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1 Introduction

Hydrodynamic description of strongly correlated systems with spin degrees of freedom
is an important open problem with various applications ranging from condensed matter
to astrophysics and high energy physics [1–5]. In the relativistic limit, it is particularly
relevant for the quark-gluon plasma which is produced along with strong magnetic fields [6–
13] which presumably magnetizes the plasma and produces macroscopic flow of spin degrees
of freedom [6, 14–16]. Fluid-like description of spin dynamics in non-relativistic systems
are also crucial in spintronics [17, 18] and quantum spin liquids [19]. We are interested in
relativistic systems in this paper which include not only the quark-gluon plasma but also
the fluid-like phases with relativistic dispersion which arise in condensed matter.

Relativistic hydrodynamics with spin degrees of freedom is ambiguous. The spin cur-
rent inherits the ambiguity in the definition of the energy-momentum tensor. In particular,
the total angular momentum can be written as sum of orbital and spin components as

Jλµν = xµT λν − xνT λµ + Sλµν , (1.1)

where Tµν is the canonical energy momentum tensor obtained from Noether’s theorem
as the charge under space-time translations and Sλµν is the relativistic generalization of
Sijk i.e. the current in the ith direction of spin orthogonal to the j, k plane. Even though
the latter is supposedly present whenever the quantum fields transform non-trivially under
rotations, its value changes under the following pseudo-gauge transformation [20]

T
′µν = Tµν + 1

2∇λ
(
Φλµν − Φµλν − Φνλµ

)
,

S
′λµν = Sλµν − Φλµν .

(1.2)

where Φλµν is a tensor antisymmetric in the last two indices. This transformation preserves
local conservation of both currents

∂µT
µν = 0 , (1.3)

∂λJ
λµν = 0 , (1.4)

and, as well understood, is important to render the canonical energy-momentum tensor
symmetric by removing its antisymmetric part. In fact, the Belinfante tensor [21, 22] —
which corresponds to the choice Φλµν = Sλµν hence removes the spin current completely
— yields the energy-momentum tensor that coincides with its definition in gravity.1

These conservation equations together yield

∂λS
λµν = −2T [µν] , (1.5)

which shows that the spin current would be sourced by the antisymmetric part of the
energy-momentum tensor. If this part is removed then one expects a vanishing spin cur-
rent as in the Belinfante gauge. This conclusion is challenged recently [23] (see also [24, 25])

1This is easily derived by coupling field theory to (a priori) independent spin-connection and vielbein,
and then requiring metric compatibility and vanishing torsion.
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where it was argued that, even though the definition of the spin current operator is subject
to the pseudo-gauge transformation (1.2) this symmetry might be broken by the ther-
modynamic state of the theory, hence the different pseudo-gauges would lead to different
observables. Becattini et al. argue that this observation may shed light on the recent
observation of macroscopic polarization in the quark-gluon plasma [26].

In this paper, we take a different viewpoint and consider a field theory with non-
trivial torsion. Presence of torsion guarantees a non-trivial spin current as it produces
a spin connection which in turn sources the spin current [27–29]. This observation has
also been made in the condensed-matter literature where geometric torsion is related to
lattice defects [30–32]. Following this observation relativistic and non-relativistic transport
in geometries with torsion have been studied via various approaches [33–35].

We consider a 4D relativistic, strongly interacting field theory with canonical fields that
transform non-trivially under rotations and couple this theory to a vierbein e and a spin
connection ω which we take as independent sources. We take the background space-time to
have flat metric (flat vierbein) but non-trivial spin-connection which, in Riemann-Cartan
geometry, arises from a non-trivial (con)torsion. The hydrodynamics theory in the presence
of these sources consists of the two dynamical equations, which generalize the equations
for the energy-momentum and spin current above:

∇µ(|e|Tµν ) = |e|2 S
λ
ρσR

ρσ
λν , ∇λ

(
|e|Sλρσ

)
= −2|e|T[ρσ] , (1.6)

where |e| is the determinant of the metric which we set to 1 in flat background, ∇ is the
covariant derivative whose connection includes both the Levi-Civita connection and the tor-
sion, and R is the Riemann curvature. We then construct the hydrodynamic constitutive
relations both for Tµν and Sλρσ using space-time symmetries. We use holographic meth-
ods [36–38] to solve the hydrodynamic equations and to determine the energy-momentum
tensor and the spin current. In particular we use the fluid-gravity correspondence [39, 40],
which, in our context, amounts to finding gravitational solutions with torsion order by or-
der in gradient expansion, and using the holographic prescription to compute the currents
{Tµν , Sλµν} in the dual quantum field theory.

For this purpose we focus on the 5 dimensional Lovelock-Chern-Simons (LCS) gravity
without matter [41–43]. We pick this theory two reasons: unlike Einstein gravity (1) the
spin connection and vielbein are independent, and (2) the equations of motion can be
reduced to algebraic equations. The first point is crucial for obtaining a non-trivial spin
current as discussed above. The second is practical.

Use of holographic techniques in the context of spin dynamics has a short history.
Generalization of standard holography from Einstein gravity to Einstein-Cartan (EC) grav-
ity [44, 45] where the vielbein and the spin connection become independent started with [43]
and continued with [46–50]. Relevance of spin connection to condensed matter in the holog-
raphy literature was considered in [47] and [51].

The paper is organized as follows. In section 2 we review how the energy momentum
tensor and the spin current in a generic QFT are sourced by the metric and the spin
connection, and derive the corresponding conservation equations. In section 3 we set up the
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hydrodynamic limit of the QFT coupled to spin sources, namely we provide the constitutive
relations for the energy momentum tensor and the spin current. We classify the spin sources
and the one-point functions in terms of irreducible representations of the Lorentz group in
3+1 dimensions. In particular we show that the spin current is decomposed into an axial
charge density, a vector charge density, two axial currents, two vector currents, one tensor
current, and one pseudo-tensor current, see the table 1. In the next section, 4, the Chern-
Simons model of [43] is reviewed and the holographic prescription for obtaining the currents
is derived. In section 5 we present an ansatz for the holographic model that is suitable for
the fluid-gravity correspondence. We then solve the dynamical equations of motion to all
orders in the hydrodynamic derivative expansion by reducing them to a set of constraint
equations. In section 6 we consider zeroth order hydrodynamics, namely constant sources,
and present two zeroth order gravitational blackhole solutions. These are the only solutions
with independent and unconstrained spin sources. The energy momentum tensor, spin
current, and thermodynamic potentials for the solutions are derived. In section 7 we
promote all the sources (temperature, four velocity and spin sources) to slowly varying
functions of the boundary coordinates and obtain the corresponding first order solutions.
We then identify several spin induced transport phenomena by examining these solutions.
We summarize our results and provide possible extensions of our work in section 8.

The three appendices contain crucial details. In appendix A we review the boundary
Noether symmetries, the equations of motion for the energy-momentum tensor and the
spin current by demanding invariance under these symmetries, and possible anomalies.
Appendix B presents a type of irregular blackhole solution which we ignored in our main
presentation. Finally, appendix C contains, as far as we know, a novel derivation of the
Wald entropy formula for Chern-Simons theories with nontrivial torsion.

2 Quantum field theory coupled to first order backgrounds

The coupling between spin current and spin connection is best seen in the example of Dirac
fermion in four dimensions [52]. To place fermions in curved spacetime it is necessary to
change from a formulation in terms of the background metric γµν to a first order formulation
in terms of the vielbein fields ea = eaµdx

µ related to the metric by2

eaµe
b
νηab = γµν . (2.1)

The vielbein introduce a flat tangent space at every point in spacetime on which the Clifford
algebra can be locally defined. This results in the Lagrangian

S[ψ] =
∫
d4x|e|iψ̄

(
α+ βγ5

)
γµ
(
∂µ + i

2ω
ab
µγab

)
ψ + c.c. , (2.2)

where |e| =
√
|γ| is the determinant of the vielbein fields, γab = [γa, γb] generate Lorentz

transformations in the spinor representation, {α, β} are arbitrary coefficients and ωabµ is
2We will use the indices {A,B, . . .} for 5D tangent space indices, the indices {M,N, . . .} for 5D spacetime

indices, the indices {a, b, . . .} for 4D tangent space indices, the indices {µ, ν, . . .} for 4D spacetime indices
and indices {Ā, B̄, . . .} for SO(4,2) indices.
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the spin connection. The connection is minimally coupled to the fermions hence sources
the spin current operator iψ̄

(
α+ βγ5) γµγabψ + cc..

When the sources in (2.2) are only background fields hence not subject to variations,
there is no reason to choose the connection to be Levi-Civita.3 It can be more general

Γλµν = 1
2g

λρ (∂µgνρ + ∂νgµρ − ∂ρgµν) +Kλ
µν , (2.3)

where the first term is the Levi-Civita connection and the second term, K is called contor-
sion. The metricity requirement (vanishing covariant derivative of the metric) does not fix
K. Instead, it is determined completely in terms of the torsion two-form T , which in turn
is given by the covariant exterior derivative of the vielbein

Dea ≡ dea + ωab ∧ eb = T a . (2.4)

In the presence of a non-trivial T a, the vielbein and the spin connection stay independent.
We can now extend the discussion from free fermions to a more general QFT with an

action I[e, ω,Ψ] with Ψ a non-trivial representation of the Lorentz algebra, coupled to a
first order gravitational background. One then defines the effective action W [e, ω]

eiW [e,ω] =
∫
DΨeiI[e,ω,Ψ] , (2.5)

variation of which assumes the form

δW =
∫ [

τaδe
a + 1

2σabδω
ab
]
. (2.6)

We read the one point functions as

τa = δW [e, ω]
δea

, σab = δW [e, ω]
δωab

, (2.7)

where the energy momentum three form τa and the spin current three form σab are related
to the standards currents by

Tµν = ενρσλ

|e|
eµbτb,ρσλ, Sλµν = ελρστ

|e|
eaµe

b
νσab,ρστ . (2.8)

The Ward identities for the one-point functions (2.7) follow from invariance of W under
local Lorentz transformations and diffeomorphism transformations. Under local Lorentz

δλe
a = −λabeb , δλω

ab = Dλab , (2.9)

where D denotes the exterior covariant derivative on the tangent space. Invariance of W
results in

Dσab − 2e[aτ b] = 0 . (2.10)
3Choosing the Levi-Civita connection is equivalent to symmetrizing the energy momentum tensor and

removing the spin current via a pseudo-gauge transformation.
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Similarly, invariance under local diffeomorphism leads to

δξe
a = Lξea , δξω

ab = Lξωab (2.11)

the following equation of motion follows

Dτa −
(
IaT

bτb + 1
2IaR

bcσbc

)
+ 1

2Iaω
cd
(
Dσcd − 2e[cτd]

)
= 0 , (2.12)

with Ia the contraction operator mapping p-forms into p-1 forms defined by

Iap = Ia

( 1
p!pa1...ane

a1 . . . ean
)

= 1
(p− 1)!pa...ane

a2 . . . ean .

Equations (2.10) and (2.12) are the same as the conservation equations (1.6) which also
correspond to the relevant hydrodynamic equations in the next section.

