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Abstract

Railway systems form an important means of transport across the world. However, congestions or disruptions
may significantly decrease these systems’ efficiencies, making predicting and understanding the resulting train
delays a priority for railway organisations. Delays are studied in a wide variety of models, which usually simulate
trains as discrete agents carrying delays. In contrast, in this paper, we define a novel model for studying delays,
where they spread across the railway network via a diffusion-like process. This type of modelling has various
advantages such as quick computation and ease of applying various statistical tools like spectral methods, but
it also comes with limitations related to the directional and discrete nature of delays and the trains carrying
them. We apply the model to the Belgian railways and study its performance in simulating the delay
propagation in severely disrupted railway situations. In particular, we discuss the role of spatial aggregation by
proposing to cluster the Belgian railway system into sets of stations and adapt the model accordingly. We find
that such aggregation significantly increases the model’s performance. For some particular situations, a
non-trivial optimal level of spatial resolution is found on which the model performs best. Our results show the
potential of this type of delay modelling to understand large-scale properties of railway systems.
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1 Introduction
Railway systems are of vital importance for transport-
ing passengers and goods. The trains in these systems
travel via predefined schedules that allow for highly
efficient utilization of the routes and tracks. Temporal
deviations from such scheduled operations are com-
monplace. They take the form of delays and decrease
the system’s efficiency. Small delays are often absorbed
by built-in buffers and therefore do not have effects on
larger scales [1, 2]. However, from time to time, lo-
gistic disruptions — often caused by external factors
like weather — lead to congestion or even a large-scale
stand-still, with detrimental costs to society and econ-
omy [3, 4, 5, 6].

The above shows the importance of better under-
standing of delay propagation and its prediction. A
large variety of delay propagation models exists, and
the choice of the approach depends on a number of
questions related to, among other factors, the spatial
focus, availability of data and the delay severity. For
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example, when aiming to accurately predict the de-
lay in a geographically confined area, there are high-
performing statistical models [7, 8]. However, such
statistics generally only work accurately in circum-
stances where delay is not too severe — as per defi-
nition these highly delayed scenarios are exceptional.
Also, when upscaling to larger areas, long-range in-
teractions and associated correlations come into play
which may be difficult to account for when using av-
erage statistics. Larger scales and more highly delayed
scenarios are therefore often analyzed with machine
learning or big-data approaches [9, 10], but at the cost
of understanding cause-and-effect or fine spatial reso-
lution. Alternatives to such purely data-driven meth-
ods can be found in models where mechanisms of delay
propagation are explicitly implemented. For example,
Monechi et al. analyzed the German and Italian rail-
ways and found a set of ‘laws’ that drive the spreading
of delays [11], analogous to epidemic spreading mod-
els. Of course, the infrastructure networks underlying
the dynamical processes in any of the mentioned mod-
els play an important constraining role. However, this
information is already embedded in the schedules and
therefore less discussed in the context of delay sim-
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ulations. However, the role of railway network topol-
ogy is addressed by various scholars in relation to re-
silience properties [12, 13, 14]. Most models are based
on the schedules of the railway system, commonly us-
ing trains as agents that have the potential to carry
delays. The perspective of delays as a properties of
discrete trains or events can be found in many analyt-
ical models [15, 16, 17, 18, 2], using either determin-
istic or stochastic techniques to derive future delays
from past information. Because of the abundance of
this perspective in existing delay propagation models,
we refer to the view of delays as properties of discrete
trains or events as the ‘traditional view’. In contrast,
one could also view delays as variables associated not
to trains, but to the nodes (stations) and edges of the
railway network, which stay in the same position. How
delay spreads between these nodes does not have to be
described in terms of discrete trains and events, but in-
stead a description may rely solely on general (or even
system-wide) quantities such as the network topology
and schedule. One can make the analogy of fluid dy-
namics: while traditionally, delays are treated as La-
grangian particles (i.e., following the trains as the fluid
carrying the particles), we propose to treat delays from
an Eulerian point of view (i.e., determining incoming
and outgoing delays in a fixed spatial frame). This is
also discussed in [19]. This is the basis of the model
proposed in this paper.

The traditional view of delays as discrete quantities
of explicitly modelled trains or events is useful because
it allows for tracking expected routes of delays along
the train’s trajectories explicitly. In other words, given
that you know that delay is in the system at location
A, it is unlikely to spread in all possible directions
from A, but more likely to follow a particular direction
that is dependent on which trains are exactly affected.
One only knows this direction if discrete train units
(and their trajectories) are explicitly included in the
model. But there are also disadvantages of such mod-
els. One limitation is that many such models rely on
many statistics in addition to mere schedule informa-
tion. For example, if trains A, B and C are simulated
explicitly, the interactions of all their events and rel-
ative magnitudes of their delays have an impact on
each other’s delays. These relations need to be well
studied using for example neural networks [20, 10] or
probability updating [21, 22]. Another limiting consid-
eration of treating delays as discrete quantities is the
spatial scale. In confined systems, the mechanisms of
delay propagation and their parameters can be well-
defined, as in [7]. Defining all such interactions on a
country-wide scale is generally more more complex,
due to potential long-range correlations.

In this paper we propose to treat delays not as bound
by discrete trains or events, but rather as continu-
ously spreading across the infrastructure network. The
spreading between nodes of the network is weighted by
properties of the system. The intuition behind these
models is that on average — in a ‘mean-field approxi-
mation’ — these parameters drive the overall direction
of delay propagation. We refer to this way of treating
delay propagation as ‘diffusion-like spreading’. Small-
scale accuracy is traded for larger scale accuracy: when
looking at a micro-scale or individual trains, we ex-
pect this non-traditional way of dealing with delays
to be less accurate than more detailed models, but
on a large scale, we expect the performance of such
a model to increase. As is shown in section 2, the
model contains only simple schedule information (e.g.,
train frequencies and travel times) rather than compli-
cated statistics, and all model information is embed-
ded in a single matrix, which makes analysis of the
system’s properties easy. The mentioned reasons mo-
tivate us to write this paper on delay propagation as a
diffusion-like spreading mechanism. We apply our pro-
posed model to the Belgian railways as a case study to
discuss when and how it is advantageous to use such
models.

