun-
ings after the numerosity stimulations disappear20,39. Similarly,
stable numerosity selectivity is also found in corvid birds when
retaining information of numerosity in working memory and the
neuronal activity during the delay period could predict beha-
vioural performance40. These findings suggest that tuned
responses of numerosity-selective neurons are stable across time,
at least they hold information of the pre-presented numerosity in
working memory. This enables a reliable neural system to
maintain information temporally to deal with the task demand.
Together with our findings, we suggest that numerosity tunings
are stable, providing a reliable neural system for numerosity
perception at the cortical representation and temporal processing
scales.

The largest preferred numerosities detected in the numerosity
maps were smaller than the largest presented numerosity (i.e.,
64), and these neural populations are found located at the end of
the map. In addition, stimulating with only larger numerosities
(i.e., above 7) does not reveal the complete maps, or a clear
topographic progression, but mainly produces responses at the
sites where the maps have neural populations tuned to large
numerosities (Supplementary Fig. 1c). There were few responses
to larger numerosities beyond 12. This could be interpreted as
evidence that the cortical encoding is different for larger
numerosities than smaller ones. However, fewer responses to
large numerosities does not necessarily mean there are no neu-
rons responding to these large numerosities. Evidence from single
neuron recordings demonstrate neurons selective for large
numerosities24. In our study, neurons with tuning to very large
numerosities may be hidden in the overall neural populational
response dominated by neurons tuned to smaller numerosities.
Therefore, we suggest that small and large numerosities are
represented similarly in terms of their neural tunings.

Furthermore, based on our observations, less cortical area is
devoted to representing larger numerosities. We assume that the
largest numerosity we can measure is constrained by the surface
area of the numerosity map. For example, the largest preferred
numerosity of a given recording site (voxel) is derived by aver-
aging the preferred numerosities of the neural populations within
this site. In such a way, the representative preferred numerosity of
a given recording site will always be smaller after averaging values
from the subpopulations. This could also explain why the size of
numerosity map correlates with the potential largest preferred
numerosity within the map (Fig. 3d). If the map is small in size
(fewer voxels), we cannot resolve individual populations pre-
ferring larger numerosities as they are mixed with those pre-
ferring smaller numerosities at the same recording sites. If the
maps are larger in size however, we could distinguish the neural
populations tuned to larger numerosities and those tuned to
smaller numerosities in separated voxels.

Furthermore, we propose that the cortical magnification
explains why stimulating with only larger numerosities (i.e.,
above 7) does not reveal the complete maps or topographic
progression. We speculate that the cortical magnification factor,
i.e., fewer cortical surface area is devoted to larger numerosities,
accounts for the fact that fewer representations for larger
numerosities (e.g., 16–64) were detected. In visual cortex, there is

a smaller fraction of cortical surface for representing larger
eccentricities30,41, likewise, there are evidences point at a similar
decline in surface area for representing larger numerosities27,28.
Thus, it seems likely that the detection of the largest numerosity
was also constrained by the cortical magnification effect of the
numerosity map representation. In support of this assumption,
Cheyette et al.42 suggested that the limited amount of information
processing capability of the underlying neural circuits leads to the
inaccurate perception of large numerosity, while a single system
represents small and large numerosity.

The continuum of cortical representation of small and large
numerosities argues for a single numerosity neural representation
mechanism, in line with the single enumeration system of the
ANS. However, numerosity estimation is fast and accurate for the
subitizing range, where some studies report a clear violation of
Weber’s law15,43. Enumeration suddenly becomes slow and error-
prone beyond this range, showing an increase in reaction time
and a decrease in precision44,45. Therefore, this dissociation is
held to reflect two separate systems in enumerations at different
set sizes13. However, reported differences in the dependence for
small versus large numbers do not necessary imply the existence
of two separate systems. Because for small numerosities the
imprecision of the numerosity representation remains below one
item while for larger numerosities to achieve the same dis-
crimination precision more numerical distance is required, which
results in more overlap and a ratio-dependent effect4,46.