It is the object (2.5) that we want to compute using the holographic principle. Holog-
raphy maps the effective action W of a given large-N gauge theory in the strongly cou-
pling regime to the semi-classical gravitational action I[e, ω]on-shell that is evaluated on the
corresponding gravitational background and renormalized using holographic renormaliza-
tion [53, 54]:

Ion-shell = W (2.13)

We assume, as in [43], that the holographic principle holds for asymptotically AdS solutions
in the LCS gravity and compute the conserved currents by varying the on-shell gravitational
action. Finally, the Ward identities (2.10) and (2.12) in the holographic dual follow from
invariance of the gravitational action Ion-shell under asymptotic symmetries, as we review
in section A.

3 Hydrodynamics with spin current

Hydrodynamics is the long-wavelength, large distance effective theory of (2.5). In this
limit we expect the currents Tµν and Sλµν to be the only relevant quantities and the
corresponding hydrodynamic equations are given by the Ward identities (2.10) and (2.12)
which we write in the coordinates of the space-time where the fluid is embedded as

∇µ(|e|Tµν ) = |e|2 S
λ
ρσR

ρσ
λν , ∇λ

(
|e|Sλρσ

)
= −2|e|T[ρσ] , (3.1)

The energy-momentum tensor is not conserved because of the external force that arise from
the curvature. This force term is completely analogous to the electromagnetic force jµFµν

in the presence of an external electromagnetic field; S being analogous to j and R to F.
The fluid is described by the four velocity vector uµ, normalized as uµuµ = −1, evolving

on a background specified by a metric γµν = θaµθ
b
νηab and an independent connection

ωabµ. Any tensor can be decomposed into its projection along and tangent to uµ using
the projector

∆µν = uµuν + γµν , (3.2)

– 5 –
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which satisfies ∆µνu
µ = 0 and ∆µν∆ν

ρ = ∆µρ. Our goal in this section is to perform
this decomposition for the currents {Tµν , Sλµν}. For simplicity we will consider a flat
background in the metric sense,4 namely we will take γµν = ηµν . In this low energy limit
the currents can then be organized in a gradient expansion as

Tµν = T (0)µν + T (1)µν + . . .

Sλµν = S(0)µν + S(1)λµν + . . .
(3.3)

where (n) indicates O (∂n) in the derivative expansion. We then introduce a generic con-
stitutive relations for these currents

T (n)µν =
ln∑
l

blm
µν
l ,

S(n)λµν =
kn∑
k

ckm
λµν
k ,

(3.4)

with {mµν
l ,mλµν

k } representing the ln independent rank 2 and kn independent rank 3 tensors
containing m derivatives which are constructed from the sources {ea, ωab}. The coefficients
{bl, ck} will be the ln + kn transport coefficients at O (∂m). A detail classification of
transport coefficients for non trivial spin sources, including possible relations among them5

is unknown to us and beyond the scope of this work. Instead, we explicitly compute the
currents in (3.4) up to O (∂) and identify the transport coefficients from them.

3.1 Hydrodynamic decomposition of spin sources

The external source for the spin current in the effective action (2.5) is given by the contor-
sion ωab which is the only non-vanishing part of the spin connection on a flat background.
To better understand its content it is useful to decompose in terms of irreducible repre-
sentations of the boundary Lorentz algebra [55]. This decomposition for ωab yields three
irreducible representations of SO(3,1): a vector

(
1
2 ,

1
2

)
, an axial vector

(
1
2 ,

1
2

)
and a tensor(

3
2 ,

1
2

)
⊕
(

1
2 ,

3
2

)
:

ωab = ωabvector + ωabaxial + ωabtensor . (3.5)

We can now further decompose (3.5) with respect to uµ. Going to the rest frame of the
fluid uµ = (1,~0), one sees that this is equivalent to decomposing according to rotation
subgroup of the local Lorentz symmetry:

• Vector:
(

1
2 ,

1
2

)
= 1⊕ 0 — A scalar and a vector (4 independent degrees of freedom)

• Axial:
(

1
2 ,

1
2

)
= 1⊕0 — A pseudo-scalar and a pseudo-vector (4 independent degrees

of freedom)
4Note that we define the derivative counting with respect to ∂ only, instead of the ∇ which also involves

torsion. This means the independent connection ωabµ is taken to be O (1) in the derivative counting.
5These relations typically arise from Onsager relations or positivity of the divergence of the entropy cur-

rent.
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• Tensor:
(

3
2 ,

1
2

)
⊕
(

1
2 ,

3
2

)
= 1⊕2⊕1⊕2 —A vector, a pseudo-vector, a symmetric trace-

less rank 2 tensor and a symmetric traceless rank 2 pseudo tensor (16 independent
degrees of freedom).

This decomposition can be made explicit for the vector and axial parts of the contorsion
by parametrizing it through the vector field Ṽ and the axial field Ã as

ωabvector = θaµθ
b
ν

[
δµβ Ṽ

ν − δνβṼ µ
]
dxβ , (3.6)

ωabaxial = θaµθ
b
ν

[
εµνρσÃργσβ

]
dxβ . (3.7)

The vector and axial fields Ṽ and Ã can be further decomposed with respect to the four
velocity uµ as

Ṽ = −µV u+ V, , Ã = −µAu+A , (3.8)

where µV and µA can be thought of vector and axial chemical potentials, and the vectors
V and A are orthogonal to the four velocity,

Aµuµ = 0 , V µuµ = 0 . (3.9)

The remaining irreducible tensor corresponds to the traceless and pseudo-traceless part of
the connection and in general can be written as

ωabtensor ≡ θaµθbν ω
µν
Tγdx

γ = ωab − ωabvector − ωabaxial . (3.10)

The general hydrodynamic decomposition of ωµνTβ are given by

ωµνTγ∆αµ∆βν∆γ
λ = −εµαβρuµ

[
Cρσ − 1

2ε
νρστuνDτ

]
∆σλ ,

ωµνTγuµ∆αν∆γ
β = Hαβ −

1
2εµαβτu

µW τ ,

ωµνTγ∆µα∆νβu
γ = εµαβτu

µW τ ,

ωµνTγuµ∆ναu
γ = Dα ,

(3.11)

where the traceless and pseudo-traceless conditions have been implemented, the tensors
Cρσ and Hαβ are symmetric and traceless, D is a vector, W is an axial vector, and the
indices of all the tensor fields {Cαβ ,Hαβ , Dα,Wα} are orthogonal to the four velocity u,

Cαβuα = 0 , Hαβuα = 0 , Dαu
α = 0 , Wαu

α = 0 , (3.12)

all together the tensor fields {Cαβ ,Hαβ , Dα,Wα} represent 16 independent components
which agrees with the expected independent components of the tensor irreducible represen-
tation, see the table at the end of this section. We call this decomposition the “irreducible
decomposition” in what follows. This decomposition (3.11) of the sources is the most gen-
eral one as all the independent degrees of freedom are taken into account and classified
according to the rotational symmetry of the fluid rest frame: a scalar µV , a pseudo-scalar

– 7 –
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µA, two vectors {V µ, Dµ}, two pseudo-vectors {Aµ,Wµ}, a symmetric rank 2 tensor Hµν

and a symmetric rank 2 pseudo-tensor Cµν .
An alternative regrouping of the irreducible components — which we call the “hydro-

dynamic decomposition” is obtained by decomposing with respect to the four velocity and
its projector as

ωab = θaµθ
b
ν

[
−εµνρσuρ

(
µAδ

σ
β + Cσβ −Aσ1uβ

)
+ 2

(
µV u

[µ − V [µ
2

)
∆ν]
β

+2u[µε
ν]
ρσβu

ρAσ2 − 2u[µ
(
Vν]

1 uβ +Hν]
β

)]
dxβ ,

(3.13)

with {A1,A2,V1,V2} defined as

Aµ1 = Aµ −Wµ ,

Aµ2 = Aµ + Wµ

2 ,

Vµ1 = V µ −Dµ ,

Vµ2 = V µ + Dµ

2 .

(3.14)

We refer to the sources {V,A,D,W} as the irreducible vector/axial sources and to the
sources {V1,V2,A1,A2} as the hydrodynamic vector/axial sources. As shown in section 6
the hydrodynamic sources appear naturally when solving the constraint equations.

3.2 Hydrodynamic decomposition of the energy-momentum and spin currents

We consider a 3+1 dimensional background and start with decomposing the energy mo-
mentum tensor. As clear from (3.1) we should allow for an antisymmetric part of the
energy-momentum tensor:

Tµν = εuµuν − p∆µν + q̄µuν + uµqν + πµν + τµν , (3.15)

with ε the energy density, p the pressure, qµ and q̄µ energy currents, πµν the symmetric
traceless tensor including shear, and τµν the antisymmetric part which we refer to as the
intrinsic torque. They are obtained in terms of the projections

ε = uµuνT
µν ,

p = −1
3∆µνT

µν ,

q̄µ = −∆µ
ρuσT

ρσ ,

qν = −uρ∆ν
σT

ρσ ,

πµν =
(

∆µ
(ρ∆

ν
σ) −

1
3∆µν∆ρσ

)
T ρσ ,

τµν = ∆µ
[ρ∆

ν
σ]T

ρσ .

(3.16)

We note that {q̄µ, qν , πµν , τµν} are orthogonal to the four velocity. Whenever ∆qµ ≡ q̄µ−qµ

and τµν are non vanishing the spin current will not be conserved, see (3.1). In a 3+1
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dimensional spacetime the spin current itself can decomposed as follows

Sλµν = uλ
(
uνnµV − u

µnνV + εµνρσu
ρnσA

)
+ ρAε

λµνρuρ + ρV
(
∆λνuµ −∆λµuν

)
+Nλµuν −Nλνuµ − εµνρσuρN̄λ

σ + ∆λν n̄µV −∆λµn̄νV

+ ελµρσu
νuρn̄σA − ελνρσuµuρn̄σA ,

(3.17)

with {ρV , ρA} vector and axial charge densities, {nµV , n̄
µ
V } and {nµA, n̄

µ
A} the vector and

axial currents orthogonal to the four velocity, and {Nµν , N̄µν} symmetric traceless tensor
and pseudo-tensor currents orthogonal to the four velocity. These currents and densities
can be obtained from the projections

ρV = 1
3∆ραuβS

ραβ ,

ρA = 1
3!εαβρσu

σSραβ ,

nµV = uρuβ∆µ
αS

ραβ ,

n̄µV = 1
2∆µ

β∆ραS
ραβ

nµA = 1
2ε

µ
αβσu

σuρS
ραβ ,

n̄µA = 1
2ε

µ
βρσu

σuαS
ραβ ,

Nλ
κ = uα

(
∆λ

(β∆ρ)κ −
1
3∆λ

κ∆βρ

)
Sραβ ,

N̄λ
κ = 1

3!u
σ
(
3ελκβσ∆ρα + 3∆λ

ρεκαβσ −∆λ
κεραβσ

)
Sραβ ,

(3.18)

Decomposition (3.17) is analogous to the decomposition (3.13) of the spin connection which
we call the hydrodynamic decomposition.

There exist an equivalent “irreducible” decomposition of the spin current in terms of
its irreducible components under rotation, analogous to the decomposition for the spin
connection (3.5). This consists of an axial current JµA, a vector current JµV , and a tensor
spin current which further can be decomposed into a tensor current Nµν , a pseudo-tensor
current N̄µν , a vector current J̄µV and an axial vector current J̄µA. The tensor currents are
the same in both the hydrodynamic and irreducible decompositions while the vector/axial
currents from the irreducible decomposition are related to the vector/axial currents and
densities in the hydrodynamic decomposition by

JµV = −ρV uµ + 1
3 (nµV + 2n̄µV ) ,

J̄µV = 2
3 (n̄µV − n

µ
V ) ,

JµA = −ρAuµ + 1
3 (nµA + 2n̄µA) ,

J̄µA = 2
3 (n̄µA − n

µ
A) .