An important aspect of delay propagation in general
is the spatial scale and resolution of the analysis. High
resolution (‘micro-scale’) modelling allows for explicit
simulation of infrastructure capacity issues, the role of
speed gradients or the identification of station-specific
properties, for example. Low resolution, but large-scale
(‘macro-scale’) modelling captures the impact of long-
range interactions related to resource allocation [2],
the impact of long train lines [9] or other system-wide
properties. Many models lie between these extremes.
Diffusion-like models should typically be regarded as
having a lower resolution but working well on a larger
scale, because of the earlier mentioned trade of small-
scale accuracy for larger-scale accuracy. Spatial resolu-
tion is often expressed by treating railway infrastruc-
ture as a network, consisting of nodes (geographical
locations) and edges (connections between them). At
the highest spatial resolution, the nodes are certain
control points in stations and tracks, where train activ-
ities are logged [2]. More commonly is a slightly aggre-
gated version of this, namely the more coarse passen-
ger stations [14, 15, 11]. Lower resolutions are obtained
when constructing regions that correspond to groups
of stations — so-called ‘clusters’, on which we elabo-
rate later. Larger geographical areas in lower resolu-
tions combine existing delays from higher resolutions
and are treated as one unit. Choosing the correct level
of spatial aggregation is an important consideration to
make when assessing the viability of the diffusion-like
model.
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When discussing spatial aggregation, it is important
to define how higher levels of aggregation are derived
from the lower ones. In particular: how do we join sta-
tions and tracks together into larger and coarser re-
gions? A large amount of complex network literature
is devoted to this question of clustering, and cluster-
ing methods come in many forms in various applica-
tions [23]. For example, graph or connectivity-based
methods emphasize how connections and topology lead
to a natural aggregation of nodes into larger groups.
This can be quantified by the so-called modularity of
the partition, first proposed by Newman [24]. Various
clustering algorithms based on modularity optimisa-
tion exist, such as the Louvain method [25].

Spectral clustering focuses on properties of the
eigenspace of the Laplacian or model-relevant matri-
ces. A third common method for clustering any — also
non-networked — data is K-means [26, 27], which de-
fines centroids and groups nodes based on their respec-
tive distances to these cluster centroids (also known as
Voronoi iteration [28]), given a definition of ‘distance’
between nodes. This method has been used in the con-
text of transportation before, albeit mostly to char-
acterise statistical space (rather than actual stations
and physical space) [29, 30]. An important aspect of K-
means, in contrast to for example the Louvain method,
is that it requires the specification of the number of de-
sired clusters (K) up front, which can be both advan-
tageous and disadvantageous. However, the freedom
of choosing K turns out to be useful when analysing
our diffusion-like delay model. This, together with the
fact that K-means is a well known and commonly used
method, motivates us to use K-means with geograph-
ical distance to cluster the stations in our paper. By
choosing the number of clusters, we vary the spatial
aggregation level. We will compare the performance of
the diffusion-like model on each of these levels.

In summary, the aim of this paper is to discuss the
usefulness of treating delay propagation as a diffusion-
like spreading mechanism. We propose a model doing
so in section 2. We apply the model to the example
case of the Belgian railways and discuss the data and
methodology for this in section 3. Section 4 discusses
the results of a toy model, its performance on different
types of disrupted situations, and the overall perfor-
mance of the model. Here we discuss in what cases
the diffusion-like aspect of the model is beneficial and
what we can learn about the Belgian railways using
this framework. We end with a summary and several
conclusive remarks in section 5.

2 Model
In this section we introduce our diffusion-like model.
We start by defining the delay variable and set up the

equations that describe its evolution over time. We
continue by discussing how this model can be gener-
alized to any spatial scale. For a detailed derivation
of the model, see Appendix A. Tab. 1 summarizes the
variables and parameters of the model.

2.1 General concepts

The main idea behind the model is to define the delay
on fixed locations, and to describe the evolution of this
delay distribution over time using macroscopic param-
eters such as train frequencies and travel times. While
delays are inherent attributes of trains (i.e. agents), we
aggregate the delays on passenger stations (i.e. nodes),
as the impact of disruptions can mostly be felt at level
of stations rather than being a problem of individual
trains. This aggregation of delays onto stations means
that we lose some of the finer details on which delays
belong to which train. However, it will allow us to use
tools for studying dynamical processes on networks: a
delay is associated to each node, and its evolution is
determined by the coupling of nodes through edges.
For ease of notation, we will use the terms ‘station’
and ‘node’ interchangeably even though some nodes
are actually junctions and not stations. We denote the
delay of a station i at time t by Di(t). This variable is
defined as the sum of the delays of all trains that are
moving towards station i at time t:

Di(t) =
∑

T∈T (i,t)

dT (t), (1)

where T (i, t) is the set of trains moving to station i
(i.e. the very next station they cross will be i, whether
they stop there or not) at time t and dT (t) denotes
the delay carried by train T at time t. We consider
two ways in which the value of Di can change over
time:

1 A train, which was previously moving towards an-
other station j, reaches j and is now moving to-
wards i. Therefore, its delay is now added to Di.

2 A train, which was moving towards i, reaches i
and either moves further towards another station
or ends its trajectory. Therefore, its delay is re-
moved from Di.

The delay of station i at the next time step — we
refer to this as Di(t + ∆t), with ∆t being the time
step size — is dependent on the delays in various
locations at the previous time step, not only Di(t).
Thus, we write the relation between the delays be-
tween two consecutive time steps using a delay vector
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~D = (D1, D2, . . . , DN )T , where N is the total number
of nodes:

Di(t+∆t)−Di(t) = F1,i( ~D)︸ ︷︷ ︸
New incoming

trains towards i

− F2,i( ~D)︸ ︷︷ ︸
Arrival of trains

at station i

(2)

with F1,i describing how the delay at station i
changes over a time step ∆t by means of the first term
above (the addition of delay), and F2,i likewise by the
second term above (the removal of delay). In the next
section we express both these functions F1,i and F2,i in

terms of several parameters and ~D(t). An illustration
of the model and its terms is given in Fig. 1.

Figure 1 Model visualization: (a) station and line (edge in the
network) dependent parameters, (b) illustration of the two
mechanisms behind the delay dynamics dynamics, i.e. the
appearance of new trains with their delays and the departure
of the already included ones, (c) an example of the network
aggregation.

2.2 Diffusion model equations
The first term (F1,i) sums the delays carried by all
trains that start moving towards i in the interval [t, t+
∆t]:

F1,i( ~D) =
∑

Trains T that started moving to i
at τ ∈ [t, t+ ∆t]

dT (τ).

