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Supervisory hybrid model predictive control
for voltage stability of power networks

R.R. Negenborn, A.G. Beccuti, T. Demiray, S. Leirens, G. Damm,B. De Schutter, M. Morari

Abstract— Emergency voltage control problems in electric
power networks have stimulated the interest for the imple-
mentation of online optimal control techniques. Briefly stated,
voltage instability stems from the attempt of load dynamics
to restore power consumption beyond the capability of the
transmission and generation system. Typically, this situation
occurs after the outage of one or more components in the
network, such that the system cannot satisfy the load demand
with the given inputs at a physically sustainable voltage profile.
For a particular network, a supervisory control strategy based
on model predictive control is proposed, which provides at
discrete time steps inputs and set-points to lower-layer primary
controllers based on the predicted behavior of a model featuring
hybrid dynamics of the loads and the generation system.

I. I NTRODUCTION

Huge problems in the US and Canada [1], Italy, and The
Netherlands due to power outages have shown the crucial
role of a reliable operation of electricity distribution and
transmission networks. A reliable and efficient operation of
these networks is not only of paramount importance when
these electricity systems are pressed to their limits of its
performance, but also under regular operating conditions.
Due to the deregulation in the European electricity market,
the number and variety of actors increases. This number will
even further increase as also large-scale industrial suppliers
and small-scale individual households (via solar energy or
wind energy installations) will start to feed electricity into
the network [2]. With this increasing complexity faults and
disturbances causing voltage instabilities are likely to occur
more frequently.

In general, the behavior of power systems is characterized
by complex interactions between continuous dynamics and
discrete events, i.e., power systems exhibit hybrid behavior.
Components such as generators and loads drive the con-
tinuous dynamic behavior. They obey physical laws, and
are usually represented by coupled differential and algebraic
equations. Discrete events or discrete inputs cause discrete
behavior through, e.g., breaking down or connecting of a
transmission line, saturation effects in automatic voltage reg-
ulators and power system stabilizers,on or off switching of
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generators, connecting or disconnecting of loads, changing of
transformer ratio settings, and connecting or disconnecting of
capacitor banks; seasonal variations can also cause changes
in power production capabilities as well as consumption and
can modify the direction of power flows and thus cause
switching behavior. The networks moreover typically span
a wide range of time scales and large geographical areas.

To control such complex systems, hierarchical control in
which control takes place at different layers based on space
and/or time division is necessary [3]. The controllers at the
lowest layer act directly on the actuators of the physical
system, employing faster and more localized control. Higher-
layer controllers supervise controllers of lower layers bypro-
viding set-points or specifying constraints, employing slower
and more overall control. The task of a higher layer is to steer
the underlying layer in such a way that the performance of
the physical system is optimal in some sense. Traditionallyin
hierarchical control, a layer either only provides continuous
or only discrete values to a different layer. In the approachwe
propose, both continuous and discrete values are dealt with
in an integrated way, i.e., we consider ahybrid approach.

The particular control problem we are dealing with is
voltage stability after disturbances. After a disturbance, e.g.,
breaking of a transmission line, the generation and transmis-
sion network may not have sufficient capacity to provide the
loads with power; voltage instability may be the result. Con-
trol actions have to be chosen that minimize negative effects
of this voltage instability. Traditionally, offline staticstability
studies are carried out in order to avert the occurrence of
voltage instability. The approach we propose is an application
of online control that takes into account both the inherent
temporal dynamics and that determines the most appropriate
control sequence required to reach an acceptable and secure
operating point. We consider a scheme used by a higher-layer
controller that controls a power network to determine both
discrete and continuous set-points for lower-layer controllers
in such a way that negative effects due to voltage instability
after disturbances are minimized. We hereby assume that a
lower layer that accepts set-points at discrete time steps is
already present.

This paper is organized as follows. In Section II we
introduce the power network and the lowest layer of control
that we consider. In Section III we introduce the voltage
control problem and the objectives. In Section IV we present
a control strategy for the higher layer based on model
predictive control. Section V contains simulation results
obtained on the considered power network.
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Fig. 1. Graphical representation of the IEEE 9-bus Anderson-Farmer
network.

II. POWER NETWORK SYSTEM

A. Physical network

The case study under consideration is the 9 bus Anderson-
Farmer network [4], depicted in Fig. 1, taken from the
Dynamical Systems Benchmark Library1, whereto the reader
is referred for an exhaustive description.