(3.19)

From the currents of (3.19) is of particular interest the axial one JµA. When the canonical
fields are Dirac fermions it corresponds to the expectation value of the standard axial

– 9 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
1

Spin Source Spin current Degrees of Freedom
µV ρV 1
µA ρA 1
Vµ1 nµV 3
Aµ1 nµA 3
Vµ2 n̄µV 3
Aµ2 n̄µA 3
Hµν Nµν 5
Cµν N̄µν 5

Table 1. Hydrodynamic decomposition of the spin sources and the spin current. Each source is
paired with the component of the spin current it sources together with their corresponding number
of degrees of freedom.

current operator JµA = 〈ψ̄γµγ5ψ〉. We summarize the coupling between spin sources and
the hydrodynamic components of the spin current in the following table:

3.3 Hydrodynamic degrees of freedom

In the standard hydrodynamic treatment, the energy-momentum conservation amounts to
4 scalar equations which match the number of the hydrodynamic degrees of freedom, the
four velocity uµ and the temperature T or equivalently ε. The additional spin-current
equation (2.10) adds 6 extra scalar equations. This raises the natural questions as to
which 6 of the 24 new degrees of freedom discussed in the previous section should be solved
for. There is indeed a preferred set of 6 such variables associated to a charge. These
are given by Sλµνuλ which enters the euclidean thermal partition function coupled to the
sources {A1,V1}

Ztherm = Tr
(
e−βH−β

∫
(Vµ1 nV µ+Aµ1nAµ)

)
(3.20)

where H denotes the Hamiltonian. We can then think of {V1,A1} as spin chemical poten-
tials and nV , nA as their associated spin densities. These have the physical interpretation
as the spin densities in a direction perpendicular to the ab plane in 3+1 dimensions, analog
of densities ψ̄γ0[γa, γb]ψ in Dirac’s theory. One should think of the entire set of the hydro-
dynamic equations as equations of motion for the variables {uµ, ε, nV , nA}. The remaining
18 degrees of freedom associated to the spin connection correspond to external sources,6

they are not to be determined by the equations of motion.

4 Holographic 5D Lovelock Chern-Simons gravity

The holographic backgrounds that we consider in this work as dual to quantum field
theories with a non-trivial spin current, are 5-dimensional backgrounds that solve the

6This is similar to what happens in magneto-hydrodynamics based on the standard U(1) charge [56].
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Chern-Simons action

S =
∫
〈F ∧ F ∧ A− 1

2F ∧A ∧A ∧A+ 1
10A ∧A ∧A ∧A ∧A〉 , (4.1)

where 〈〉 indicates a group trace over the SO(4,2) algebra with generators JĀ on which
the connection one form A is valued, and, where the field strength is defined as usual
F = dA+A∧A. It was shown in [43] that, for this five dimensional gravitational Chern-
Simons (CS) theory7 a certain class of gauge allows for a finite Fefferman-Graham (FG)
expansion. Therefore a well defined holographic recipe can be established for this theory.
Their work was generalized in [49] to any odd dimension gravitational CS theory where an
analysis of the boundary gauge symmetries was also performed.

Here, we first outline the necessary details of the theory. Our discussion closely follows
the presentation in [43]. The SO(4,2) indices Ā can be written as a pair of antisymmetric
indices via Ā = {AB,A6} with the indices A = {0, 1, 2, 3, 5}. Using this index decompo-
sition the following identification can be done {JA6 = PA,JAB = JAB} with PA and JAB
the generators of translations and Lorentz transformations in five dimensions satisfying the
SO(4,2) algebra

[PA, PB] = JAB ,

[PA, JBC ] = ηABPC − ηACPB ,
[JAB, JCE ] = ηBCJAE + ηAEJBC − ηACJBE − ηBEJAC .

(4.2)

The action (4.1) is invariant under infinitesimal gauge transformations

δA = dτ + [A, τ ] ,

τ = ηAPA + 1
2λ

ABJAB ,
(4.3)

with gauge parameters {ηA, λAB} representing local translations and Lorentz transforma-
tions, up to a boundary term

δS = −1
2

∫
∂M5
〈dτ ∧ (A ∧A+ dA ∧A+A ∧A ∧A)〉 . (4.4)

To connect to the five dimensional gravity the 5D vielbein8 êA and the spin connection

ω̂AB are identified as components of the gauge connection A via [41]

A ≡ êAPA + 1
2 ω̂

ABJAB ,

F = T̂APA + 1
2
(
RAB + êAêB

)
JAB ,

(4.5)

where T̂A and R̂AB are the five dimensional torsion and curvature two forms defined as

T̂A = dêA + ω̂AB ∧ êB ,
R̂AB = dω̂AB + ω̂AC ∧ ω̂CB .

(4.6)

7In this paper finite Fefferman-Graham expansion was also established for the 3D CS theory.
8Below we denote the 5D quantities with a hat symbol to distinguish them from the corresponding

quantities in 4D.
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Using the identification (4.5) the CS action (4.1) can be written in the more familiar form

SLCS = κ

∫
M5

εABCDE

[
R̂ABR̂CDêE + 2

3R̂
AB êC êDêE + 1

5 ê
AêB êC êDêE

]
, (4.7)

where for notational simplicity we omit the wedge product symbol. Here κ is the CS
parameter that arises from the non-vanishing group trace

〈JABJCDJE6〉 = κ

2 εABCDE . (4.8)

The equations of motion for action (4.7) are

εABCDE
(
R̂AB + êAêB

) (
R̂AB + êAêB

)
= 0 , (4.9)

εABCDE
(
R̂AB + êAêB

)
T̂E = 0 , (4.10)

and can be compactly written in the CS form

gĀB̄C̄F
B̄F C̄ = 0 , (4.11)

where gĀB̄C̄ = 〈JĀJB̄JC̄〉 is the trilinear symmetric invariant trace whose only non-
vanishing component is given by (4.8). There exist non-trivial solutions to (4.9) and (4.10)
with non-vanishing torsion T̂A 6= 0, see [57, 58]. We will indeed find such novel solutions
in the section 6 and 7.

4.1 Gauge fixing and Fefferman-Graham expansion

We look for asymptotically AdS solutions to (4.9) and (4.10) which to find holographic duals
to fluids with spin degrees of freedom. We work with a radial foliation of the spacetime
coordinates xM = (xµ, r) and similarly of the tangent space indices A = (a, 5) where
the asymptotic boundary of the manifold is located at r = r0 which we send to infinity
r0 → ∞ after holographic renormalization. For metric formulations of gravity Fefferman-
Graham (FG) theorem tell us that the metric near this boundary takes the form [59]

ds2 = dρ2

4ρ2 + 1
ρ2 gµν(xµ, ρ)dxµdxν , (4.12)

where we have introduced the FG coordinate ρ = 1
r2 . On even d-dimensional spacetimes

gµν admits the expansion

gµν(xµ, ρ) = g0
µν(xµ) + . . .+ ρ

d
2 gdµν(xµ) . (4.13)

To derive the equivalent of (4.12) in the first order formulation, it is convenient to use the
CS form (4.11) of the equations of motion [43] and note that under the radial foliation they
split as

gĀB̄C̄ε
µναβF B̄µνF C̄αβ = 0 , (4.14)

gĀB̄C̄ε
µναβF B̄µνF C̄αr = 0 . (4.15)
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Equation (4.14) contains no radial derivative and can be regarded as a constraint that
holds at every value of r. It was shown in [43] that the Ward identities of the dual CFT
are contained in this set of constraints. The bulk dynamics of the theory are contained
in (4.15) and it is from this expression that the FG structure arises. Equations (4.14)
and (4.15) are not independent and for a generic solution of (4.14) it follows that (4.15)
implies [58]

F B̄rµ = F B̄µνNν , (4.16)

with Nν arbitrary functions. Equation (4.16) can be rewritten as

∂rAB̄µ = DµAB̄r + F B̄µνNν , (4.17)

where Dµ denotes a covariant derivative. We note that the right hand side of (4.17)
corresponds to a gauge transformation parametrized by Ar and a diffeomorphism9 with
parameter Nν . This means Aµ(r + δr) is determined from Aµ(r) by means of a gauge
transformation and a diffeomorphism, allowing us to choose the functions {Ar, Nν} at
will. By fixing diffeomorphisms on the transverse direction xµ we can set Nµ = 0 leaving
only Ar to be fixed by a gauge transformation.

One crucial remark here is that different gauge choices for Ar give rise to non-equivalent
boundary theories [49] as the CS action is only gauge invariant up to boundary terms. We
consider the following parametrization of the gauge choice Ar

Ar = H(r, x)P5 +Ha
+(r, x)J+

a +Ha
−(r, x)J−a + 1

2H
ab(r, x)Jab , (4.18)

with J±a ≡ Pa ± Ja5 and where {H,Ha
±, H

ab} are arbitrary functions of the holographic
coordinate and of the boundary coordinates. Setting {Ha

±, H
ab} to zero and H = H(r)

corresponds to the gauge choice10 in [43, 49]. Here we will work with a slight generalization
by allowing H = H(r, x), more general gauge choices will be treated elsewhere [61]. In
particular we assume H(r, x) to assume the following form

H = 1
rg(r, x) , (4.19)

with g(r, x) playing the role of a blackening factor which in principle be fixed by making
use of the remaining radial diffeomorphism. In particular, in [43] it is set to 1 with the
corresponding solution being global AdS. However when g(r, x) has poles, as in a blackhole,
the radial diffeomorphism required to set g to unity would be singular. These give rise to
a class of blackhole solutions distinct from the global AdS solutions considered in [43, 49].
We therefore consider g(r, x) with simple poles. A generic near boundary asymptotic is
then given by

g(r, x) = 1 +
∑ ci(x)

ri+1 , (4.20)

9We are using the gauge invariant form for diffeomorphisms [60] that differs from a Lie derivative by a
local gauge transformation with parameter τ = Aµξµ.

10The simplest gauge sets {H,Ha, Hab} to zero, however this will result in a degenerate metric.
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with ci(x) some real functions. The solution to (4.17) in this gauge becomes

A(ρ, x) = e−P5
∫
H(r,x)dρA(0, x)eP5

∫
H(r,x)dρ + P5

[
dxµ∂µ

∫
H(r, x)

]
. (4.21)

For convenience we switched back to the FG coordinates and where A(0, x) is the boundary
condition for the gauge connection at the AdS boundary. One finds, using (4.19) and (4.20),
that the function H when integrated over the radial coordinate satisfies the following
asymptotic expansion∫

Hdρ = − ln ρ
2 + c0ρ

1/2 + c1 − c2
0

2 ρ+ c3
0 − 2c0c1 + c2

3 ρ3/2

+ c3 − c4
0 + 3c2

0c1 − c2
1 − 2c0c2

4 ρ2 + . . . .

