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Abstract

One of the reasons for the fast spread of SARS-CoV-2 is the lack of accuracy

in detection tools in the clinical field. Molecular techniques, such as quantita-

tive real-time RT-PCR and nucleic acid sequencing methods, are widely used

to identify pathogens. For this particular virus, however, they have an overall

unsatisfying detection rate, due to its relatively recent emergence and still not

completely understood features. In addition, SARS-CoV-2 is remarkably simi-

lar to other Coronaviruses, and it can present with other respiratory infections,

making identification even harder. To tackle this issue, we propose an assisted

detection test, combining molecular testing with deep learning. The proposed

approach employs a state-of-the-art deep convolutional neural network, able to

automatically create features starting from the genome sequence of the virus.

Experiments on data from the Novel Coronavirus Resource (2019nCoVR) show

that the proposed approach is able to correctly classify SARS-CoV-2, distin-

guishing it from other coronavirus strains, such as MERS-CoV, HCoV-NL63,

HCoV-OC43, HCoV-229E, HCoV-HKU1, and SARS-CoV regardless of missing

information and errors in sequencing (noise). From a dataset of 553 complete

genome non-repeated sequences that vary from 1,260 to 31,029 bps in length,

the proposed approach classifies the different coronaviruses with an average ac-

Preprint submitted to Journal of LATEX Templates March 13, 2020

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2020. ; https://doi.org/10.1101/2020.03.13.990242doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990242
http://creativecommons.org/licenses/by-nc/4.0/


curacy of 98.75% in a 10-fold cross-validation, identifying SARS-CoV-2 with an

AUC of 98%, specificity of 0.9939 and sensitivity of 1.00 in a binary classifica-

tion. Then, using the same basis, we classify SARS-CoV-2 from 384 complete

viral genome sequences with human host, that contain the gene ORF1ab from

the NCBI with a 10-fold accuracy of 98.17% , a specificity of 0.9797 and sensitiv-

ity of 1.00. These preliminary results seem encouraging enough to identify deep

learning as a promising research venue to develop assisted detection tests for

SARS-CoV-2. At this end the interaction between viromics and deep learning,

will hopefully help to solve global infection problems. In addition, we offer our

code and processed data to be used for diagnostic purposes by medical doctors,

virologists and scientists involved in solving the SARS-CoV-2 pandemic. As

more data become available we will update our system.

Keywords: convolutional neural networks, coronavirus, deep learning,

SARS-CoV-2

1. Introduction

The Coronaviridae family presents a positive sense, single-strand RNA genome.

This viruses have been identified in avian and mammal hosts, including humans.

Coronaviruses have genomes from 26.4 kilo base-pairs (kbps) to 31.7 kbps, with

G + C contents varying from 32% to 43%, and human-infecting coronaviruses5

include SARS-CoV, MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63 and

HCoV-HKU1 [1]. In December 2019, SARS-CoV-2, a novel, human-infecting

Coronavirus was identified in Wuhan, China, using Next Generation Sequenc-

ing [2].

As a typical RNA virus, new mutations appears every replication cycle of10

Coronavirus, and its average evolutionary rate is roughly 10-4 nucleotide sub-

stitutions per site each year [2]. In the specific case of SARS-CoV-2, RT-qPCR

testing using primers in ORF1ab and N genes have been used to identified the

infection in humans. However, this method presents a high false negative rate

(FNR), with a detection rate of 30-50% [3, 4]. This low detection rate can be15
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explained by the variation of viral RNA sequences within virus species, and the

viral load in different anatomic sites [5]. Population mutation frequency of site

8,872 located in ORF1ab gene and site 28,144 located in ORF8 gene gradually

increased from 0 to 29% as the epidemic progressed [6].

As of March 6th of 2020, the new SARS-CoV-2 has 98,192 confirmed cases20

across 88 countries, with 17,481 cases outside of China [7]. In addition, SARS-

CoV-2 has an estimated mortality rate of 3-4%, and it is spreading faster than

SARS-CoV and MERS-CoV [8]. SARS-CoV-2 assays can yield false positives

if they are not targeted specifically to SARS-CoV-2, as the virus is closely re-

lated to other Coronavirus organisms. In addition, SARS-CoV-2 may present25

with other respiratory infections, which make it even more difficult to iden-

tify [9, 10]. Thus, it is fundamental to improve existing diagnostic tools to

contain the spread. For example, diagnostic tools combining computed tomog-

raphy (CT) scans with deep learning have been proposed, achieving an improved

detection accuracy of 82.9% [11]. Another solution for identifying SARS-CoV-230

is additional sequencing of the viral complementary DNA (cDNA). We can use

sequencing data with cDNA, resulting from the PCR of the original viral RNA;

e,g, Real-Time PCR amplicons (Fig. 1) to identify the SARS-CoV-2 [12].