This sum can be rewritten as a sum over the neigh-
bors of i. By making a number of assumptions, like ap-
proximating the fraction of trains in each direction by
the relative frequency (a full derivation can be found
in Appendix A), we can rewrite the delay of a train
moving to a station j as function of the delay of that
station Dj and express how many of the trains arriving
at a station j continue to i. This leads to:

F1,i( ~D) = ∆t
∑

j∈Nin(i)

pjiBjDj(t). (3)

Here Nin(i) is the set of stations j that have an edge
to i. The parameter pji is the probability that a train
that reaches station j will continue towards station i,
and is computed as follows:

pji = P (to i|from j)

= P (to i|(from j & do not end at j)) · P (do not end at j)

=
fji∑

`∈Nout(j)

fj`
·
(

1− Probability that train
has end station at j

)

= rji(1− sj), (4)

where Nout(j) is the set of stations to which there is
an edge from j. The value of pji is equal to a multipli-
cation of two factors. The first (denoted by rji) is the
probability that if a train reaches j and it does not end
its journey there, it will then continue towards i. Note
that we consider this probability to be independent of
where the train came from: we do not consider any
memory in this process. The value is calculated as the
frequency of trains going from j to i divided by the fre-
quency of all outgoing trains from j. The second factor
in Eqn. 4 (denoted by 1−sj) is the probability that the
train does not end at j — sj itself is the probability
that a train that arrived at j ends its journey there, for
example because it is the terminus. The variable Bi in
Eqn. 3 is a station-dependent parameter, defined as

Bi =

∑
edges e to i fe∑

edges e to i fete
=

∑
`∈Nin(i) f`i∑
`∈Nin(i) f`it`i

, (5)

where fe denotes the frequency of trains on edge e,
and te corresponds to the time a train takes to cross
edge e. The parameter Bi has units of time−1 and can
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therefore be interpreted as a rate. The inverse of Bi
is the average time of edges towards i, weighted by
their frequency. A high value of Bi corresponds to a
station with incoming short edges with high frequency.
Intuitively, Bi can be thought of as a station’s train
turnover rate.

The second term of Eqn. 2 (F2,i) counts the delays of
trains that reach station i and therefore remove their
delays from Di. We express F2,i as follows (for details
see Appendix A):

F2,i( ~D) =
∑

Trains T that reached i
at τ ∈ [t, t+ ∆t]

dT (τ)

= ∆tBiDi(t). (6)

The term only depends on the delay Di(t) at station
i at the previous time step, and the previously men-
tioned parameter Bi. The delay loss at a station can
be interpreted as an exponential process with rate Bi.

The contributions F1 and F2 are expressed in terms
of the delay state vector ~D and in terms of various
railway parameters (summarized in Tab. 1). Filling in
these two terms into Eqn. 2 gives the full expression
for the evolution of the delay D at any station i:

Di(t+ ∆t)−Di(t) = ∆t

 ∑
j∈Nin(i)

pjiBjDj(t)−Di(t)Bi

 .
We can simplify the sum over the neighbours of i

by using the railway network’s adjacency matrix A,
which has entries entries Aji = 1 if there is an edge
from station j to station i and entries zero elsewhere:

Di(t+ ∆t)−Di(t)

∆t
=
∑
j

AjiBjDj(t)pji−Di(t)Bi.

Here, the sum goes over all nodes j. This equation
can be written in matrix form using ~D as a column
vector. Moreover, we can take the limit ∆t → 0. This
leads to the expression

d ~D(t)

dt
= G · ~D(t). (7)

The above equation contains the core model matrix
G, an N ×N matrix defined as follows (δij is the Kro-
necker delta):

Gij = AjipjiBj − δijBj . (8)

All of the dynamics of the model are encapsulated
in the matrix G.

2.3 Model aggregation to clusters of stations

In this paper, we aim to describe how well our model
describes real delay propagation patterns. One vari-
able in this analysis is the level of spatial aggregation
at which we simulate the model. In the previous sec-
tion we explained the model where each node of the
network consists of a single station or junction. How-
ever, the same principles can be applied to a network
where nodes correspond to a group of such stations.
The method we use to group stations into clusters is
explained in Sec. 3.4. Here, we discuss how the model
parameters for the full-resolution model based on in-
dividual stations can be translated into a lower res-
olution version. The discussed aggregation process is
very similar to network of networks idea known in the
networks literature [31, 32, 33].

Above, each delay variable Di corresponds to one
node of the network. This is achieved by transforming
delays on trains to delays on stations via Eqn. 1. This
is already a form of coarse-graining the delay dynam-
ics. Now, we assume that the original railway network
of N stations is divided into K clusters (or groups of
stations). We indicate stations with lowercase letters
(i and j) and clusters with uppercase letters (I and
J). The clusters naturally form a network: an edge be-
tween clusters I and J exists if there is at least one
station i in I and one j in J such that there is an edge
between i and j in the original network. We define the
function C from stations to clusters such that C(i) is
the cluster to which station i belongs. Let DI(t) de-
note the total delay of all trains moving to any station
in cluster I at time t, either from inside the cluster, or
coming from other clusters. An equation for the evo-
lution of this delay can be derived in the same way as
we did above for stations. The delay DI can change
when trains start towards any station in this cluster,
or when trains arrive at a station in this cluster. The
main difference with the non-clustered case (above) is
the fact that in the clustered case, self-loops in the
network appear. This is because trains moving to a
station in a cluster — and thus adding to the cluster’s
delay — can reach that station, and then continue to
another station in the same cluster, again adding to
the cluster’s delay.

While the equations in the clustered case are the
same as in the non-clustered case, the parameters such
as frequencies and travel times are now defined on
edges between clusters. We explain a method to ex-
press these cluster parameters in terms of their non-
clustered counterparts (i.e., the ones in Tab. 1). We
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Variable Description
Di(t) Delay at station i and time t
Aji Adjacency matrix of the railway network
Bi Train turnover rate of station i
dT (t) Delay carried by train T at time t
fij Train frequency from stations i to j
t̄ij Average travel time from station i to j
pji Fraction of trains to j that continues to i
rji Fraction of trains to j that continue to i if they do not end at j
sj Fraction of trains that end at station j
T (i, t) Set of trains moving to station i at time t
Nout(j) Set of stations to which there is an edge from j
Nin(j) Set of stations from which there is an edge towards j
N Amount of stations
δij Kronecker delta (δij = 1 if i = j, and 0 otherwise)

Table 1 Overview of the model variables and parameters.

start with the total frequency fIJ and weighted aver-
aged travel time tIJ of trains between two clusters I
and J . We define them as

fIJ =
∑
i∈I

∑
j∈J

fij (9)

tIJ =

∑
i∈I
∑
j∈J tijfij∑

i∈I
∑
j∈J fij

. (10)

These definitions are intuitive: the total frequency
of trains between two clusters is the sum of the fre-
quencies on edges going from a station in the first to
a station in the second cluster. The travel time is the
weighted average of the travel times of the edges going
from the first to the second, weighted by their fre-
quency.

Next, we need to define the stopping probability sI
for a cluster I. In order to do this, we define the sta-
tion parameter qi as the probability that a train which
arrives in the cluster C(i), arrives at station i. In a
way, it indicates how important station i is in its clus-
ter, measured by the total frequency of all incoming
trains to that station. The quantity is approximated
as follows:

qi =

∑
j∈N (i) fji∑

j∈C(i)
∑
`∈N (j) f`j

. (11)

Note that the values qi are weights of stations whose
sum is one. Each station is weighted by the frequency
of incoming trains. Next we use the quantities qi to
estimate the stopping probability sI for cluster I:

sI =
∑
i∈I

siqi. (12)

One can interpret the stopping probability formula
using the following formula:

sI =
∑
i∈I

P (stops in i|arrived in i)P (arrives in i|arrives in I)

Using this approach, we can set up a model for any
clustering of the original network using only the pa-
rameters of the full network. We can thus compute
the matrix G (Eqn. 7 and 8) for each clustered case.
We denote such matrices of the clustered model by Gc.