Although we suggest that a common neural mechanism
underlies numerosity representation across a wide range, it may
nevertheless have distinct perceptual and behavioural con-
sequences between the subitizing and estimation ranges. The fast
and accurate perception on small numerosities is because more
cortical area of the numerosity maps are devoted to smaller
numerosities27,28. This is consistent with the observation in
macaque prefrontal cortex that single neurons with smaller
numerosity preferences occurred more frequent, with a progressive
decrease in frequency towards higher numerosity preferences24.
This cortical representation of small and large numerosities
resembles the logarithmic coding of numerosity21,39,47. Neuro-
physiological studies in macaque and corvids show logarithmically
numerosity encoding in single neurons32,40. Logarithmic coding
allows a wide range of numerosities to be encoded, thus increasing
the scope of neural representation and perception of numerosity48.
The cortical magnification of numerosity maps provides the neural
circuits for such a logarithmic coding space. Perception on large
numerosities gets inaccurate and takes more time as the tuning
width increases with the preferred numerosity. Thus, we speculate
that the properties of numerosity representation, such as cortical
magnification and tuning width, give rise to distinct perceptual
performance on small and large numerosities.

Despite much evidence for a number sense in humans, there
have been arguments about whether numerosity is sensed directly
or derived indirectly from other non-numerical information in
the stimulus, such as dot size and density49,50. One reason why
the argument is particularly compelling is that numerosity is
intrinsically correlated with many other physical features. For
example, we have shown a correlation between the neural tuning
of object size and numerosity, with largely overlapping topo-
graphic maps. However, object size and numerosity tuning result
from distinct mechanisms, indicated by their distinct tuning
properties and map organizations51. Previous studies from other
labs have demonstrated separate mechanisms for perception of
numerosity and density14,52 that a regime of texture mechanism
represents densely packed items that cannot be individuated as
separate items. Note that in previous studies27,28, we used various
stimulus conditions, such as constant area, constant dot size,
constant circumference, high density and various shapes. In these
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studies, we consistently found topographic numerosity maps in
all the stimulus configurations, which suggests that the topo-
graphic maps depend on numerosity rather than other stimulus
information. We have also demonstrated that responses in these
maps cannot be explained by neural tuning for these non-
numerical features53. In the current study, we used a stimulus
configurations total surface area held constant across numerosity,
ensuring equal luminance in all the numerosity displays. The
stimuli were presented in a larger central visual field of 4° than
the original setting of 1.5°, as this configuration allows larger
numerosity stimuli to have enough space to individuate each
item. But in this stimulus configuration density increases with
numerosity and total item perimeter decreases, for example. We
believe the response we observe reflect numerosity because this
has been conclusively demonstrated in the same maps in our
previous studies27,28,51, although it was not possible to design the
experiment to conclusively demonstrate this in the current data
with the large numerosity range.

Based on these results, we suggest that differences in neural
properties within the same topographic map underlie the differ-
ent cognitive behaviours of numerosity perception. This is com-
monly seen in visual field maps with perceptual differences
between central (foveal) and peripheral vision. Visual field maps
show changes in cortical magnification and receptive field size
with eccentricity. Specifically, more of the cortical area is devoted
to central vision with smaller receptive fields. Such differences in
cortical magnification and receptive field size may reflect different
perceptual processing requirements30. Therefore, like visual cor-
tex, we suggest that, not only are topographic maps a core
principle of brain organization, but the differential features of
cognitive topographic maps underlie differences in cognition.

Methods
Participants. We present data from eight participants (one female, age range
25–45 years). All the participants had normal or correct-to-normal visual acuity.
All were well educated, with good mathematical abilities. Written informed consent
was obtained before every MRI session. All experimental procedures were
approved by the ethics committee of University Medical Centre Utrecht.

