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With the emergence of online publishing, the number 
of scientific manuscripts on many topics is skyrocket-
ing1. All of these textual data present opportunities to 

scholars and practitioners while simultaneously confronting them 
with new challenges. Scholars often develop systematic reviews and 
meta-analyses to develop comprehensive overviews of the relevant 
topics2. The process entails several explicit and, ideally, reproduc-
ible steps, including identifying all likely relevant publications in a 
standardized way, extracting data from eligible studies and synthe-
sizing the results. Systematic reviews differ from traditional litera-
ture reviews in that they are more replicable and transparent3,4. Such 
systematic overviews of literature on a specific topic are pivotal not 
only for scholars, but also for clinicians, policy-makers, journalists 
and, ultimately, the general public5–7.

Given that screening the entire research literature on a given 
topic is too labour intensive, scholars often develop quite narrow 
searches. Developing a search strategy for a systematic review is 
an iterative process aimed at balancing recall and precision8,9; that 
is, including as many potentially relevant studies as possible while 
simultaneously limiting the total number of studies retrieved. The 
vast number of publications in the field of study often leads to a 
relatively precise search, with the risk of missing relevant studies. 
The process of systematic reviewing is error prone and extremely 
time intensive10. In fact, if the literature of a field is growing faster 
than the amount of time available for systematic reviews, adequate 
manual review of this field then becomes impossible11.

The rapidly evolving field of machine learning has aided research-
ers by allowing the development of software tools that assist in  

developing systematic reviews11–14. Machine learning offers 
approaches to overcome the manual and time-consuming screen-
ing of large numbers of studies by prioritizing relevant studies via 
active learning15. Active learning is a type of machine learning in 
which a model can choose the data points (for example, records 
obtained from a systematic search) it would like to learn from and 
thereby drastically reduce the total number of records that require 
manual screening16–18. In most so-called human-in-the-loop19 
machine-learning applications, the interaction between the 
machine-learning algorithm and the human is used to train a model 
with a minimum number of labelling tasks. Unique to systematic 
reviewing is that not only do all relevant records (that is, titles and 
abstracts) need to seen by a researcher, but an extremely diverse 
range of concepts also need to be learned, thereby requiring flexibil-
ity in the modelling approach as well as careful error evaluation11. 
In the case of systematic reviewing, the algorithm(s) are interac-
tively optimized for finding the most relevant records, instead of 
finding the most accurate model. The term researcher-in-the-loop 
was introduced20 as a special case of human-in-the-loop with three 
unique components: (1) the primary output of the process is a selec-
tion of the records, not a trained machine learning model; (2) all 
records in the relevant selection are seen by a human at the end of 
the process21; (3) the use-case requires a reproducible workflow and 
complete transparency is required22.

Existing tools that implement such an active learning cycle for 
systematic reviewing are described in Table 1; see the Supplementary 
Information for an overview of all of the software that we consid-
ered (note that this list was based on a review of software tools12). 
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Table 1 | Existing tools that implement an RITL-based active learning cycle for systematic reviewing

Name Machine learning algorithms Active learning features Privacy policy

Abstrackr58 Classifier: SVM.
Model inputs: user-provided keywords 
(relevant/irrelevant with degree of 
confidence); citations.
Feature extraction: TF–IDF.
Label options: relevant; borderline; 
irrelevant.

Query strategy: uncertainty-based; 
certainty-based; random sampling.
Balance strategy: aggressive undersampling.
Active learning starts after: a reasonable 
representation of the minority class has been 
labelled (ref. 14).
Retraining: asynchronous.
Stopping: when the model predicts none of the 
remaining abstracts to be relevant.

GDPR notification:
“We do not have a limit on how long we 
retain your account information and/or 
data.”.
“We do not share any information with 
third parties.”.

ASReview27 Classifier: NB; SVM; DNN; LR; 
LSTM-base; LSTM-pool; RF.
Model inputs: piece of text (for 
example, title and abstract).
Feature extraction: Doc2Vec; 
embedding IDF, TF–IDF, sBERT.
Label options: relevant; irrelevant.

Query strategy: uncertainty-based; 
certainty-based; random sampling; mixed 
sampling.
Balance strategy: simple (no balancing); dynamic 
resampling (double and triple); undersampling.
Active learning starts after: one label.
Retraining: asynchronous.
Stopping: currently left to the reviewer.