An additional possibility, which we do not discuss
further, is to define a clustered model directly, without
relying on the parameters of the full network. In this
case, the frequencies, average travel times and stopping
probabilities need to be directly measured from data.

2.4 Model considerations
There are a number of important assumptions we used
in our model (see also Appendix A). Because we ag-
gregate delays from trains onto stations, we lose a lot
of details, such as origin-destination information of
trains. In the derivation of the model, a delay ‘arriv-
ing’ at a station is subsequently spread out and propa-
gated to all neighbors of that station, based on a fixed
weighting of the outgoing edges. However, in real rail-
way systems, there is a high correlation between where
the delay comes from and where it goes to, and mem-
ory effects can be important. Our model is expected
to work better on lower spatial resolution, on scales
where a lot of trains and train routes contribute to
the dynamics of a single node, such that trains picking
a random direction constitute a decent approximation
to the real dynamics, which on the detailed level is
inherently schedule-based and not random. Further-
more, the delays in our model are treated as variables
smoothly varying in time and space. In reality, delays
which are localized in space are of a discrete nature:
a single train can be delayed, and when the train has
‘passed’ a station, the delay suddenly disappears from
this station. This means that the time series of Di(t)
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Figure 2 Panel (a): Average delay per train in November 2019, shown at every node. Panel (b): Average number of trains passed
through the edge on April 11th, 2019 (taken as an example day). Only passenger trains are used when calculating these numbers.

in reality has a lot of jumps, namely every time a train
reaches this station or starts towards it. In the model,
Di(t) is smoothly varying. Another important consid-
eration is that the model only propagates delay and
removes delay from the system — it does not add any
new delays. Moreover, the only mechanism by which
delays are removed from the station is when a train
ends its trajectory, which is encoded in the param-
eters si. An underlying assumption is thus that each
train keeps its initial delay until it has reached its final
stop. In practice, of course, delays are constantly gen-
erated, often due to small noise-like incidents or other
(delayed) trains blocking platforms or tracks, and in
more exceptional cases due to new disruptions. More-
over, trains can lose some delay by traveling faster or
because of scheduled buffer times at stations, which
is not included in our model. For these reasons, we
will only compare the results of our model to data of
days with a large disruption: by focusing on a time
point with a large amount of delay and analyzing its
dissipation through the network, we minimize the ef-
fects of smaller stochastic delays, which are expected
to contribute less to the dynamics in these situations.
A final limitation we would like to mention is that in
our model, the finite travel time of trains and their lo-
cation on an edge is lost: in our assumptions, a train’s
delay counts fully towards to the next station’s delay,
wherever the train is on an edge towards that station.
For small time steps, this means the train’s delay also
counts immediately to the propagated delay further on
in the network, even if in reality the train would still
need more time to cross the edge.

Next to the limitations mentioned here, our model
also has clear benefits: a compact description (the ma-
trix G), the fact that it is linear and thus amenable

to analytical study and the straightforward generaliza-
tion to lower spatial resolution. We discuss advantages
of the model throughout, and at the end of this paper.

Some of the limitations mentioned above directly
stem from our choice for a network-based, diffusion-
like model. It is one of the aims of this paper to in-
vestigate whether our model, and its built-in potential
for spatial aggregation, can reproduce the dynamics of
delay propagation observed in a real railway system.

3 Data and Methods
We apply the model to the Belgian railway system
as an example. We chose the Belgian railway system
for multiple reasons. Being a West-European country,
Belgium has a rather dense and strongly utilised rail-
way system with over 100 km of lines per 1000 m2,
being one of the world’s densest national railway sys-
tems [34]. In contrast to, for example, the American
or Chinese railways (both have about 10-25 km of
railways per 1000 m2). Additionally, freight and high-
speed trains make up only a small fraction of the total
railway transport in this country. These aspects re-
quire more complex scheduling in the Belgian case, and
it implies a more interesting delay evolution to use as
an example. Another reason for analysing the Belgian
railways is the availability of data, which is discussed
below. A discussion on the international relevance of
the results is given in the conclusions.

3.1 Data and Pre-processing
We use the open data provided by Infrabel, the ser-
vice company of the Belgian railway network [35]. The
data contains geographical information on railway sta-
tions and the physical railway lines, recorded tracks of
passenger trains with details on scheduled and realised
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departure and arrival times of their activities on each
station or junction, as well as associated delays. The
time stamps and delay data are in seconds. We use
data from all Belgian passenger railway activities be-
tween January 2019 until May 2020. The data covers
an average number of 3600 daily unique trains on busi-
ness days, and 2200 on weekends or holidays.

The first step is to reconstruct the graph of the Bel-
gian railway network. First we add all stations as nodes
in our graph. We get the edges by mapping the geo-
graphical locations of railway stations onto geograph-
ical shapes of railway lines and every two stations are
connected together iff there is a line connecting them
without intermediate stations. The geometry of rail-
way lines is more intricate than simple edges between
stations, since there exist places of splits and merges of
multiple lines. We implement these by adding so-called
“junction” nodes along the lines.

The dataset contains all railway stations, which ex-
cept of passenger train stations include merchandise
platforms, technical depots, carwashes, etc. Passenger
trains tend to skip those intermediate platforms and
the passage information is not recorded. In order to
bypass this limitation, in case when there is no edge
between two consecutive stations in the track record,
we assume that the train follows the shortest path be-
tween them. Delay accumulation or reduction is then
evenly spread across the intermediate stations along
that path.

There are two kinds of passenger trains available in
the data that can be characterised by the proportion of
skipped stations along the track: 1) local trains, which
usually circulate at shorter distances and stop at every
station along the path and 2) intercity trains, which
circulate at larger distances and skip some intermedi-
ate stations. We exclude from the analysis the intercity
trains that skip a significant portion of stations along
the track (usually these are international trains) and
extra trains that run ad hoc on a specific day. The
amount of disregarded trains is less than 3-5% of the
total data. We further use the notion of a railway graph
and a railway network interchangeably.

The reconstructed network and two important de-
lay statistics are shown in Figure 2. The graph con-
tains 822 stations and 972 edges. Because the network
has mostly a line-like structure, 78% of all stations
have degree 2 and the average degree is 2.19. In panel
Fig. 2a, we show the average delay of trains travelling
towards stations in November 2019. A general trend
from small average delays in the north-west to larger
average delays in the south-east is visible, with the
cities of Antwerp (north) and Brussels (centre, the
capital) also having rather high average delays. Panel

Fig. 2b colours the edges of the network with the aver-
age amount of trains per day that crosses them. Sev-
eral lines between the large cities of Bruges, Ghent,
Brussels and Antwerp stand out.