(4.22)

On the other hand, using the gauge choice discussed above, the boundary condition A(0, x)
can be parametrized as

A(0, x) = ea(x)J+
a + ka(x)J−a + 1

2ω
ab(x)Jab . (4.23)

Combining (4.21), (4.23) and (4.22) the near boundary expansion of êM and ω̂MN is

ê5 = −dρ2ρ , êa = 1
√
ρ

[
ẽa + ρk̃a

]
, ω̂a5 = 1

√
ρ

[
ẽa − ρk̃a

]
, ω̂ab = ωab , (4.24)

with ẽa and k̃a a shorthand notation for

ẽa =
[
1 + c0ρ

1/2 + c1
2 ρ+ 2c2 − c0c1

6 ρ3/2 + 6c3 − 4c0c2 − 3c2
1 + 2c2

0c1
24 ρ2 + . . .

]
ea ,

k̃a =
[
1− c0ρ

1/2 + 2c2
0 − c1
2 ρ+ . . .

]
ka .

(4.25)

Here we only show the terms that are relevant for the thermodynamics of the solutions.
The near boundary expansion (4.24) is the equivalent of the FG expansion (4.12) in the
first order formulation of gravity. The asymptotic expansion (4.24) should still satisfy
the constrain equation (4.14). As it was shown in [43, 49], the constraint implies the
hydrodynamic equations of motion for the energy momentum tensor and spin current,
leaving the fields ea and ωab unconstrained, which will then be identified with the sources
for τa and σab.

4.2 Holographic counterterm action

An important aspect of the holographic theory is renormalization. In order to identify the
on-shell gravity action with the effective action of the field theory, we should first construct
a finite action which at the same time preserve the boundary symmetries

Iren = lim
ε→0

[Son-shell(ε)− V (ε)] , (4.26)
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where V (ε) is the counterterm action and ε a cutoff for the FG coordinate. The renor-
malized action (4.26) should have a well defined variational problem, so that, upon the
holographic identification (2.13), it becomes the generating function in the dual field the-
ory. Following a procedure analogous to the one in [43], we obtain the following countert-
erm action

V = 4κεabcd
∫
M4

(Rab + eakb)kced + ẽaẽbẽcẽd

6ε2 −
ẽaẽb

(
Rcd + 4

3 ẽ
ck̃d
)

2ε

 , (4.27)

with Rcd = dωcd + ωcbω
bd the boundary field strength of the source ωab. The first term

of (4.27) is a Gibbons-Hawking term, while the last two terms cancel the divergences
in Son-shell. By varying δIren and identifying it with the variation of (2.13) the energy
momentum and spin current three forms are found as11

τa = −8κεabcd
(
Rbc + 2ebkc

)
kd , (4.28)

σab = 16κεabcdT ckd , (4.29)

with T c the torsion coming from the boundary sources ea and ωab, see (2.4). Following [43,
49] we obtain the corresponding conservation equations for τa and σab as, see section A,

Dτa = IaT
bτb + 1

2IaR
bcσbc , Dσab = eaτb − ebτa , (4.30)

These two equations are equivalent to the more familiar ones

∇µ(|e|Tµν ) = |e|2 S
λ
ρσR

ρσ
λν , ∇λ

(
|e|Sλρσ

)
= −2|e|T[ρσ] , (4.31)

are the expected Ward identities for boundary diffeomorphism and local Lorentz invariance.
The chosen gauge leaves not only these symmetries as residual boundary symmetries but
also Weyl symmetry and a particular non-abelian symmetry are present [49]. These last
two symmetries become anomalous and it has been suggested in [43] that the non-abelian
anomaly could be related to a chiral anomaly through the antisymmetric part of the spin
current. In appendix A we give a quick survey of all the symmetries and anomalies of the
theory that survive the gauge fixing.

4.3 Thermodynamic properties of the blackhole solutions

In equilibrium we can Wick rotate the theory to Euclidian signature allowing us to identify
the (grand-)canonical free energy Ffree as

βFfree ≡ β
∫
M3
Ffree = I[e, ω]on-shell , (4.32)

with β the inverse temperature which equals the length of the thermal cycle and Ffree the
free energy density integrated over the spatial boundary M3. We are also interested in

11We note that the form of these currents correspond to a particular choice of finite counterterms given
in (4.27).
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the thermal entropy Sthermal. For blackhole solutions the entropy can be computed as the
Noether charge associated with diffeomorphisms12 and is found to be

Sthermal ≡
∫
Mh

3

Sthermal = 4π
∫
Mh

3

εABCDF

(
R̂CDêF + 1

3 ê
C êDêF

)
nAB , (4.33)

whereMh
3 denotes the horizon manifold, nAB ≡ D[AξB] is the binormal at the horizon, and

ξB the Killing vector generating the horizon. We denote the entropy density by Sthermal.
Expression (4.33) is obtained from the general entropy formula (C.19) which is valid for
a generic Lovelock gravity.13 This formula is the analogue of Wald’s entropy formula [63]
for the first order formulation of gravity and its derivation is shown in appendix C. Our
derivation closely follows [64, 65] where a similar formula was derived for torsionless the-
ories.14 The free energy and the entropy satisfy the Smarr relation and the first law of
thermodynamics

Ffree = M0 − TSthermal − µIQI , (4.34)
dFfree = −SthermaldT −QIdµI , (4.35)

with M ≡ M0 − µIQI the mass of the blackhole. Typically only a subset of the chemical
potentials that are collectively denoted by µI in the first law correspond to the degrees of
freedom solved by the hydrodynamic equations, see section 3.3. The rest are independent
sources. This mass can be independently computed from the energy momentum tensor
and the spin current as

M =
∫
M3

d3x

[
nµξνT

µν + 1
2nλS

λ
µνω

µν
αξ

α
]
, (4.36)

with nµ the normal to the timelike direction, µI the spin sources, and QI their associated
charges. The derivation of the thermodynamic quantities presented this section — as far as
we know — is novel. They form the basis of the derivation of the thermodynamic properties
of the holographic spin fluids we discuss in the next three sections.

5 Generic holographic background

In this section we use the hydrodynamic and irreducible decompositions described in sec-
tions 3.2 and 3.1 to introduce an ansatz for {êM , ω̂MN} suitable for a blackhole solution.
We will introduce this ansatz in a form appropriate to perform the hydrodynamic expan-
sion in (boundary) derivatives us to interpret the currents of the solution as those of a
thermal conformal fluid. Just as in the derivation of the holographic currents above, we
consider the following gauge

ê5 = dr

rg
+ ∂µ

(∫
dr

rg

)
dxµ ,

êar = ω̂a5
r = ω̂abr = T̂Arµ = FABrµ = 0 .

(5.1)

12To be precise, here we consider the gauge invariant diffeomorphisms discussed below equation (4.17).
13To see another concrete analysis of blackhole thermodynamics in a higher derivative theory see [62] for

the thermodynamics of Ads and dS blackholes in Gauss-Bonnet gravity.
14There exist some subtitles for deriving a first law in the context of the first order formalism.
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where FAB ≡ RAB + eBeB is the Chern-Simons field strength. From section 4 we know
that solving for FABrµ = 0 and T̂Arµ = 0 is sufficient to determine to the radial dependence
of the functions {êaµ, ω̂a5

µ, ω̂
ab
µ} leaving a set of constraint equations for the integration

constants and sources. The dynamical equations we need to solve are

∂rω̂
ab
µ = 0 ,

ω̂a5
µ = rg∂rê

a
µ ,

∂r
(
rg∂rê

a
µ

)
= 1
rg
êaµ .

(5.2)

The system (5.2) has a simple solution which we presented in section 4. We will rewrite
this solution in an alternative form by using the hydrodynamic ansatz presented in the
rest of this section. This manipulation will allow us to solve with the remaining constraint
equations more easily in terms of the hydrodynamic derivative expansion. This, in par-
ticular, entails a decomposition of the background ansatz in terms of the fluid velocity uµ

and the projection operator ∆µ
ν .

5.1 Ansatz for the vielbein

The one form ea can be decomposed as,

êa = θaµ

[
F (x, r)uµuν + Fσ(x, r)uµ∆σ

ν + F̃ρ(x, r)∆ρµuν + Fρσ(x, r)∆ρµ∆σ
ν

]
dxν , (5.3)

where {F, Fσ, F̃ρ, Fρσ} are functions of both the boundary and the holographic coordinate
and θa is a boundary vielbein that is related to the vielbein ea in the previous section as

ea = θaµ (uµuν + ∆µ
ν ) dxν . (5.4)

The corresponding bulk metric reads

ds2 = dr2

r2g2 +
[
−
(
F 2 − F̃αF̃β∆αβ

)
uµuν + 2

(
F̃αFβσ∆αβ − FFσ

)
uµ∆σ

ν

+
(
FαρFβσ∆αβ − FρFσ

)
∆ρ
µ∆σ

ν

]
dxµdxν ,

(5.5)

The AdS boundary conditions for the functions {g, F, Fσ, F̃σ, Fρσ} are such that

lim
r→∞

ds2 ∼ dr2

r2 + r2γµνdx
µdxν , (5.6)

where γµν is the boundary metric coupled to the dual CFT. For simplicity we take γµν =
ηµν in the rest of the paper. It is now possible to write down an ansatz for the functions
{g, F, Fσ, F̃σ, Fρσ} as an expansion in derivatives

F (x, r) = −rf(r) +
∞∑
m=1

Ism∑
im=1

εmrf
[m]
im

(r, x)s[m]
im

(x) , (5.7)

Fσ(x, r)∆σµ =
∞∑
m=1

Ivm∑
im=1

εmrl
[m]
im

(r, x)υ[m]µ
im

(x) , (5.8)
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F̃ρ(x, r)∆ρµ =
∞∑
m=1

Ivm∑
im=1

εmrl̃
[m]
im

(r, x)υ[m]µ
im

(x) , (5.9)

Fρσ(x, r)∆ρµ∆σν = rh(r, x)∆µν +
∞∑
m=1

Itm∑
im=1

εmrh
[m]
im

(r, x)t[m]µν
im

(x) , (5.10)

where f a function of the radial coordinate,15 {h, f [m]
im
, l

[m]
im
, l̃

[m]
im
, h

[m]
im
} functions of both the

holographic and the boundary coordinates,16 index [m] indicates the order of appearance
in the derivative expansion, ε is a book keeping parameter explicitly counting the number
of derivatives. Here s[m]

im
, υ[m]µ

im
and t[m]µν

im
are, respectively, a scalar, a vector and a tensor

from the corresponding Ism, Ivm and Itm independent quantities constructed from all available
sources with m number of derivatives. Although the ansatz in (5.7)–(5.10) is formal it is
possible from (5.2) to find a solution for all the functions in terms of the blackening factor
f as follows:17

g =
√
h0 + (rf)2

r(rf)′ ,

h = (h0 + h1)(rf) + (h0 − h1)
√
h0 + (rf)2

2rh0
,

f
[m]
im

= a
[m]
im

(
rf −

√
h0 + (rf)2

2rh0

)
,

l
[m]
im

= b
[m]
im

(
rf −

√
h0 + (rf)2

2rh0

)
,

l̃
[m]
im

= c
[m]
im

(
rf −

√
h0 + (rf)2

2rh0

)
,

h
[m]
im

= d
[m]
im

(
rf −

√
h0 + (rf)2

2rh0

)
,

(5.11)

with prime denoting a radial derivative, {h0, a
[m]
im
, b

[m]
im
, c

[m]
im
, d

[m]
im
} integration constants that

a priori are functions of the boundary coordinates, and where the boundary conditions (5.6)
have already been implemented. As seen from (5.11) we have rewritten the solution for the
functions {g, h, f [m]

im
, l

[m]
im
, l̃

[m]
im
, h

[m]
im
} as algebraic functions of f . This function f is arbitrary

and can be fixed via the remaining diffeomorphisms of the holographic coordinate.
It is instructive to look at the zeroth order in metric (5.5)

ds2 = dr2

r2g2 + r2
(
−f2uµuν + h2∆µν

)
dxµdxν . (5.12)