Figure 1: PCR Amplicons sequencing procedure.

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2020. ; https://doi.org/10.1101/2020.03.13.990242doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990242
http://creativecommons.org/licenses/by-nc/4.0/


Classification using viral sequencing techniques is mainly based on align-

ment methods such as FASTA [13] and BLAST [14]. These methods rely on the35

assumption that DNA sequences share common features, and their order pre-

vails among different sequences [15, 16]. However, these methods suffer from the

necessity of needing base sequences for the detection [17]. Nevertheless, it is nec-

essary to develop innovative improved diagnostic tools that target the genome

to improve the identification of pathogenic variants, as sometimes several tests,40

are needed to have an accurate diagnosis. As an alternative deep learning meth-

ods have been suggested for classification of DNA sequences, as these methods

do not need pre-selected features to identify or classify DNA sequences. Deep

Learning has been efficiently used for classification of DNA sequences, using

one-hot label encoding and Convolution Neural Networks (CNN) [18, 19], albeit45

the examples in literature are featuring DNA sequences of length up to 500 bps,

only.

In particular, for the case of viruses, Next Generation Sequencing (NGS)

genomic samples might not be identified by BLAST, as there are no reference

sequences valid for all genomes, as viruses have high mutation frequency [20].50

Alternative solutions based on deep learning have been proposed to classify

viruses, by dividing sequences into pieces of fixed lengths, from 300 bps [20]

to 3,000 bps [21]. However, this approach has the negative effect of poten-

tially ignoring part of the information contained in the input sequence, that is

disregarded if it cannot completely fill a piece of fixed size.55

Given the impact of the world-wide outbreak, international efforts have been

made to simplify the access to viral genomic data and metadata through interna-

tional repositories, such as; the 2019 Novel Coronavirus Resource (2019nCoVR)

repository [6] and the National Center for Biotechnology Information (NCBI) [22],

expecting that the easiness to acquire information would make it possible to de-60

velop medical countermeasures to control the disease worldwide, as it happened

in similar cases earlier [23, 24, 25]. Thus, taking advantage of the available

information of international resources without any political and/or economic

borders, we propose an innovative system based on viral gene sequencing.
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Differently from previous works in literature, that use of deep learning with65

fixed length features and one-hot label encoding, in this work we propose the use

of a different encoding to input the full sequence as a whole. In addition, we use

as base input 31,029 as an input vector, which is the maximum length of available

DNA sequences for Coronavirus. Finally, we propose a novel architecture for

the deep network, inspired by successful applications in cancer detection starting70

from miRNA [26].

2. Methods

2.1. Data

2.1.1. Classification of Coronaviruses

SARS-CoV-2 identification can give wrong results, as the virus is difficult75

to distinguish from other Coronaviruses, due to their genetic similarity. In

addition, people with SARS-CoV-2 may present other infections besides the

virus [9, 10]. Therefore, it is important to be able to properly classify SARS-

CoV-2 from other Coronaviruses.

From the repository 2019 Novel Coronavirus Resource (2019nCoVR) [6], we80

downloaded all the available sequences with the query Nucleotide Complete-

ness=“complete” AND host=“homo sapiens”, for a total of 588 samples. Next,

we removed all repeated sequences, resulting in 553 unique sequences of variable

length (1,260-31,029 bps). The data was organized and labeled as summarized

by Table 1. We grouped HCoV-229E and HCoV-OC43 in the same class, as they85

are mostly known as Coronaviruses responsible for the common cold [27]; the

two available samples of HCoV-4408 were also added to the same class, as it is

a Betacoronavirus 1, as HCoV-OC43. In a similar fashion, we grouped HCoV-

NL63 and HCoV-HKU1, as they are both associated with acute respiratory

infections (ARI) [28]. Finally, we grouped SARS-CoV/SARS-CoV-P2/SARS-90

CoV HKU-39849 [29]/SARS-CoV GDH-BJH01 organisms together, as they are

all strains of SARS.

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2020. ; https://doi.org/10.1101/2020.03.13.990242doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990242
http://creativecommons.org/licenses/by-nc/4.0/


Table 1: Organism, assigned label, and number of samples in the unique sequences obtained

from the repository [6]. We use the NCBI organism naming convention [30].