The software does not have access to user 
data, as the program runs locally.

Colandr59 Classifier: SVM with SGD learning.
Model inputs: user-provided key terms 
and citation (abstract, title, keywords).
Feature extraction: Word2Vec
Label options: include; exclude.

Query strategy: certainty-based.
Balance strategy: reweighting.
Active learning starts after: 100 inclusions and 
100 exclusions.
Retraining: every 30 abstracts.
Stopping: is left to the reviewer.

No terms and conditions available.
The Colandr team was contacted and they 
ensured the user can remove data any 
time. In the future, user data will be used 
to improve Colandr but only if granted 
permission from the project owner.

FASTREAD60 Classifier: SVM.
Model inputs: title and abstract.
Feature extraction: TF–IDF.
Label options: relevant; irrelevant.

Query strategy: uncertainty sampling; Certainty 
sampling. Users are allowed to switch between 
active learning types after thirty inclusions.
Balance strategy: mix of weighting and aggressive 
undersampling.
Active learning starts after: one relevant abstract 
is retrieved (through querying random abstracts).
Retraining: every ten abstracts.
Stopping: the number of relevant abstracts is 
estimated by semi-supervised learning.

The software does not have access to user 
data as the program runs locally.

Rayyan61 Classifier: SVM.
Model inputs: user-provided key terms 
and citation (title and abstract).
Feature extraction: unigrams, bigrams, 
MeSH terms.
Label options: include; exclude; maybe.

Query strategy: Rayyan predicts a relevancy of a 
citation on a five-star scale. The user can order 
citations by their predicted relevancy.
Balance strategy: unknown.
Active learning starts after: unknown.
Retraining: unknown; “as the user is labelling 
citations”.
Stopping: when there are no more citations to 
be labelled or when the model can no longer be 
improved.

Rayyan terms of service:
3.1: “Rayyan, may use any User data and 
information to evaluate and improve its 
performance and expand its services.”.
3.4: “This Agreement is governed by the 
laws of the State of Qatar. By accessing 
this Rayyan website you consent to these 
terms and conditions and to the exclusive 
jurisdiction of the Qatar courts in all 
disputes arising out of such access.”.
9.2.2: “Rayyan does not own User 
Content. The User retains the copyright of 
their Content. …”.

RobotAnalyst62 Classifier: SVM.
Model inputs: title; abstract; topic 
model proportions.
Feature extraction: TF–IDF L2 
normalized (title); BOW for abstract; 
LDA for topic model proportions.
Label options: included; excluded; 
undecided.

Query strategy: uncertainty-based; 
certainty-based.
Balance strategy: none.
Active learning starts after: a manually labelled 
‘initial batch’ of abstracts, randomly sampled or 
obtained through a focused search.
Retraining: when to retrain is left to the user. 
Possible after every labelled citation
Stopping: is left to the reviewer, however at least a 
sequence of excluded citations is necessary.

Not available.

An overview of those tools that implemented active learning and describe what machine learning algorithms have been implemented, which active learning features are available and information about 
privacy policy. As a starting point we used the systematic review12 that describes machine learning-aided software tools for systematic reviewing. In Supplementary Table 1 we provide an overview of all 
tools found by Harrison and colleagues and indicate which open-source tools implemented machine learning and/or active learning. Note that we added FASTREAD, RobotAnalyst and ASReview to the 
overview, which were not described by Harrison and co-workers. Machine learning, the kind of machine learning model used; active learning, how active learning is implemented; privacy policy, quotes 
from privacy policy are given (if available) to indicate possible concerns; SVM, support vector machine; TF–IDF, term frequency–inverse document frequency; NB, naive Bayes; DNN, dense neural network; 
LR, logistic regression; LSTM, long short-term memory; RF, random forests; Doc2Vec, document to vector; embedding IDF, embedding inverse document frequency; sBERT, sentence bidirectional encoder 
representations from transformers; SGD, stochastic gradient descent; Word2Vec, words to vector; BOW, bag of words; LDA, latent dirichlet allocation; GDPR, general data protection regulation; MeSH, 
medical subject headings.
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However, existing tools have two main drawbacks. First, many are 
closed source applications with black box algorithms, which is 
problematic as transparency and data ownership are essential in 
the era of open science22. Second, to our knowledge, existing tools 
lack the necessary flexibility to deal with the large range of possible  
concepts to be learned by a screening machine. For example, in 
systematic reviews, the optimal type of classifier will depend on 
variable parameters, such as the proportion of relevant publica-
tions in the initial search and the complexity of the inclusion crite-
ria used by the researcher23. For this reason, any successful system 
must allow for a wide range of classifier types. Benchmark testing is 
crucial to understand the real-world performance of any machine 
learning-aided system, but such benchmark options are currently 
mostly lacking.