This corresponds to a non-extremal blackhole with a horizon at rh if the function f satisfies
f2(rh) = 0 and (f ′)2(rh) 6= 0. Then the blackhole temperature T (x) can be related to h0 by

h0 = (2πT )2 . (5.13)
15Using radial diffeomorphisms f can be chosen to depend only on the holographic coordinate.
16Dependence on the boundary coordinates in these functions arises from their temperature dependence.
17This choice of ansatz with the corresponding AdS asymptotic behavior identifies the boundary source

as in (5.4).
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5.2 Ansatz for the connection

The connection ωa5 can be decomposed in a similar fashion

ω̂a5 = θaµ

[
K(x, r)uµuν +Kσ(x, r)uµ∆σ

ν + K̃ρ(x, r)∆ρµuν +Kρσ(x, r)∆ρµ∆σ
ν

]
dxν (5.14)

where {K,Kσ, K̃ρ,Kρσ} are functions of the holographic and the boundary coordinates.
From (5.2) we see that these functions are solved in terms of {F, Fσ, F̃ρ, Fρσ} as

K = (rg)F ′ ,
Kσ = (rg)F ′σ ,
K̃σ = (rg)F̃ ′σ ,
Kρσ = (rg)F ′ρσ ,

(5.15)

where prime denotes derivative with respect to r. From (5.2) it also follows that the
connection ω̂ab should be independent of the holographic coordinate can only depend on
the boundary coordinates. These, then, corresponds to the external spin sources ωab in
dual field theory and decomposed according to (3.13).

6 Solutions dual to zeroth order hydrodynamics

We first consider the zeroth order in the derivative expansion where all sources are taken
to be constant. Using (5.11) we reduce the equations of motion to a set of algebraic
constraints. Before attempting to solve this set of constraints, we will first limit the space
of solutions by analyzing the behavior of the Ricci scalar R near the horizon and demanding
that it stays finite. At the horizon the Ricci scalar behaves as

R(rh + ε) = 1
ε

[4 (Aµ1Aν2 − V
µ
1 V

ν
2 ) γµν − 3 (h0 + h1)] +O

(
ε0
)
. (6.1)

A particular solution reads

h1 = −h0 , (6.2)
Aµ1A

ν
2γµν = Vµ1 Vν2 γµν . (6.3)

Clearly (6.2)–(6.3) is not the most general regular solution, but there is another physical
reason to require this: we showed that this solution is equivalent to the first law (4.35) of
blackhole thermodynamics. In appendix B we discuss some solutions which do not satisfy
them. Here we will restrict our attention to blackholes with regular thermodynamics, hence
require (6.2)–(6.3).

We are then left with 9 independent algebraic constraint equations: two linear, three
quadratic and four cubic constraint equations on the spin sources. The linear constraints

µV = 0 (6.4)
Vµ1 = 0 (6.5)
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set two of the spin sources to zero. Using this, the three quadratic constraints are

Aα2uβεαβσ[µHσν] = 0 , (6.6)

(Cµα + 4µAγµα)Aα2 +HµαVα2 + εµαβσu
α
(
Aβ2V

σ
2 + CβρC

ρσ
)

= 0 , (6.7)

Aα1A
β
2γαβ = 0 , (6.8)

while the four cubic constraints become

HαβAα1A
β
1 = 0 , (6.9)

Hαβ
(
CβµCµα−HβµHµα+Vα2 V

β
2 −3Aα2A

β
2−C

αβµA
)

+2Aα2V
β
2 (µAγαβ+Cαβ) = 0 , (6.10)

Hαβ
(
HβµV

β
2 −C

β
µAα2 +2µAδβµAα2

)
−2Aα2A

β
2V

ν
2 γα[βγµ]ν+2uαAβ2V

ρ
2 εαβσ[µHσρ]

+uαεαρσλCνρHλνHσµ+uαεµαρσCσνAν2A
ρ
2 = 0 , (6.11)

Aα1
(
HαβCβµ−γαµ (HρσCρσ−Aρ2V2ρ)+2CβαHµβ−A2µV2α+4A2αV2µ−3µAHµα

)
+εµαβσuα

(
CβρHνρHσν−4Aβ1CσρA

ρ
2−A

β
1H

σ
ρV

ρ
2−5µAAβ1Aσ2

)
+εαβρσuα

(
CβλH

λσHρµ+Aβ1A
ρ
2C

σ
µ−A

β
1V

ρ
2H

σ
µ

)
= 0 . (6.12)

Independence among the subset of non-vanishing sources requires the rest to vanish. We
find two classes of solutions satisfying this requirement,

• Vanishing {Hµν , µV ,Vµ1 ,A
µ
2} and independent sources {Cµν ,Vµ2 , µA,A

µ
1}. We will

refer to this solution as the Scalar-Vector-Tensor solution.

• Vanishing {Hµν , Cµν , µV ,Vµ1 ,V
µ
2 , µA,A

µ
1} and the single independent source Aµ2 . We

will refer to this solution as the Axial solution.

Both classes satisfy the first law (4.35). Below we analyze these two solutions by computing
their zeroth order constitutive relations and determining their thermodynamic behavior.

6.1 Scalar-vector-tensor solution

For sake of clarity we present the explicit form of the metric and the torsion with non-
vanishing scalar-vector-tensor in a convenient gauge18 f2 = 1− r2

h
r2 .

ds2 = − dr2

r2g2 + r2
(
−f2uµuν + h2∆µν

)
dxµdxν ,

f2 = 1− r2
h

r2 ,

g2 =
(

1− r2
h

r2

)(
1− r2

h − 4π2T 2

r2

)
,

h2 = 1− r2
h − 4π2T 2

r2 ,

T a = rhθaµ

[
εµνραu

ν (Cασ +Aα1uσ − µAδασ )− V2ρ∆µ
σ

]
dxρ ∧ dxσ ,

T 5 = 0 .

(6.13)

18This gauge puts the blackhole solution in the familiar form in higher derivative gravity, e.g. the Gauss-
Bonnet gravity with the Gauss-Bonnet coupling set to λGB = 1/4, see for example [62, 66, 67].
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The energy momentum tensor of the holographic dual fluid follows from (4.28) and (2.8) as

Tµν = 32π4κT 4

(1 +
CρσC

σ
ρ − 2µ2

4π2T 2

)
(4uµuν + γµν) +

uµ
(
2µAδνρ − Cνρ

)
Aρ1

2π2T 2

−
uµuν

(
V2

2 + CρσCρσ
)

+ Vµ2 Vν2 − µACµν + CµρC
ρν

2π2T 2

+
εµνρσ (µAuργσλ + uρCσλ)Vλ2 − uµεναβλAα1V

β
2 u

λ

2π2T 2

 ,
(6.14)

We read off the physical quantities by projections of this onto different components us-
ing (3.16):

ε = 96π4κT 4
(

1 + C
αβCαβ − 2V2

2 − 6µ2
A

12π2T 2

)
,

p = −32π4κT 4
(

1 + C
αβCαβ − 2V2

2 − 6µ2
A

12π2T 2

)
,

q̄µ = 0 ,
qµ = −16π2κT 2 (CµαAα1 − 2µAAµ1 + εµαρσuαA1ρV2σ) ,

πµν = −16π2κT 2
(
CµαCνα + Vµ2 Vν2 −

1
3
(
Cαβ Cβα + V2

2

)
∆µν − µACµν

)
,

τµν = 16π2κT 2uρVβ2 ε
µνρσ

(
Cσβ + µAδ

σ
β

)
.

(6.15)

The energy momentum is traceless and satisfies the usual equation of state p = − ε
3 for a

conformal fluid. There exists a non-vanishing shear (traceless symmetric) component when
Cµν or V2 are non vanishing, Also we observe from ∆qµ 6= 0 and τµν 6= 0 that the energy
momentum tensor is not symmetric unless {A1,V2} or {A1, Cµν , µA} vanish. Finally, we
observe several novel transport coefficients associated to the spin sources appear in (6.14).
However we will not discuss them in detail in this work, and leave a detailed study of
spin-related transport coefficients to future work.

The spin current in this holographic fluid follows from (4.29) and (2.8) as

Sλµν = 32π2κT 2
[
µAε

λµναuα − uαελαβ[µ
(
Cν]
β + uν]A1β

)
+ ∆λ[µVν]

2 + 2uλu[µVν]
2

]
, (6.16)

which can be decomposed into irreducible scalar, vector and tensor parts as (see section 3)

ρV = 0 ,
ρA = 32π2κT 2µA ,

nµV = −32π2κT 2Vµ2 ,
n̄µV = 16π2κT 2Vµ2 ,
nµA = 0 ,
n̄µA = −16π2κT 2Aµ1 ,
Nλ
κ = 0 ,

N̄λ
κ = −16π2κT 2Cλκ .

(6.17)
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We also present the corresponding vector components in the “irreducible” decomposition
in section 3

JµV = 0 ,
J̄µV = 32π2κT 2Vµ2 ,

JµA = −32π2κT 2µAu
µ − 32π2κT 2

3 Aµ1 ,

J̄A = −32π2κT 2

3 Aµ1 .

(6.18)

All non vanishing currents in (6.17) and (6.18) are linear in the sources. There is a single
vector current of irreducible vector-tensor type while there is a single axial current of the
hydrodynamic type.

An interesting observation here — which confirms and forms the basis for our discussion
in the Introduction — is that, there exists a non-trivial spin current, due to the presence
of non-trivial spin sources, even when the energy-momentum tensor is symmetric. This is
because Sλµν in (6.16) is non-trivial both when A1 = V2 = 0 or A1 = Cµν = µA = 0.

Finally the thermodynamic potentials which correspond to the mass M0, the axial
charge QA, the vector charge QµV2

, the symmetric and traceless tensor charge QµνC , the free
energy density, and the entropy density of the holographic fluid are given by

M0 = 96π4κT 4
(

1− 3µ2
eff

2π2T 2

)
,

QA = −96π2κT 2µA ,

QµV2
= −32π2κT 2Vµ2 ,

QµνC = 16π2κT 2Cµν ,

Ffree = −32π4κT 4
(

1− 3µ2
eff

2π2T 2

)
,

Sthermal = 128π4κT 3
(

1− 3µ2
eff

4π2T 2

)
,

(6.19)

where we defined an effective chemical potential µeff

µ2
eff ≡ µ2

A + 1
3V

2
2 −

1
6C

ρ
σC

σ
ρ =

2Q2
A − 12Q2

C + 3Q2
V2

18432π4κT 4 , (6.20)

which enters in the free energy and the entropy density. We note that the energy of the
fluid, (6.15), and the total mass of the blackhole agrees ε = M = M0 − µIQI , see (4.36).

