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Abstract: Coal as a fossil and non-renewable fuel is one of the most valuable energy minerals in the
world with the largest volume reserves. Artificial neural networks (ANN), despite being one of the
highest breakthroughs in the field of computational intelligence, has some significant disadvantages,
such as slow training, susceptibility to falling into a local optimal points, sensitivity of initial weights,
and bias. To overcome these shortcomings, this study presents an improved ANN structure, that is
optimized by a proposed hybrid method. The aim of this study is to propose a novel hybrid method
for predicting coal consumption in Iran based on socio-economic variables using the bat and grey
wolf optimization algorithm with an artificial neural network (BGWAN). For this purpose, data from
1981 to 2019 have been used for modelling and testing the method. The available data are partly used
to find the optimal or near-optimal values of the weighting parameters (1980–2014) and partly to test
the model (2015–2019). The performance of the BGWAN is evaluated by mean squared error (MSE),
mean absolute error (MAE), root mean squared error (RMSE), standard deviation error (STD), and
correlation coefficient (Rˆ2) between the output of the method and the actual dataset. The result of
this study showed that BGWAN performance was excellent and proved its efficiency as a useful and
reliable tool for monitoring coal consumption or energy demand in Iran.

Keywords: coal consumption; computational intelligence; optimization; socio-economic variables

1. Introduction

Rising economic growth in developing countries and continued growth in industrial-
ized countries have increased energy demand. Naturally, various energy sources are used
in power plants, which can include fossil fuels (oil, gas, coal) or new energy sources (solar,
wind, geothermal, etc.). The increasing dependence on energy has made this sector more
interactive with other economic sectors and has made the pace of economic growth and
development dependent on energy consumption.

Coal, as one of the main sources of energy, is a non-renewable fossil fuel that has been
used since ancient times. Given that most of the first-grade coals have already been mined,
the coal that remains for future use is mostly low-grade with high ash and moisture content.
In addition, environmental issues related to its extraction, processing, and combustion,
threaten the sustainability of coal use. Today, environmental issues, including the factors
that have led to climate change through the emission of carbon dioxide, are of global
concern, and this is one of the serious problems that coal will face in the future and threaten
its sustainability [1,2]. Although coal will continue to be a major player in the global energy
spectrum for at least the next two to three decades, coal’s sustainable future still depends
on reducing its pollution.
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Iran has an average level of coal reserves. This valuable fuel is used in many industries,
including power plants, steel plants, cement production, chemical and pharmaceutical
industries, ammonia gas recovery to produce chemical fertilizers, paper making, and liquid
fuel as the main element in production. The lack of coal-fired power plants in Iran reduces
the consumption of thermal coal and just a part of this is exported. On the other hand, due
to the consumption of coking coal concentrate in steel plants, the shortage of this product
in Iran, and the difference in the quality of domestic and foreign coking coal, the tendency
to import this fossil fuel has increased. Lack of advanced equipment has reduced efficiency
and increased costs, and the lack of a proper strategy in the mining sector has reduced
the attractiveness for investors, especially in coal mines. As a result, the cost of domestic
coal has increased compared to foreign coal. This has reduced Iran’s competitiveness with
producers in the global market.

To manage the energy supplement, it is necessary to understand the factors that affect
the amount of energy needed in a region. Since the energy demand procedure and the
factors that influence it follow a hazy and complicated pattern, efficient tools are needed
for efficient use of energy [3]. So, it is necessary to determine effective tools to determine
energy demands precisely.

Non-classical approaches have been prolonged to detect and predict complex system-
based problems. Despite numerous methods for predicting natural phenomena all over the
world, accurately forecasting the events is still difficult. Several non-linear systems exist
in the real world, some with dynamic behaviours based on their current state. For such
an assessment, different statistical demonstration approaches have been used based on
socioeconomic indicators. These models can be appropriately forecasted considering birds,
fireflies, bats, and other living organisms utilizing intelligent optimization techniques.