Organism Label Number of Samples

SARS-CoV-2 0 66

MERS-CoV 1 240

HCoV-OC43 2 140

HCoV-229E 2 22

HCoV-4408 2 2

HCoV-NL63 3 58

HCoV-HKU1 3 17

SARS-CoV 4 7

SARS-CoV P2 4 1

SARS-CoV HKU-39849 4 1

SARS-CoV GDH-BJH01 4 1

To encode the cDNA data into an input tensor for the CNN, we assigned

numeric values to the different bases; C=0.25, T=0.50, G=0.75, A=1.0 (see

Fig. 2). All missing entries were assigned the value 0.0. This procedure is95

different from previous methods, that relied upon one-hot encoding [21, 20],

and has the advantages of making the input more human-readable and do not

multiply the amount of memory required to store the information. We divide the

available samples in two parts, 90% for training and validation (80% training,

10% validation), and 10% for testing, in a 10-fold cross-validation scheme. k-100

fold cross-validation is a procedure by which available data is divided into k

parts, called folds. At each iteration i, the i-th fold is used as a test set, while

all the other folds are used as training. At the end of the k-th iteration, the

average performance of the model in test over all folds provides a good estimate

of the generality of the results. In this particular case, we use stratified folds,105

that preserve the same proportion of classes in every fold. The procedure is

summarized by Fig. 3.

2.1.2. Separating SARS-CoV-2 from other viruses containing gene ORF1ab

Two thirds of the Coronaviruses’ genome contain the ORF1ab gene [1].

Therefore, it is important that we are able to differentiate SARS-CoV-2 from110

similar viruses, like Astroviruses. From the NCBI repository [30], we down-
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Figure 2: Coding for the input sequences.

Figure 3: Scheme of a k-fold cross-validation. Available data is divided into k parts. At each

iteration i, the i-th fold is used for testing, while all the others are used as a training set.

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2020. ; https://doi.org/10.1101/2020.03.13.990242doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990242
http://creativecommons.org/licenses/by-nc/4.0/


loaded the genome sequences corresponding to the following search: gene=“ORF1ab”

AND host=“homo sapiens” AND “complete genome”. This resulted in 402 se-

quences, distributed as described in Table 2. For this data, we assigned SARS-

CoV-2 label 0, and grouped the rest of the organisms together in label 1. Next,115

we removed all the repeated sequences, obtaining a total of 384 unique se-

quences, with 45 samples belonging to SARS-CoV-2. The genomic data was

translated to digits using the encoding previously described in Subsection 2.1.1.

Table 2: Organism, assigned label, and number of samples in the unique sequences obtained

from the repository NCBI [30].

Virus Label Number of Samples

SARS-CoV-2 0 50

MERS-CoV 1 191

HCoV-OC43 1 105

HCoV-NL63 1 29

HCoV-HKU1 1 14

HCoV-4408 1 3

HCoV-229E 1 3

HAstV-VA1 1 2

HAstV-BF34 1 2

HAstV-SG 1 1

MAstV 8 1 1

HMO-A 1 1

2.2. Convolutional Neural Network

The deep learning model used for the experiments is a CNN with 3 convolu-120

tional layers and one fully connected layer, as described in Fig. 4. The input is a

vector of 31,029 elements, which is the maximum size of the genome sequences

in the dataset. Each convolutional layer is characterized by 3 hyperparame-

ters, as shown in Fig. 5. The architecture is summarized by hyper-parameters

w0 = 130, w1 = 204, w2 = 150, w3 = 196, h0 = 148, h2 = 236, h2 = 81, wd0 =125

9, wd1 = 106, wd3 = 121 where w3 is the number of units in the fully connected

layer. To improve generality, the fully connected layer is set with a dropout

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2020. ; https://doi.org/10.1101/2020.03.13.990242doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990242
http://creativecommons.org/licenses/by-nc/4.0/


with probability pd = 0.5 during training; moreover, a l2 regularization is ap-

plied to the cross-categorical entropy loss function, considering all weights in

the convolutional layers, with β = 10−3 . The optimizer used for the weights is130

Adaptive Moment Estimation (Adam) [31], with learning rate lr = 10−5, run

for 500 epochs. The hyper-parameters used in the experiments were selected

after a set of preliminary trials. All the necessary code was developed in Python

3, using the keras library for deep learning [32], and has been made available

on an open GitHub repository1.135

Figure 4: CNN Architecture.

3. Results

3.1. Classification of SARS-CoV-2 among Coronaviruses

In the first test, we separated the SARS-CoV-2 from other sequences avail-

able at the repository 2019 Novel Coronavirus Resource (2019nCoVR) [6]. We

obtained a 10-fold average test accuracy of µ = 0.9875 with σ = 0.0160. The140

resulting confusion matrix (Fig. 6) shows that only 3 out of the 66 SARS-CoV-2

sequences were mistakenly assigned to another class. The binarized curve of the

test (Fig. 7) has an area under the curve (AUC) of 0.98, with a specificity of

1http://github.org/albertotonda/deep-learning-coronavirus-genome

9
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Figure 5: CNN layer description.