We use the recorded tracks to estimate the model
parameters. In particular, we calculate the edge pa-
rameters fij and tij and the station parameters si (see
Table 1) for each month separately. Within a month we
aggregate all frequency and temporal counts for each
day of the week. Moreover, for each day we keep sepa-
rate counts for six 4-hour periods of the day. For each
station j this leads to the estimation of parameters sj
as the average fraction of arriving trains that end their
trajectory at station j, and fij and tij , the average fre-
quency and average passage time of trains going from
station i to j. For simulations of disrupted situations,
we use the parameters obtained for the month, day of
the week and period of the day corresponding to the
timing of the peak delay on the disrupted days. If not
mentioned otherwise, we use ∆t = 30 seconds in all
results in this paper. Simulations of the model were
coded in Python. For the clustering discussed in 3.4,
we used the KMeans function of scikit-learn. The data
and code is publicly available and we refer the reader
for this to the appropriate section at the very end of
the paper.

3.2 Disrupted situations
As discussed in the introduction, we expect diffusion-
like models to be of most interest to study large-scale
delay propagation: e.g., general directions of delay evo-
lutions — as individual delays will be predicted erro-
neously due to lack of trajectory information of delays
by abstracting away from individual trains. Therefore,
we focus our model analysis on days in which such
large-scale delay propagation can be assumed impor-
tant, namely where the delays were severe. In con-
trast, when delays are small, they dissipate quickly
and will not spread much — making identifying large-
scale spread of delay of less interest. Another reason
why we focus on days with severe delays is that un-
derstanding such days is of great importance to rail-
way companies to be able to handle such situations
well. We refer to days with severe delays as ‘disrupted
days’. A list of disrupted days is obtained by looking
at the peak in the total delays (i.e., delay summed
over all nodes at any given moment in time) of every
day in the dataset, and taking the 50 days with the
highest peaks. The exact dates in this list are given
in Appendix B. Throughout the rest of the paper, we
initialize our simulations at the peak in total delay of
these disrupted days, i.e. we determine the delay on
each station at the time of peak delay and use this as
initial vector of delays. The model captures the spread
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and dissipation of existing delays, so these simulations
will capture the propagation of the delays present at
the peak — making such an initial point most interest-
ing. Also, we reason that after the moment of highest
total delay, the relative importance of newly generated
(i.e., non-captured) delays is small as compared to ex-
isting delays.

3.3 Quantifying model performance
When assessing the model’s performance to reproduce
reality, we focus on whether the model reproduces the
correct direction of delay evolution, rather than simu-
lating exact values well. There are a number of reasons
for this. First, when aiming to understand large-scale
propagation of severe delays — which is the aim of this
model — accurately tracking the positioning of delays
(rather than the exact values) through space is already
very important information to practitioners. Analysing
such directional trends of delays provides us with in-
formation on how the system works, absolute values
of delays are not always necessary for that. Second, in
severely delayed circumstances, numeric performance
comparison can quickly become biased by several high
spikes in delays: particular trains being up to one hour
delayed, compared to an average delay of a couple of
minutes in the rest of the network. And third, our
model was not designed to capture small, stochastic
variations in the delays. However, such delays are al-
ways present in the data, which means that one will
never get a good quantitative fit, even if the model
would be a perfect representation of the propagation
of existing delays. For these reasons, we use Spear-
man’s correlation coefficient ρ to measure the model’s
performance. This metric is based on the rank of the
variables, i.e., it assess monotonic relationships rather
than linear relationships (which is the case, for exam-
ple, for Pearson’s correlation coefficient). We denote

the observed delays at all stations at time t by ~Dobs(t):
a vector with delay entries per station. Likewise, we de-
fine a simulated delay vector ~Dsim(t). We denote the
vector containing the ranks of the stations based on
their delays by r( ~D(t)), using either observed or simu-
lated delays. Then, Spearman’s correlation coefficient
at time t is given by:

ρ(t) = Pearson

(
r( ~Dobs(t)), r( ~Dsim(t))

)
=

cov[r( ~Dobs(t)), r( ~Dsim(t))]

σr(~Dobs(t))σr(~Dsim(t))

In the next section, we use this metric to compare
the model performance on different levels of spatial
aggregation. In the clustered case, the vector ~Dsim(t)

will not have N elements (the number of stations),
but K < N , the number of clusters. Each compo-
nent of the vector is the total delay in one cluster.
We want to compare this with the observed data on N
stations. This observed delay vector therefore also has
to be aggregated on the K clusters, by summing the
delays of the stations belonging to the same cluster. To
be able to compare the Spearman correlations across
simulations with different K, the observed and simu-
lated delay vectors of dimension K are de-aggregated
towards dimension N (i.e., equally distributed across
each cluster’s stations), such that we always compute
Spearman’s correlation on vectors of length N , even if
the model was simulated on the network of clusters.

3.4 Clustering

When referring to ‘level of aggregation’, we mean the
spatial resolution of the model. Full resolution would
mean using all stations as entities in the model (i.e.,
no clustering), and lower resolutions involve clusters or
groups of stations as entities in the model. Section 2.3
describes how we translate node and edge parameters
towards a lower resolution. Here we discuss the means
of clustering itself: the process of grouping stations in
an appropriate manner. Many of such clustering meth-
ods exist, and we have chosen to use K-means [26, 27]
on the spatial coordinates of the nodes in the Belgian
railway network (longitude, latitude). We do this for
the following reasons. First of all, we aim to create
groups of stations that are adjacent to each other. Al-
though the way we use K-means does not explicitly
incorporate network topology, it does make sure that
the groups of stations are convex (i.e., there is no sta-
tion from cluster A in the middle of cluster B), since
the railway network is an inherently spatial network.
This geographic basis for the groups also makes them
easier to interpret. Another important reason for using
K-means is that we can choose K — the desired num-
ber of clusters — which we can vary to get different
levels of aggregation to assess the model performance
with.

We vary K between a minimum amount Kmin and
maximum amount Kmax of clusters, which in this case
we set to be 3 and 100, respectively. Note that values of
Kmin lower van 3 are excluded because of the resulting
coarseness of the resulting model, and values of Kmax

higher than 100 are excluded because they result in
many single-station clusters. The K-means algorithm
starts with an initial set of K points (‘centroids’) and
assigns all stations to the closest centroid. Each cen-
troid now corresponds to a cluster of stations. Next,
the centroid coordinates are redefined as the average
of all the stations in its cluster. This process is then
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Figure 3 Clustering results for (a) K = 5, (b) K = 10, (c) K = 25, (d) K = 50, (e) K = 75 and (f) K = 100. For visibility
purposes, only the fourth largest clusters are coloured (in the order of red, blue, green and yellow). Stations not belonging to any
cluster are coloured grey. Cluster size is measured by amount of associated stations. Largest cluster sizes are denoted in panel labels.

iterated (reassigning stations to closet centroid, updat-
ing centroid coordinates) until it converges to a point
where the centroids do not change anymore.