It is believed that artificial neural network (ANN) is one of the highest breakthroughs
in the field of computational intelligence. Its application is supported in various fields,
which assist in taking further steps to realize the dream of machines capable of thinking
and learning in a similar way to the human brain. To model ANN, biological nervous
systems have been used (the human brain). Despite processing information, compared to
the human brain, it is relatively simple and easy to operate. The ANNs are a model for
processing the information created by the imitation of biological neural networks such as
the human brain. It should be noted that the novel structure for the information processing
system is a critical element of this model, comprising numerous elements (neurons) with
robust internal connections, working towards solving some definite problems.

Such neuron/node layers comprise a neural net, with a structure starting with the
first layer as the input and ending by the end layer at the output. The layers existing within
these two are called hidden layers. An activation value for each node is determined from
the previous layers nodes’ activation values. The factor is determined by the connection
weights or parameters, where each node in the former layer has a role in the subsequent
layer nodes’ value. Determining the ultimate values for these parameters is an optimization
problem, which should be stated.

There have been numerous attempts to determine the connection weights’ optimum
value within a Multi-layer Perceptron neural network. Generally, the trainers are classified
into two groups of gradient-based and stochastic search algorithms. A backpropagation [4]
algorithm and its variants are included in gradient-based training algorithms representing
the eye-catching advantages of the convergence’s high speed. However, they tend to
rely heavily on the initial solution, which possibly causes them to become trapped in a
local optimal. Nevertheless, stochastic algorithms have gained popularity since they can
solve such disadvantages. In these algorithms, the primary solution is made or selected
randomly, therefore, they do not end up in local optimal entrapments.

Another method for solving optimization problems is meta-heuristic algorithms
related to the class of stochastic optimization algorithms. They aim to solve optimization
problems in a “fairly good” way, though they do not always achieve the best results.
Nature-oriented algorithms are a kind of meta-heuristic algorithm, inspired by biological
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systems present in the environment, such as the grey wolf optimization, which imitates
the hunting pattern and hierarchical structure of wolves, bat algorithm, which imitates
the bats’ hunting behaviour by utilizing echolocation, and the genetic algorithm, which is
based on Darwin’s theory of “survival of the fittest” and next generation evolution.

Bio-inspired algorithms were formerly utilized in various fields for addressing
application-based optimization problems. Inconsistency with the no-free-lunch theorem,
as the definite algorithms present better results for only definite specific applications. No
optimization algorithm exists that works for all fields universally. An enhanced version of
the Binary Bat algorithm was proposed by Gupta [5] to solve the optimization problem
of selecting the features on the white blood cells dataset. Different approaches to nature-
inspired algorithms were discussed by Tiwari and Bansal [6] on industrial applications.
Suguna et al. [7] performed medical image processing (classification and segmentation),
using bio-inspired algorithms, such as Lion Optimization Algorithm (LOA) and Monkey
Search Optimization Algorithm (MSO).

Related Works

The scope of using nature-based algorithms was examined and run to train an MLP
neural network. The grey wolf optimizer was similarly employed by Mirjalili [8] and its per-
formance was compared on multiple benchmark data-sets, versus some other recognized
evolutionary trainers, such as genetic algorithm (GA), ant colony optimization (ACO),
population-based incremental learning (PBIL), evolution strategy (ES) and particle swarm
optimization (PSO). Aljarah et al. [9], working along similar lines to solve this optimization
problem, used whale optimization algorithm, which is another nature-based algorithm.
Various variants of bat-inspired algorithms were employed by Jaddi et al. [10] as a new
method to represent optimizing both the ANNs framework and connecting weights. The
application of grey wolf optimization (GWO) was extended by Faris et al. [11], providing a
new hybrid encoding scheme to automatically select hidden neurons and weights within
a neural network. A multi-verse optimizer was tested and compared with other present
meta-heuristic evolutionary algorithms as feed-forward neural network trainers for binary
classification problems [12].

A bio-inspired firefly algorithm was analysed by Nandy et al. [13] to train a back-
propagation neural networks. Ojha et al. [14] investigated the progress within the meta-
heuristic methods utilized for designing feed-forward neural networks over the years. An
emergent stochastic training algorithm was studied by Heidari et al. [15] and proposed to
train an MLP.

