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Energy transport can reveal information about interacting many-body systems beyond other transport probes.
In particular, in one dimension it has been shown that the energy current is directly proportional to the central
charge, thus revealing information about the degrees of freedom of critical systems. In this paper, we explicitly
verify this result in two cases for translationally invariant systems based on explicit microscopic calculations.
More importantly, we generalize the result to nontranslation invariant setups and use this to study a composite
system of two subsystems possessing different central charges. We find a bottleneck effect, meaning the smaller

central charge limits the energy transport.
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I. INTRODUCTION

Transport properties are one of the most fundamental ways
to characterize and classify condensed-matter systems. Elec-
trical transport properties, for instance, can distinguish metals
from insulators or superconductors. Very specific electrical
transport properties can further fan out the classification;
for example, insulating bulk systems can have interesting
boundary transport properties, as is the case in quantum Hall
systems, topological insulators, or other topologically ordered
systems.

Although generally more complicated to measure and com-
pute, the same is true for heat transport. Additional difficulties
arise in this case from the fact that all degrees of freedom
participate in the transport process and not only those as-
sociated with a charge under the electromagnetic field, i.e.,
phonons and collective modes also contribute. In the early
days of research on metals, it was established that to an
excellent degree of approximation those systems fulfilled the
so-called Wiedemann—Franz law [1]. This law states that as
the temperature 7' goes to zero, the ratio of the electrical
conductivity o and the heat conductivity « tends to o /k =
T Ly, where Ly = 2k} /(3€?) is the Lorenz number, a constant
only composed out of fundamental quantities. Nowadays, the
Wiedemann—Franz law or the violation thereof [2—4] serves as
a diagnostic tool for the existence or nonexistence of a Fermi
liquid state.

In one-dimensional systems, more recent work [5] uncov-
ered a fundamental connection between the central charge
of a critical system with conformal symmetry and its heat-
transport properties. If the system is characterized by a central
charge ¢ but consists of two subsystems, left and right, held
at temperatures 71, and Ty, respectively, the energy current is
given by
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and thus directly proportional to the central charge itself. The
central charge can be interpreted loosely as a measure for the
number of degrees of freedom in a theory. It describes how
a system behaves in the presence of a macroscopic length
scale, for example, the Casimir energy is directly proportional
to c. At a more formal level, the central charge dictates the
short-distance behavior of the correlation functions of the
energy-momentum tensor and appears as a quantum anomaly
[6,7]. It is important to note that for the result Eq. (1) to hold,
overall translational invariance of the equilibrium situation
Ty = Tr is required. The result Eq. (1) was subsequently
confirmed in free systems like the transverse-field Ising chain
[8-11] as well as interacting systems using the generalized
hydrodynamic approach [12-15] and numerical simulations
[16-18].

The purpose of this paper is twofold. We first verify the
result Eq. (1) for two microscopic models corresponding to
field theories with ¢ = 1 and ¢ = 1/2, i.e., free fermions and
free Majorana fermions, respectively. Additionally, we study
a situation in which we couple two subsystems with these
two different central charges. As our main result, we find
a bottleneck on the energy current, namely, the subsystem
with the smaller central charge limits the energy transport.
The convenient framework to study this is a one-dimensional
version of a spinless p-wave superconductor, which can re-
alize central charges of ¢ = 1 and ¢ = 1/2 at its respective
XX and Ising critical point. We will use two complementary
methods: (i) the nonequilibrium Green’s function technique
[19,20], which allows us to obtain exact analytical results in
the thermodynamic limit at all parameter regimes, and (ii) the
real-time [21-24] finite-temperature [25,26] density matrix
renormalization group (DMRG) [27,28] algorithm [16,29,30],
which works directly with the corresponding lattice models.

The organization of the paper is as follows: We first intro-
duce the model in Sec. II and briefly review its key properties.
Section III discusses the basic energy current operator in its
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FIG. 1. Setup considered in this work: Two semi-infinite
fermionic chains described by H;, and Hy at different temperatures 7;.
and Ty are joined at their endpoints with a coupling Hamiltonian Hc.
The Hamiltonians Hj g may contain p-wave superconducting pairing
terms.

most generic form and relates it to Green’s functions, while
Sec. IV gives details on the DMRG simulations. In Sec. V,
we present our main results and finish with a conclusion in
Sec. VI. Technical details are deferred to the Appendices.