The resulting clusters for several values K are shown
in Fig. 3. In each plot, the four largest clusters in
the network are shown in colours. Observe the small
size of clusters in the K = 100 case, motivating the
Kmax = 100 threshold. We can also see that the largest
clusters (in terms of number of stations) for high values
of K are situated around the major cities of Brussels,
Antwerp and Liège. This can be explained by the fact
that these cities contain numerous smaller railway sta-
tions that are geographically close together, while in
more rural areas like the south and west, the station
density is much smaller. Urban areas are thus expected
to contain larger clusters for relatively large values of
K.

4 Results
In this section, we show the dynamics of the model
and compare it with the data for a number of dis-
rupted days as example. Then, we apply the model to
toy examples to illustrate in which circumstances this
model works well and in which it does not. We end by
discussing the overall performance on all 50 disrupted
days.

4.1 Example simulation
We start by looking at a few example disrupted days.
We start with Jan 15th, 2019, which had a peak delay

at 18:11. Initialising the non-clustered (‘highest reso-
lution’) version of the model at this moment, we sim-
ulated the delays up to three hours after the peak.
The delay evolutions at three major stations (Brus-
sels, Namur and Antwerp) are displayed in Fig. 4a. It
is clearly visible that the simulated delay time series
is much smoother than the real time series, which has
strong jumps as a consequence of the discrete nature
of trains: either delayed trains are going to those sta-
tions (i.e. delay > 0), or not (i.e., delay = 0). This is
also visible in the maps in the upper row of this fig-
ure: at initialisation time, the delays are distributed
very discretely across the network (center-top panel).
The model diffuses the delay across the network after
60 min (right-top panel). In this figure, we can clearly
see one assumption on which the diffusion-like model
is based: it assumes that delay is spread by a very
large amount of trains, and that it travels to all other
adjacent stations instantly (albeit weighted into small
fractions). Of course, in reality this assumption does
not hold.

In panel (b) of Fig. 4 we take the exact same day,
but instead of modelling at full resolution, we cluster
the network into five clusters and redo the analysis.
We observe that, by aggregating over the many trains
present in each cluster, the jumps in delays visible in
panel (a) become less pronounced: the real delay evo-
lution curves per cluster in panel (b) are more smooth.
The general trends of the real delay curves in each re-
spective cluster resembles the simulation quite well,



Dekker et al. Page 11 of 17

Figure 4 Example simulations at various resolutions. Panel (a): highest (non-clustered) resolution simulation of Jan 15th, 2019,
initialised at the peak delay (18:11). The delay evolution over time of three example stations is displayed in blue lines (Brussels,
Namur and Antwerp). The spatial situation of simulated delays at initialisation (middle) and 60 min after initialisation (right) are
also shown. Panel (b): Simulation of the same day, but at an spatially aggregated level of five clusters. Red lines in the left panel
show the temporal evolution of delays for each cluster. Again, the middle and right panels indicate spatial delay distribution at
initialisation and 60 min after initialisation. For clarity, the clusters are shaded in the background. Panel (c): Total delay evolution of
three example bad days: Jan 15th, 2019, July 25th, 2019 and May 4th 2020, all initialised at their peak delay moments. All maps
show delays in seconds, with a cut-off at 500 and 250 seconds respectively, as higher delays were rare on these instances.

even though some undulations are visible. For exam-
ple, increases in delays in cluster 1 around 70 minutes
and in cluster 5 around 40 minutes after initialisation
are visible. This is the result of newly generated delays.
Snapshots of the spatial distributions of the delay are
shown in the maps on the right. They show how delay
dissipates and is transported across the five clusters.
A quick comparison by eye between the highest res-
olution maps (top panels) and these lower resolution
maps indicates the resemblance.

Panel (c) of Fig. 4 shows the evolution of the total
delay in the system (both simulated and real) in three
example disrupted days: Jan 15th, 2019, July 25th,
2019 and May 4th 2020. One can see that the total
delay on Jan 15th and May 4th are simulated quite
well over the whole three hours, but the real total delay
on July 25th quickly overshoots the simulated curve —
pointing towards the effect of newly generated delays.

4.2 Toy model
In this subsection we introduce two toy systems that
allow us to study more fundamental properties of the
model from section 2. They are explained in more de-
tail in Appendix D. The toy systems represent imple-
mentations of the model for networks with very simple

topologies: random networks and star networks. Nu-
merous other toy systems can be thought of, but we
specifically compared these because they can test the
model performance under different levels of the density
of lines and connectivity of nodes. As for the real data
we measure the model performance using the Spear-
man’s rank correlation coefficient.

Fig. 5a shows the performance of the model on a
random graph-topology (with 15 nodes and 20 edges).
We vary the amount of lines p from 20, to 100, up to
210 (which is the maximum number of unique pairs in
a 15-node connected graph). It is clear that the model
performance decreases over time. At first, the differ-
ent values of p do not matter: the model performance
decreases slightly due to the fact that in the model, de-
lays are instantly spreading to various directions fur-
ther in the system, while in these systems (and in real-
ity), delays need to arrive at next stations first (carried
by trains) before moving onto next stations. This leads
to a discrepancy. As soon as the first trains arrive at
next stations (around t = 50), their delays contribute
to delays on new edges where the model already pre-
dicted a small part of it to be. For a small amount of
lines (i.e., low p), the specific direction the train is go-
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Figure 5 Model performance in toy systems and across classifications of disrupted days. Panel (a): Model performance of the
random toy system for three different values of the amount of lines p (see Appendix D for details). Panel (b): Model performance of
the star graph toy system for different values of the amount of nodes N (keeping p fixed, see Appendix D for more details). Panel
(c)-(e): Model performance along time since peak delay of the disrupted days, averaged within each classification (see Appendix B
for details), for the model at (a) full resolution, (b) using K = 10 and (c) using K = 20 clusters. Averages are shown in lines,
shaded areas indicate the range of one standard deviation from the average.

ing is very important. For large amounts of lines (i.e.,

high p), all combined ‘chosen’ directions of the trains

approximate the frequency and other attributes put

in the model. In other words, the model approximates

reality better for densely used lines. And this seems

to be visible: high p (blue line) starts deviating pos-

itively from the red line after t = 50. At much later

points, the initial delays start arriving at their ending

stations, which collapses the correlation down to much

lower values.

For the star graphs (see panel (b) of Fig. 5), where

we fix the number of lines p = 50 we take a look on

the dependence on the number of nodes. The number

of nodes do not seem to matter much, but it is clear

that the star graph indicates much smaller correlations

than the random graph. Although this is merely an

example system, we intuitively expect that as soon as

trains start driving towards the center, other delays

(as a consequence of the diffusion-like nature of the

model) are simulated to be at each of the connected

nodes, quickly limiting the correlation.