Such optimized neural networks are applied in different fields and over various
data sets to solve day-to-day problems. A PSO trained ANN was employed by Blum
and Socha [16] to detect the possibility of failures in a multi-storeyed reinforced con-
crete building structure. Neural network optimization was used to analyse rain patterns
and discover wet and drought year alarms by Valipour [17]. The use of artificial neural
networks was reviewed by Villarrubia et al. [18] to approximate an objective function
and solve optimization problems. An innovative Elman neural network was suggested
by Ruiz et al. [19] to estimate energy use in public buildings and obtain energy savings
through a genetic algorithm and optimize the connection weights. An ANN model was
compared by Yang et al. [20], both with and without a genetic algorithm to predict and
parametrically optimize the ORC system. Numerous bio-inspired algorithms exist, each
with its disadvantages and advantages. The multiple meta-heuristic algorithms fusion was
introduced via hybridization to highlight the best in each one and cover each lacunae.

Several studies have suggested various models for managing energy demand policy
using different methods. Particle swarm optimization (PSO) energy demand models were
developed by Unler in Turkey to assess energy demands based on economic indicators [21].
Using the genetic algorithm (GA), Canyurt and Ozturk proposed models for estimat-
ing Turkey’s fossil fuel consumption [22]. Toksari used ant colony optimization models
to estimate Turkey’s energy demand [23]. To predict monthly electrical energy usage;
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Azadeh et al. used an artificial neural network (ANN) [24]. Azadeh et al. introduced and
compared the genetic algorithm, ANN, and Fuzzy Regression Algorithm (FRA) to evaluate
improvements in electricity use in developing countries in a separate paper [25]. PSO
and GA were used by Amjadi et al. to forecast Iran’s electricity demand [26]. To estimate
China’s transportation energy consumption, Zhang et al. used the Partial Least-Squares
Regression (PLSR) approach [27]. In Iran, Assareh et al. established a PSO and GA program
to estimate oil demand [28]. The bees algorithm, BA, was used by Behrang et al. to predict
Iran’s total energy demand [29]. Behrang et al. used PSO and GA to predict electricity
demand in Iran’s industrial sector [30]. Bahmani et al. forecasted Iran’s oil consumption
using the BA with ANN [31]. Horák et al. [32], applied an artificial neural network to
show how financial and nonfinancial indicators play important roles in the explanation of
corporate health and support a company’s possibilities of reaching relevant performance
levels. Vochozka et al. [33], used artificial neural networks to create a methodology for
the prediction of a company failure. The study of [34] investigated the influence of the
international price of oil on the value of the EUR/USD exchange rate by using the approach
of neural networks. In another study Vochozka et al. [35], used (Long Short-Term Memory)
for predicting oil prices.

Vrbka et al. [36], used neural networks to determine value-based drivers for SMEs
operating in the rural areas of the Czech Republic. Taner et al. [37–40] carried out opti-
mization, energy-exergy analysis, and techno-economic and cost analysis of a drying plant,
model of a sugar factory, and turbine power plant of sugar in Turkey, respectively. In
another study, Taner [41] carried out an experimental optimization of a PEM fuel cell to
enhance the efficiency and development of the simulations and modelling of a PEM fuel
cell. Topal et al. [42,43] presented case studies of the poultry industry and power plants in
Turkey, based on the application of trigeneration and exergy analysis of the plant.

This paper aims to present a novel hybrid computational intelligence approach for
forecasting coal consumption. The hybrid Grey Wolf-Bat Optimization Algorithm with
ANN is used to build a demand prediction model for predicting coal consumption in Iran
based on socioeconomic indicators.

2. Materials and Methods
2.1. Bat Algorithm (BA)

The bat algorithm, which is an evolutionary algorithm inspired by the behaviour of
natural bats, was introduced by Yang [44] and is used to solve various problems. The
bat algorithm (BA) works based on the sound echo and the position of the bat. The bat
produces sound pulses and receives their echoes. The bats can detect prey from the barriers
based on echoes as the sound echoes produced for different objects vary; their corners use
this method to detect positions. BA works based on the following three basic steps:

1. All bats can make a sound and receive an echo. They can distinguish the food source
from the barrier according to this ability.

2. The bats fly randomly and have a vi velocity in the xi position and a constant frequency
of fmin and wavelength λ during flight. They can produce sound pulses between 0
and 1.

