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Abstract. We study fixed points of iterates of dynamically affine maps (a
generalisation of Lattès maps) over algebraically closed fields of positive char-
acteristic p. We present and study certain hypotheses that imply a dichotomy
for the Artin–Mazur zeta function of the dynamical system: it is either rational
or non-holonomic, depending on specific characteristics of the map. We also
study the algebraicity of the so-called tame zeta function, the generating func-
tion for periodic points of order coprime to p. We then verify these hypotheses
for dynamically affine maps on the projective line, generalising previous work
of Bridy, and, in arbitrary dimension, for maps on Kummer varieties arising
from multiplication by integers on abelian varieties.

1. Introduction

We consider so-called dynamically affine maps, a concept in algebraic dynamics
introduced by Silverman [43, §6.8] in order to unify various interesting examples,
such as Chebyshev and Lattès maps, cousins of which occur in complex dynamics
under the name of “finite quotients of affine maps” or “rational maps with flat
orbifold metric” [35]. We will only consider the case of a ground field of positive
characteristic p > 0. (Most of our methods would simplify considerably in charac-
teristic zero and lead to results of a rather different flavour.) Before we present the
definition, we will illustrate by approximative pictures (constructed in Mathemat-

ica [51], using the function RandomInteger for randomisation) what distinguishes
the dynamics of such maps from that of other polynomials maps and random maps.

1.1. A compilation of (restrictions of) maps. Let f : S → S denote a
map from a finite set S to itself. It can be represented by a directed graph Df

(sometimes called the “function digraph” of f), with vertices labelled by elements
of S and an arrow from a vertex x to a vertex y occurring precisely if f(x) = y. In
Figure 1, we plotted the graphs corresponding to two random such maps where S
is a set with 73 + 1 elements.
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Now consider a rational function f : P1(Fp) → P1(Fp) defined over Fp (in
this subsection we assume for convenience that p �= 2). To represent f pictorially,
consider the restrictions f |FpN

: P1(FpN) → P1(FpN) for various N . In Figure 2,

we plotted the graph of the polynomial function x �→ x2 + 1 for various p and N ,
and in Figure 3, we did the same for x �→ x2 − 2. At first sight, the graph for a
random map looks similar to the graph for x �→ x2+1, but the graph for x �→ x2−2
looks much more structured. This is no coincidence; Figure 3 represents the graph
of restrictions of a dynamically affine map, whereas Figure 2 does not.

Figure 1. Graph of two random maps on a set with 73 + 1 elements

Figure 2. Graphs of x �→ x2 + 1 on P1 over a field with 73 and
172 elements (left to right)

A common feature of all function digraphs is that their connected components
are cycles (consisting of periodic points) with attached trees. What is different
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DYNAMICALLY AFFINE MAPS IN POSITIVE CHARACTERISTIC 127

in Figure 3 is the symmetry in the attached trees; this is well-understood for the
polynomial x �→ x2 − 2, which relates to the Lucas–Lehmer test and failure of the
Pollard rho method of factorisation, see, e.g. [38,50]. Let us mention one further
result [29, Thm. 1.5 & Example 7.2]: for the graph of a quadratic polynomial with
integer coefficients, the value of

lim inf
p→+∞

#{x ∈ Fp belongs to a cycle of Df mod p}/p

is 0 for x2 + 1 but 1/4 for x2 − 2.

Figure 3. Graphs of x �→ x2 − 2 on P1 over a field with 73 and
172 elements (left to right)

Figure 4. Graphs of the Lattès map arising from doubling mod-
ulo inversion on the elliptic curve E : y2 = x(x − 1)(x − 2) over a
field with 113 and 232 elements (left to right)

To explain what is special about the dynamically affine map x �→ x2 − 2
as opposed to the polynomial map x �→ x2 + 1, notice that x2 − 2 = T2(x),
where T2 is the normalised Chebyshev polynomial of the second kind, defined by
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Tn(x+x−1) = xn+x−n. This reveals a hidden group structure: the map arises from
the group endomorphism σ : Gm → Gm, x �→ x2 on the multiplicative group Gm

after quotienting on both sides by the automorphism group Γ = {1, γ} generated
by the inversion γ : Gm → Gm, z �→ z−1 that commutes with σ. That x2 + 1 (for
p �= 2, 3) is not special in this sense follows from the classification of dynamically
affine maps on P1 [9].

We perform a similar construction using another algebraic group, the elliptic
curve E : y2 = x(x − 1)(x − 2), and the doubling map σ : E → E,P �→ 2P . After
taking the quotient by Γ = 〈P �→ −P 〉, we find a so-called Lattès map P1 → P1

which we have graphed over various finite fields in Figure 4. Again, we see a very
structured picture, rather different from Figure 1 and Figure 2.

We will not dwell any longer on the study of iterations of maps on finite sets,
both random and “polynomial over finite fields”—a rich subject in itself—but rather
switch to our main object of study: dynamically affine maps over algebraically
closed fields of positive characteristic.

1.2. What is a dynamically affine map? Let V be an algebraic variety
over an algebraically closed field K of characteristic p and f : V → V a morphism.
We make the following assumption throughout:

(C) The map f is confined, i.e. the number of fixed points fn of the n-th iterate
fn of f is finite for all n.

Definition. A morphism f : V → V of an algebraic variety V over K is called
dynamically affine if there exist:

(i) a connected commutative algebraic group (G,+);
(ii) an affine morphism ψ : G → G, that is, a map of the form

g �→ ψ(g) = σ(g) + h,

where σ ∈ End(G) is a confined isogeny (i.e. a surjective homomorphism
with finite kernel) and h ∈ G(K);

(iii) a finite subgroup Γ ⊆ Aut(G); and
(iv) a morphism ι : Γ\G → V that identifies Γ\G with a Zariski-dense open

subset of V

such that the following diagram commutes:

(1)

G G

Γ\G Γ\G

V V.

ψ

π π

ι ι

f

Remark. In this paper, we adhere to the convention that a dynamically affine
map consists of all the given (fixed) data in the definition, so that we can refer to the
constituents (G,ψ, σ, h,Γ, ι) directly. The same map f might arise from different
sets of data, and in our sense be a different dynamically affine map despite being
the same map on V .

Example. As explained above, the map P1 → P1, x �→ x2 − 2 is dynamically
affine for the data (G=Gm, σ : x �→ x2, h=1,Γ= 〈z �→ z−1〉, ι : Γ\Gm 	A1 ↪→P1)
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DYNAMICALLY AFFINE MAPS IN POSITIVE CHARACTERISTIC 129

(written multiplicatively); its restrictions (to certain finite fields) were represented
in Figure 3.

The map P1 → P1, x �→ (x4− 4x2− 4)/(4x(x− 1)(x− 2)) is dynamically affine
for the data (G = E, σ : P �→ 2P, h = 0E ,Γ = 〈P �→ −P 〉, ι : Γ\E ∼= P1 → P1),
where E is the elliptic curve y2 = x(x− 1)(x− 2); its restrictions were represented
in Figure 4.

Remark. We have slightly modified Silverman’s definition [43, §6.8] of a dy-
namically affine map. Instead of assuming confinedness of σ, Silverman imposes
the condition deg(σ) � 2 (as in Erëmenko’s classification theorem [20]). As long
as G is one-dimensional and K = Fp, the definitions are equivalent.

In a general setup one could assume merely that σ is an isogeny and only require
f to be confined. This reduces, after some case distinctions, to the case where σ is
a confined isogeny, so we choose to put the latter property in the definition.

1.3. Counting fixed points, orbits, and the dynamical Artin–Mazur
zeta function. A natural way to begin a quantitative analysis of a discrete dy-
namical system such as iteration of a map f : V → V is to consider the sequence
(fn) given by the number of fixed points of the n-th iterate of f . Confinedness
implies that this is a well-defined sequence of integers, and we can form the (full)
Artin–Mazur dynamical zeta function ([2], [45, §4]) defined as

(2) ζf (z) := exp

⎛⎝∑
n�1

fn
zn

n

⎞⎠ .

We consider this a priori as a formal power series, but the question of convergence
in a neighbourhood of z = 0 (equivalent to fn growing at most exponentially in n)
is interesting, and we study this in Appendix A.

Counting fixed points and closed orbits is related: if P� denotes the number of
closed orbits of length �, then fn =

∑
�|n �P�, and there is an “Euler product”

(3) ζf (z) =
∏
C

1

1− z�(C)
,

where the product runs over the closed orbits C.
It is interesting to understand the nature of the function ζf (z) (Smale [45,

Problem 4.5]); Artin and Mazur [2, Question 2 on p. 84]). For example, rationality
or algebraicity of ζf (z) means that there is an easy recipe to compute all fn from a
finite amount of data (in the rational case, it implies that (fn) is linearly recurrent).
Zeta functions of more general dynamical systems can:

− be rational : e.g. for “Axiom A” diffeomorphisms by Manning [32, Cor. 2],
for rational functions of degree � 2 on the Riemann sphere by Hinkkanen
[27, Thm. 1], for the Weil zeta function (when f is the Frobenius map
on a variety defined over a finite field) by Dwork [19] and Grothendieck
[26, Cor. 5.2], for endomorphisms of real tori [4, Thm. 1], and when fn
replaced by the Lefschetz number of fn [45];

− be algebraic but not rational : e.g. when f is an orientation preserving sur-
face homeomorphism and fn is replaced by the Nielsen number of fn by
Pilyugina and Fel’shtyn [36], [21, Thm. 36];
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− be transcendental : e.g. for restrictions of shifts by Bowen and Lanford [7, §3–
4] and for separable dynamically affine maps on P1(Fp) by Bridy [8, Thm.
1], [9, Thm. 1.2 & 1.3];

− have an essential singularity : e.g. for some flows by Gallavotti [23, §4];
− have a natural boundary : e.g. for certain beta-transformations by Flatto, La-

garias and Poonen [22, Thm. 2.4], for some Zd-actions (d � 2) by Lind
[31], for some flows by Pollicott [37, §4] and Ruelle [40], for a “ran-
dom” such zeta function by Buzzi [10], for some explicit automorphisms
of solenoids by Bell, Miles, and Ward [6], and for most endomorphisms of
abelian varieties in characteristic p > 0 by the first two authors [11].