Positivity of the thermal entropy requires µeff < 4π2T 2

3 for κ > 0 and µeff > 4π2T 2

3 for
κ < 0. As the potentials (6.19) are obtained from (4.32), (4.33), and (4.36) they should
satisfy the first law of thermodynamics. This is verified straightforwardly

dFfree = −SthermaldT −QAdµA −QµV2
dV2µ −QµνC dCµν . (6.21)
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The thermodynamic stability of the solution requires positivity of the specific heat c, and
the chemical susceptibilities χ,

CV ≡ −T
∂2Ffree
∂T 2 = 384π4κT 3

(
1− µ2

eff
4π2T 2

)
> 0 ,

χA ≡
∂QA
∂µA

= −96π2κT 2 > 0 ,

χµνV2
≡
∂QµV2

∂V2ν
= −32π2κT 2∆µν > 0 ,

χαβρσC ≡ ∂QαβC
∂Cρσ

= 16π2κT 2∆αρ∆βσ > 0 .

(6.22)

From this we observe that there are no choice of parameters that would make the solution
stable against all deformations. One should then consider constrained sub-solutions. To
analyze them further we need to distinguish the two cases: κ > 0 and κ < 0. For κ >

0 such constrained sub-solutions only involve deformations along Cµν and T with the
additional stability requirement µeff < 2πT . For κ < 0 these constrained solutions involve
deformations along µA, V2 and T with the additional requirement µeff > 2πT . Dynamical
stability of the solutions is another question that can be answered by investigating the
perturbations around the blackhole and calculating the quasi-normal modes. We will not
investigate this question here.

6.2 Single axial solution

Now we consider the second class of solutions to the constraint equations, outlined in the
beginning of this section: the blackholes with a single axial charge. The explicit forms of
the metric and the torsion, choosing once again the gauge f2 = 1− r2

h
r2 , read

ds2 = − dr2

r2g2 + r2
(
−f2uµuν + h2∆µν

)
dxµdxν ,

f2 = 1− r2
h

r2 ,

g2 =
(

1− r2
h

r2

)(
1− r2

h − 4π2T 2

r2

)

h2 = 1− r2
h − 4π2T 2

r2 ,

T a = rθaµu
αAβ2

(
fγλµεαβλσuρ − huµεαβρσ

)
dxρ ∧ dxσ ,

T 5 = 0 ,

(6.23)

We find the energy-momentum tensor from (4.28) and (2.8) as

Tµν = 32π4κT 4
[
4uµuν + γµν + A

2
2u
µuν +Aµ2Aν2
2π2T 2

]
, (6.24)
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with the following non-vanishing hydrodynamic projections, energy, pressure and shear
(symmetric traceless) component, see (3.15):

ε = 96π4κT 4
(

1 + A2
2

6π2T 2

)
,

p = −32π4κT 4
(

1 + A2
2

6π2T 2

)
,

πµν = 16π2κT 2
(

∆µ
(ρ∆

ν
σ) −

1
3∆µν∆ρσ

)
Aρ2A

σ
2 .

(6.25)

We observe that the energy momentum tensor for the single axial fluid is traceless and
symmetric with a shear component proportional to the tensor Aρ2Aσ2 . The spin current
follows from (4.29) and (2.8) as

Sλµν = −32π2κT 2
(
uλεµναβ + ελαβ[µuν]

)
uαA2β , (6.26)

whose only non-vanishing hydrodynamic projections are the two axial hydrodynamic cur-
rents given by

nµA = −32π2κT 2Aµ2
n̄µA = −16π2κT 2Aµ2 .

(6.27)

As in the previous example we note that there exists a non-trivial spin current sourced by
the torsion even though the energy-momentum tensor is symmetric. Contrary to the scalar-
vector-tensor solution there is no naturally preferred decomposition of the axial current and
either the hydrodynamic or the irreducible decomposition can be used.

As for the thermodynamics, there is an axial charge QµA2
associated to A2 as shown in

the thermodynamic potentials computed in (6.28).

M0 = 96π4κT 4
(

1 + A2
2

2π2T 2

)
,

QµA2
= 32π2κT 2Aµ2 ,

Ffree = −32π4κT 4
(

1 + A2
2

2π2T 2

)
,

Sthermal = 128π4κT 3
(

1 + A2
2

4π2T 2

)
.

(6.28)

We again observe that the energy in (6.25) agrees with the total mass in (4.36). We
also note that positivity of thermal entropy automatically discards the case κ < 0. The
thermodynamic potentials in (6.28) satisfy the first law in the form

dFfree = −SthermaldT −QµA2
dAµ2 . (6.29)
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The stability of the solution is determined from the conditions on the specific heat and the
susceptibilities

CV ≡ −T
∂2Ffree
∂T 2 = 384π4κT 3

(
1 + A2

2
12π2T 2

)
> 0 ,

χµνA2
≡
∂QµA2

∂A2ν
= 32π2κT 2∆µν > 0 ,

(6.30)

We observe that the thermodynamic stability is guaranteed for κ > 0.

7 Solutions dual to first order hydrodynamics

We now promote the hydrodynamic variables uµ and T and the spin sources ωabµ to slowly
varying functions of the boundary coordinates to study hydrodynamic expansion at first
order in derivatives. For this purpose we consider the generic solution in (5.11) to solve the
constraint equations (4.14) up to first order in the derivative expansion. For simplicity we
explicitly treat only two cases: non vanishing µA and non vanishing Vµ2 . This is sufficiently
rich to explore the spin dependent transport in out holographic model. For all cases we can
choose the gauge f2 = 1 − r2

h
r2 as before. In this gauge the generic solution for the metric

at first order can be written as

ds2 = dr2

r2g2 +r2
[
−f2uµuν +h2∆µν +j

(
2hcI uµvIν−2fbI uµvIν +hdIt

I
µν

)]
dxµdxν ,

f2 = 1− r
2
h

r2 ,

g2 =
(

1− r
2
h

r2

)(
1− r

2
h−4π2T 2

r2

)
,

h2 = 1− r
2
h−4π2T 2

r2 ,

j ≡ 1
2h0

√1− r
2
h

r2 −

√
1− r

2
h−4π2T 2

r2

 ,

(7.1)

where {cIvIµ, bIvIµ} denoting two distinct combinations of linearly independent vectors with
a single derivative of any of the hydrodynamic (uµ, T ) or spin sources (ωabµ ), and {dItIµν} the
same for linearly independent tensors. To obtain the solution we used the regularity of the
metric determinant to set F = −rf in the metric ansatz (5.5) and (5.7). The corresponding
torsion at first order two form for non-vanishing {µA,Vµ2 , Cµν ,A

µ
2} is given by

T a = θaα

r (−εαβρσuρ (µAδσµ + Cσµ
)
− 2V [α

2 ∆β]
µ + 2u[αεβ]

ρσµu
ρAσ2

) (
−fuβuν + h∆βν

+ juβbIv
I
ν + juνcIv

I
β + jdIt

I
βµ

)
+ ∆α

ν ∂µh0
2rh + 4h0rju(µ∂νuα)

−
huαuµ − f∆αµ + j

(
uµcIv

I
α + uαbIv

I
µ

)
+ dIt

I
µα

2rh (f + h) ∂νh0

 dxµ ∧ dxν ,
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T 5 = 1
2
[
dIt

I
µν + uµ (bI − dI)I) vIν

]
dxµ ∧ dxν . (7.2)

It is convenient to decompose the gradient of the four velocity as

∂µuν = 1
3Θ∆µν + σµν − uµaν −

1
2εµνρσu

ρωσ , (7.3)

where the compressibility Θ, acceleration aµ, vorticity ωµ, and shear tensor σµν are defined
as the projections

Θ ≡ ∂λuλ ,
aµ ≡ uλ∂λuµ ,
ωµ ≡ εµναβuν∂αuβ ,

σµν ≡
(

∆µ
(ρ∆

ν
σ) −

1
3∆µν∆ρσ

)
∂ρuσ .

(7.4)

Using the decomposition (7.3) the condition for regularity of the Ricci scalar at the horizon
can be written as

dIt
Iµ
µ = −4aµVµ2 − 2ωµAµ2 . (7.5)

Below we derive the constraint equations to be satisfied by the sources and he integration
constants {bIvIµ, cIvIµ, dItIµν} for the particular solutions.

7.1 Non vanishing µA
For the specific solution with only µA non-vanishing we obtain the following constraints:
Three scalar equations (

4π2T 2 − µ2
A

)
Θ = 0 ,

12µAuα∂αµA + 2Θ
(
3µ2

A − 4π2T 2
)

= 0 ,(
4π2T 2 − µ2

A

)
uα∂αT = 0 ,

(7.6)

the five vector equations (
4π2T 2 − µ2

A

)
aµ = 0 ,(

4π2T 2 − µ2
A

)
∆µν∂νT = 0 ,(

4π2T 2 − µ2
A

)
(bI − cI) vIν = 0 ,

4π2T 2µAων − µ2
AcIv

I
ν = 0 ,

dIt
I
αβε

µναβuν + aµ
(
4π2T 2 − 5µ2

A

)
= 0 ,

(7.7)

and the two tensor equations

µAεµναβu
αaβ = 0 ,

µAεµναβu
α∂βT = 0 .

(7.8)
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The generic solution to these equations (7.6)–(7.8) — assuming µA independent of the
temperature — is obtained by setting the metric coefficients

bI = cI ,

cIv
I
ν = 4π2T 2

µA
ων ,

dIt
I
µν = 0 ,

(7.9)

and imposing the following requirements19 on the hydrodynamic flow and the spin
source µA:

Θ = 0 ,
aµ = 0 ,

∂µT = 0 ,
uα∂αµA = 0 .

(7.10)

We can now use equations (7.9) and (7.10) to determine the energy momentum tensor and
the spin current as

Tµν = 32π4κT 4
[(

1− µ2
A

2π2T 2

)
(4uµuν + γµν)− 4u(µων)

µA
+ 2µAωµuν − εµναβuα∂βµA

2π2T 2

]
,

(7.11)

Sλµν = 32π2κT 2ελµνα (µAuα + ωα) . (7.12)

Separate components of the energy momentum tensor are, see (3.15),

ε = 96π4κT 4
(

1− µ2
A

2π2T 2

)
,

p = −32π2κT 4
(

1− µ2
A

2π2T 2

)
,

q̄µ = −64π4κT 4

µA
ωµ ,

qµ = −64π4κT 4

µA
ωµ
(

1− µ2
A

2π2T 2

)
,

πµν = 0 ,
τµν = −16π2κT 2εµναβuα∂βµA .

(7.13)

We note that the energy-momentum tensor would be symmetric only in the limit µA → 0
but this limit is singular as we assumed it non-vanishing in deriving (7.11), therefore it is
generically non-symmetric. On the other hand it is always traceless because the intrinsic
torque is antisymmetric in the indices and the vorticity is perpendicular to the fluid velocity.

19The last constraint seems to contradict our discussion in section 3.3. We expect, however, in the
solutions with the dynamical spin sources V1 and A1 turned on, this constraint would correspond to a part
of the equations of motion corresponding to these dynamical sources.
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This is as required from a conformal fluid. The intrinsic torque τµν may vanish if the
chemical potential µA is constant in directions tangent to the fluid velocity.20

The spin current (7.12) only contains a single irreducible axial current

JA = −32π2κT 2 (µAuµ + ωµ) . (7.14)

This axial current (7.14) comprises of a charge density ρA = 32π2κT 2µA and a linear
response proportional to the vorticity with coefficient 32π2κT 2. This last contribution
has the same form as the known chiral separation vortical effect (CVSE) [68, 69] that is
typically associated to anomalous transport in chiral fluids. We note however it resembles
more the chiral torsional effect [33] where an axial current is generated due to the presence
of defects. The energy currents in (7.13) are also akin to CVSE. However in the latter there
exist a single energy current and the proportionality constant has a different dependence on
µA and T . These differences do not imply any contradiction as the axial component of the
spin current in general is different than the axial charge current. All in all, the appearance
of vorticity as a source of the spin current in (7.12) is interesting, implying magnetization
by rotation, akin to the Barnett effect [70].