3. The loudness of bats can differ from a large positive value A0 to a small positive
value Amin.

One can assume that the value of frequency f can differ between fmin and fmax and
the corresponding wavelength from λ min to λ max. Wavelength amplitude can vary too.
The wavelength should be selected based on the problem search space [45]. Xbest in BA is
considered as the global answer to the problem or the best position of the bats. Equations (1)–
(3) show the updated frequency, velocity, and position of the bats, respectively [46].

fi = fmin + ( fmin − fmax)β (1)

vt
i = vt−1

i +
(

xt−1
i − xbest

)
fi (2)
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xt
i = xt−1

i + vt
i (3)

fi is the frequency of the ith bat, vt
i new velocity of the ith bat, vt−1

i the previous velocity of
the ith bat, xt

i the new position of the ith bat, xt−1
i the previous position of the ith bat, and

β a random vector with an array between 0 and 1. First, a random number between f min
and f max is assigned to each bat. The bat velocity and position are then updated based on
Equations (2) and (3). Then a random number is generated. The local search is performed
using the production of a random step based on Equation (4) if the pulse generation rate is
less than this random number:

xt
i = xt−1

i + εAt (4)

It is a random number and is the average volume. The volume decreases and the
pulse rate increases when bats find prey. Volume and pulse output rate are calculated as
Equation (5):

rt+1
1 = r0

i [1− exp(−γt)]At+1
i = αAt

i , t− 1, . . . ., T (5)

γ and α are constant parameters.

2.2. Grey Wolf Optimization Algorithm (GWO)

There are always signs around for modelling to solve and optimize complex problems.
The paper will examine an algorithm that can be used to solve optimization problems by
modelling a natural organization. GWO imitates the grey wolf organization for hunting in
the wild. The algorithm was presented in 2014 by Mirjalili [47]. Similar to PSO and ACO
algorithms, this algorithm is among the collective intelligence algorithms and uses only
one (hybrid) operator to determine the position of wolves in the problem-solving space.

Grey wolves are creatures living in a semi-democratic way and the status of each wolf
is clear in their community. In this community, the leader wolf, her successors, and other
wolves are known too. Grey wolves live and hunt in a pack. In each pack of grey wolves,
there are on average between 7 and 12 wolves. These 4 groups are the most dangerous
predators. The grey wolves first loop around the prey and surround it to hunt and begin
to exhaust the prey by tightening the siege. Then, in turn, at the order of the leader wolf,
they attack and finally kill the prey. The following is an example of a wolf attack in the
real world.

As already stated, grey wolves live in a hierarchical (very strict) manner. The figure
below is the structure of the grey wolf hierarchy. Known as the group leader, the Alpha
pair makes decisions about hunting, sleeping location, waking time, and so on. Alpha
decisions apply to the whole pack. However, there is a kind of democratic behaviour as
well. The second rank in the hierarchy belongs to Beta wolves. Beta wolves help the alpha
in group decisions and other activities. These wolves are the best candidates for alpha
when the alpha is very old or dies.

The wolves with the lowest status are the Omega wolves. This group of wolves has the
role of pre-death in the pack. They have to follow all other wolves and are the last wolves
to eat. It seems that Omegas have a low significance in the category, yet it has sometimes
been observed that if the Omegas are lost, the whole group suffers from problems and
civil wars. The wolves not stated in the above hierarchy are called Delta wolves. Delta
wolves are commanded by Alpha and Beta but are superior to Omega. Accordingly, the
GWO is explained, and following mathematical equations are used. As already stated in
the previous sections, grey wolves surround their prey during the hunting process. The
following equations are used to model the hunting mechanism:

→
D =

∣∣∣∣→C .
→
Xp(t)−

→
X(t)

∣∣∣∣ (6)

→
X(t + 1) =

→
Xp(t)−

→
A.
→
D (7)

→
A = 2

→
a .
→
r1 −

→
a (8)
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→
C = 2.