Following the philosophy of [11], we will also study “tame dynamics” via the
so-called tame zeta function defined by

(4) ζ∗f (z) := exp

⎛⎝∑
p�n

fn
zn

n

⎞⎠ ,

summing only over n that are not divisible by p. Tame and “full” dynamics are
related by the formulae in (5) below, but the tame zeta function tends to be better
behaved. In Appendix B, we give some explicit expressions for the tame zeta
function of several dynamically affine maps on P1.

1.4. Main results. Bridy studied the zeta function for dynamically affine
maps on V = P1. The main results in [9, Thm. 1.2 & 1.3] imply that if f is
dynamically affine for V = P1 and K = Fp, then ζf (z) is transcendental over
C(z) (the field of rational functions with complex coefficients) if and only if f is
separable; otherwise ζf (z) is rational. Bridy’s full result applies to all K; the proof
uses a case-by-case analysis (see Table 1 in Appendix B below) and is based on the
relation between transcendence and automata theory. This starkly contrasts with
the fact that in characteristic zero all dynamically affine maps have a rational zeta
function (a much more general result by Hinkkanen was quoted above).

In this paper, we prove a strengthening of Bridy’s result. For this, we need
some further concepts. Let f : V → V be a dynamically affine map.

Definition. An endomorphism σ ∈ End(G) is said to be coseparable if σn− 1
is a separable isogeny for all n ∈ Z>0. A dynamically affine map f is called
coseparable if the associated isogeny σ is coseparable.

Remark. In [11], we called a coseparable endomorphism of an abelian va-
riety “very inseparable” and showed that this implies inseparability [11, 6.5(ii)].
However, it is not true that coseparable dynamically affine maps are inseparable in
general. For example, if f is the map f : P1 → P1, x �→ tx for t ∈ K transcenden-
tal over Fp, then f is both coseparable and separable (a more general statement is
given in [9, Thm. 1.3]).

Definition. A holomorphic function on a connected open subset Ω ⊆ C is said
to have a natural boundary along ∂Ω if it has no holomorphic continuation to any
larger such Ω′ � Ω [41, §6]. We call a function F (z) root-rational if F (z)t ∈ C(z) for
some t ∈ Z>0. We call F (z) holonomic if it satisfies a nontrivial linear differential
equation with coefficients in C(z).
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DYNAMICALLY AFFINE MAPS IN POSITIVE CHARACTERISTIC 131

Since algebraic functions are holonomic [49, Thm. 6.4.6], the following is indeed a
strengthening of Bridy’s result. At the same time, it shows that “tame” dynamics
is better behaved.

Theorem A. Assume f : P1 → P1 is a dynamically affine map.

(i) If f is coseparable, ζf (z) is a rational function; otherwise, ζf (z) is not
holonomic; more precisely, it is a product of a root-rational function and
a function admitting a natural boundary along its circle of convergence.

(ii) For all f , ζ∗f (z) is root-rational; equivalently, it is algebraic and satisfies

a first order differential equation over C(z).

We mention an amusing corollary of Theorem A: although ζf (z) is in general not
holonomic, the pair (ζf (z), ζfp(z)) always satisfies a simple differential equation;
see Corollary 2.4 for a precise statement.

Rather than using results from automata theory, we prove Theorem A essen-
tially relying on a method of Mahler (see [5]). We structure the proof abstractly,
showing the result for dynamically affine maps (in any dimension) that satisfy cer-
tain hypotheses (H1)–(H4) (see Section 3), and then verify these for V = P1.

We give a more general discussion of when the hypotheses hold or fail, in this
way producing the first higher-dimensional examples of dynamically affine maps
in positive characteristic with nontrivial Γ where we understand the nature of the
dynamical zeta function. Recall that the quotient of an abelian variety A by the
group Γ = {[±1]} is called a Kummer variety.

Theorem B. Let V denote a Kummer variety arising from an abelian va-
riety A, and let f : V → V denote the dynamically affine map induced by the
multiplication-by-m map σ = [m] for some integer m � 2. Then ζ∗f (z) is root-

rational. The function ζf (z) is not holonomic if m is coprime to p and rational
otherwise.

Remark. We use the word “Kummer variety” for the variety V = Γ\A that,
for dimA > 1, is singular at points in the finite subset Γ\A[2] of V , but the name is

sometimes used for the minimal resolution Ṽ of V . Since the set of singular points
is finite and stable by f , the map f can be seen as a birational map f : Ṽ ��� Ṽ with
locus of indeterminacy stable by f , and the above theorem can be interpreted as a
statement about the periodic points of this birational map outside the preimage of
the singular points.

Remark. The non-holonomicity shows that the sequence (fn) of number of
fixed points of the iterates of f is somewhat “complex”, but it does not mean that
fn is “uncomputable”. As a matter of fact, the results in [12] say that for f an en-
domorphism of an algebraic group there exists a formula expressing fn in terms of a
linear recurrent sequence and two specific periodic sequences of integers that control
a p-adic deviation of fn from being linearly recurrent. These data can in principle
be computed by breaking up the algebraic group into abelian varieties, tori, vector
groups, and semisimple groups. Similarly, one can in principle trace through our
proofs to compute fn for dynamically affine maps satisfying our hypotheses.

We finish the introduction by mentioning a few possibilities for future research.

− The relation between fixed points and closed orbits may be used to study the
distribution of closed orbit lengths (analogously to the prime number theorem).
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Because of the analytic nature of the function ζf (z) revealed by our results,
one cannot in general use standard Tauberian methods. We have studied this
question via a different route for maps on abelian varieties [11] and for maps
on general algebraic groups [12] (which covers the case of dynamically affine
maps with trivial Γ, h, and ι, but is more general, since we do not require the
group G to be commutative). It would be interesting to extend this to general
dynamically affine maps.

− We have no good understanding of the dynamical zeta function of general
rational functions on P1 that are not dynamically affine, e.g. x �→ x2 + 1 in
characteristic p � 5 (see [8, Question 2]). It would be interesting to investigate
the nature of the (tame) zeta function for such examples.

− Inhowfar the hypotheses (H1)–(H4) are necessary to reach the conclusion of
the main theorem merits attention, since they are extracted from a “method
of proof” rather than intrinsic.

− In general, V may be singular. It is interesting to study whether V admits
a resolution to which f extends as a morphism, and the relation between the
zeta function of that extended morphism and the zeta function of f . This
is nontrivial already for Kummer surfaces (where, for p > 2, the minimal
resolution is a K3 surface, and hence has trivial étale fundamental group [28,
pp. 3–6]).

The structure of the paper is as follows: After some generalities, we introduce the
hypotheses in Section 3 and prove the main result, conditional on the hypotheses, in
the following section. Then, in Section 5 we discuss the validity of the hypotheses in
various settings (giving examples and counterexamples). The main theorems then
follow immediately from these results. In the first appendix, we consider the radius
of convergence of ζf (z), and in the second appendix, we compute a collection of
examples of tame zeta functions of dynamically affine maps.

2. Generalities

Relations between zeta functions.

Proposition 2.1. The tame and full dynamical zeta function are related by
the following equalities of formal power series:

(5) ζ∗f (z) =
ζf (z)

p
√
ζfp(zp)

, ζf (z) =
∏
i�0

pi
√
ζ∗
fpi

(zpi).

Proof. For the first equality, note that

log ζ∗f (z) =
∑
n�1

fn
zn

n
− 1

p

∑
m�1

fpm
zpm

m
= log

(
ζf (z)ζfp(zp)−1/p

)
.

The second equality follows by applying the first one to the functions fpi

for i ∈
Z�0. �

Remark 2.2. A useful computational fact is the following: if f : S → S is a
map and S decomposes as a union S = S1 ∪ S2 with f(S1) ⊆ S1 and f(S2) ⊆ S2,
then

ζf (z) =
ζf |S1

(z) · ζf |S2
(z)

ζf |S1∩S2
(z)

,

and similarly for ζ∗f (z).
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Recurrences. We recall some well-known facts (see e.g. [11, §1]). If (an)n�1 is
a sequence of complex numbers, then the ordinary generating function

∑
n�1 anz

n

is rational if and only if the sequence is linear recurrent, and if and only if there
exist λi ∈ C× and polynomials pi ∈ C[z] such that

(6) an =
r∑

i=1

pi(n)λ
n
i

for sufficiently large n. The statement that the zeta function

(7) F (z) = exp

⎛⎝∑
n�1

an
zn

n

⎞⎠
is rational is stronger: this happens if and only if Equation (6) holds for all n ∈ Z>0

with the pi(n) replaced by integers mi independent of n. The λi occurring in (6)
are called the roots of the recurrence, the polynomials pi their multiplicities. We
say that (an) satisfies the dominant root assumption if there is a unique root λi of
maximal absolute value, possibly with multiplicity �= 1.

For a zeta function F (z) in (7), we may consider its tame variant

F ∗(z) = exp

⎛⎜⎜⎝∑
n�1
p�n

an
zn

n

⎞⎟⎟⎠ .

It follows from the formula

(8) F ∗(z) = F (z) ·

⎛⎝p−1∏
j=0

F (e
2iπj
p z)

⎞⎠−1/p

that if F (z) is rational, then F ∗(z) is root-rational.