The above toy systems reflect that our model works

better for denser networks with the higher number of

train lines.

4.3 Classification of disrupted days

We now investigate whether the initial geographical
delay distribution has an effect on the accuracy of the
diffusion-like model. For this, we distinguish four cat-
egories across the 50 disrupted days, classified by eye
based on the delay patterns on the peak delay mo-
ments. Appendix A discusses this classification in more
detail and also shows the delay maps. The first and
largest group (25 days) contains the situations where
almost all of the delays are localized near Brussels, the
capital city of Belgium and important railway hub. In
Belgium, train lines between east and west and north
and south respectively all pass through Brussels, which
makes it an important factor in the delay dynamics in
the railway network. The second group (7 days) con-
tains situations where the delay is also localized, but
on a different location than Brussels. The third group
(5 days) contains those situations with multiple loca-
tions with high delays. Finally, we consider the group
of stations (13 days) where the delay is not localized
but instead spread out over a large region.

As before, we perform simulations with as initial con-
dition the peak delay distribution. In Fig. 5c-e we show
the evolution of the Spearman correlation over time,
averaged per group. We show this for different spatial



Dekker et al. Page 13 of 17

resolutions. We find that there are no clear differences
between the groups. The situations with delays local-
ized near a city which is not Brussels (shown in orange)
seem to perform a bit worse than the others, but we
should be very cautious in interpreting this: the vari-
ation within a group is very large, as shown in the
shaded areas.

The fact that there is no clear difference in model
performance between groups could indicate that the
spatial localization of the disruption is not a good de-
terminant of the accuracy of our diffusion-like model.
The obvious question then is: is there a better mea-
sure, or characteristic, which can distinguish between
different disrupted situations and indicates whether a
diffusion-like delay spread is warranted? We plan to
explore this in future work.

4.4 Overall performance
We now turn to the overall performance of the model
over the 50 disrupted days. On each of these days, we
determine the peak in the total delay and simulate
the delays up to two hours after this peak. We then
compare what really happened throughout these two
hours to what we simulated by computing the Spear-
man’s correlation coefficient ρ at each time point (see
Eqn. 13). We do this for each number of clusters K
(3 ≤ K ≤ 100). The average correlations per K and
t over the 50 disrupted days is shown in Fig. 6a. It is
clear that in general, the higher t, the lower the corre-
lation. This is intuitively correct: the higher the time
after initialisation, the more the model will start dif-
fering from reality, for example due to new incoming
delays in the real data that are not captured by the
model or errors the model that grow with time. In the
same panel, we see that higher amount of clusters K
also decreases the correlation, which is less obvious. On
the one hand, information is lost when coarse graining:
for lower values of K detailed information on the po-
sitioning of the trains is put together into larger clus-
ters, which may reduce their simulation quality. On the
other hand, the diffusion-like spreading is presumably
more accurate when looking at a larger scale (lower
K), since on these scales the discreteness of delays is
averaged out in the data, too. Interestingly, panel (a)
also shows bands of K values with near-equal correla-
tions: up to K = 8, the correlations seem to be more
or less the same (very high), at least up to t = 45
min. The second band of near-equal correlations is be-
tween 8 ≤ K ≤ 17, followed by a more gradual decay
of correlations with K, but a sharp decrease in those
correlations at K ≈ 27. One reason for these sudden
correlation decreases could be a strong rearranging in
the clustering at those K values: e.g., in Fig. 3, panels
(a) and (b), one can see that for K = 5, Brussels is at

the border of the red cluster, while at K = 10, it is in
fact in the middle of a cluster. Such rearranging can
be quite sudden from one value of K to another. In
contrast, the slow decrease in correlation within those
K-bands can be related to a slow change in the clus-
tering structure.

Panel (b) in Fig. 6 shows the correlation ρ 40 minutes
after model initialisation, as function of K, for each in-
dividual disrupted day. Clearly, these curves seem less
gradual as the average displayed in panel (a). In fact,
changing K by 1 may impact the correlation up to
0.5 in some exceptional cases — specifically when K
is small (which makes sense as the clustering structure
changes rapidly around these values). The average is
displayed in black, and the gradual decrease with K is
visible. Red, thin lines indicate days on which the max-
imum correlation is at values K ≥ 9, which is counter-
acting the overall pattern we see that the correlation
keeps increasing with decreasing K — on these seven
days, the model performs best on a non-trivial level of
K, between 9 and 11. Appendix C discusses this non-
trivial level (i.e., K = 10) more in-depth and potential
reasons why this clustering configuration may be opti-
mal in some circumstances. The blue lines indicate all
other days (where optimal correlations are found with
very low values of K).

4.5 Model discussion

Our results show that modelling delay as a diffusion-
like spreading phenomenon clearly has limitations: on
the scale of individual stations (Fig. 4a), the discrete
nature of delays, accompanied with periodic undula-
tions and sharp changes in delay is not simulated at
all. Also, delays bound to trains usually travel in a
specified direction, which is not captured by our model
(which is a weighted form of unidirectional spreading).
The diffusion-like-spreading assumption corresponds
to the view that the delay propagation is based not on
single trains carrying a delay, but on many tiny trains,
all going in various possible directions with their por-
tion of the delay, which are randomly chosen, weighted
by the variables in the model (e.g., frequency and
travel times). Thinking about the diffusion-like model
in this way motivates the use of coarse graining to im-
prove the model. Qualitatively we show this in Fig. 4b
and c and quantitatively this is discussed in Fig. 6:
a clear increase in performance is visible when com-
paring results from the clustered version of the model
to clustered data. Still, there is a loss of correlation
with simulation time: the further from the initialisa-
tion time, the more new trains and delays enter the
system and change the real delay time series, unac-
counted for by the model. It is important to note that
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Figure 6 Panel (a): Average Spearman’s rank correlation coefficients in colours averaged over the 50 disrupted days, for various
values of K (vertical) and time points after model initialisation (horizontal, in minutes). The contours indicate the levels 0.5, 0.6,
0.7, 0.8 and 0.9. The vertical dashed line corresponds to 40 minutes after initialisation, which is used in the other panel. Panel (b):
Spearman’s rank correlation coefficients at 40 min after initialisation. Individual days are split into days that have their maximum at
values of K < 9 (in blue) and those that have their optimum performance at values of K ≥ 9 (in red). The black line indicates the
50-day average.

the latter will always be a caveat for delay propaga-
tion models due to the inherent stochasticity of delay
generation.

The toy systems we tested are meant as illustrations
to indicate what the model benefits from: average pat-
terns. As soon as the network is dense and there are
many trains travelling on it, the real delays spread
roughly along simple statistics like train frequencies,
which are the basis of this model. But as soon as the
network becomes more sparse, especially when it be-
comes tree-like, the correlation drops.