In this paper we present an open source machine learning-aided 
pipeline with active learning for systematic reviews called 
ASReview. The goal of ASReview is to help scholars and practitio-
ners to get an overview of the most relevant records for their work 
as efficiently as possible while being transparent in the process. 
The open, free and ready-to-use software ASReview addresses all 
concerns mentioned above: it is open source, uses active learning, 
allows multiple machine learning models. It also has a benchmark 
mode, which is especially useful for comparing and designing algo-
rithms. Furthermore, it is intended to be easily extensible, allowing 
third parties to add modules that enhance the pipeline. Although 
we focus this paper on systematic reviews, ASReview can handle 
any text source.

In what follows, we first present the pipeline for manual versus 
machine learning-aided systematic reviews. We then show how 
ASReview has been set up and how ASReview can be used in differ-
ent workflows by presenting several real-world use cases. We sub-
sequently demonstrate the results of simulations that benchmark 
performance and present the results of a series of user-experience 
tests. Finally, we discuss future directions.

Pipeline for manual and machine learning-aided systematic 
reviews
The pipeline of a systematic review without active learning tradition-
ally starts with researchers doing a comprehensive search in multiple 
databases24, using free text words as well as controlled vocabulary 
to retrieve potentially relevant references. The researcher then 
typically verifies that the key papers they expect to find are indeed 
included in the search results. The researcher downloads a file with 
records containing the text to be screened. In the case of system-
atic reviewing it contains the titles and abstracts (and potentially 
other metadata such as the authors’s names, journal name, DOI) 
of potentially relevant references into a reference manager. Ideally, 
two or more researchers then screen the records’s titles and abstracts 
on the basis of the eligibility criteria established beforehand4. After 
all records have been screened, the full texts of the potentially rel-
evant records are read to determine which of them will be ultimately 
included in the review. Most records are excluded in the title and 
abstract phase. Typically, only a small fraction of the records belong 
to the relevant class, making title and abstract screening an impor-
tant bottleneck in systematic reviewing process25. For instance, a 
recent study analysed 10,115 records and excluded 9,847 after title 
and abstract screening, a drop of more than 95%26. ASReview there-
fore focuses on this labour-intensive step.

The research pipeline of ASReview is depicted in Fig. 1. The 
researcher starts with a search exactly as described above and 
subsequently uploads a file containing the records (that is, meta-
data containing the text of the titles and abstracts) into the soft-
ware. Prior knowledge is then selected, which is used for training 
of the first model and presenting the first record to the researcher. 
As screening is a binary classification problem, the reviewer must 
select at least one key record to include and exclude on the basis of  

background knowledge. More prior knowledge may result in 
improved efficiency of the active learning process.

A machine learning classifier is trained to predict study relevance 
(labels) from a representation of the record-containing text (feature 
space) on the basis of prior knowledge. We have purposefully cho-
sen not to include an author name or citation network representa-
tion in the feature space to prevent authority bias in the inclusions. 
In the active learning cycle, the software presents one new record to 
be screened and labelled by the user. The user’s binary label (1 for 
relevant versus 0 for irrelevant) is subsequently used to train a new 
model, after which a new record is presented to the user. This cycle 
continues up to a certain user-specified stopping criterion has been 
reached. The user now has a file with (1) records labelled as either 
relevant or irrelevant and (2) unlabelled records ordered from most 
to least probable to be relevant as predicted by the current model. 