B. Components of the network

The considered network consists of4 generatorsG1,
G2, G3 and G4 (shown with their nominal apparent power
ratings) feeding the static loads at buses5 through9, where
G1 and G4 and the loads connected to buses5 and 9 are
the aggregate representations for neighboring generatorsand
loads. The synchronous machines are connected to the grid
via lossless step-up transformers featuring a fixed turns ratio;
a capacitor bank at node7 provides additional reactive power
to the system. The following list contains more details:

• Generators: GeneratorsG2 and G3 represent single
physical machines, whereasG1 and G4 denote the
aggregate generators comprising several physical units.
Therefore,G2 andG3 are described by a detailed sixth-
order model [5] including the mechanical equations
and the electrical transient and sub-transient dynamics,
whereasG1 and G4 are described by second-order
mechanical dynamics [5].

• Loads: The employed static loads comprise voltage
dependent and constant impedance types [6]. The loads
are described with following classical formulation in
terms of active and reactive power

Ph = shP0hvα
h (1a)

Qh = shQ0hvα
h , (1b)

whereh ∈ {5, 6, 7, 8, 9}, vh is the voltage of bush, P0h

(Q0h) is the active (reactive) power steady-state value at
nodeh, andsh ∈ {0, 0.02, . . . , 0.98, 1} per unit (p.u.)
represents the discrete load shedding factor applied to
a load to relieve the strain of the power demand on the

1URL: http://psdyn.ece.wisc.edu/IEEEbenchmarks/

system. Voltage dependent loads correspond toα = 1
and constant impedance loads toα = 2.

• Capacitor bank: The capacitor bank locally stabilizes
bus voltages by injecting additional reactive power into
the grid. It is represented as a (negative) purely reactive
load of type (1b) withα = 2 and thus describes a
switched shunt capacitor.

• Transmission lines: The transmission lines between the
buses and components transfer the power from one
location to another. The lines are represented by the
π model for transmission lines [5].

C. Primary control layer

In the network there is a primary, lower-layer, control
layer that locally regulates power flows and voltage levels
at the bus terminals of generators. Fig. 2 shows a schematic
representation of the local controllers’ principle of operation.
Feedback variables and corrective actions are depicted for
each component [5]. The primary control layer consists of
the following:

• Turbine governors: All generators feature a turbine
governor (TG) controlling the mechanical powerPm

acting on the shaft of the machine in order to satisfy
the active power demand of the network and maintain
the desired frequencyωref = 60 Hz. The TGs act on a
time scale of tens of seconds.

• Automatic voltage regulators: All generators feature an
automatic voltage regulator (AVR) maintaining the level
of the excitation fieldEfd in the rotor windings at the
value required to keep the bus (stator) voltage close
to the desired set-point. Saturation is included in the
AVR to account for the maximum allowable current in
the excitation system, i.e.,Efd has an upper limit value
Emax and a lower limit valueEmin. Once a machine has
reached its saturation limit it cannot produce additional
reactive power and can therefore no longer participate
in sustaining the voltages in the network [5]. The AVR
voltage referenceri of generatori, i ∈ {1, 2, 3, 4}, can
be set in the range0.9−1.1 p.u. with steps of0.01 p.u.
The AVRs act on a time scale of seconds.
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• Power system stabilizers: GeneratorsG2 andG3 feature
a power system stabilizer (PSS) eliminating the pres-
ence of unwanted rotor oscillations by measuring the
rotational speedω and adding a corrective factorvref,PSS

to the bus terminals’ voltage referencevref. Generators
G1 andG4 feature no power system stabilizer since the
faster dynamics related to the rotor oscillations are not
present in the related model equations. The PSSs act on
a time scale of tenths of seconds.

D. Controls available to a higher control layer

Given the description of the network and the primary
control layer, there is a number of controls available to a
higher control layer in the form of set-point and reference
settings. In particular the following can be adjusted:

• the voltage references for the AVRs;
• the mechanical power set-point for the TGs;
• the reference frequency for the TGs and PSSs;
• the amount of load to shed;
• the amount of capacitor banks to connect to the grid.

Depending on the particular control problem a higher-layer
controller will adjust the values of these controls. In particu-
lar for the problem at hand the amount of load shed (defined
by the variablessh) and the set-points of the AVRs (defined
by the variablesri) will be taken as the available controls.