7.2 Non vanishing Vµ
2

Next, we work out an example with a non-vanishing vector-like spin source Vµ2 . The
constraint equations in this case can be split int four scalar equations(

12π2T 2 − V2
2

)
uα∂αT = 0 ,(

4π2T 2 − V2
2

)
Θ− 2uαVβ2 ∂αV2β = 0 ,(

12π2T 2 − V2
2

)
Θ− 3Vα2 V

β
2 σαβ − 3cIvIαVα2 = 0 ,

dIt
I
αβVα2 V

β
2 = 0 ,

(7.15)

five vector equations

2
(
4π2T 2 − V2

2

)
aµ + dIt

I
µαVα2 = 0 ,

4π2T 2aµ − Vα2 aαV
µ
2 = 0 ,

4π2T∆αµ∂αT − Vµ2 V
α
2 ∂αT = 0 ,(

4π2T 2γµα − Vµ2 V
α
2

)
(bI − cI) vIα = 0 ,

εµαβρu
αVβ2 ω

ρ − 4
3V2µΘ + 2Vα2 σµα +

Vα2 V2µ + V2
2δ
α
µ

4π2T 2 cIv
I
α = 0 ,

(7.16)

and two tensor equations

a[µVν]
2 = 0 ,

V [µ∆ν]α∂αT = 0 .
(7.17)

20Just as in regular hydrodynamics, we expect (7.13) to be frame dependent. This particular frame is
automatically determined by our choice of counter terms in the action.
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See (7.3) for the definition of the flow parameters. The generic solution to (7.6)–(7.8) with
Vµ2 independent of temperature is given by the following metric coefficients

bI = cI ,

cIv
I
ν =

4π2T 2
(
ΘV2ν − εναβρuαVβ2 ωρ

)
V2

2
,

tIµν = 0 ,

(7.18)

together with the following flow parameters:

Θ = 2uαVβ2 ∂αV2β
4π2T 2 − V2

2
,

σµν = Θ
6

(
∆µν − 3Vµ2 Vν2

V2
2

)
,

aµ = 0 ,
∂αT = 0 .

(7.19)

We note that whenever the vector source Vµ2 is time independent, uα∂αVµ2 = 0, both the
compressibility and the shear tensor vanish. Using (7.18) and (7.19) we arrive at the
following energy momentum tensor

Tµν = 32π4κT 4

4uµuν+γµν−V
2
2u

µuν+Vµ2 Vν2
2π2T 2 +

uµεναβρ
4π2T 2 +

u(µε
ν)
αβρ

V2
2

uαVβ2 ωρ
+
(
Vµ2 uν+2uµVν2

2π2T 2 − 4u(µVν)
2

V2
2

)
Θ+

∆µ[α∆ν]
β +2uµu[α∆ν]

β

π2T 2

∂αVβ2
 ,

(7.20)

with the following hydrodynamic projections

ε = 96π2κT 2
(

1− V
2
2 + 2∂αVα2

6π2T 2

)
,

p = −32π2κT 2
(

1− V
2
2 + 2∂αVα2

6π2T 2

)
,

q̄µ = −4π2T 2 − V2
2

4π2T 2V2
2

ΘVµ2 −
εµνρσu

νVρ2ωσ

V2
2

,

qµ = −2π2T 2 − V2
2

2π2T 2V2
2

ΘVµ2 −
(
8π2T 2 + V2

2
)
εµνρσu

νVρ2ωσ

8π2T 2V2
2

− uα∂αVµ2
2π2T 2 ,

πµν = −16π2κT 2
(

∆µ
(ρ∆

ν
σ) −

1
3∆µν∆ρσ

)
(Vρ2Vσ2 − ∂ρVσ2 ) ,

τµν = 16π2κT 2∆µ
[ρ∆

ν
σ]∂

ρVσ2 .

(7.21)

A number of observations are in order. First, we observe that the energy momentum
tensor is not symmetric but it remains traceless as required from a conformal fluid. Then,
we see two types of heat currents q and q̄ with components along the spin source Vµ2 and
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along a direction orthogonal to both Vµ2 and the vorticity ων . The shear tensor and the
intrinsic torque are completely determined by the symmetric traceless and antisymmetric
projections of the gradient of the vector source.

An interesting specific case is when the source Vµ2 is constant.21 In this case the
fluid is required to be incompressible, see (7.19). As a result, several terms in (7.21)
vanish, including the first order contribution to the shear tensor but, interestingly, the
heat currents remain and given by the second terms in q and q̄ alone.

The spin current follows from (7.18) and (7.19) as

Sλµν = 32π2κT 2
[
∆λ[µVν]

2 + 2uλu[µVν]
2 −∆λ[µuν]Θ + V

λ
2 V [µuν]Θ
V2

2

+
εαβρσu

αVβ2 ωσ
(
γρλu[µVν]

2 + uλγρ[µVν]
2

)
V2

2

]
,

(7.22)

with the following hydrodynamic projections

ρV = 32
3 π

2κT 2Θ ,

ρA = 0 ,
nµV = −32π2κT 2Vµ2 ,
n̄µV = 16π2κT 2Vµ2 ,

nµA = −16π2κT 2
(
γµν − V

µ
2 Vν2
V2

2

)
ων ,

n̄µA = 8π2κT 2
(
γµν − V

µ
2 Vν2
V2

2

)
ων ,

Nλ
κ = −4π2κT 2

(
10
3 ∆λ

κ − 6V
λ
2 V2κ
V2

2

)
Θ +

8π2κT 2
(
2γαλγνκ + δλν δ

α
κ

)
εαβρσVν2uβV

ρ
2ω

σ

V2
2

,

N̄λ
κ = 0 . (7.23)

The corresponding vector and axial components of the spin current are rewritten in terms
of the irreducible currents as

JµV = −32
3 π

2T 2Θuµ ,

J̄µV = −32π2κT 2Vµ2 ,
JµA = 0 ,

J̄µA = −16π2κT 2
(
γµν − V

µ
2 Vν2
V2

2

)
ων .

(7.24)

Perhaps the most remarkable finding in this analysis is the last equation: a novel type of
torsional anomalous transport in the direction proportional to the projection of vorticity
transverse to the spin source vector. We leave a detailed study of spin induced anomalous
transport like this to future work.

21A simpler case would be vanishing Vµ2 , but this is not well defined as we assumed it non-vanishing in
the derivation.
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8 Discussion

In this work we considered strongly interacting relativistic quantum field theories with spin
degrees of freedom in the hydrodynamic limit and established the constitutive relations
of the basic hydrodynamic variables, the energy-momentum tensor and the spin current
based on the classification of the spin sources in irreducible Lorentz representations. This
decomposition of the sources and the hydrodynamic variables is summarized in table 1.
A general conclusion is the possibility of generating non-trivial spin current in flat space-
time, even in the case where the energy-momentum tensor is symmetric, by inclusion of
non-trivial torsion.

To find specific examples of hydrodynamics with spin current, we specified to 3+1
dimensional conformal fluids and calculated the components of the aforementioned hydro-
dynamic variables at the first two orders in the derivative expansion using holographic
methods In particular we assumed the fluid to have dual gravitational description as a
blackhole solution in 5D Lovelock-Chern-Simons theory. The reason for this non-standard
choice of holography is twofold: (i) the need to go beyond Einstein’s gravity to keep the
vielbein and spin connection as independent variables which is required to obtain a non-
vanishing spin current in flat space-time, (ii) the simplicity of this theory which allowed us
to construct the hydrodynamic flow analytically (in the derivative expansion), by reducing
the gravitational equations of motion to algebraic constraints. Clearly, we do not expect
this holographic theory to represent the spin liquids found in Nature, but this is not the
point of the paper. The holographic theory we consider should be viewed as a scaffold
to help solve the hydrodynamic flow equations. Any such analytic solution is instructive
and valuable.

Two of our particularly interesting findings are (i) existence of a dynamical version
of the Barnett effect where vorticity of the liquid generates a spin current. This can also
be viewed as some sort of anomalous transport analogous to the chiral vortical separation
effect where an axial current is generated in the direction of the vorticity with conductivity
proportional to T 2. (ii) a novel type of anomalous vortical transport transverse to the spin
vector source, a sort of “spin vortical axial” Hall effect. It is intriguing to see whether any of
this transport phenomena exhibit universality as in the chiral magnetic or vortical effects.

Apart from these hydrodynamic findings the analytic blackhole solutions that we de-
rived here are novel. ln particular we have found a general class of black hole solutions to
5D Lovelock-Chern-Simons gravity with non-trivial spacetime torsion. These will hopefully
be useful beyond holography.

Our work should be viewed as a first step towards the study of strongly coupled
relativistic QFT’s and strongly correlated relativistic fluids with non-trivial spin currents.
There are various directions to continue:

1. One obvious extension is a systematic study of hydrodynamics with spin currents and
the associated transport properties. This includes listing all linearly independent
transport coefficients allowed by the underlying symmetries and working out the
constraints that arise from positive entropy generation and Onsager relations. It
would be very interesting to include electromagnetic fields in this analysis.
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2. Another possible extension is generalization of our study to generic 5D Lovelock
gravity and/or different Chern-Simons gauge choice. Following [43] we have explicitly
used the Chern-Simons structure to derive the holographic dictionary. We are curious
whether our findings can hold beyond this. For example in a more generic Lovelock
type theory

SLovelock =
∫
εABCDE

[
c1ê

AêB êC êDêE + c2R̂
AB êC êDêE + c3R̂

ABR̂CDêE
]
, (8.1)

with arbitrary coefficients c1, c2 and c3. Here we do not expect to find generic analytic
solutions but the resulting hydrodynamic flow may correspond to more realistic fluids.

In addition to this, we used a particular gauge was for this dictionary to be appli-
cable to black hole like solutions. We have considered the most general solution (for
independent sources) within this gauge choice, but it remains to be seen if other
interesting spin induced hydrodynamic transport can be observed within different
gauge choices.

3. Finally, it is tempting to investigate the effect of the spin sources on the entan-
glement structure in the quantum field theory, such as entanglement entropy (EE)
and the Renyi entropies. This could be done by studying how the Ryu-Takayanagi
proposal [71] extends to theories with torsion. Equally interesting is the question
whether the Einstein-Cartan equations can also be derived from entanglement laws
just as the standard Einstein equations [72–74].
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A Boundary Noether symmetries and anomalies

The residual gauge transformations that preserve the gauge choice (4.18) with vanishing
{Ha
±, H

ab} take the asymptotic form

τ = u(x)P5 + α̂a(x)J+
a + β̂a(x)J−a + 1

2λ
ab(x)Jab ,

α̂a = 1
√
ρ

[
1 + c0ρ

1/2 + c1
2 ρ+ 2c2 − c0c1

6 ρ3/2 + 6c3 − 4c0c2 − 3c2
1 + 2c2

0c1
24 ρ2

]
αa ,

β̂a = √ρ
[
1− c0ρ

1/2 + 2c2
0 − c1
2 ρ

]
βa ,

(A.1)
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with {u, αa, βa, λab} functions of the boundary coordinates parametrizing the residual
boundary symmetries. The corresponding transformation of the bulk fields are

δe5 = du− 2 (eaβa − kaαa) ,
δea = Dαa − λacec + uea + Lξea ,
δkb = Dβa − λackc − uka + Lξkb ,

δωab = Dλab + 4e[aβb] + 4k[aαb] + Lξωab ,

(A.2)

where Lξ denotes the Lie derivative with respect to a boundary diffeomorphism22

parametrized by ξµ = ξµ(x) is included for the sake of generality. The covariant derivatives
are given by

Dαa = dαa + ωabα
b ,

Dβa = dβa + ωabβ
b ,

Dλab = dλab + ωacλ
cb − ωbcλca .