Choose a model
(classifier, feature
extraction, query
strategy, balance

strategy)

Set model
parameters

Select prior 
knowledge

File with records

Label papers

Active learning cycle

Select record
to present to

the user

Screen record
text

Provide label:
(ir)relevant

(Re)train
model

Stop labelling

Set of
relevant records

Fig. 1 | Machine learning-aided pipeline for ASReview. The symbols 
indicate whether the action is taken by a human, a computer, or whether 
both options are available.
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This set-up helps to move through a large database much quicker 
than in the manual process, while the decision process simultane-
ously remains transparent.

Software implementation for ASReview
The source code27 of ASReview is available open source under an 
Apache 2.0 license, including documentation28. Compiled and 
packaged versions of the software are available on the Python 
Package Index29 or Docker Hub30. The free and ready-to-use soft-
ware ASReview implements oracle, simulation and exploration 
modes. The oracle mode is used to perform a systematic review with 
interaction by the user, the simulation mode is used for simulation 
of the ASReview performance on existing datasets, and the explora-
tion mode can be used for teaching purposes and includes several 
preloaded labelled datasets.

The oracle mode presents records to the researcher and the 
researcher classifies these. Multiple file formats are supported: (1) 
RIS files are used by digital libraries such as IEEE Xplore, Scopus 
and ScienceDirect; the citation managers Mendeley, RefWorks, 
Zotero and EndNote support the RIS format too. (2) Tabular data-
sets with the .csv, .xlsx and .xls file extensions. CSV files should be 
comma separated and UTF-8 encoded; the software for CSV files 
accepts a set of predetermined labels in line with the ones used in 
RIS files. Each record in the dataset should hold the metadata on, for 
example, a scientific publication. Mandatory metadata is text and 
can, for example, be titles or abstracts from scientific papers. If avail-
able, both are used to train the model, but at least one is needed. An 
advanced option is available that splits the title and abstracts in the 
feature-extraction step and weights the two feature matrices inde-
pendently (for TF–IDF only). Other metadata such as author, date, 
DOI and keywords are optional but not used for training the models. 
When using ASReview in the simulation or exploration mode, an 
additional binary variable is required to indicate historical labelling 
decisions. This column, which is automatically detected, can also 
be used in the oracle mode as background knowledge for previous 
selection of relevant papers before entering the active learning cycle. 
If unavailable, the user has to select at least one relevant record that 
can be identified by searching the pool of records. At least one irrel-
evant record should also be identified; the software allows to search 
for specific records or presents random records that are most likely 
to be irrelevant due to the extremely imbalanced data.

The software has a simple yet extensible default model: a naive 
Bayes classifier, TF–IDF feature extraction, a dynamic resampling 
balance strategy31 and certainty-based sampling17,32 for the query 
strategy. These defaults were chosen on the basis of their consis-
tently high performance in benchmark experiments across several 
datasets31. Moreover, the low computation time of these default set-
tings makes them attractive in applications, given that the software 
should be able to run locally. Users can change the settings, shown 
in Table 2, and technical details are described in our documenta-
tion28. Users can also add their own classifiers, feature extraction 
techniques, query strategies and balance strategies.

ASReview has a number of implemented features (see Table 2). 
First, there are several classifiers available: (1) naive Bayes; (2) sup-
port vector machines; (3) logistic regression; (4) neural networks; 
(5) random forests; (6) LSTM-base, which consists of an embedding 
layer, an LSTM layer with one output, a dense layer and a single sig-
moid output node; and (7) LSTM-pool, which consists of an embed-
ding layer, an LSTM layer with many outputs, a max pooling layer 
and a single sigmoid output node. The feature extraction techniques 
available are Doc2Vec33, embedding LSTM, embedding with IDF or 
TF–IDF34 (the default is unigram, with the option to run n-grams 
while other parameters are set to the defaults of Scikit-learn35) and 
sBERT36. The available query strategies for the active learning part 
are (1) random selection, ignoring model-assigned probabilities; 
(2) uncertainty-based sampling, which chooses the most uncertain 
record according to the model (that is, closest to 0.5 probability); 
(3) certainty-based sampling (max in ASReview), which chooses 
the record most likely to be included according to the model; and 
(4) mixed sampling, which uses a combination of random and 
certainty-based sampling.