Stimuli and experiment design. Visual stimuli were presented on a 69.84 ×
39.29 cm LCD screen (Cambridge Research Systems) behind the MRI bore. Par-
ticipant was required to lie still and view the display through a mirror attached to
the head coil. The total distance from the attached mirror to the display screen was
220 cm. The display resolution was 1920 × 1080 pixels. Visual stimuli were gen-
erated in Matlab using PsychToolbox54,55. A large diagonal cross composed of thin
red lines was displayed consistently across the entire screen, which allows accurate
fixation. Participants were asked to fixate the intersection of the cross. Stimuli
consisted of a group of dots with a constant total surface area presented in the
central 4° (diameter) of the visual field. Dots were randomly positioned at each
presentation so that each dot fell entirely within this area, to distribute contrast
energy equally across the stimulus area for all numerosities (Fig. 5). Each
numerosity presentation that contained the same number of dots was placed in a
new, random position, so no specific visual position was associated with any
numerosity. To prevent perceptual grouping, individual items were distributed
roughly homogeneously across the stimulus area. All of the numerosity presenta-
tions were displayed as black or white dots on a grey background. Dot patterns
were presented briefly (300 ms) to ensure participants did not have time to count.
A new random pattern was presented every 650 ms, with 350 ms presentation of a
uniform grey background between dot pattern presentations. This was repeated six
times, over 3900 ms, corresponding to two fMRI volume acquisitions (TRs), before
the numerosity changed. On 10% of numerosity presentations, the dots were
shown in white instead of black. Participants were instructed to press a button
when white dots were shown to ensure they were paying attention to the stimulus
during the fMRI acquisition and responded to 90–100% of white dot presentations
within each functional run. No numerosity judgements were required. Main stimuli
in the small numerosity range consisted of 1 to 7 dots, with 20 dots as the baseline,
while large numerosities consisted of 1 to 64 dots and a baseline of 512 dots. To test
neural populations responses to larger numerosities, a third numerosity range
consisted of only large numerosities from 8 to 64 dots and a baseline line of
512 dots was introduced, namely, the large-control range (Supplementary Fig. 1a).
The main numerosity stimuli were first presented in ascending order, followed by a
longer period (15.6 seconds) where presented with the baseline stimuli (20 or
512 dots in the small or large range respectively), then followed by the main

numerosities in descending order, followed by another identical baseline period.
This sequence was repeated four times (4 cycles) for each functional run. The long
baseline period had a similar function to the blank periods used in visual field
mapping stimuli in population receptive field experiments33. During this period,
little neural response was expected from numerosity-selective neurons preferring
the main numerosities of interest, as such a relatively large numerosity should be
well outside of the numerosity range that elicits strong responses. This long period
also allows hemodynamic responses to return to baseline between blocks of
changing numerosity.

MRI acquisition and preprocessing. Anatomical MRI data were acquired from a
Philips 7 T scanner (Philips Medical Systems, Best, NL). MP2RAGE T1 anatomical
MRI data were acquired at the spatial resolution of 0.64 × 0.64 × 0.64 mm3

(resampled to 1 × 1 × 1mm3 for the follow-up processing), repetition time (TR)
was 6.2 ms, echo time (TE) was 3 ms, and flip angle was 5/7 degrees. Functional
T2*-weighted multi-band (factor=2) 2D echo planar images (EPI) were acquired
on a Philips 7 T scanner using a 32 channel head coil (Philips Nova Medical) at a
resolution of 1.75 × 1.75 × 1.75 mm3, with a full-brain-coverage field of view
(FOV= 106 × 112 × 236) covering 64 slices. TR was 1950 ms, TE was 25 ms, and
flip angle was 70 degrees. Functional runs were each 182 time frames
(354.9 seconds) in duration, of which the first six time frames (11.7 s) were dis-
carded to ensure the signal was at a steady state. Within each session eight func-
tional runs were acquired with the small and large numerosity ranges interleaved to
avoid adaptation. Each participant was scanned for two sessions on separate days.
In addition, we collected eight functional runs on seven of our participants with the
large-control range.

T1 anatomical scans were automatically segmented using CBS tools (www.nitrc.
org) and then manually edited to minimize segmentation errors using ITK-SNAP56

(www.itksnap.org). This provides a highly accurate description of the cortical
surface, an anatomical segmentation space used for analysis of cortical
organization. The cortical surface was reconstructed at the grey-white matter
border and rendered as a smoothed 3D surface. Head movement and motion
artefacts between and within functional scans were measured and corrected for in
AFNI57. Motion-corrected functional data were then averaged and the resulting
mean image was co-registered to the segmented anatomy. Individual functional
images were then co-registered to the same anatomical space using the same
transformation.