II. THE MODEL

The setup we consider consists of two subsystems, hence-
forth referred to as left (L) and right (R). Both are held
at different but constant temperatures 7 and Tz and are
described by Hamiltonians H;, and Hg, respectively. The two
subsystems are coupled by a Hamiltonian H¢ which facilitates
energy flow between them, see Fig. 1 for a sketch of the setup.
Specifically, we consider a Hamiltonian of the type

H = H, + Hr + Hc, 2)
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This Hamiltonian describes a one-dimensional p-wave su-
perconductor with hopping parameters #;, fr, fc and pairing
terms Ap, Ar, Ac in their respective parts of the chain. The
operator c; is an annihilation operator for a spinless fermion
at site j where negative (positive) j indicates a site in the left
(right) subsystem (site O belongs to the left subsystem). We
note that the total number of lattice sites equals N, + N + 1.
Additionally, we introduce on-site energies €| and €g.

The main motivation to study this Hamiltonian is that it
allows for a variety of different situations, including that of
having different central charges c, g = 1/2, 1 in the respective
subsystems, as well as different speeds of light. For example,
the ¢, = 1/2 critical point is obtained for #, = Ay = €1./2,
with the velocity of the low-lying excitations given by v =
211.. On the other hand, ¢;, = 1 is obtained for the choice A}, =
€, = 0 with the velocity v = 2#;. For most other parameter

sets, this Hamiltonian describes a gapped system which one
can also study, as done in Sec. V A. These situations, however,
are of little interest to our discussion since at this point a
comparison to the result Eq. (1) is impossible. If one is looking
into experimental situations, this type of Hamiltonian can
be encountered in a variety of settings. Apart from direct
electronic implementations, it can also appear as an effective
model of spin chains via a Jordan—Wigner transformation [31]
(see Appendix A).

III. GREEN’S FUNCTION FORMALISM

The heat current is the temporal change of heat in either of
the two subsystems. It consists of two contributions, namely,
a change in the energy and one related to the particle flow.
Choosing the left lead as reference, it is given by [32] Qp, =
Jg — MNL, where Qp is the heat flowing out of the left lead,
while Jg = —Ep and —N;_ are the energy and particle flows,
respectively, and p denotes an external chemical potential. In
the remainder of this paper, we only consider the case u = 0,
implying the heat current is equal to the temporal change of
energy in the lead, i.e., Q) = Jg = —EL. Furthermore, we are
only interested in the steady-state heat current where we have
OL = —0Ok.

To derive the energy current in the left lead, we use the
Heisenberg equations of motion following E = %(HL) =
i([H, H_]) (note that &z = 1 throughout). Straightforward com-
putations allow us to rewrite this in terms of the fermionic
operators as

EL = —i(tLtc — ALAC)<CLC1 + 07161?)
—i(Ac —cADc_ye, + ¢ el)
. ¥ VA Tt 6
itcercge) + coey) — iAceL(coe; +egey). (6)

It is important to note here that apart from “normal” fermionic
Green’s functions, this also requires knowledge of anomalous
propagators due to the superconducting correlations. The
calculations are carried out in a nonequilibrium setting and
we consequently resort to the Schwinger—Keldysh closed time
contour formalism [20], which we use to derive exact results
in the thermodynamic limit. We note that this requires the sys-
tem to be an effectively free theory, in our case corresponding
toc = 1/2 and ¢ = 1, respectively. In contrast, the application
of the nonequilibrium Green’s function technique to interact-
ing theories would require approximations. Using the results
and definitions from Appendix B [especially Eqgs. (B10)—
(B13)], the above expectation values can be expressed in terms
of lesser Green’s functions according to

EL= (ftc — ALAC)Re[G] _,(t, 1) + G} _,(t,1)]
+ (t1LAc — Avto)Re[F= (1, 1) + F;~_ (1, 1)]
+tceLRe[GTo(t, 1) + GTo(t, 1))
+ AceLRe[F5(t, 1) + F@, 1)), (7)

where G= and G= denote the normal particle and hole prop-
agators and F = and F< describe anomalous propagators for
Cooper pairs and anti-Cooper pairs, respectively [see Eq. (9)
below]. Restricting ourselves to a steady-state situation allows
us to apply Fourier transformation from time into frequency
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FIG. 2. Graphical representation of the Green’s functions rele-
vant for transport, see Eq. (11). The Green’s function GI,O can be
expressed by the Green’s functions G and G ;.

domain. Furthermore, we can significantly simplify the ex-
pression for the current using the Dyson equation for the
lesser Green’s functions. Since lesser Green’s functions are
off-diagonal in terms of the time contour description, the
Dyson equation for the lesser Green’s function reads