There are several balance strategies that rebalance and reorder 
the training data. This is necessary, because the data is typically 
extremely imbalanced and therefore we have implemented the fol-
lowing balance strategies: (1) full sampling, which uses all of the 
labelled records; (2) undersampling the irrelevant records so that 
the included and excluded records are in some particular ratio 
(closer to one); and (3) dynamic resampling, a novel method similar 
to undersampling in that it decreases the imbalance of the training 
data31. However, in dynamic resampling, the number of irrelevant 
records is decreased, whereas the number of relevant records is 
increased by duplication such that the total number of records in 
the training data remains the same. The ratio between relevant and 
irrelevant records is not fixed over interactions, but dynamically 
updated depending on the number of labelled records, the total 
number of records and the ratio between relevant and irrelevant 
records. Details on all of the described algorithms can be found in 
the code and documentation referred to above.

By default, ASReview converts the records’s texts into a 
document-term matrix, terms are converted to lowercase and 
no stop words are removed by default (but this can be changed).  
As the document-term matrix is identical in each iteration of the 
active learning cycle, it is generated in advance of model train-
ing and stored in the (active learning) state file. Each row of the 
document-term matrix can easily be requested from the state-file. 
Records are internally identified by their row number in the input 
dataset. In oracle mode, the record that is selected to be classified is 
retrieved from the state file and the record text and other metadata 
(such as title and abstract) are retrieved from the original dataset 
(from the file or the computer’s memory). ASReview can run on 
your local computer, or on a (self-hosted) local or remote server. 
Data (all records and their labels) remain on the users’s computer. 
Data ownership and confidentiality are crucial and no data are 
processed or used in any way by third parties. This is unique by 

Table 2 | Implemented classifiers, feature extraction techniques, query strategies and balance strategies available in ASReview

Classifier Feature extraction Query strategy Balance strategy

Naive Bayes (default)
Support vector machine
Neural network
Logistic regression
LSTM-base
LSTM-pool
Random forests

TF–IDF (default)
Embedding-IDF
Sentence BERT
Doc2Vec
Embedding LSTM

Certainty-based sampling (default)
Uncertainty-based sampling
Random sampling
Mixed sampling (for example, 5% 
random/95% certainty-based)

Dynamic resampling (double and 
triple) (double = default)
Undersampling
Simple (no balancing)

Note that not all combinations are possible. For example, the NB classifier cannot handle a feature matrix with negative values and thus cannot be combined with Doc2Vec; LSTM-base and LSTM-pool 
classifiers exclusively work with embedding LSTM feature extraction and vice versa. Technical details are described in our documentation28.
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comparison with some of the existing systems, as shown in the last 
column of Table 1.

Real-world use cases and high-level function descriptions
Below we highlight a number of real-world use cases and high-level 
function descriptions for using the pipeline of ASReview.

ASReview can be integrated in classic systematic reviews or 
meta-analyses. Such reviews or meta-analyses entail several explicit 
and reproducible steps, as outlined in the PRISMA guidelines4. 
Scholars identify all likely relevant publications in a standardized 
way, screen retrieved publications to select eligible studies on the 
basis of defined eligibility criteria, extract data from eligible stud-
ies and synthesize the results. ASReview fits into this process, par-
ticularly in the abstract screening phase. ASReview does not replace 
the initial step of collecting all potentially relevant studies. As such, 
results from ASReview depend on the quality of the initial search 
process, including selection of databases24 and construction of com-
prehensive searches using keywords and controlled vocabulary. 
However, ASReview can be used to broaden the scope of the search 
(by keyword expansion or omitting limitation in the search query), 
resulting in a higher number of initial papers to limit the risk of 
missing relevant papers during the search part (that is, more focus 
on recall instead of precision).

Furthermore, many reviewers nowadays move towards meta- 
reviews when analysing very large literature streams, that is, system-
atic reviews of systematic reviews37. This can be problematic as the 
various reviews included could use different eligibility criteria and 
are therefore not always directly comparable. Due to the efficiency 
of ASReview, scholars using the tool could conduct the study by ana-
lysing the papers directly instead of using the systematic reviews. 
Furthermore, ASReview supports the rapid update of a systematic 
review. The included papers from the initial review are used to train 
the machine learning model before screening of the updated set of 
papers starts. This allows the researcher to quickly screen the updated 
set of papers on the basis of decisions made in the initial run.