fMRI data analysis. Functional data analysis was performed in mrVista, which is
freely available at (https://github.com/vistalab/vistasoft). First, data from separate
sessions was imported into the same anatomical space for each participant.
Functional runs (n= 8) collected for the same condition (small or large range)
were averaged to produce a dataset with strong signal strength. Second, the aver-
aged functional dataset was collapsed onto the nearest point on the cortical surface
across depth to further increase on signal strength, which generated a (folded) 2D
grey matter surface. Then we performed the canonical numerosity modelling

4°10.2° 3 7

16 64
Presented stimulus ranges

Time (s)
0 40 80

1 2 4 5 6 7 20 7 6 5 4 3 2 1 203Small

1 2 4 8 16 32 64 512 64 32 16 8 4 2 1 512Large

a b

c

Fig. 5 Illustration of stimuli and experimental design. a A full example
stimulus as seen by the participants in the scanner. The dot pattern covered
the central 4° (visual angle) diameter within an 10.2° diameter mean-
luminance (grey) field. A large, thin, red fixation cross passes diagonally
through the centre of the display, and through the centre of the dot pattern.
Participants fixated at the intersection of the cross. b Example numerosity
stimuli, where the total surface area of the dot pattern is constant across
numerosities. c The sequence of the numerosity stimuli presented to the
participants at the small and large ranges, respectively.
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developed to estimate the tuning properties of numerosity-selective neural
populations27,33. Briefly, a one-dimensional neural model defined as a Gaussian
function in logarithmic space was adopted. The Gaussian function characterized by
a set of parameters: preferred numerosity (mean) and tuning width (standard
deviation). The model predicts neural responses by taking the presented numer-
osity at each time point and evaluating the Gaussian function’s amplitude at this
numerosity. Then convolving these predicted neural response time course with a
hemodynamic response function (HRF) to generate predicted fMRI time courses.
The predicted fMRI time course with the minimum sum of squared errors (R2)
residuals to the recorded signal was chosen, and the Gaussian function parameters
that generated this prediction were used to summarize the recording site’s
response. The goodness of model fit (R2, i.e. variance explained) was thresholded at
30% to select recording sites with clear numerosity selective responses: recording
sites with lower variance explained were excluded from further analysis. The
modelling procedure allows preferred numerosity estimates outside the range of the
presented stimuli, ensuring estimates within the stimulus range are not just the best
of a limited set. We excluded from analysis any recording sites where the preferred
numerosity was outside the presented range accordingly. Finally, the preferred
numerosity data was projected onto the smoothed cortical surface.

Definition of region of interest. We defined regions of interest (ROI) where the
numerosity-selective neural populations are organized topographically similar to
previously reported numerosity maps28. In total, six ROIs were drawn for the right
hemisphere in the temporo-occipital cortex, parieto-occipital cortex, parietal cortex,
and superior frontal cortex, corresponding to six numerosity maps: NTO, NPO,
NPC1, NPC2, NPC3, NF. In each ROI, we defined map borders on the lowest and
highest preferred numerosities (white lines) and the map edges around the local
increase in model goodness of fit (black lines) (Fig. 1a, b, Supplementary Fig. 1b).

Correlation analysis between numerosity preferences. Pearson correlation
analysis was performed between numerosity preference estimated from the small
and large ranges. This included the recording sites that had variance explained
above 30% in both conditions. Taking into account the functional resolution of the
recording sites, the total number of data points (n) used to calculate correlation’s
probability was reduced by the factor by which functional voxels were up-sampled
onto the 2D cortical surface.

To quantify the similarity between the numerosity preferences estimated from
the two ranges, we calculated the percentage deviation. We calculated the difference
of the slopes between the linear fit line of the numerosity preference correlation
and the unity line (y= x). The percentage deviation of the unity line was set to 0,
indicating that the estimates of small and large numerosity preference are equal.
The largest possible deviation is indicated by the best fit function of y= 10.5x−9.5,
where the estimate of the largest numerosity at small range (i.e. 7) corresponds to
the estimate of the largest numerosity at the large range (i.e., 64). The percentage
deviation of this best possible fit was set to 1. Thus, for each map, the percentage
deviation= (p-1)/9.5, where p is the slope of the best fit of the correlation. We
performed a Wilcoxon signed rank test (two-tailed) to the percentage deviations of
all maps in all participants. A two-way ANOVA was performed to test the
statistical difference in the percentage deviations between maps and participants,
followed by post hoc analysis with Bonferroni correction for multiple comparisons.