Algebraicity properties and differential equations. If a formal power
series F (z) satisfies a nontrivial linear differential equation over C(z), it is said to
be holonomic. If F (z) is algebraic over C(z), it is holonomic [49, Thm. 6.4.6]. On
the other hand, if F (z) converges on some nontrivial open disc D and has natural
boundary along ∂D, then it cannot be holonomic, since a holonomic function has
only finitely many singularities (for a precise statement, see [48, 4(a)]).

The equivalence statement in Theorem A(ii) is implied by the following lemma,
which is certainly well-known, but for which we were unable to find a convenient
reference. (A more general result can be found in [49, Exercise 6.62] together with
an argument attributed to B. Dwork and M. F. Singer.)

Lemma 2.3. An algebraic function F (z) ∈ C((z)) is root-rational if and only if
f satisfies a first order homogeneous differential equation F ′(z) = R(z)F (z) with
R(z) ∈ C(z).

Proof. First assume that F (z) is root-rational, i.e. F (z) = q(z)k with q(z) ∈
C(z), k ∈ Q. We may assume that q(z) �= 0, and then F (z) satisfies the equation

F (z)′ = R(z)F (z) with R(z) = kq′(z)
q(z) .

The converse direction can be proven by direct integration and partial fraction
expansion of R(z), but we give a somewhat different argument. Assume that F (z)
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satisfies the equation F (z)′ = R(z)F (z) with R(z) ∈ C(z), where we may assume
R(z) �= 0. Let P ∈ C(z)[t] be the minimal polynomial of F (z) over C(z). Write
P = td + ad−1(z)t

d−1 + · · ·+ a0(z) with ai(z) ∈ C(z). Differentiating the equation
P (F (z)) = 0 gives

(9) PD(F (z)) + P ′(F (z))F (z)′ = 0,

where PD =
∑d

i=0 a
′
i(z)t

i is obtained from P by differentiating the coefficients and

P ′ =
∑d

i=0 iai(z)t
i−1 is the usual derivative of P . Substituting F ′(z) = R(z)F (z)

into (9), we see that F is a root of the polynomial PD + tR(z)P ′, which is a
polynomial of degree d with leading coefficient dR(z), and hence

PD + tR(z)P ′ = dR(z)P.

Comparing the coefficients at ti for i = 0, . . . , d− 1, we see that each ai(z) satisfies
the equation

a′i(z) = (d− i)R(z)ai(z),

which differs from the equation satisfied by F (z) only by a multiplicative constant.
Comparing these solutions gives ai(z) = ciF (z)d−i for some ci ∈ C. If ai(z) = 0
for all i ∈ {1, . . . , d}, we get F (z) = 0. Otherwise, for some i we have ai(z) �= 0,
and F (z) = (c−1

i ai(z))
1/(d−i) is root-rational. �

Thus, Theorem A(ii) immediately implies the result alluded to in the introduc-
tion:

Corollary 2.4. If f : P1 → P1 is a dynamically affine map, then the pair
of zeta functions (F1(z), F2(z)) = (ζf (z), ζfp(z)) satisfies a nonlinear first order
differential equation

F ′
1(z)F2(z

p)− F1(z)F
′
2(z

p)zp−1 = R(z)F1(z)F2(z
p)

for some rational function R(z) ∈ C(z), regardless of whether or not f is cosepa-
rable.

Proof. The root-rationality of ζ∗f (z) implies that it satisfies a differential equa-

tion of the form (ζ∗f (z))
′ = R(z)ζ∗f (z) for some rational function R(z) ∈ C(z). The

result follows by taking derivatives in the first identity in (5). �

3. Introduction of the general hypotheses

Let f : V → V be a dynamically affine map with data as in diagram (1). Denote
by Orbf (x) := {fn(x) | n ∈ Z�0} the forward orbit of x ∈ V (K) under f . For an
isogeny τ ∈ End(G), we denote by deg(τ ) and degi(τ ) the degree and inseparable
degree of the field extension K(G)/τ∗K(G), respectively. Then we have

(10) #ker(τ ) = deg(τ )/ degi(τ ).

The following lemma, taken from [9, Lemma 2.4] (cf. Remark 4.2), will be crucial
to control the sequence (fn), as it allows us to express fn in terms of kernels of
isogenies on the algebraic group G. The proof will be given in Section 4.

Lemma 3.1. Let f : V → V be a dynamically affine map. Consider the set

C := {x ∈ V (K) | Orbf (x) ∩ ι((Γ\G)(K)) = ∅}.
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DYNAMICALLY AFFINE MAPS IN POSITIVE CHARACTERISTIC 135

Then

(11) fn = (f |C)n +
1

|Γ|
∑
γ∈Γ

#ker(σn − γ).

Combining Lemma 3.1 with (10), we see that in order to understand the sequence
(fn) it suffices to control, for every γ ∈ Γ,

(a) the sequence (f |C)n;
(b) the “inseparable degree sequence” degi(σ

n − γ);
(c) the “degree sequence” deg(σn − γ).

Notice that the translation parameter h ∈ G(K) no longer occurs in (11).
We now introduce the four hypotheses that we require in order to prove the

main theorems. The first three hypotheses (H1), (H2) and (H3) are employed
to control the sequences (a), (b) and (c), respectively, while (H4) is a technical
hypothesis that we require to avoid an unexpected cancellation of singularities in
our proof of the existence of a natural boundary.

We use the following

convention: If a hypothesis is assumed in an environment (def-
inition, lemma, theorem, hypothesis, . . . ), we label the environ-
ment by this hypothesis in square brackets.

Hypothesis (H1). The zeta function corresponding to f |C is rational.

For the second hypothesis, we recall the following notion: a discrete valuation
on a (not necessarily commutative) ring R is a map v : R → Z∪{∞} such that for
all τ, τ1, τ2 ∈ R we have v(τ ) = ∞ if and only if τ = 0, v(τ1τ2) = v(τ1)+ v(τ2), and
v(τ1 + τ2) � min{v(τ1), v(τ2)}. It follows from these properties that v(τ1 + τ2) =
min{v(τ1), v(τ2)} whenever v(τ1) �= v(τ2).

Hypothesis (H2). Both σ and Γ belong to a subring R of End(G) all of
whose nonzero elements are isogenies, and such that there exists a discrete valuation
v : R → Z∪{∞} satisfying degi(τ ) = pv(τ) for all isogenies τ ∈ R.

Note that the valuation v considered in (H2) takes only nonnegative values.
Before introducing the last two hypotheses, we set up some notation.

Notation 3.2. Let v be as in (H2). For m ∈ Z�0, we let

Γm := {γ ∈ Γ | v(γ − 1) � m}.

This defines a descending filtration of normal subgroups of Γ

Γ = Γ0 ⊇ Γ1 ⊇ · · · ⊇ ΓN = 1,

where

N := max{v(γ − 1) | γ ∈ Γ, γ �= 1}+ 1.

Form ∈ Z�0 we define sm ∈ Z>0 to be the smallest integer such that v(σsm−γm) �
m for some γm ∈ Γ; in general, sm might not exist, but s0 certainly does, and we
will show in Lemma 4.11 that for m > 0 either none of the sm exist or all do
depending on whether or not f is coseparable. Write s := sN and γ̃ := γN .
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136 J. BYSZEWSKI, G. CORNELISSEN, AND M. HOUBEN

Hypothesis (H3). [(H2)] Let m ∈ Z�0. If sm exists, then

exp

⎛⎜⎜⎝ 1

|Γm|
∑
n�1
γ∈Γm

deg(σsmn − γγn
m)

zn

n

⎞⎟⎟⎠ ∈ C(z).

Remark 3.3. The statement of Hypothesis (H3) a priori depends on the choice
of the elements γm. However, it will follow from Lemma 4.12(ii) below that it is
independent of such a choice.

Hypothesis (H4). [(H2)] The number s exists and the sequence

(12) (deg(σsn − γ̃n))n�1

is a linear recurrent sequence satisfying the dominant root assumption.

Remark 3.4. If s exists and (H3) holds, then the sequence (12) is automat-
ically linear recurrent. Moreover, by Lemma 4.11, s exists if and only if f is not
coseparable, and the element γ̃ ∈ Γ is then unique.

We then have the following results:

Theorem 3.5. Assume f : V → V is a dynamically affine map satisfying the
hypotheses (H1)–(H4). Then ζf (z) is not holonomic. More precisely, it is a
product of a root-rational function and a function admitting a natural boundary
along its circle of convergence.

Theorem 3.6. Assume f : V → V is a dynamically affine map satisfying the
hypotheses (H1)–(H3). Then ζ∗f (z) is root-rational.

The proofs of these theorems will be given in the next section.

4. Proofs of Theorems 3.5 and 3.6

Preliminary results on the action of Γ.

Lemma 4.1. Let f : V → V be a dynamically affine map.

(i) There exists a group automorphism α : Γ → Γ such that for any γ ∈ Γ,
ψγ = α(γ)ψ and σγ = α(γ)σ.

(ii) The map σn − γ is an isogeny for all n ∈ Z>0 and γ ∈ Γ.
(iii) #(ψn − γ)−1(0) = #(σn − γ)−1(0) for all n ∈ Z>0 and γ ∈ Γ.

Proof. (i) That α exists as a map of sets follows from [43, Prop. 6.77(a)(b)].
Recall that, by assumption, σ is surjective and has finite kernel. Now, for all
γ1, γ2 ∈ Γ we have

α(γ1γ2)σ = σ(γ1γ2) = (σγ1)γ2 = α(γ1)α(γ2)σ,

which implies that α is a group homomorphism. For γ ∈ ker(α), we have σ(γ−1) =
0, and so im(γ − 1) ⊆ ker(σ). Since ker(σ) is finite and G is connected, we must
have im(γ − 1) = {0}, and so γ = 1. This shows that α is injective, and hence
bijective.