→
r2 (9)

In the above equations, t is the algorithm iteration.
Vectors A and C are the prey location vector coefficients and X is the grey wolf

location vector.→
A decreases linearly from 2 to 0 during repetitions. r1 and r2 are random vectors in

the range [1/0].
For a two-dimensional problem, the vectors will be as follows (position the vectors in

two dimensions and their next position) [47].
Mathematical equations of GWO considering the hierarchy in Figure 1:

→
D∝ =

∣∣∣∣→C1.
→
X∝ −

→
X
∣∣∣∣ ,
→
Dβ =

∣∣∣∣→C2.
→
Xβ −

→
X
∣∣∣∣ ,
→
Dδ =

∣∣∣∣→C3.
→
Xδ −

→
X
∣∣∣∣ (10)

→
X1 =

→
X∝ −

→
A1.
( →

D∝

)
,
→
X2 =

→
Xβ −

→
A2.
( →

Dβ

)
,
→
X3 =

→
Xδ −

→
A3.
(→

Dδ

)
(11)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(12)
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2.3. Artificial Neural Network (ANN)

An artificial neural network, simply called a neural network, is a computing system
inspired by the human brain. This inspiration has developed an artificial neural network
to a set of simple and strong computing methods. The characteristics including the power
of learning and adaptation, the possibility of underlying information processing, the
power of generalization, error tolerance, and uniformity of analysis and design give a
strong capability of processing to neural networks and enable them to successfully conduct
activities, such as the estimation of nonlinear complex functions and pattern identification
and classification. The structure of the neural network is usually a multi-layered network or
graph with simple connections among layers. There are one or more computational units in
each layer called a node or artificial neuron, which is in fact a simple model of neurons of the
human brain. The role of neurons in the neural network is data processing and this is done
by a mathematical processor which is an activation function in the artificial neural network.
The activation function or operational function considers the problem which is going to
be solved by a neural network and selected by the designer. An artificial neural network
in the simplest way has an input layer and output layer. But the network with hidden
layers has more capabilities. It can be proved that a feed-forward neural network with a
hidden layer, sigmoid activation function in the hidden layer, linear activation function
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in the output layer, and enough neurons in the hidden layer can estimate every function
with sufficient accuracy. The network acts as an input-output system and uses the value of
input neurons to compute the value of output neurons. Each neuron connection in different
layers has its weights and the network learns the pattern in input and output variables
by adjusting these weights during the training phase. According to the learning methods,
neural networks can generally be classified into two categories: supervised learning and
unsupervised learning [48]. In supervised learning, the correct response (output) for each
input pattern is given to the network. Weights are determined in a way that the network
creates responses that are close to the correct responses. During repeated weight correction,
a network is trained. Repeating the learning process, the network identifies the correct
value of weights and lowers the possibility of errors. For a set of identified inputs, the error
means the difference between the actual value and the network output. In unsupervised
learning, there is no need for an actual response for each input pattern in the training set.
In this model of learning, the network discovers the basic structure of the data and the
correlations between the patterns in the data and organizes the patterns into appropriate
classes. According to the structure, artificial neural networks are divided into two types of
feed-forward networks and recurrent networks. The feed-forward network, in which there
is no feedback loop, and the recurrent network, which has a feedback loop and neurons in
each layer, gives the data from previous and post layers.

The following hypotheses are considered in artificial neural networks:

1. Data processing takes place in simple units called neurons. These artificial neurons
(or simply neurons) are a simple model of brain neurons.

2. The data are exchanged in communications between neurons.
3. Each communicative way between neurons has weight.
4. Each neuron uses an operational function (usually non-linear), to apply it to the

neuron input (the weighted data) and create a definite output.

The neural network is identified through the communicative pattern between different
layers of the network, the number of neurons, the number of layers, the learning algorithm,
the operational function of the neuron. But there is no general rule about the standard
size of these components for each network and in each application. In most cases, it is an
innovative method in which the multi-layered networks with a different number of neurons
in each layer, are trained with different learning rates and various activation functions, and
then the best network is elected. In the learning phase, the network is trained through
weight adjustment to be able to predict or classify target outputs based on a set of inputs.

In Figure 2, an artificial neural network (ANN) is demonstrated with a hidden layer,
containing certain weights linking the layers. Through the following steps, the output
values will be calculated. Firstly, as follows, weights sum is calculated:

Sj =
n

∑
i=1

wij Ii + βi (13)

In the above-mentioned formula, the input variable is Ii, the weight existing between
neuron j and the input variable Ii is wij, and βi is for the input variable.