As an example case, let us look at the current literature on 
COVID-19 and the coronavirus. An enormous number of papers 
are being published on COVID-19. It is very time consuming to 
manually find relevant papers (for example, to develop treatment 
guidelines). This is especially problematic as urgent overviews are 
required. Medical guidelines rely on comprehensive systematic 
reviews, but the medical literature is growing at breakneck pace and 
the quality of the research is not universally adequate for summa-
rization into policy38. Such reviews must entail adequate protocols 
with explicit and reproducible steps, including identifying all poten-
tially relevant papers, extracting data from eligible studies, assessing 
potential for bias and synthesizing the results into medical guide-
lines. Researchers need to screen (tens of) thousands of COVID-
19-related studies by hand to find relevant papers to include in their 
overview. Using ASReview, this can be done far more efficiently by 
selecting key papers that match their (COVID-19) research ques-
tion in the first step; this should start the active learning cycle and 
lead to the most relevant COVID-19 papers for their research ques-
tion being presented next. A plug-in was therefore developed for 
ASReview39, which contained three databases that are updated auto-
matically whenever a new version is released by the owners of the 
data: (1) the Cord19 database, developed by the Allen Institute for 
AI, with over all publications on COVID-19 and other coronavi-
rus research (for example SARS, MERS and so on) from PubMed 
Central, the WHO COVID-19 database of publications, the pre-
print servers bioRxiv and medRxiv and papers contributed by spe-
cific publishers40. The CORD-19 dataset is updated daily by the 
Allen Institute for AI and updated also daily in the plugin. (2) In 
addition to the full dataset, we automatically construct a daily sub-
set of the database with studies published after December 1st, 2019 
to search for relevant papers published during the COVID-19 crisis. 

(3) A separate dataset of COVID-19 related preprints, containing 
metadata of preprints from over 15 preprints servers across disci-
plines, published since January 1st, 202041. The preprint dataset is 
updated weekly by the maintainers and then automatically updated 
in ASReview as well. As this dataset is not readily available to 
researchers through regular search engines (for example, PubMed), 
its inclusion in ASReview provided added value to researchers inter-
ested in COVID-19 research, especially if they want a quick way to 
screen preprints specifically.

Simulation study
To evaluate the performance of ASReview on a labelled dataset, 
users can employ the simulation mode. As an example, we ran 
simulations based on four labelled datasets with version 0.7.2 of 
ASReview. All scripts to reproduce the results in this paper can 
be found on Zenodo (https://doi.org/10.5281/zenodo.4024122)42, 
whereas the results are available at OSF (https://doi.org/10.17605/
OSF.IO/2JKD6)43.

Datasets. First, we analysed the performance for a study system-
atically describing studies that performed viral metagenomic 
next-generation sequencing in common livestock such as cattle, 
small ruminants, poultry and pigs44. Studies were retrieved from 
Embase (n = 1,806), Medline (n = 1,384), Cochrane Central (n = 1), 
Web of Science (n = 977) and Google Scholar (n = 200, the top 
relevant references). After deduplication this led to 2,481 studies 
obtained in the initial search, of which 120 were inclusions (4.84%).

A second simulation study was performed on the results for a sys-
tematic review of studies on fault prediction in software engineer-
ing45. Studies were obtained from ACM Digital Library, IEEExplore 
and the ISI Web of Science. Furthermore, a snowballing strategy 
and a manual search were conducted, accumulating to 8,911 publi-
cations of which 104 were included in the systematic review (1.2%).

A third simulation study was performed on a review of lon-
gitudinal studies that applied unsupervised machine learning 
techniques to longitudinal data of self-reported symptoms of the 
post-traumatic stress assessed after trauma exposure46,47; 5,782 
studies were obtained by searching Pubmed, Embase, PsychInfo 
and Scopus and through a snowballing strategy in which both the 
references and the citation of the included papers were screened. 
Thirty-eight studies were included in the review (0.66%).

A fourth simulation study was performed on the results for a 
systematic review on the efficacy of angiotensin-converting enzyme 
inhibitors, from a study collecting various systematic review data-
sets from the medical sciences15. The collection is a subset of 2,544 
publications from the TREC 2004 Genomics Track document cor-
pus48. This is a static subset from all MEDLINE records from 1994 
through 2003, which allows for replicability of results. Forty-one 
publications were included in the review (1.6%).