(ii) Let γ ∈ Γ and n ∈ Z>0. We will show that σn−γ has finite kernel. Suppose
that x ∈ G(K) is such that σn(x) = γ(x). Put β := αn. Then

(13) σdn(x) =
(
βd−1(γ) · · ·β(γ)γ

)
(x).
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DYNAMICALLY AFFINE MAPS IN POSITIVE CHARACTERISTIC 137

Since β is injective and Γ is finite, there exists d ∈ Z>0 for which

βd−1(γ) · · ·β(γ)γ = 1,

so that (σn−γ)−1(0) ⊆ (σdn−1)−1(0). Since by assumption σ is confined, we have
that (σdn − 1)−1(0) is finite, and the desired result follows.

(iii) For every n, there exists hn ∈ G(K) such that ψn(g) = σn(g) + hn for all
g ∈ G(K). We then have

#(ψn − γ)−1(0) = #(σn − γ)−1(−hn) = #(σn − γ)−1(0),

where in the last equality we use the fact that σn − γ is an isogeny. �

Proof of Lemma 3.1. The proof of [9, Lemma 2.4] shows that

fn = (f |C)n +
1

|Γ|
∑
γ∈Γ

#(ψn − γ)−1(0).

The desired result now follows from Lemma 4.1(iii). �

Remark 4.2. The claim in [9, Lemma 2.4] that (11) holds for dynamically
affine maps using Silverman’s definition (under the additional assumption that ψ
is surjective), is incorrect. For example, when V = G = E ×E for an elliptic curve
E, Γ = {1}, σ = [1] × [2], and h = (P, 0) with P ∈ E(K) a non-torsion point,
then fn = ψn = 0, but ker(σn − 1) ⊇ E(K)× {0} is infinite for all n ∈ Z>0. The
mistake in the proof is that under the assumptions in Silverman’s definition, Lemma
4.1(iii) does not need to hold (for this one needs part (ii) of the lemma, which is
equivalent to σ being confined). Nevertheless, in [9] the result is only applied for
dimV = 1, where Silverman’s definition implies confinedness of σ, hence none of
the other results are affected.

Preliminary results on valuations.

Proposition 4.3. Let R denote a (not necessarily commutative) ring with
a discrete valuation v. Then the following statements hold for all x, y ∈ R and
n ∈ Z>0:

(i) R has no nontrivial zero divisors.
(ii) The characteristic of R is either zero or prime.
(iii) If v(x) � 0 and v(y) � 0, then v(xy − yx) � v(x− y).
(iv) If v(x) � 0 and v(y) � 0, then v(xn − yn) � v(x− y).
(v) Assume that x and y commute, v(x) = v(y) = 0, and v(x−y) > 0. Then:

(a) if char(R) = 0 and v(Z−{0}) = 0, then v(xn − yn) = v(x− y);
(b) if char(R) = 0 and v(p) > 0 for some prime p, then if v(x − y) >

v(p)/(p− 1), we have v(xn − yn) = v(x− y) + v(n);
(c) if char(R) = p > 0, then v(xn − yn) = v(x− y) · |n|−1

p .
(vi) In cases (b) and (c) above, if z ∈ R satisfies v(z − 1) > 0, then v(zn − 1)

is unbounded as n ranges over Z>0.

Proof. (i) Follows directly from the fact that the valuation v(x) of x is infinite
if and only if x = 0.

(ii) Follows from (i).
(iii) Follows from the formula xy − yx = (x− y)x− x(x− y).
(iv) Let R′ be the subring of R generated by x and y. Then the restriction of

v to R′ is a valuation on R′ taking only nonnegative values. We have xn − yn =
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(y+(x−y))n−yn = yn−yn+z, where z lies in the two-sided ideal of R′ generated
by (x− y), and hence v(xn − yn) = v(z) � v(x− y).

(v) Since x and y commute, we have

(14) xn − yn = n(x− y)yn−1 +
n∑

k=2

(
n

k

)
(x− y)kyn−k.

If v(n) = 0, then the first term has strictly smaller valuation than the second one,
and hence v(xn − yn) = v(x− y), proving case (a), as well as cases (b) and (c) for
p�n. It now suffices to consider (b) and (c) for n = p; the general result will then
follow by induction on vp(n). For (b), the assumption on v(x− y) implies that

(15) v

((
p

k

))
+ (k − 1)v(x− y) > v(p)

for all 2 � k � p. This shows that again in (14) the first term has strictly smaller
valuation than the second one, which yields v(xp − yp) = v(x− y) + v(p). For (c),
note that v(xp − yp) = v((x− y)p) = pv(x− y).

(vi) Follows from the formula (14) with x = z, y = 1, and n an arbitrarily large
power of p. �

Remark 4.4. [(H2)] If R as above is the endomorphism ring of a connected
commutative algebraic group G over K and v is a valuation on End(G) satisfying
[(H2)], then Proposition 4.3(ii) can be made slightly more explicit: the character-
istic of R will then be either zero or equal to p = char(K). In fact, if � ∈ Z>0 is
a prime and v(�) > 0, then the multiplication-by-� map is either zero or an insep-
arable isogeny, and hence its differential, which on the tangent space at 0 is given
by multiplication by �, is not an isomorphism. Since the tangent space at 0 is a
K-vector space, we must have p = char(K) > 0 and � = p. This also implies that
the prime p found in (v)(b) is equal to char(K).

Remark 4.5. The assumption that x and y commute is necessary in Proposi-
tion 4.3(v)(b). Consider the quaternion algebra H generated over Q by i, j with

i2 = j2 = −1 and ij = −ji, and let O = Z+Z i + Z j + Z 1+i+j+k
2 be the ring of

Hurwitz quaternions, which is a maximal order in H. Consider the valuation v on
O corresponding to the prime element 1 + i ∈ O. Put x = i+ 4j and y = i. Then
v(x2 − y2) = v(−16) = 8, but v(x − y) + v(2) = 6. The assumption that x and y
commute is missing from [9, Lemma 6.2], but the result is only applied for y = 1,
and so other results in that reference are not affected.

Recall that f : V → V is a dynamically affine map with associated data as in
diagram (1). Assume that f satisfies (H2). In order to obtain more information
about f , we will apply Proposition 4.3 to the ring R = R and the valuation v
supplied by (H2).

Lemma 4.6. [(H2)] If σ is coseparable, then σn − γ is a separable isogeny for
all n ∈ Z>0 and γ ∈ Γ.

Proof. Let γ ∈ Γ and n ∈ Z>0. By Lemma 4.1(ii), σn − γ is an isogeny, so it
remains to show that it is separable. Applying Proposition 4.3(iv), we see that

v(σn − γ) � v(σ|Γ|n − γ|Γ|) = v(σ|Γ|n − 1) = 0,

where in the last equality we use that σ is coseparable. �
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DYNAMICALLY AFFINE MAPS IN POSITIVE CHARACTERISTIC 139

Proposition 4.7. [(H1)–(H3)] If f is coseparable, then ζf (z) is rational and
ζ∗f (z) is root-rational.

Proof. If f is coseparable, then by Lemma 4.6, #ker(σn − γ) = deg(σn − γ)
for all n and γ. The desired result for ζf (z) then follows by applying Lemma 3.1
together with (H1) and (H3) with m = 0. By the general rationality conditions
in Section 2, this implies that ζfp(z) is rational as well, and hence the result for
ζ∗f (z) follows from (5). �

Remark 4.8. Proposition 4.7 is false if we drop the assumption of the hypothe-
ses. In fact, if (H2) and (H3) do not hold, then ζf (z) may even have a natural
boundary along its circle of convergence (see Example 5.9 below).

Lemma 4.9. [(H2)] If f is not coseparable, then v(σ) = 0.

Proof. If v(σ) > 0, then v(σn−1) = 0 for all n, contradicting the assumption
that σ is not coseparable. �

Lemma 4.10. [(H2)] Suppose that n ∈ Z>0 and γ ∈ Γ are such that v(σn−γ) �
N . Then σn and γ commute.

Proof. Since N > 0 and v(γ) = 0, we have v(σ) = 0. Let α ∈ Aut(Γ) as in
Lemma 4.1(i), so that σγ = α(γ)σ. It follows that

N � v(σn − γ) � v(σnγ − γσn) = v((αn(γ)− γ)σn) = v(αn(γ)− γ).

We conclude that αn(γ) = γ, and hence σnγ = αn(γ)σn = γσn. �

We will now prove the announced result on the existence of the numbers sm
defined in Notation 3.2.

Lemma 4.11. [(H2)]

(i) If f is coseparable, then none of the numbers sm exist for m > 0.
(ii) If f is not coseparable, then all of the numbers sm exist.

Proof. (i) If f is coseparable, then by Lemma 4.6 all the maps σn − γ for
n ∈ Z>0 and γ ∈ Γ are separable isogenies, and hence v(σn − γ) = 0. Hence sm do
not exist for m > 0.

(ii) Since f is not coseparable, there is some n ∈ Z>0 such that v(σn − 1) > 0,
and hence by Proposition 4.3.(vi) the values of v(σn − 1) can be arbitrarily large.
This proves the existence of sm for all m. �

Lemma 4.12. [(H2)] Suppose that f is not coseparable. Let m ∈ Z�0. Then:

(i) The set

Sm := {n ∈ Z>0 | v(σn − γ) � m for some γ ∈ Γ}
is equal to sm Z>0.

(ii) For every n ∈ Z>0, {γ ∈ Γ | v(σsmn − γ) � m} = Γmγn
m.