III. E MERGENCY VOLTAGE CONTROL

A major source of power outages is voltage instability
[7]. Voltage instability in general stems from the attempt
of load dynamics to restore power consumption beyond
the capability of the combined transmission and generation
system. Typically, the capability is exceeded following the
outage of one or more components in the network, such
that the system cannot satisfy the load demand with the
given inputs at a physically sustainable voltage profile in
the network.

The control problem involves the case of emergency
voltage regulation, in which the power system is initially in
steady-state operation and subsequently subjected to a fault,
modeled as the partial or total outage of a line. Due to the
reduced transmission capacity of the network the requested
load demand together with the given system configuration
place the grid under an excessive amount of strain, so that
corrective actions are required to avoid that the induced
transients drive the system to collapse or cause unwanted
and hazardous sustained oscillations. More specifically, the
control objectives are:

1) Maintain the voltages between0.9 and 1.1 p.u., i.e.,
sufficiently close to nominal values to ensure a safe
operation of the system by keeping it sufficiently dis-
tant from low voltages, which may lead to a collapse.

2) Effectively achieve a steady-state point of operation,
while minimizing switching of the control inputs so
that a constant and appropriate set of input values is
ultimately applied to the power grid.

For this second objective, in particular the option of shedding
load is to be avoided unless absolutely necessary in order to

fulfill the primary objective, as load shedding is the most
disruptive countermeasure available.

IV. M ODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) [8], [9] has been tra-
ditionally employed in the process industry and has shown
promising performance also for a variety of other control
problems [10]. The control action is obtained at each time
step by minimizing an objective function over a finite horizon
subject to the equations of the employed prediction model
and the operational constraints, e.g., on inputs. The control
problem is solved in a receding horizon fashion. The major
advantage of MPC is its straight-forward design procedure.
Given a model of the system, hard constraints can be
incorporated directly as inequalities and one only needs to
set up an objective function reflecting the control aim; soft
constraints can also be accounted for in the objective by
using penalties for violations.

A. Derivation of the prediction model

The performance of a predictive controller relies for a large
part on the accuracy of the prediction model of the system.
The prediction model has to describe well how the inputs
affect the system behavior. Ideally a perfect model of the
system would be used; however, such a perfect model can
be very complex, thus making the optimization procedure
in the controller slow. Instead, an approximation is used. If
this approximation fits in a suitable form, relatively efficient
optimization techniques can be used to determine the controls
(e.g., linear or mixed-integer linear programming).

In order for the higher-layer controller that we are design-
ing to meet its control objectives, it has to be able to predict
how set-point changes influence the dynamics of the network.
Therefore, the controller uses a model that includes both a
representation of the physical network and a representation
of the primary control layer.

The network, including the primary control layer, is ex-
pressed [5] as a system of differential-algebraic equations
(DAE)

ẋ = f(x, u, v) (2a)

0 = g(x, u, v) (2b)

where the state variablesx are the generator dynamic
variables,u denotes the system inputs, and the algebraic
output variablesv are the bus voltage magnitudes. The dif-
ferential equations (2a) describe the synchronous machines
and related primary controllers; the algebraic equations (2b)
describe the classic load flow equations. See for the tech-
nical details on the power system models used the location
specified in footnote 1.

Determining the evolution of the network given an initial
state and input trajectory over the horizon thus requires the
solution of this DAE. Solving DAEs in general is a complex
task, in particular when dynamics of different time scales
are present, as is the case for the power systems. Variable
step size methods, e.g., DASSL [11], are suitable for these
cases, since they automatically choose a larger step size



when no fast dynamics are present, and a smaller step size
when they are [12]. However, using these methods inside the
optimization procedure of the MPC controller could be very
time-consuming and could thus result in very slow control.
Therefore, such a DAE model is not directly suitable as
prediction model.