(A.3)

To preserve the block diagonal splitting of the metric we require constraint δe5 = 0
which in turn makes one of {u, αa, βb} dependent on the others. For definiteness, we
consider {u, αa} as the independent ones.

It is now possible to calculate the classically conserved currents related to these trans-
formations by using (A.2), (4.24) and (2.13), obtaining

δξa : Āa ≡ Dτa −
(
IaT

bτb + 1
2IaR

bcσbc

)
+ 1

2Iaω
cd
(
Dσcd − 2e[aτd]

)
Classical= 0 ,

δλab : Aab ≡ Dσab − 2e[aτ b]
Classical= 0 ,

δu : A ≡ eaτa +D
(
eaIbσab

)
Classical= 0 ,

δαa : Aa ≡ Dτa − 2
(
ebσbce

cµkaµ + kbσba
)

Classical= 0 .

(A.4)

The gauge parameters {ξµ, λab, u, αa} parametrize boundary diffeomorphisms, boundary
local Lorentz transformations, boundary Weyl transformations and a non-abelian symme-
try23 respectively. For vanishing spin current the energy momentum tensor becomes sym-
metric and traceless. In this case invariance under diffeomorphism and the non-abelian
transformations both yield conservation of energy-momentum. It is now possible to use
the equations of motion (4.28) and (4.29) to compute the Noether currents explicitly (up

22The gauge condition Nν = 0 ensures that the inclusion of diffeomorphism does not affect the residual
gauge analysis. It also implies ξµ = ξµ(x) and in particular we can also absorb ξr into the definition of the
gauge parameter u.

23To see that the symmetry should be non-abelian, one calculates the asymptotic group algebra for the
transformations (A.2) and observe that the gauge transformation parametrized by αa induces a non-abelian
extension that is non-linearly realized [49]. For vanishing torsion this transformation is not independent
and reduces to a combination of a local diffeomorphism and a local translation.
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to total derivatives):

Āa = 0 ,
Aab = 0 ,
A = κεabcdR

abRcd ,

Aa = 8κ
(
k e
a εebcdT

bRcd − 4εabcdT bkckd
)
,

(A.5)

where kad = kaµe
µd. The absence of anomalies in the currents related to local Lorentz

tranformations and diffeomorphisms imply the conservation equations (4.30). The anomaly
in the Weyl current A is the known trace anomaly as the right hand side of A in (A.5) is
the Euler density. Finally, the non-abelian current turns out to be generically anomalous
when the boundary torsion is non vanishing. One remark here is that the non-abelian
transformation is nonstandard, as it transforms24 the coframes as δeaµ = ανT aµν .

B Singular solutions

In section 6 we used the regulatiry of the Ricci scalar R near the black hole horizon to fix
some of the integration constants in (5.11). Here we relax this requirement and present
a solution with only scalar spin sources µV and µA that has divergent R at the horizon.
Working in the same gauge as in (6.13) we find

ds2 = − dr2

r2g2 + r2(−f2uµuν + h2∆µν)dxµdxν ,

f2 = 1− r2
h

r2 ,

g2 =
(

1− r2
h

r2

)(
1− r2

h − 4π2T 2

r2

)
,

h2 = 1
4

(1− µ2
V − µ2

A

4π2T 2

)√
1− r2

h − 4π2T 2

r2 +
(

1 + µ2
V − µ2

A

4π2T

)√
1− r2

h

r2

2

,

T a = rθaµ

[
−µAhεµνρσuν + µV fuρ∆µ

σ

]
dxρ ∧ dxσ ,

T 5 = 0 .

(B.1)

C Thermal entropy in Riemmann-Cartan spacetimes

An entropy formula and the corresponding first law for blackhole solutions in arbitrary
theories of gravity carrying a metric and a Levi-Civita connection was derived in [63] by Lee
and Wald. An analogous formula for gravitational theories described in vielbein formalism,
albeit with vanishing torsion, was not addressed until much later25 in [64, 65, 75]. In this

24After performing a local lorentz transformation with parameter ωabµ αµ and a diffeomorphism with
parameter ξβ = αβ .

25The complicatio arises from the internal degrees of freedom of the vielbein associated to the Lorentz
symmetry of the tangent space. See the discussion in [75] for a summary.
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appendix we derive the blackhole entropy formula for gravitational theories in the first
order formalism of gravity, with independent vielbein and connection, by extending the
approach in [65]. We first present a quick review of the necessary covariant phase space
formalism— for a more complete review see [76–78] — and then we apply it to gravitational
theories that we are interested in.

C.1 Covariant phase space formalism

To start the discussion lets consider a local Lagrangian L = L(φ) depending on canonical
fields {φ}. Through the variation of the Lagrangian one obtains not only the equations of
motion Eφ but also the so called symplectic potential θ(δφ)

δL = Eφδφ+ dθ(δφ) (C.1)

It is important to note that θ is not uniquely defined as any exact form dα could be added
to it. We instead consider a class of symplectic potentials Θ defined by

Θ = θ + dα (C.2)

where the form α will be used to fix the gauge invariance of the symplectic potential. The
anti-symmetrized field variation of Θ defines a symplectic form Ω as

Ω(δ1, δ2) = δ1Θ− δ2Θ . (C.3)

For a symmetry parametrized by ω, the symplectic structure allow us to define a Hamilto-
nian flow by

δHω =
∫

Σ
Ω (δ, δω) , (C.4)

where Σ denotes the spacetime manifold. For a diffeomorphism ξ we expect all linear
variations δξ to vanish, as this is a symmetry of the theory, implying that the Hamiltonian
flow should also vanish, namely δHξ = 0. In Riemann-Cartan spacetimes there is, in
addition to diffeomorphisms, local Lorentz symmetry parametrized by λAB, so we will
equivalently ask for absence of an associated charge by demanding δHλ = 0. This allows
us to fix α.

It is also possible to use the symplectic potential to define a Noether current associated
to diffeomorphisms ξ. This can be done by noting that, if we define this current Jξ as

Jξ = Θ(δξ)− L · ξ , (C.5)

then dJ = 0 on shell using (C.1). This implies we should be able to write the current as
an exact form

Jξ = dQξ , (C.6)

where Qξ will be the Noether charge. The Noether charge and the Hamiltonian flow for a
diffeomorphism can easily be related by noticing that

Ω(δ, δξ) = d (δQξ −Θ(δ) · ξ) , (C.7)
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which implies the Hamiltonian flow is given by a boundary term

δHξ =
∫
∂Σ

[δQξ −Θ(δ) · ξ] , (C.8)

whenever Θ · ξ = δB with B being some differential form. We then say the theory is
integrable. We are concerned with theories where ∂Σ is formed by a Killing horizon, i.e.
ξ = 0 on this surface, and with an asymptotic boundary at ∞. Taking this into account
together with the vanishing of the Hamiltonian flow we are left with∫

∂Σh
δQhξ =

∫
∂Σ∞

[
δQ∞ξ −Θ∞(δ) · ξ

]
. (C.9)

This equation is the first law of thermodynamics when the left hand side identified with
T0δSthermal. We now proceed to calculate the relevant Noether charge.

C.2 Gauge invariant symplectic potential

To compute Qξ it is necessary to find a form α such that δHλ = 0. As in [65] we rather
proceed via a simpler road by requiring for the symplectic potential itself to be invariant,
namely Θ(δλ) = 0. For completeness, we show below the relevant local Lorentz transfor-
mations for the coframes and connection26

δλe
A = −λAF êF ,

δλω
AB = DλAB ,

(C.10)

We now consider gravitational Lagrangians that are functions of both the coframes eA and
the connection ωAB. In particular we expect the Lagrangian to depend on the local Lorentz
covariant forms {eA, TA, RAB}, i.e. L = L (e, T,R).

The corresponding variation of the Lagrangian can then be written as

δL = δeAEA + δωABEAB + dΘ(δe, δω) , (C.11)

with EA, EAB the equations of motion and Θ the symplectic potential given by

EA = ∂L
∂eA

+D

(
∂L
∂TA

)
,

EAB = eB
∂L
∂TA

+D

(
∂L

∂RAB

)
,

Θ(δe, δω) = δeA
∂L
∂TA

+ δωAB
∂L

∂RAB
+ dα .

(C.12)

We obtain∫
Σ

Θ (δλ) =
∫

Σ

[
−λAF eF

∂L
∂TA

+DλAB
∂L

∂RAB
+ dα(δλ)

]
= −

∫
Σ
λAB

[
eB

∂L
∂TA

+D

(
∂L

∂RAB

)]
+
∫
∂Σ

[
λAB

∂L
∂RAB

+ α(δλ)
]

= −
∫
σ
λABEAB +

∫
∂Σ

[
λAB

∂L
∂RAB

+ α(δλ)
]
.

(C.13)

26Note that at this point we are working in arbitrary dimensions and A represent D-dimensional indices,
not necessarily the 5D ones.
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Requiring on-shell gauge invariance of the potential fixes α as

α(δ) = −
(
eaµδebµ

) ∂L
∂Rab

. (C.14)

We note that the form of α is valid for any theory in a Riemann-Cartan spacetime. To
calculate the Noether we will need to specialize to a particular Lagrangian.

C.3 Noether charge in 5D Lovelock gravity

We consider a (non necessarily Chern-Simons) 5D Lovelock Lagrangian characterized by
the action

S =
∫
εABCDF

[
c1R

ABRCDeF + c2
3 R

ABeCeDeF + c3
5 e

AeBeCeDeF
]
, (C.15)

with free parameters {c1, c2, c3}. The equations of motion for this action read

EA = εABCDF
[
c1R

BCRDF + c2R
BCeDeF + c3e

BeCeDeF
]

EAB = εABCDF
[
2c1R

CD + c2e
CeD

]
TF ,

(C.16)

with the symplectic potential Θ

Θ = εABCDF

(
2c1R

ABeC + c2
3 e

AeBeC
)
δωDF , (C.17)

and the symplectic current

J = d

[
εABCDF

(
2c1R

AB+ c2
3 e

AeBeC
)(

eDµTFµνξ
ν +DDξF

)]
+EAB (ωAB ·ξ)+EA (eA ·ξ) .

(C.18)

We can now read off the Noether charge and evaluate it at the horizon, by noting that
D[F ξF ] → nDF . This yields the following expression for the entropy

S = 2π
∫
M3

[
nAB

∂L
∂RAB

]
= 2π

∫
M3

εABCDFn
AB
[
2c1R

AB + c2
3 e

AeBeC
]
, (C.19)

with the 2π a normalization factor. Setting c1 = 1 and c2 = 2 we find the result of (4.33).
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