Proof. (i) By Proposition 4.3(iv), we have v(σsmn−γn
m) � v(σsm −γm) � m,

so Sm ⊇ sm Z>0. Now suppose to the contrary that there exists an n ∈ Sm−sm Z>0.
Then there exists a γ ∈ Γ such that v(σn − γ) � m, and we can write n = dsm + r
for 0 < r < sm. We obtain

m � v(σn − γ) = v(σr(σdsm − γd
m) + (σr − γγ−d

m )γd
m).
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This leads to a contradiction since v(σr(σdsm − γd
m)) � m and v((σr − γγ−d

m )γd
m)

< m.
(ii) We know that v(σsmn−γn

m) � m, so for any γ ∈ Γ we have the equivalence

v(σsmn − γ) � m ⇐⇒ v(γ − γn
m) � m

⇐⇒ v(γγ−n
m − 1) � m ⇐⇒ γ ∈ Γmγn

m. �

Preliminary results on natural boundaries.

Lemma 4.13. Let h, β ∈ R>0 with β < 1. Then the power series

(16) Gh(z) :=
∑
n�1

|n|hpzn, Hβ(z) :=
∑
n�1

β|n|−1
p zn

have radius of convergence 1 and define holomorphic functions that have a natural
boundary along the unit circle.

Proof. That the radius of convergence is 1 follows from the fact that

lim sup
n→∞

(
|n|hp

)1/n
= 1 = lim sup

n→∞

(
β|n|−1

p
)1/n

.

Now, note that Gh and Hβp satisfy the following similar functional equations:

Gh(z) =
z

1− z
− zp

1− zp
+ p−hGh(z

p),(17)

Hβ(z) = β

(
z

1− z
− zp

1− zp

)
+Hβp(zp).

In order to prove the statement on the natural boundary, we will show by induction
on k � 1 that for every primitive pk-th root of unity ω we have

lim
λ→1−

Gh(λω) = −∞ = lim
λ→1−

Hβ(λω).

We present details for the case of Gh(z); the proof for Hβ(z) is analogous. For
k = 1, it follows from (17) that for every 0 < λ < 1 we have

Gh(λω) =
λω

1− λω
− λp

1− λp
+ p−hGh(λ

p).

As Gh(λ
p) � λp/(1−λp) and h > 0, it follows that Gh(λω) → −∞ as λ → 1−. For

k > 1, the result follows from induction by substituting λω into (17). �

Remark 4.14. Alternatively, since (17) implies that Gh(z) is a so-called p-
Mahler function, we could have immediately concluded that Gh(z) is either rational
or has the unit circle as a natural boundary by a result of Randé [39] (see also
[5, Thm. 2]). The former possibility can be excluded by an explicit computation
using the functional equation (17). Such an approach does not work for Hβ(z).

Proofs of Theorems 3.5 and 3.6. Assume that f satisfies (H1)–(H3). We
have already dealt with the case where f is coseparable in Proposition 4.7, so it
remains to consider the case where f is not coseparable.

Using Lemma 3.1, we may write the zeta function ζf (z) as

ζf (z) = ζf |C (z) · exp

⎛⎝∑
n�1

∑
γ∈Γ

deg(σn − γ)

pv(σn−γ)

zn

n

⎞⎠1/|Γ|

,
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DYNAMICALLY AFFINE MAPS IN POSITIVE CHARACTERISTIC 141

with a similar expression for the tame zeta function ζ∗f (z). For m ∈ Z�0, we

consider separately the terms corresponding to a fixed value of v(σn − γ), giving
rise to functions

ζf,m(z) = exp

⎛⎜⎜⎝ ∑
n�1,γ∈Γ

v(σn−γ)=m

deg(σn − γ)

pm
zn

n

⎞⎟⎟⎠ .

Consider the sets

Tm = {(n, γ) ∈ Z>0 × Γ | v(σn − γ) � m}.

By Lemma 4.12, we have Tm = {(smn, γγn
m) | n ∈ Z>0, γ ∈ Γm}, and hypothesis

(H3) implies that the function

Fm(z) = exp

⎛⎝ ∑
(n,γ)∈Tm

deg(σn − γ)
zn

n

⎞⎠
satisfies Fm(z)sm/|Γ| ∈ C(zsm); hence it is root-rational. It follows that the function

ζf,m(z) = (Fm(z)/Fm+1(z))
1/pm

is root-rational as well.
We analogously define the tame functions ζ∗f,m(z), summing only over indices

n coprime to p. By Equation (8), these are also root-rational, and we have the
product formulas

(18) ζf (z) = ζf |C (z)

⎛⎝∏
m�0

ζf,m(z)

⎞⎠1/|Γ|

and ζ∗f (z) = ζ∗f |C (z)

⎛⎝∏
m�0

ζ∗f,m(z)

⎞⎠1/|Γ|

.

Our next aim is to simplify the tail (i.e. the product of all terms with m
suitably large) of (18) using Proposition 4.3(v). To this end, take an integer M �
max(N, v(p)/(p− 1) + 1) and set r := sM and τ := σsMγ−1

M . By Lemma 4.10 the
elements σsM and γM commute, and we can rewrite the tail of (18) as

∏
m�M

ζf,m(z) = exp

⎛⎝∑
n�1

deg(τn − 1)

pv(τn−1)

zrn

rn

⎞⎠ .

Set C := v(τ − 1) � M . By Proposition 4.3(v) applied to x = τ and y = 1, we
obtain

(19) v(τn − 1) =

{
C + v(n) if char(End(G)) = 0;

C|n|−1
p if char(End(G)) = p > 0.

In particular, if p�n, then v(τn − 1) is independent of n, so we have ζ∗f,m(z) = 1 for

m � M and m �= C. The product expansion in (18) therefore shows that the tame
zeta function is root-rational, proving Theorem 3.6.

Now suppose that f also satisfies (H4). Since s divides r and deg(τn − 1) =
deg(σrn − γ̃rn/s), we see that (deg(τn − 1))n�1 is a linear recurrent sequence with
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a unique dominant root, say Λ, with multiplicity μ ∈ Z. We then obtain

z
d

dz
log

∏
m�M

ζf,m(z) =
∑
n�1

μΛnzrn ·
{
p−C |n|v(p)p if char(End(G)) = 0

p−C|n|−1
p if char(End(G)) = p

+R(z),

where R(z) is some power series with radius of convergence > |Λ|−1/r.
As stated in [6, Lemma 1], the existence of a natural boundary for a series∑

anz
n along its circle of convergence implies the existence of a natural boundary

along its circle of convergence for the corresponding zeta function exp
∑

anz
n/n.

By applying Lemma 4.13 with h = v(p) or β = p−C (depending on whether End(G)
is of characteristic 0 or p) and substituting Λzr for z into Gh(z) or Hβ(z), it follows
that the series ⎛⎝ ∏

m�M

ζf,m(z)

⎞⎠1/|Γ|

has a natural boundary along its circle of convergence. Theorem 3.5 now follows
from the product expansion in (18). �

Remark 4.15. An examination of the (by the proof, finite) product expansion
for the tame zeta function (18), shows that in fact ζ∗f (z)

t ∈ C(z) for t = pC+1r,
where C and r are as in the proof.

5. Discussion of the hypotheses

Classification of G for V = P1. Suppose that V = P1 and recall that K
is algebraically closed. Since Γ is finite and ι has Zariski-dense image, for dimen-
sion reasons G is a connected one-dimensional algebraic group. By the Barsotti–
Chevalley structure theorem for algebraic groups [13,14], G is an extension of a
linear algebraic group by an abelian variety, and thus (again by connectedness and
dimension considerations) G is either a one-dimensional connected linear algebraic
group or an abelian variety of dimension one. In the latter case, G is an elliptic
curve E. In the former case, either G = Gm, the multiplicative group; or G = Ga,
the additive group [47, Thm. 3.4.9]. We denote by [m] the multiplication-by-m
map on G. The corresponding endomorphism rings are as follows:

(i) if G = Gm, then End(G) ∼= Z, with the map [m] given by x �→ xm;
(ii) if G = Ga, then End(G) ∼= K〈φ〉 is the ring of skew-commutative polyno-

mials in the Frobenius φ : x �→ xp, with φa = apφ for all a ∈ K;
(iii) if G = E is an elliptic curve, then End(E) is either Z, an order in an

imaginary quadratic number field in which p splits, or a maximal order in
the quaternion algebra over Q that ramifies precisely at p and ∞ [17].

Hypothesis (H1).

Lemma 5.1. If f : C → C is an arbitrary map on a finite set C, then ζf (z) is
rational and ζ∗f (z) is root-rational.

Proof. Since there are only finitely many orbits, this follows for ζf (z) from
the Euler product (3), and then for ζ∗f (z) from (5). �

Corollary 5.2. If f : V → V is a dynamically affine map and either dimV =
1 (e.g. if V = P1) or G is complete (e.g. if G is an abelian variety), then f satisfies
(H1).
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Proof. If G is complete, then C = ∅, and the result is clear. If dimV = 1,
then the assumption that Γ\G is a Zariski-dense open subset of V implies that C
is finite, and Lemma 5.1 applies. �

Example 5.3. We give an example where (H1) fails. Consider G = Gm×Gm,
Γ = {1}, the standard embedding G ↪→ V := P1 ×P1 and

f : V → V, (x, y) �→ (xm, ym)

for an integer m � 2 coprime to p. Then

C = (P1 ×{0}) ∪ (P1 ×{∞}) ∪ ({0} ×P1) ∪ ({∞} ×P1)

is a union of four copies of P1 intersecting in four points

C ′ = {(0, 0), (0,∞), (∞, 0), (∞,∞)},
all of which are fixed by f . Applying Remark 2.2, we get that

ζf |C (z) = ζg(z)
4(1− z)4,

where ζg(z) is the zeta function of g : P1 → P1, x �→ xm, which was shown to be
transcendental over C(z) by Bridy [8] (our result in this paper even shows that the
function has a natural boundary).