Second, using an activation function, values of neurons output in the hidden layers
are generated using the weighted summation received values (Equation (13)). A sigmoid
function is a popular candidate for such a function, as seen below:

f j(I) =
1

1 + e−Sj
(14)

where f j signifies the sigmoid function regarding neuron j and Sj refers to the sum of
weights.
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Lastly, the neuron j output is calculated as seen below:

Oj =
k

∑
i=1

wij f j + β j (15)

where Oj refers to the neuron output j, wij refers to the weight existing between the output
variable neuron j and Oi, f j refers to the neuron j activation function, and βi is the bias term
for the output variable [39].
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2.4. Proposed Method

To deal with the connection weight optimization problem for MLP training, the pre-
sented Hybrid Wolf-Bat Optimization (HWBO) Algorithm combines two well-known
nature-inspired algorithms, bat algorithm (BA) and grey wolf optimization (GWO) algo-
rithm. Figure 3 represents the flowchart of the proposed approach. HWBO combines the
best features of the two algorithms above: GWO’s excellent exploration skills allow for a
thorough examination of the whole search space, whereas bat’s high exploitative feature
allows for better local search capabilities. The MLP network’s mean square error is used as
the fitness function for both BA and GWO, with the intention of lowering this value. Each
hybrid algorithm’s iteration consists of one run of a GWO algorithm and an individual
run of a BA. The GWO translates to BA as an output of its best three wolves, i.e., α, β, and
δ. When the bat population is initialized, three bat posts with the best positions achieved
from the GWO are initialized, the rest are randomly initialized. The initialization of three
α, β, and δ positions ensures that the whole search area, which was originally lacking in
BA, will be covered with a view to finding more optimal solutions [49].

After that, the BA runs as normal, changing the pulse rate and loudness according to
equations, and the Global Best solution is revised if it has changed. The α wolf’s position is
reset to the Global Best outcome from the preceding iteration for the next iteration, and the
process begins. Other hybrid algorithm methods were also checked by passing either α or
both α and β to BA, while retaining the rest of the configuration the same. When all three,
α, β, and δ, were used and moved on to BA, the best results were achieved. Based on these
approximations and idealization, the basic steps of the BGWAN can be summarized as the
pseudo-code shown in Figure 4.
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3. Results

In this paper, a novel hybrid computational intelligence approach for predicting coal
consumption in Iran is coded with MATLAB 2019 software. Data on Iran’s population,
GDP, import, export, and coal consumption were collected during the years 1981–2019 [50].
The input parameters of the BGWAN included population, GDP, import, export, and coal
consumption were considered as the output parameter. The data on these parameters were
divided into training and testing. Of these data, 70% were used for training, 30% of data for
validation and testing. To estimate coal consumption in Iran, it is necessary to normalize
the data in the first step. Equation (16) was used to normalize the data:

ZN = (ZR − Zmin)/(Zmax − Zmin) (16)

where ZN shows the normalized data and ZR represents the original data value.
The performance of the BGWAN method is evaluated with mean squared error (MSE),

mean absolute error (MAE), root mean squared error (RMSE), error standard deviation
(STD), and correlation coefficient (R2) between the output of the BGWAN and the actual
dataset [46,51,52]. These errors are specified in the forms of Equations (17)–(21).

MSE =
1

39

39

∑
i=1

(Targeti − outputi)
2 (17)

RMSE =

√√√√ 1
39

39

∑
i=1

(Targeti − outputi)
2 (18)

MAE =

√√√√ 1
39

39

∑
i=1
|Targeti − outputi| (19)

STD Error =

√√√√ 1
39

39

∑
i=1

(Targeti − outputi)
2 (20)

R2 =

 ∑
(
Targeti − Target

)
×
(
outputi − output

)√
∑
(
Targeti − Target

)2 ×∑
(
outputi − output

)2

2

(21)

Figures 5–7 indicate the best Validation Performance Graph and regression plot be-
tween actual and predicted data in the BGWAN method. Table 1 and Figure 8 show the
performance evaluation of BGWAN outputs.

Figure 9 and Table 2 for the modelling and the testing data show the performance of
the BGWAN method.