Performance metrics. We evaluated the four datasets using three 
performance metrics. We first assess the work saved over sam-
pling (WSS), which is the percentage reduction in the number of 
records needed to screen achieved by using active learning instead 
of screening records at random; WSS is measured at a given level 
of recall of relevant records, for example 95%, indicating the work 
reduction in screening effort at the cost of failing to detect 5% of 
the relevant records. For some researchers it is essential that all rel-
evant literature on the topic is retrieved; this entails that the recall 
should be 100% (that is, WSS@100%). We also propose the amount 
of relevant references found after having screened the first 10% of 
the records (RRF10%). This is a useful metric for getting a quick 
overview of the relevant literature.

Results. For every dataset, 15 runs were performed with one ran-
dom inclusion and one random exclusion (see Fig. 2). The classical 
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reviews, and two experienced reviewers working at a pharmaceu-
tical non-profit organization who work on updating reviews with 
new data. In four sessions, held in February to March 2020, these 
users tested the software following our testing protocol. After each 
session we implemented the feedback provided by the experts and 
asked them to review the software again. The main feedback was 
about how to upload datasets and select prior papers. Their feed-
back resulted in the release of v.0.7 and v.0.9.

Systematic UX test. In May 2020 we conducted a systematic UX 
test. Two groups of users were distinguished: an unexperienced 
group and an experienced user who already used ASReview. Due 
to the COVID-19 lockdown the usability tests were conducted via 
video calling where one person gave instructions to the participant 
and one person observed, called human-moderated remote test-
ing49. During the tests, one person (SH) asked the questions and 
helped the participant with the tasks, the other person observed and 
made notes, a user experience professional at the IT department of 
Utrecht University (MH).

To analyse the notes, thematic analysis was used, which is a 
method to analyse data by dividing the information in subjects that 
all have a different meaning50 using the Nvivo 12 software51. When 
something went wrong the text was coded as showstopper, when 
something did not go smoothly the text was coded as doubtful, and 
when something went well the subject was coded as superb. The fea-
tures the participants requested for future versions of the ASReview 
tool were discussed with the lead engineer of the ASReview team 
and were submitted to GitHub as issues or feature requests.

The answers to the quantitative questions can be found at 
the Open Science Framework52. The participants (N = 11) rated 

review performance with randomly found inclusions is shown by 
the dashed line. The average work saved over sampling at 95% recall 
for ASReview is 83% and ranges from 67% to 92%. Hence, 95% of 
the eligible studies will be found after screening between only 8% to 
33% of the studies. Furthermore, the number of relevant abstracts 
found after reading 10% of the abstracts ranges from 70% to 100%. 
In short, our software would have saved many hours of work.

Usability testing (user experience testing)
We conducted a series of user experience tests to learn from end 
users how they experience the software and implement it in their 
workflow. The study was approved by the Ethics Committee of the 
Faculty of Social and Behavioral Sciences of Utrecht University  
(ID 20-104).

Unstructured interviews. The first user experience (UX) test—
carried out in December 2019—was conducted with an academic 
research team in a substantive research field (public administration 
and organizational science) that has conducted various systematic 
reviews and meta-analyses. It was composed of three university pro-
fessors (ranging from assistant to full) and three PhD candidates. In 
one 3.5 h session, the participants used the software and provided 
feedback via unstructured interviews and group discussions. The 
goal was to provide feedback on installing the software and test-
ing the performance on their own data. After these sessions we pri-
oritized the feedback in a meeting with the ASReview team, which 
resulted in the release of v.0.4 and v.0.6. An overview of all releases 
can be found on GitHub27.

A second UX test was conducted with four experienced research-
ers developing medical guidelines based on classical systematic 
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the tool with a grade of 7.9 (s.d. = 0.9) on a scale from one to ten  
(Table 2). The unexperienced users on average rated the tool  
with an 8.0 (s.d. = 1.1, N = 6). The experienced user on average  
rated the tool with a 7.8 (s.d. = 0.9, N = 5). The participants 
described the usability test with words such as helpful, accessible, 
fun, clear and obvious.