Hypothesis (H2).

Proposition 5.4.

(i) A nontrivial abelian variety A satisfying (H2) with R = End(A) has to
be simple.

(ii) There exist commutative algebraic groups G of arbitrary dimension > 1
that satisfy (H2) with R = End(G) but that are not simple.

(iii) For any connected commutative algebraic group G, (H2) is equivalent to
the claim that all nonzero elements of R are isogenies and for every m,
the set

Im := {τ ∈ R −{0} | logp degi(τ ) � m} ∪ {0}
is an ideal in R. (Note that by the multiplicativity of the inseparable degree
this is equivalent to degi(τ1+τ2) � min{degi(τ1), degi(τ2)} for all nonzero
τ1, τ2, τ1 �= −τ2.)

(iv) Let G = A be a nontrivial abelian variety. Then (H2) holds with R =
Z ↪→ End(A) (and then necessarily Γ = {1} or Γ = {±1}).

Proof. Note that the hypothesis on the existence of v implies that R is a (not
necessarily commutative) domain (Proposition 4.3(i)).

(i) Since an abelian variety A factors up to isogeny into a direct product of
simple abelian varieties, End(A) is a domain if and only if A is simple.

(ii) Consider extensions of algebraic groups

1 → Gm → G → A → 1,

where G is abelian and A is any simple abelian variety. These are classified by

Ext1(A,Gm) ∼= Â(K), where Â is the dual abelian variety of A [33, Thm. 9.3].

Suppose Â(K) has a non-torsion point P (in particular, K has to be transcendental
over Fp) and choose an extension corresponding to P . We claim that G does not
contain any nontrivial abelian variety. Suppose otherwise and let A′ be a nontrivial
abelian variety contained in G. The image of A′ in A cannot be zero, and hence
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is equal to all of A since A is simple. It follows that A′ and Gm generate G, and
a result of Arima [1, Thm. 2] implies that the extension corresponds to a point of

finite order in Â(K). We conclude that G does not contain any nontrivial abelian
variety, and hence by [1, Prop. 7] the restriction map End(G) → End(Gm) ∼= Z
is injective, meaning that End(G) ∼= Z. The inseparable degree of [n] on G is the
product of those on Gm and A, and if A has dimension g and p-rank r, then the
valuation v = (2g − r + 1)vp on R = End(G) satisfies (H2).

(iii) If v is a valuation as in (H2), then

Im = {τ ∈ R | v(τ ) � m}
is an ideal. Conversely, if all Im are ideals, then v defined by

v(τ ) := sup{m | τ ∈ Im}
satisfies (H2).

(iv) For a nontrivial abelian variety A the endomorphism ring End(A) has
characteristic zero and the maps [m] : A → A for m ∈ Z \{0} are isogenies, and are
separable if and only if p�m. By multiplicativity of the inseparable degree, we find
that degi([m]) = degi([p])

vp(m), and hence the valuation v : R → Z∪{∞} given by
v([m]) = cvp(m) with c := logp degi([p]) satisfies (H2). �

Lemma 5.5. Hypothesis (H2) holds for dynamically affine maps on P1.

Proof. We verify, for G a one-dimensional connected algebraic group, that
the Im as in Proposition 5.4(iii) are indeed ideals. Note that the claim that all
nonzero elements of End(G) are isogenies is immediate by a dimension argument.
For G = Gm and G = Ga, the set of inseparable isogenies together with the zero
map is the principal ideal generated by the Frobenius φ : x �→ xp, so Im = (φm) is
an ideal. If G = E is an elliptic curve, then for any isogeny τ : E → E, we have
that logp degi(τ ) is the largest r > 0 for which τ factors through the pr-Frobenius

E → E(pr) [44, II.2.12], which again implies that the Im are ideals. �
Remark 5.6. Another approach, folllowing [9], is to check the result for each

of the possible one-dimensional groups G with the following valuations:

(i) if G = Gm, then on End(G) ∼= Z set v = vp, the p-adic valuation;
(ii) If G = Ga, then on End(G) = K〈φ〉 set v = vφ, the valuation associated

to the two-sided ideal (φ);
(iii) If G = E is an elliptic curve, set v = vp ◦ N , where N is the field norm

of the extension End(E)⊗Q of Q if E is ordinary and N is the reduced
norm on the quaternion algebra End(E)⊗Q if E is supersingular.

Hypothesis (H3). The following general observation will be used multiple
times to verify that Hypothesis (H3) holds in certain cases: If R is a (not necessar-
ily commutative) domain and Γ is a nontrivial finite subgroup of the multiplicative
group of R, then

∑
γ∈Γ γ = 0.

We first discuss the degree function on a commutative subring R of the endo-
morphism ring End(A) of an abelian variety A. The ring S = End(A) ⊗Z Q is a
semisimple Q-algebra, and hence is isomorphic to a product of finitely many (full)
rings of matrices over Q. Let

ψ = (ψ1, . . . , ψk) : S →
k∏

i=1

Mni
(Q)

Licensed to Universiteit Utrecht.  Prepared on Wed Sep 29 08:52:48 EDT 2021for download from IP 131.211.104.249.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



DYNAMICALLY AFFINE MAPS IN POSITIVE CHARACTERISTIC 145

be such an isomorphism. The degree of an endomorphism α ∈ End(A) can be
computed by the formula

deg(α) =

k∏
i=1

detψi(α)
νi ,

where νi ∈ Z>0 are certain integers (see [25, Cor. 3.6] or the discussion in [11,
Prop. 2.3]). Since the ring R is commutative, the matrices in ψi(R) ⊆ Mni

(Q)
can be simultaneously triangularised, so that after conjugating by appropriate ma-
trices, we may assume that ψ(R) lies in the product of rings UTni

(Q) of upper
triangular matrices. Composing the homomorphism ψi|R with the homomorphism

UTni
(Q) → Q

ni
that maps each matrix to the tuple consisting of its diagonal

elements, we obtain a ring homomorphism

λ = (λ1, . . . , λl) : R → Q
l
,

where l =
∑k

i=1 ni. The degree function on R then takes the form

deg(α) =
l∏

j=1

λj(α)
μj ,

where μj ∈ Z>0 are certain integers.

Proposition 5.7. Let A be an abelian variety over K, let f be a dynamically
affine map with G = A, and let R be a commutative subring of the endomorphism
ring End(A) that contains both σ and Γ. If (H2) is satisfied for the ring R, then
f satisfies (H3).

Proof. Using the notation provided by the statement of (H3), write τ := σsm

and τ̃ := τγ−1
m . By Lemma 4.1(ii), confinedness of σ implies that τn−γ is an isogeny

for all γ ∈ Γ. Since R is commutative, we have deg(τn − γγn
m) = deg(τ̃n − γ) for

γ ∈ Γ.
Using the notation explained at the beginning of this subsection, we obtain the

formula ∑
γ∈Γm

deg(τ̃n − γ) =
∑

γ∈Γm

l∏
j=1

λj(τ̃
n − γ)μj .

Since λj : R → Q are ring homomorphisms, we may expand the product on the
right hand side and rewrite the formula as∑

γ∈Γm

l∏
j=1

λj(τ̃
n − γ)μj =

∑
k

∑
γ∈Γm

χk(γ)η
n
k

for some ηk ∈ Q and some characters χk : Γ → Q
×
. If a character χk is nontrivial,

then
∑

γ∈Γm
χk(γ) = 0; otherwise,

∑
γ∈Γm

χk(γ) = |Γm|. Thus, we obtain

1

|Γm|
∑

γ∈Γm

deg(τn − γγn
m) =

∑
χk=1

ηnk ,

and the desired result follows from the general criteria for rationality of the zeta
function discussed in Section 2. �

Proposition 5.8. A dynamically affine map on P1 satisfies (H3).
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Proof. As in the proof of the previous proposition, we set τ := σsm . If
G = Gm, then, identifying End(G) with Z, we have

deg(τn − γγn
m) = |τn − γγn

m| = deg(τ )n − γγn
m sgn(τ )n.

If G = Ga, then

deg(τn − γγn
m) = deg(τ )n.

(This holds even when deg(τ ) = 1 since τ is confined.) Finally, ifG = E is an elliptic
curve, then deg(τ ) = ττ , where τ denotes τ or the complex/quaternionic conjugate
of τ depending on whether End(E) is Z, an order in an imaginary quadratic number
field or an order in a quaternion algebra over Q. In either case∑

γ∈Γm

deg(τn − γγn
m) =

∑
γ∈Γm

(
(ττ)n − γγn

mτ n − τnγm
nγ + 1

)

= |Γm|(deg(τ )n + 1)−

⎛⎝ ∑
γ∈Γm

γ

⎞⎠ γn
mτ n − τnγm

n

⎛⎝ ∑
γ∈Γm

γ

⎞⎠ .

Combining the three cases, we find that in case Γm is nontrivial, we get

(20)
∑

γ∈Γm

deg(τn − γγn
m) =

{
|Γm| deg(τ )n if G = Gm or G = Ga;

|Γm|(deg(τ )n + 1) if G = E,

whereas in case Γm is trivial, the elements τ and γm commute by Lemma 4.10, and
hence ∑

γ∈Γm

deg(τn − γγn
m) = deg(τn − γn

m)(21)

=

⎧⎪⎨⎪⎩
deg(τ )n − (γm sgn(τ ))n if G = Gm;

deg(τ )n if G = Ga;

deg(τ )n + 1− (γmτ)n − (τγm)n if G = E.