Instead of taking the continuous-time DAE as prediction
model, we consider a discrete-time linearized model derived
from this DAE. At each discrete sampling instantkTs the
continuous-time linearization of (2a) and (2b) aroundx0 =
x(k), u0 = u(k − 1), can be written as

ẋ = Acx + Bcu + Fc

v = Ccx + Dcu + Gc,

where

Ac = ∂f
∂x

+ ∂f
∂v

(−∂g
∂v

)−1( ∂g
∂x

), Bc = ∂f
∂u

+ ∂f
∂v

(−∂g
∂v

)−1 ∂g
∂u

Cc = (−∂g
∂v

)−1 ∂g
∂x

, Dc = (−∂g
∂v

)−1 ∂g
∂u

Fc = −
∂f

∂v
(−

∂g

∂v
)−1(

∂g

∂x
x0 +

∂g

∂u
u0 +

∂g

∂v
v0 − g(x0, u0, v0))

− (
∂f

∂x
x0 +

∂f

∂u
u0 +

∂f

∂v
v0 − f(x0, u0, v0))

Gc = −(−
∂g

∂v
)−1(

∂g

∂x
x0 +

∂g

∂u
u0 +

∂g

∂v
v0 − g(x0, u0, v0))

when ∂g
∂v

is invertible, which is typically the case for power
networks. The required Jacobians can either be derived
analytically [13] or computed numerically. For the sake of
simplicity we use the latter approach.

We assume small variations of the variables around which
the model is linearized. If the variations are not small, mode
changes have to be considered in the model, e.g., by using
piecewise affine or similar models [13].

The continuous-time linearization is discretized with the
sampling intervalTs, to obtain the following control model
in the affine expressions ofx(k), u(k) andv(k)

x(k + 1) = Ax(k) + Bu(k) + F

v(k) = Cx(k) + Du(k) + G
(3)

whereink denotes the discrete time step, and where

A = eAcTs B =
∫ Ts

0
eAcτ dτBc F =

∫ Ts

0
eAcτ dτFc

C = Cc D = Dc G = Gc.

The simulation sampling timeTs is not necessarily equal
to the controller sampling time, although in the following we
will take these equal. The value ofTs has to be chosen such
that the discrete-time approximation adequately reflects the
dynamics of the continuous-time linearized model.

The obtained discrete-time approximation is employed as a
prediction model in the optimal control problem formulation.
In this regard, the optimal control formulation must be
augmented with the appropriate hard constraints on the inputs
u(k) = [r(k)T s(k)T ]T , with r(k) = [r1(k), . . . , r4(k)]T and
s(k) = [s5(k), . . . , s9(k)]T ), which are physically bounded.
For r(k) the admissible range is simply taken to be the
continuous relaxation of the discrete physical values, since
adjusting AVR set-points is not invasive. However, load
shedding is more invasive and since it is an extremely

expensive control action such an approximation might not
be adequate. Therefore, fors(k) the control constraints are
taken as the actual discrete physically feasible values, atthe
cost of introducing a set of integer variables in the model;
the employed control model is therefore by necessityhybrid
in nature.

B. Optimal control problem

To account for the control objectives mentioned in Section
III with their related order of importance a cost function
is formulated similarly as in [14]. To maintain the voltages
v1, . . . , v9 between0.9 and1.1, let the auxiliary variablestj ,
j = 1, . . . , 9 defined by







0.9 − vj(k) ≤ tj(k)
−1.1 + vj(k) ≤ tj(k)
0 ≤ tj(k)

(4)

denote upper bounds on the amount of violation of the
voltage conditions. These upper bounds will be minimized.
This formulation leads to nine variables at each sampling
instantk, grouped in the vectort(k) = [t1(k), . . . , t9(k)]T .
To minimize the switching between control actions, define
the variation of the manipulated variables as

∆u(k) = u(k) − u(k − 1) = [∆rT (k),∆sT (k)]T

and the diagonal penalty matrices

Qt = diag(qt1, . . . , qt9), Q∆u = diag(q∆u1, . . . , q∆u9)

with all penalty weights inR+ and where the entries inQt

andQ∆u are correlated to the corresponding ordering int(k)
and∆u(k). Consider now the expression for the stage cost,
penalizing the worst voltage violation and input change,

S(k) = ‖Qt t(k)‖∞ + ‖Q∆u ∆u(k)‖∞

and the formulation of the cost function

J(x(k), u(k − 1), U(k)) =
N−1
∑

ℓ=0

S(k + ℓ|k) (5)

which penalizes the predicted evolutionS(k + ℓ|k) of S(k)
at stepk + ℓ using information available at stepk over the
interval [k, k + N ].