Table 3 indicates a comparison of the different models introduced in the introduction
and present study.
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Table 2. BGWAN operation.

Years Actual Data BGWAN Output Predicted Relative Error

2015 10.68 10.63 0.0041
2016 10.35 10.39 0.0040
2017 9.78 9.76 0.0012
2018 10.19 10.18 0.0015
2019 9.86 9.89 0.0030

Average - - 0.0028

Table 3. Comparison of various models introduced in the introduction and present study. Average
relative errors are on the testing period of each model.

Source Method Target-Country Average Relative
Errors

[19]
Particle Swarm Total Energy-Turkey 0.83Optimization

[20]
Genetic Algorithm Oil-Turkey 2.97
Genetic Algorithm Natural Gas-Turkey 2.10
Genetic Algorithm Coal- Turkey 3.22

[21] Ant Colony Optimization Total
1.07Energy-Turkey

[22] Artificial Neural Networks Electricity-Iran 1.20

[23]
Genetic Algorithm Electricity-Iran 1.4

Artificial Neural Networks Electricity-Iran 1.56
Fuzzy regression algorithm Electricity-Iran 0.82

[24]

Genetic Algorithm Electricity-Iran 1.36
Genetic Algorithm Electricity-Iran 1.51

Particle Swarm Optimization Electricity-Iran 3.92
Particle Swarm Optimization Electricity-Iran 0.98

[25]
Partial Least Square Transport

2.30Regression Energy-China
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Table 3. Cont.

Source Method Target-Country Average
Relative Errors

[26]

Genetic Algorithm Oil-Iran 2.83
Genetic Algorithm Oil-Iran 1.72

Particle Swarm Optimization Oil-Iran 1.40
Particle Swarm Optimization Oil-Iran 1.36

[27]
Bees Algorithm Total Energy- Iran 1.07
Bees Algorithm Total Energy-Iran 1.83

[28]

Genetic Algorithm Electricity-Iran 1.13
Genetic Algorithm Electricity-Iran 1.29

Particle Swarm Optimization Electricity-Iran 1.03
Particle Swarm Optimization Electricity-Iran 1.69

[29] Hybrid Bat algorithm with
artificial neural network Oil-Iran 0.0037

Present study
Hybrid Grey Wolf-Bat algorithm
with Artificial Neural Network

(BGWAN)
Coal-Iran 0.0028

4. Conclusions

A hybrid BGWAN based on the bat algorithm and grey wolf optimization with an
artificial neural network is proposed in this study for enhancing the Iran Coal Consumption
via investigating the population, GDP, import, export, and coal consumption. Using error
standard deviation (STD), mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), and correlation coefficient (Rˆ2) between the actual dataset
and the BGWAN output, the BGWAN technique’s performance can be evaluated. Using
the successful application of the suggested approach, the Iran Coal Consumption was
estimated. According to Table 3, the empirical results of Iran’s data exhibit that the BGWAN
method accuracy was more precise than the other methods. Hence, the findings proved
that the recommended model was an appropriate tool for effective coal consumption
prediction in Iran. It will provide a level playing field for checking how the energy policy
authority impacts on the structure of Iran’s energy with high economic interventionism by
the government.

The BGWAN success in such a study suggests that it may be applied as a practical
instrument for economic analysis in various areas, such as the energy system designs with
more theoretical specification complexity. The Iran Coal Consumption prediction approach
proposed in this work indicates advantages BGWAN, compared to other mathematical pro-
gramming models for the easy and simple modelling of linear and nonlinear dependencies
between variables, merely from data observed here.

It is also possible to investigate the Iran Coal Consumption forecasting by neural
networks or new metaheuristics, such as simulated annealing, harmony search, etc. Com-
parisons can be made between the results of different approaches and the BGWAN tech-
nique. There is a need for more research focused on comparing methods described here
with other presentation tools. Moreover, forecasting the Iran Coal Consumption can be
studied by krill herd optimization algorithm, electro-magnetism mechanism algorithm,
and other intelligent optimization approaches. We can compare the results of applying
different methods with BGWAN. According to the proposed model’s promising results,
it is recommended that future studies apply it to other areas, such as solar radiation and
biogas production.
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