We may regard these formulas as equalities between complex numbers (for G = E
embedding the fieldQ(γmτ) intoC). It follows that the corresponding zeta function
is rational. �

Example 5.9. For an example where (H3) does not hold, consider K = F3,
G = Ga ×Ga, Γ = {1}, V = G and

f : G → G, (x, y) �→ (x9 + y3, x3).

Since the differential of σ = f is zero, the map f is even coseparable. One may
directly compute the values of deg(σn − 1). One way to do this is to write

σ =

(
φ2 φ
φ 0

)
with φ : Ga → Ga the Frobenius map, and show that for a matrix τ in M2(F3[φ])
with nonzero determinant the degree of τ as a map τ : G → G and the degree in φ
of det(τ ) ∈ F3[φ] are related by the formula

deg(τ ) = 3degφ(det(τ)).
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(This follows easily by writing τ in Smith normal form.) Computing the eigenvalues
of σ as Laurent series in φ−1, we get that

deg(σn − 1) =

{
9n, 2�n;

9n−|n|−1
3 , 2|n,

and hence the zeta function satisfies the equation

z
d

dz
log ζf (z) =

∑
deg(σn − 1)zn =

9z

1− 81z2
+H1/9(81z

2),

where H1/9(z) is the function from Lemma 4.13. It follows that ζf (z) has a natural
boundary along |z| = 1/9 and (H3) indeed fails to hold.

For a detailed computation of the degree and a general discussion of fixed points
of endomorphisms of vector groups, we refer the reader to [12].

Hypothesis (H4).

Proposition 5.10. A dynamically affine non-coseparable map on P1 satisfies
(H4).

Proof. It follows directly from (20) and (21) applied for m = N that deg(τ )
is the dominant root (note that for G = Gm and G = E, confinedness of σ implies
that deg(τ ) � 2). �

We will now examine property (H4) in the case where G = A is an abelian
variety.

Proposition 5.11. Let f be a dynamically affine map with G = A an abelian
variety. Assume that the hypothesis (H2) is satisfied for a commutative ring R ⊆
End(A).

(i) The map f satisfies (H4) if and only if σ is not coseparable and the
characteristic polynomial of the action of σ on the �-adic Tate module
T�(A), where � is any prime � �= p, has no roots of complex absolute value
1.

(ii) The map f satisfies (H4) if and only if the map σ, regarded as a dynam-
ically affine map σ : A → A, satisfies (H4).

Proof. By Lemma 4.11 it suffices to treat the case where σ is non-coseparable
and the number s exists.

(i) We have the formula

(22) deg(σsn − γ̃n) =
l∏

j=1

(λj(σ)
sn − λj(γ̃)

n)μj .

Since Γ is finite and σ is confined, the elements λj(γ̃) are roots of unity while λj(σ)
are not. By the discussion in [11, Section 5], the elements λj(σ) are exactly the
roots of the action of σ on T�(A). Expanding the expression in (22), one can show
that deg(σsn − γ̃n) is given by a linear recurrence, and that the dominant root is
unique if and only if |λj(σ)| �= 1 for all j. (The argument is identical to the one
where γ̃ = 1 as given in [11, Prop. 5.1(v)].)

(ii) This is clear since the condition in (i) depends neither on s nor on γ̃. �
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Example 5.12. For an example where (H4) fails, let G = G4
m, Γ = {1}

and V = G. We choose f = σ ∈ End(G) ∼= M4(Z) to be the companion matrix
of the minimal polynomial g of a Salem number α > 1 of degree 4 (e.g. g =
x4 − 3x3 + 3x2 − 3x+ 1 [46]). Then deg(σn − 1) = | det(σn − 1)| and if β ∈ C is a
zero of g with absolute value 1, then α and αβ are distinct dominant roots of the
linear recurrent sequence (deg(σn − 1))n�1.

Proofs of Theorems A and B.

Proof of Theorem A. The theorem will follow by combining Theorems 3.5
and 3.6 with the following observations.

A dynamically affine map f : P1 → P1 satisfies the hypotheses (H1)–(H3) by
Corollary 5.2, Lemma 5.5 and Proposition 5.8. If f is not coseparable, it satisfies
(H4) by Proposition 5.10. If f is coseparable, the function ζf (z) is rational by
Proposition 4.7. �

Proof of Theorem B. In this situation, (H1)–(H3) hold by Corollary 5.2
and Propositions 5.4(iv) and 5.7. If p|m, the map σ is coseparable, and ζf (z) is
rational. If p�m, σ is not coseparable, and f satisfies (H4) by Proposition 5.11. �

Appendix A.
Radius of convergence of ζf for dynamically affine maps f

In general, the existence of a positive radius of convergence of a dynamical zeta
function is a nontrivial property of the growth of the number of periodic points of
a given order. In the manifold setting, this is studied in [2]; Kaloshin showed that
a positive convergence radius is not topologically Baire generic in the Cr topology
for any 2 � r < +∞ [30, Corollary 1].

In this appendix, we study this problem for a morphism f : V → V on an
algebraic variety V . We can say something in case f is dynamically affine, or in
case V is smooth projective, but we do not know what happens in the general case.

Theorem A.1. Let f : V → V denote a dynamically affine map over an alge-
braically closed field K of characteristic p, satisfying (H1). Then the zeta functions
ζf (z) and ζ∗f (z) converge to holomorphic functions on a nontrivial open disk centred
at the origin.

Proof. It follows from the definitions that ζ∗f (z) converges whenever ζf (z)

does. The latter function converges for |z| < 1/ lim sup n
√
fn. Hence to prove the

statement, it suffices to prove that fn � cn for some constant c. By Lemma 3.1, it
suffices to prove that (f |C)n � cn and #ker(σn − γ) � cn for all γ ∈ Γ and some
constant c (independent of n). The first statement follows immediately from (H1).

For the second statement, we note that #ker(σn − γ) = #Fix(τ ), where τ =
σnγ−1. The main point in the proof is to reduce to the case of G being an abelian
variety, a torus, or a vector group, by a method similar to the one employed in
[12]. Here, we give a more ad hoc discussion (avoiding cohomology) and simplify
matters using the commutativity of G.

We first observe that if N is a connected normal algebraic subgroup of G stable
under End(G), then τ induces an endomorphism τG/N of G/N . We claim that τG/N

is confined and that

(23) #Fix(τ ) = #Fix(τ |N ) ·#Fix(τG/N ).
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To see this, we first note that by Lemma 4.1(i) powers τk of τ are of the form γ′σnk

for some γ′ ∈ Γ, and hence by Lemma 4.1(ii) τ is confined. Since N is connected
and the map τ is confined, we get that τ |N − 1 is an isogeny (in particular, it is
surjective), which implies that the map Fix(τ ) → Fix(τG/N ) is surjective as well.
Applying this to γ = 1 shows that the map σG/N is confined, and we get an exact
sequence of finite groups

0 → Fix(τ |N ) → Fix(τ ) → Fix(τG/N ) → 0.

Notice also that τ |N = σ|nNγ|−1
N and τG/N = σn

G/Nγ−1
G/N admit the same decompo-

sition as τ with σ|N (resp., σG/N ) being a confined isogeny on N (resp., G/N).
We apply (23) several times: first, by Chevalley’s structure theorem for al-

gebraic groups [14, Thm. 1.1], G has a unique normal connected linear algebraic
subgroup N such that G/N is an abelian variety. Then N is stable by End(G),
since there are no nontrivial morphisms from a linear algebraic group N to an
abelian variety A [14, Lem. 2.3]. Now suppose G is a connected commutative
linear algebraic group; then there exists a normal connected unipotent algebraic
subgroup U of R such that the quotient R/U is a torus T , i.e. isomorphic to Gs

m

for some s ∈ Z�0 [34, Thm. 16.33]. There are no nontrivial morphisms U → T
[16, Cor. IV.2.2.4], so U is preserved by any endomorphism of R. Now if G is
connected commutative unipotent, it is isogenous to a direct product W1×· · ·×Wt

of additive groups of truncated Witt vectors [42, Thm. VII.1]. Since pdWi = 0
for some d, we obtain a decomposition series of G (using [16, Prop. IV.2.2.3])
G ⊇ pG ⊇ p2G ⊇ · · · ⊇ 0, in which pG is preserved by any endomorphism of G,
and each successive quotient is a connected commutative unipotent algebraic group
of exponent p. By [42, Prop. VII.11], such a group is isomorphic to a vector group
Gr

a for some r ∈ Z�0.
By the above discussion, we are reduced to considering the following three

cases. In each of these cases, G is connected commutative, End(G) is a ring with a
degree function deg : End(G) → N∪{−∞} and #ker(σn − γ) � deg(σn − γ), so it
suffices to prove that in each of these cases deg(σn−γ) grows at most exponentially
in n.

− G is an abelian variety: G is isogenous to a product of simple abelian
varieties, and deg(σn− γ) becomes a product of reduced norms N(σn

i − γi) on
finitely many simple Q-algebras Ri (with τi ∈ Ri and γi ∈ R×

i ) [11, Prop. 2.3].
Passing to the algebraic closure of Q, one easily sees that these satisfy a linear
recurrence in n, and hence grow at most exponentially.

− G 	 Gs
m is a torus: Identifying endomorphisms of G with matrices in Ms(Z),

one sees (e.g. by using the Smith normal form) that

deg(σn − γ) = | det(σn − γ)|.