The UX tests resulted in the new release v0.10, v0.10.1 and the 
major release v0.11, which is a major revision of the graphical user 
interface. The documentation has been upgraded to make installing 
and launching ASReview more straightforward. We made setting up 
the project, selecting a dataset and finding past knowledge is more 
intuitive and flexible. We also added a project dashboard with infor-
mation on your progress and advanced settings.

Continuous input via the open source community. Finally, the 
ASReview development team receives continuous feedback from 
the open science community about, among other things, the user 
experience. In every new release we implement features listed by 
our users. Recurring UX tests are performed to keep up with the 
needs of users and improve the value of the tool.

Conclusion
We designed a system to accelerate the step of screening titles 
and abstracts to help researchers conduct a systematic review or 
meta-analysis as efficiently and transparently as possible. Our sys-
tem uses active learning to train a machine learning model that 
predicts relevance from texts using a limited number of labelled 
examples. The classifier, feature extraction technique, balance 
strategy and active learning query strategy are flexible. We pro-
vide an open source software implementation, ASReview with 
state-of-the-art systems across a wide range of real-world systematic 
reviewing applications. Based on our experiments, ASReview pro-
vides defaults on its parameters, which exhibited good performance 
on average across the applications we examined. However, we 
stress that in practical applications, these defaults should be care-
fully examined; for this purpose, the software provides a simula-
tion mode to users. We encourage users and developers to perform 
further evaluation of the proposed approach in their application, 
and to take advantage of the open source nature of the project by 
contributing further developments.

Drawbacks of machine learning-based screening systems, 
including our own, remain. First, although the active learning step 
greatly reduces the number of manuscripts that must be screened, it 
also prevents a straightforward evaluation of the system’s error rates 
without further onerous labelling. Providing users with an accurate 
estimate of the system’s error rate in the application at hand is there-
fore a pressing open problem. Second, although, as argued above, 
the use of such systems is not limited in principle to reviewing, no 
empirical benchmarks of actual performance in these other situ-
ations yet exist to our knowledge. Third, machine learning-based 
screening systems automate the screening step only; although the 
screening step is time-consuming and a good target for automa-
tion, it is just one part of a much larger process, including the initial 
search, data extraction, coding for risk of bias, summarizing results 
and so on. Although some other works, similar to our own, have 
looked at (semi-)automating some of these steps in isolation53,54, to 
our knowledge the field is still far removed from an integrated sys-
tem that would truly automate the review process while guarantee-
ing the quality of the produced evidence synthesis. Integrating the 
various tools that are currently under development to aid the sys-
tematic reviewing pipeline is therefore a worthwhile topic for future 
development.

Possible future research could also focus on the performance 
of identifying full text articles with different document length and 
domain-specific terminologies or even other types of text, such 
as newspaper articles and court cases. When the selection of past 

knowledge is not possible based on expert knowledge, alternative 
methods could be explored. For example, unsupervised learning or 
pseudolabelling algorithms could be used to improve training55,56. In 
addition, as the NLP community pushes forward the state of the art 
in feature extraction methods, these are easily added to our system 
as well. In all cases, performance benefits should be carefully evalu-
ated using benchmarks for the task at hand. To this end, common 
benchmark challenges should be constructed that allow for an even 
comparison of the various tools now available. To facilitate such a 
benchmark, we have constructed a repository of publicly available 
systematic reviewing datasets57.

The future of systematic reviewing will be an interaction with 
machine learning algorithms to deal with the enormous increase 
of available text. We invite the community to contribute to open 
source projects such as our own, as well as to common benchmark 
challenges, so that we can provide measurable and reproducible 
improvement over current practice.

Data availability
The results described in this paper are available at the Open Science 
Framework (https://doi.org/10.17605/OSF.IO/2JKD6)43. The 
answers to the quantitative questions of the UX test can be found at 
the Open Science Framework (OSF.IO/7PQNM)52.

Code availability
All code to reproduce the results described in this paper can be 
found on Zenodo (https://doi.org/10.5281/zenodo.4024122)42. All 
code for the software ASReview is available under an Apache 2.0 
license (https://doi.org/10.5281/zenodo.3345592)27, is maintained 
on GitHub63 and includes documentation (https://doi.org/10.5281/
zenodo.4287120)28.
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