The control action at each time instantk is obtained by
minimizing the objective function (5) over the sequence of
control inputsU(k) = [uT (k), . . . , uT (k +N − 1)]T subject
to the aforementioned input constraints and to inequalities
(4) for the selected prediction model (3). Moreover, to reduce
computational complexity, the load shedding control for the
first prediction step only is computed, after which it is
taken constant throughout the prediction horizon. The first
step of the optimal sequenceu∗(k) thus obtained is then
applied to the physical network after having rounded the
AVR references to the nearest feasible value. The procedure
is then repeated at the successive sampling instantk + 1.

Since we have a linear objective function with linear
equality and inequality constraints, and since the decision
variables are both continuous and discrete, the control lawis
the result of a mixed-integer linear programming problem,
for which there exist good commercial and free solvers (such
as, e.g, CPLEX, Xpress-MP, GLPK, lpsolve, etc. [15], [16]).



V. SIMULATION RESULTS

A. Scenarios

We study two scenarios. Scenario1 starts out from the
system in steady state. At0.7 seconds the line connectingG4,
representing the largest generation capacity in the considered
grid, to bus9 changes (possibly due to a partial fault) so that
its impedance increases to150%. Fig. 3 shows the resulting
open-loop evolution of the most important bus voltages. If
no action is taken, voltages initially tend to progressively
drift from the nominal region of operation until a series of
sustained oscillations arises.

Scenario2 involves a similar situation, only now the
impedance increases to400%, e.g., due to a forest fire.
Fig. 5 shows the open-loop evolution if the higher-layer
controller does not provide updated set-points to the lower-
layer primary controllers. As can be seen the voltages quickly
reach a series of fast oscillations.

B. Controller setup

For our network the penalty matrices are chosen such
that a weight of200 is placed on the violation of each
soft constraint; the inputs are weighted with the penalty
coefficients1 and 20 respectively forr(k) and s(k). The
prediction horizon isN = 8. At each sampling instant, the
linearization point is chosen by taking the current statex(k)
and the input applied at the preceding time instantu(k− 1).
The sampling interval is taken to beTs = 0.25 seconds.

C. Results

Fig. 4 depicts for scenario1 the evolution of the system
when the proposed higher-layer MPC scheme is inserted
in feedback. As shown the controller prevents the voltages
from exceeding the upper and lower bounds by acting on
the reference settings of all the AVRs. No load shedding
is necessary. The system subsequently enters an acceptable
steady-state condition with a constant input profile.

Fig. 6 depicts for scenario2 the evolution of the system
with the MPC controller installed. Although the fault is
significantly larger, the control prevents the voltages from
crossing their limits, by providing set-points for the AVRs
and shedding a minimal amount of load at node7. After
about20 seconds the system enters a new steady-state with
constant input profile.

D. Discussion

The proposed controller works well for the studied cases,
in which a rather high sampling rate ofTs = 0.25 seconds
was taken; indeed, this rate might have to be decreased in
a more realistic setting, since the system is composed of
large high-power components that may not allow for such a
high actuation frequency. For the type of faults considered
the simulations indicate that the predictions made with the
linearized model are sufficiently accurate and that possible
faults introduced due to saturation of the real system which
are not modeled in the linearized system can be neglected.
In fact, with a smaller fault, the sampling rate may be
decreased, resulting in less frequent set-point updates tothe
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Fig. 4. Simulation results for scenario1 in closed-loop control with the
proposed MPC supervisor.

lower control layer. With a smaller fault, the magnitude and
frequency of oscillations occurring reduce in size.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have considered layered control of voltage
instability in a particular power network. In this particular
network a single higher-layer controller provides set-points
to lower-layer controllers at discrete time steps such that
the negative effects of voltage instabilities in the underlying
physical system are minimized. The higher-layer controller
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uses a model predictive control strategy to determine its
actions. It uses a model based on a discrete-time linearized
model of the continuous-time nonlinear dynamics given by
a system of differential-algebraic equations (DAE). Simula-
tions illustrate the potential of this supervisory approach.

Future research will focus on investigating the region of
validity of the linearized model and if necessary replacing
this with piecewise affine models; performing simulations
on a network in which the neighboring loads and generators
are not aggregated, whereas the supervisory controller uses
an aggregated model; comparing the proposed approach
with an approach that uses variable time steps to make the
predictions, instead of the fixed time steps used currently;
assessing the real-time technical viability of the method;
and, investigating decentralized control schemes where the
local controllers of several subnetworks negotiate among
themselves on how they should determine their actions to
obtain system-wide optimal performance.
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