Expanding the determinant shows the desired growth behaviour.
− G 	 Gr

a is a vector group: Endomorphisms of G are given by r×r matrices
over the skew polynomial ring K〈φ〉 with φa = apφ for a ∈ K. The degree
of an isogeny τ ∈ End(G) can be computed using the Dieudonné determinant
ddet by the formula

deg(τ ) = pdegφ ddet(τ).
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(Since K〈φ〉 is left and right euclidean, we can put the matrix τ in Smith
normal form and use the fact that unimodular matrices have Dieudonné de-
terminant of degree 0 [24, Thm. 4.6]). We will use that if τ is a matrix
over K〈φ〉 all of whose entries have degree � d as polynomials in φ, then
degφ ddet(τ ) � rd [24, Thm. 3.5]. Choose an integer d � 1 so that the entries
of σ have degree � d. For sufficiently large n the entries of σn− γ have degree
� nd, and hence

deg(σn − γ) = pdegφ ddet(σn−γ) � pnrd. �

Remark A.2. For a more comprehensive treatment of degrees and inseparable
degrees of endomorphisms of algebraic groups (not necessarily commutative), we
refer the reader to [12].

In the above proof, the positive radius of convergence of ζf (z) is recursively de-
fined based on a decomposition of G along subgroups and quotients. The following
is a case where we can find a direct bound on the radius of convergence:

Proposition A.3. When V is smooth projective and f : V → V is any mor-
phism, ζf (z) and ζ∗f (z) define holomorphic functions on a disk of radius the smallest
absolute value of a zero of the characteristic polynomial

det(1− f∗z | H2•(V )),

where H2•(V ) =
dimV⊕
j=0

H2j(V,Q�) is the even étale cohomology of V for some � �= p.

Proof. In this case, we have a coefficient-wise bound fn � (Γfn · Δ), where
the right hand side is the intersection number of the graph of fn with the diagonal
in V × V . Since V is smooth projective and f has finitely many fixed points, by
the Grothendieck–Lefschetz fixed point formula in �-adic cohomology for � �= p
[15, Cor. 3.7, p. 152 (= Exposé “Cycle”, p. 24)] we find that

(24) exp
(∑

(Γfn ·Δ)zn/n
)
=

2 dimV∏
i=0

det(1− f∗z | Hi(V,Q�))
(−1)i+1

,

and the right hand side converges in an open disk of radius the smallest absolute
value of a zero of the denominator. �

Remark A.4. If V = Pk is a projective space, the result follows essentially
from Bézout’s theorem (see e.g. [18, Prop. 1.3]). A more general “intersection-
theoretic” argument such as in the proof of Proposition A.3 seems to apply only
in a restrictive setting, since the Grothendieck–Lefschetz fixed point formula can
fail for general endomorphisms of general varieties, and one cannot in general leave
out the assumptions of properness and smoothness. It seems these assumptions are
rarely satisfied, as witnessed by the following sample result in characteristic zero: if
Γ is a finite group of endomorphisms of a complex abelian variety of dimension � 3
acting irreducibly on the tangent space at 0, Γ\G is necessarily a projective space,
G is a power of an elliptic curve, and Γ is one of two possible groups (depending
on the dimension) [3, Thm. 1.1].

Licensed to Universiteit Utrecht.  Prepared on Wed Sep 29 08:52:48 EDT 2021for download from IP 131.211.104.249.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



DYNAMICALLY AFFINE MAPS IN POSITIVE CHARACTERISTIC 151

Appendix B.
Explicit computation of tame zeta functions

for some dynamically affine maps on P1

Classification of dynamically affine maps on P1. Bridy [9] classified all
dynamically affine maps f of degree � 2 on the projective line by showing that
they are conjugate by a fractional linear transformation to polynomials fc in an
explicit standard form, as in Table 1 (where μd ⊆ k× denotes a nontrivial subgroup
consisting of d-th roots of unity). This is the characteristic-p analogue of the clas-
sification over C given in [35, Thm. 3.1].

G Γ Γ\G fc

Ga

{1}
P1 − {∞}

Additive polynomial

μd Subadditive polynomial

Gm

{1} P1 − {0,∞} Power map

{±1} P1 − {∞} Chebyshev map

E �= {1} P1 Lattès map

Table 1. Classification of dynamically affine maps on P1.

With the notation and terminology of Table 1, f is coseparable precisely when either
fc is inseparable, or fc is a separable (sub)additive polynomial for which f ′

c(0) is
transcendental over k (cf. [9, Thm. 1.2 & 1.3]). One easily checks that these are
precisely the maps for which fn is maximal for all n (i.e. fn = deg(f)n + 1; each
fixed point of fn has multiplicity one).

Some examples of tame zeta functions. The “trivial” case provides us
with a useful notational tool: if X = pt is a point, then f has a unique fixed point
(fn = 1 for all n), so we suppress the (irrelevant) f from the notation, to obtain

ζpt(z) =
1

1− z
and ζ∗pt(z) = ζpt(z)/

p

√
ζpt(zp) =

p
√
1− zp

1− z
.

We will now present examples of tame zeta functions, writing them in a concise
form using the function ζ∗pt(az

b) for various a and b. Much of the general struc-
ture of (tame) zeta functions of algebraic groups is already visible in the following
basic example for which we provide a detailed computation (we stick to p > 2 for
convenience).

Proposition B.1. Let m � 2 be an integer and let f : P1 → P1, x �→ xm be
the power map over an algebraically closed field K of characteristic p > 2. If p
divides m, set β := 0. Otherwise, let β := (|ms − 1|p − 1)/s ∈ Z[1/p], where s is

the smallest positive integer for which |ms − 1|p < 1 (i.e. the order of m in F×
p ).

Then

ζ∗f (z) = ζ∗pt(mz)ζ∗pt(z)

(
ζ∗pt((mz)s)

ζ∗pt(z
s)

)β

.

Proof. The iterate fn has as its fixed points ∞, 0, and the distinct solutions
to xmn−1 = 1 in Fp. Hence fn = 2 + (mn − 1) · |mn − 1|p.
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If p|m, we have fn = mn + 1, and the result follows. Now assume that m is
coprime to p. We then have (see e.g. [9, Lemma 6.1])

(25) |mn − 1|p =

{
1 if s�n,
|ms − 1|p · |n|p if s|n.

Observe that s is a divisor of p− 1; in particular, s is coprime to p and β ∈ Z[1/p].
If we set M := |ms − 1|p, the tame zeta function can be computed as follows:

log ζ∗f (z)/ζ
∗
pt(z)

2 =
∑

p�n;s�n

mn − 1

n
zn +M

∑
p�n;s|n

(mn − 1)

n
zn

=
∑
n

mn − 1

n
zn −

∑
n

mpn − 1

pn
zpn

+ (M − 1)

(∑
n

msn − 1

sn
zsn −

∑
n

mpsn − 1

psn
zpsn

)

= log

(
1− z

1−mz
· (1− (mz)p)

1
p

(1− zp)
1
p

)
+

(M − 1)

s
log

(
1− zs

1− (mz)s
· (1− (mz)ps)

1
p

(1− zps)
1
p

)
.�

Without showing further details of computations (that go along the lines of those
for the power map) we now list several other tame zeta functions.

Proposition B.2. Suppose that K is an algebraically closed field of charac-
teristic p > 2. Let m � 2 be an integer. The normalised Chebyshev polynomial
Tm is the unique monic polynomial of degree m with integer coefficients satisfying
Tm(z + z−1) = zm + z−m. Consider the Chebyshev map

Tm : P1 → P1

given by the polynomial Tm (denoted by the same symbol).
Let E/K denote an elliptic curve and let π : E → P1 be a covering map of

order two. The (standard) Lattès map

Lm : P1 → P1

corresponding to π is defined by the property Lm ◦ π = π ◦ [m], where [m] is the
multiplication-by-m map on E.

If p�m, let s denote the multiplicative order of m modulo p. Let h = 1 if f is
a Chebyshev map or a Lattès map arising from an ordinary elliptic curve, and let
h = 2 otherwise. Set β := (|ms−1|hp −1)/s ∈ Z[1/p]. Then the corresponding tame
zeta functions (quotiented by a convenient factor) are given in Table 2. �

Proposition B.3. Suppose that K is an algebraically closed field of character-
istic p > 0 and consider an additive polynomial in K[X] of the form a0X+a1X

p+

· · ·+amXm with m = pr for some integer r � 1. Assume that a0 ∈ F
×
p and m � 2.

Consider f as a map

f : P1 → P1, X �→ a0X + a1X
p + · · ·+ amXm.

Let s � 1 be the smallest integer with fs(X) = X + aXpt

+ · · · for a �= 0 and
t ∈ Z>0. Put β = (p−t − 1)/s. Then

ζ∗f (z) = ζ∗pt(mz)ζ∗pt(z)ζ
∗
pt((mz)s)β. �
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Condition ζ∗Tm
(z)/(ζ∗pt(mz)ζ∗pt(z)) ζ∗Lm

(z)/(ζ∗pt(m
2z)ζ∗pt(z))

p|m 1 1

p�m and 2�s

(
ζ∗pt((mz)s)

ζ∗pt(z
s)

)β/2
(
ζ∗pt((m

2z)s)ζ∗pt(z
s)

ζ∗pt((mz)s)2

)β/2

p�m and s = 2t

(
ζ∗pt((mz)t)ζ∗pt(z

t)

ζ∗pt(z
2t)

)β
(
ζ∗pt((m

2z)t)ζ∗pt(z
t)ζ∗pt((mz)t)2

ζ∗pt((mz)2t)2

)β

Table 2. Tame zeta functions of some dynamically affine maps on P1.

In characteristic two and for more general (sub)additive polynomials, similar meth-
ods apply, but the computations are more tedious and we have not listed the out-
come. We have not carried out an explicit computation for general Lattès maps
arising from endomorphisms of elliptic curves that are not given by multiplication
by an integer or corresponding to larger (possibly noncommutative) automorphism
groups Γ.
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