Our discussion on the classification of disrupted sit-
uations showed no clear differences in model perfor-
mance based on the initial condition, at least as far as
its localization (which is the basis of the classification)
is concerned. However, our approach was naive: we
classified the disrupted days by eye into four groups.
We cannot conclude that there are no other, better
metrics that do distinguish situations in which the de-
lays spread in a more diffusion-like manner than in
other situations — something we do find in the toy
examples. Hence, we propose to investigate such met-
rics further in future work.

The high performance at low values of K implies
that a coarse resolution is better suited for these type
of models. The disadvantage of that is the loss of de-
tail. Also, as shown in the toy examples, there are cases
we can think of that are not suitable to be modelled
well by the model: high sparsity of trains increases the
discrete nature of delays and decreases the applicabil-
ity of the mean-field approximation. Another example
where these models have low accuracy is when the de-
lays are mainly governed by stochasticity, and not by
propagation dynamics. This is the case in situations
where the overall delay level in the network is low.
Such situations are difficult to capture well in many
delay propagation models, in fact.

We propose therefore that the model presented here
finds its niche in the problem of simulating the prop-
agation of severe delays on a large scale. In such cir-
cumstances, the exact magnitude of delays at fixed po-
sitions is not always of most interest, while the general
trend, speed of delay decay and direction of the overall
bulk of delay are of high importance. Such information
is well retrievable from the clustered model. In fact,
this model is arguably very suited to analyse these
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large-scale dynamics and how they depend on network
topology and high-level parameters such as train fre-
quencies. All information of the system’s dynamics is
embedded in the G-matrix (Eqn. 8) — a single ma-
trix that can be analysed using spectral methods to
investigate its eigenproperties, for example. Another
advantage of this model is its simplicity. Using only
a small set of parameters that are easily retrievable
from the schedules (which can usually be found online
for any European railway system), one can model the
whole railways with a single simple differential equa-
tion (Eqn. 7).

5 Conclusions
In summary, we devised a model that simulates delays
as a diffusion-like spreading phenomenon. The intu-
ition is that, on average, the direction and dissipation
of delay relates to aspects of the schedule such as train
frequencies and travel times. We apply the model to
the Belgian railways and investigate its strengths and
weaknesses. In particular, we find that the model per-
formance increases sharply when coarse graining by
grouping stations together into clusters. We conclude
that this model is mainly of use when working on larger
scales and aiming to identify system properties related
to delay dissipation and general directions of delay
propagation, rather than accurate individual predic-
tion.

We have illustrated the workings and performance
of the model using the Belgian railway network as
an example. Our framework, however, is general and
could be applied to any country. Nevertheless, there
are some international differences that should be taken
into account. One aspect which may influence the per-
formance of the model in different countries, is the po-
sition of important railway hubs. Hubs, such as large
cities, are expected to play an important role in the
delay propagation dynamics. In Belgium, these hubs
are well distributed across the country, apart from the
more rural areas in the south-east and far-west. This
means that, in our geographic clustering, the hubs usu-
ally fall into different clusters. The Netherlands, in
contrast, has its most important cities concentrated
in the west of the country. In a model with a small
number of clusters, it is possible that many of these
hubs end up in the same cluster, which may have an
unwanted effect on the model’s performance and use-
fulness. For this reason, it might be important to con-
sider other clustering methods.

Not only geographic differences should be consid-
ered when trying to extrapolate these results interna-
tionally. Various factors impacting delay propagation
vary from country to country, like policy, protocols,
infrastructure details and delay statistics in general

[36]. However, we argue that the increase in model
performance when coarse graining is robust to these
changes, because the reason for it is of a more theoret-
ical nature: diffusion-like spreading captures average
delay fluxes, which are more prominent in clustered
systems.

Applying the model to other countries is straightfor-
ward, since its ingredients are general and easily ob-
tained: train turnover rates, frequencies, travel times
and adjacency matrices are readily derived from net-
work architecture and railway schedules. A natural ex-
tension of our work would thus be to compare the net-
work models for different countries and explore the
properties in different spatial resolutions.

All of the model’s dynamics are essentially derived
from the matrix G, also for the clustered versions. Ex-
ploring the spectral and topological properties of the
weighted network that G describes and relating those
properties to the dynamics of the railway system are
of interest in our future work. It is possible that a
few simple metrics, derived from this matrix, could be
used for a quick international comparison of railway
networks.

Despite its simplicity, this model already gives us a
tool to better understand railway network dynamics.
However, there are a number improvements to be made
in future work. For example, it is possible to add noise
to the model, to account for the generation of new de-
lays. The magnitude and distribution of stochastically
generated delays at different stations can possibly be
derived from the data. It would be interesting to see
how noise may lead to an ‘equilibrium’ delay distribu-
tion, in contrast to the highly disrupted situations we
considered in this paper.

Once delay is generated in a real railway system,
there are mechanisms and feedback loops that can am-
plify it or mitigate it. Such mechanisms are not present
in the model, but would be a valuable addition. Such
feedbacks can be nonlinear, complicating the model
but possibly generating new dynamics. Finally, our
model is ‘first-order’: the spread of delay is determined
only by where it is, not where it came from. Including
a memory mechanism will probably increase the accu-
racy of the model, but may also make it more complex.
One way to do this is to not consider delay on stations,
but instead on edges. In such a version of the model,
the directional information of trains is partially kept,
contrary to in our station-based model.

Diffusion-like spreading is researched in many other
fields other than transport literature. In particular, it
is well established that the vulnerability versus per-
turbations of networked systems including social, epi-
demiological and engineering systems depends on (any
quantification of) the modularity [24]: a more modu-
lar dynamical structure prevents large-scale spreading
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[37, 2]. Determining the modularity from the G-matrix
can be an interesting next step, as the G-matrix does
not only incorporate topology, but weights each edge
by features from the schedules.

The results in this paper are not only of interest for
modellers, but also for railway practitioners. First, the
model output can provide insights into system-wide
properties, like delay decay and general directions of
delay propagation. Second, it is easy to use and all in-
formation is embedded in the G matrix. For example,
practitioners might be interested in how isolated re-
gions are from each other: the off-diagonal elements
of the G matrix at the appropriate level of coarse
graining reflects how strongly regions are connected,
i.e. how much delay flows from one region to another.
From an operational point of view, optimal levels of
clustering like those seen for the red curves in Fig. 6b
(see also Appendix C) can be used to categorise sit-
uations, issue protocols or form threat assessments in
terms of delays.

We hope that the model itself and the results of the
application to Belgium motivates researchers and prac-
titioners to vary the spatial aggregation level to non-
trivial levels. We believe these diffusion-like models can
offer useful insights on how aspects such as network
structure, basic schedule parameters and spatial reso-
lution affect the delay propagation through a railway
network. Ultimately, such models can lead to a better
understanding of railway delay dynamics.
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