0.9939 and sensitivity of 1.00. This is considered an outstanding performance,

according to the guidelines provided by [33, 34].145

As viruses are characterized by high mutation frequencies, to assess the ro-

bustness of our approach, we performed further experiments where we added

noise to the dataset, simulating possible future mutations. 5% noise was added

by randomly selecting 1,551 positions from each sequence, from the 31,029 avail-

able, and modifying each selected base to another, or to a missing value, ran-150

domly. A new 10-fold cross-validation classification run on the noisy dataset

yields an average accuracy µ = 0.9674 with a σ = 0.0158. Figs. 8 and 9 show

the resulting confusion matrix and ROC curve, respectively. This gives a AUC

of 0.97, with a specificity of 0.9939 and sensitivity of 0.90.

3.2. Separating SARS-CoV-2 from other viruses containing gene ORF1ab155

In a next batch of experiments, we aim to distinguish SARS-CoV-2 from

other genome sequences from NCBI [30], with the following search parameters:

gene=”ORF1ab” AND host=”homo sapiens” AND ”complete genome”. We

get a 10-fold average accuracy of µ = 0.9817 with a σ = 0.0167. The resulting

confusion matrix (Fig. 6) shows that 7 out of the 45 SARS-CoV-2 sequences,160

were classified in another class. The ROC curve of the test (Fig. 11) has an area

10
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Figure 6: Confusion matrix resulting from the test of a 10-fold cross-validation, comprising

553 samples belonging to 5 different classes.
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Figure 7: Binarized ROC curve of the 553 sequences, where we consider samples belonging to

SARS-CoV-2 as class 0, and all the rest as class 1.

under the curve (AUC) of 0.92 , with a specificity of 0.9797 and sensitivity of

1.00.
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Figure 8: Confusion matrix resulting from the test of a 10-fold cross-validation, comprising

553 samples belonging to 5 different classes, with a 5% noise in the dataset.
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Figure 9: Binarized ROC curve of the 553 sequences, where we consider samples belonging to

SARS-CoV-2 as class 0, and all the rest as class 1, with 5% added noise.

Figure 10: Confussion Matrix of the 384 NCBI sequences with 2 classes.
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Figure 11: ROC curve of the 384 sequences, where we consider SARS-CoV-2, as class 0 and

the rest as 1.
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4. Conclusion

Being able to reliably identify SARS-CoV-2 and distinguish it from other165

similar pathogens is important to contain its spread. The time of processing

samples and the availability of reliable diagnostic tests is a challenge during

an outbreak. Developing innovative diagnostic tools that target the genome

to improve the identification of pathogens, can help reduce health costs and

time to identify the infection, instead of using unsuitable treatments or testing.170

Moreover, it is necessary to perform an accurate classification to identify the

different species of Coronavirus, the genetic variants that could appear in the

future, and the coinfections with other pathogens.

Following, the high transmissibility of the SARS-CoV-2, the proper diagno-

sis of the disease is urgent, to stop the virus from spreading further. Considering175

the false negatives given by the standard nucleic acid detection, better imple-

mentations such as using deep learning are necessary in order to to properly

detect the virus. While the accuracy of current nucleic acid testing is around

30-50%, and CT scans with deep learning go up at 83%, we believe that the

use of a CNN-based system with sequencing has the potential to improve the180

accuracy of the diagnosis above 90%.

Our preliminary results using non-repeated sequences with differences in

length from 1,260 to 31,029, missing information (segments with Ns) and noise

(errors) do show an area under the curve of 98% in binary classification in a 10-

fold cross-validation. In order to further improve the proper classification within185

the 7 existing coronavirus strains, more examples of full genome sequences with

host=homo sapiens are needed, in order to make a full sub-type classification in-

stead of grouping HCoV-229E/OC43 and HCoV-NL60/HKU1 as we were forced

to do, due to the lack of samples. Thus, to further validate our results, we will

increase, and accommodate the data as it becomes available in the international190

repositories to further improve our system.

As of March 12th 2020, China and USA have made publicly available 50

SARS-CoV-2 virus gene sequences each. In Europe, however due to the strict
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privacy laws, only 3 sequences; Italy, Sweden and Finland, one viral genome

sequence each are available and this is of great concern. We urge to consider to195

make more data publicly available, in order to increase the possibility to create

counter-measures to the spread of the virus.
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