Analysis of change of numerosity preferences along maps. For each ROI, we
calculated the distance of each recording site to the nearest points on the borders of
the map with the lowest and highest numerosity preferences. The ratio between the
distances to each border was computed, which gives a normalized distance along
the ROI in the primary direction of preferred numerosity change. Then we mul-
tiplied this normalized distance by the mean length of the ROI in this direction,
which gives a measure of the distance along the ROI for each recording site.

We binned the data points within every 2 mm distance interval along each ROI.
The mean and standard error of the preferred numerosity of the points within the
bin was calculated. We fitted logarithmic functions to bootstrapped samples of the
bin means. From these bootstrapped fits we took the median slope and intercept as
the best fitting numerosity progression. We determined 95% confidence intervals
by plotting all lines generated during bootstrapping iterations and finding the 2.5
and 97.5 percentiles values for these fits. The statistical significance of the slopes
was determined with a permutation analysis, where the order of distance bins was
randomized (10,000 times). The slopes were fitted at each permutation, and the
probability of finding the observed slope by chance was calculated as the number of
times where the slope in the randomized permutation was equal to or greater than
the observed slope.

We normalized the cortical distance of each ROI to visualize the progression of
numerosity preference in a similar way. We binned the recording sites within every 10%
interval of the normalized cortical distance along each ROI. To visualize the location of
neural populations selectively responding to larger numerosities (above 7), we sorted
neural populations preferred large numerosities into three subranges (i.e., 7–16; 16–32;
32–64) at each bin. We calculated the proportion of these recording sites among all the
selected recording sites in the same bin. The proportions of each subrange at each bin of
all maps in all participants were averaged and stacked. Last, we extracted the largest

preferred numerosity of each map estimated from the large range and calculated the
correlation between these preferred numerosities and the cortical distance of the maps.

Analysis of change of tuning width with numerosity preference. In each ROI,
we binned data based on preferred numerosities at each range, with numerosity
increments of 0.25 between bins. The mean and standard error of each bin were
calculated. We fitted linear functions to bootstrapped samples of the bin means.
We determined 95% confidence intervals by plotting all lines generated during
bootstrapping iterations and finding the 2.5 and 97.5 percentiles values for these
fits. Similar permutation analysis, as described above, was used to calculate the
probability of finding the observed tuning width change by chance. Unstable fits
are common seen in some ROIs where there are little information in the data set to
distinguish tuning widths.

Cross validation analysis. We cross validated the results by splitting the data into
two halves for each condition, based on odd versus even runs, resulting in four half
cross validation datasets (i.e., small-odd, small-even, large-odd and large-even).
Two types of cross validations were done: within-condition and cross-condition.
We selected the recording points from each cross validation datasets based on the
criterion that the preferred tuning from 1 to 7, which present at both the small and
the large ranges.

For the within-condition validation, we extracted the model prediction of the
selected voxels from one dataset (e.g., large-odd) and fitted that to the other dataset (e.g.,
large-even) of the same condition and vice versa, namely the “small→ small” and “large
→ large” validations. This resulted in two iterations of each condition and we calculated
the cross-validated variance explained (cvR2) of each iteration. For the cross-condition
validation, we extracted the model prediction from one cross validation dataset (e.g.,
small-odd) and fitted that to the two datasets of a different condition (e.g., large-odd &
large-even), namely the “small → large” and “large → small” validations. This resulted
in eight iterations of cross validation by taking the model prediction from each dataset
in turn. We then calculated the averaged within-condition and cross-condition cvR2

across all iterations and across maps and participants. A within-subject repeated
measures two-way ANOVA analysis was performed using JASP to compare within-
and cross-condition validations (Fig. 2e)58.

To validate the results of the large range data, we selected the voxels with the
criteria that the preferred tuning fell at the large range and with the cvR2 larger
than 30%. We replicated the main analyses using the cross validation datasets (see
Supplementary Fig. 5).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data sets generated during the current study are available from the corresponding
author upon reasonable request. Source data of presented figures are provided with this
paper. Source data are provided with this paper.
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The code that supports the findings of this study is available from the corresponding
author upon reasonable request.
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