> 6w — Hix) =0, ®)
J

where the Green’s function G is a matrix in Nambu space that
has the structure

Gj,k(w)=(§—f g) (). ©)
J.k

and H;; denotes the matrix representation of the Hamilto-
nian; see Eq. (B2) for the precise form. Using Eq. (8) in the
case of i = 1 and k = 0, we can rewrite the energy current in
a compact form as

. dw - _ _
EL = —/ ZRe{w[tc(G = G)io— Ac(F — F)i0l

+[(12 — AZ)(G + G)1.1 + 2tcAc(F + F)i1]7}. (10)

Unless specified, the integration ranges over the real axis,
—00 < w < 00. Also, from now on, the Green’s functions are
understood to depend on the frequency w. The second line
of Eq. (10) does not contribute since the local lesser Green’s
functions do not have a real part and thus we can drop them.
Importantly, this expression depends solely on the Green’s
function that describes the transition from the last side of the
left lead to the first side of the right lead, whereas the rest of
the system does not contribute explicitly. Furthermore, using
the results of Appendix C, we can decompose this element
of the Green’s function into two parts that only contain local
Green’s functions situated at the ends of each lead according
to

Gio= —Gﬂ ic Go.o, (11

which is graphically represented in Fig. 2. Specifically, the
transition Green’s function consists of one bare Green’s func-
tion Gﬂ, one full Green’s function G, and a coupling
matrix 7c that is given by

A Ic Ac
fo = (—Ac _ZC). (12)

In this context, the bare Green’s function CA;(IO; is the Green’s
function of the first site of the right chain with the left chain
decoupled, whereas the full Green’s function G()q() is the one
of the last site of the left lead computed in the presence of a
coupling to the right lead. It is worth noting that the choice of
bare for the right lead and full for the left lead is arbitrary and
could be switched around.

Although it is possible to perform all the calculations for
the full model Eq. (2), for the sake of brevity, we specify
below to the relevant cases possessing conformal symmetry.

IV. DMRG FORMALISM

To compute the energy current Jg using the DMRG method
[27,28], we consider the setup shown in Fig. 1 as an initial
condition and subsequently perform a time evolution until a
stationary state is reached. In practice, one can reach only
finite time scales (see below), which are typically of the order
of several O(10/#_r). This leads to a finite-time error whose
magnitude one can estimate, e.g., by interchanging 71, <> T
and comparing results (which agree only in the limit# — o©0).

To be more precise, the thermal density matrices e~ #-*/T as
well as the real-time evolution operators e~ are determined
using a time-dependent DMRG algorithm; both operators
are factorized by a fourth-order Trotter-Suzuki decomposi-
tion [21-24]. We incorporate finite temperatures using the
purification technique [25,26]. The discarded weight during
each individual “bond update” is kept below a predefined
discarded weight, which leads to an exponential increase
of the bond dimension during the real-time evolution. To
access timescales as large as possible, we employ a finite-
temperature disentangler [29,30], which exploits the fact that
purification is not unique to slow down the growth of the bond
dimension. Our calculations are performed using a system
size of the order of N, = Ng = 128 sites. The Hamiltonian
is transformed into a spin representation via a Jordan-Wigner
transformation (see Appendix A).

V. MAIN RESULTS FOR THE ENERGY CURRENT

In the following, we discuss three different cases: (a)
coupling two subsystems with effective Majorana degrees
of freedom, i.e., ¢ = 1/2 in both subsystems; (b) coupling
two free fermion systems, i.e., ¢ =1 in both subsystems;
and (c) coupling a Majorana fermion to a fermion system,
meaning ¢ = 1/2 and ¢ = 1 in the respective subsystems. We
note that while the first two cases realize a setup covered
by Eq. (1) at their respective massless points, provided there
is overall translational symmetry of the parameters of the
Hamiltonian, in the latter situation the result Eq. (1) is not
applicable. Furthermore, we simplify the setup by always
choosing the parameters of the coupling region, described by
Eq. (5), to equal the parameters of the right lead, i.e., fc = tr
and Ac = Ag.

A. Coupling two Majorana chains

In this section, we consider the two Majorana fermion sys-
tems. This is obtained by setting A, = t,, a = L/R. However,
we allow for the parameters on the left and right side to be
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different, i.e., . # fr, thus breaking translational invariance.
Furthermore, for ¢, = 2t,, the system is gapless with the
velocity of the low-lying excitations given by v = 2¢, and the
central charge ¢, = 1/2. On the other hand, for €, # 2t,, the
system possesses an energy gap. We first calculate the energy
current for general ¢, and specify to the gapless case in the
end.

Using Eq. (11), we can simplify the expression for the
current, Eq. (10), to

2
B=_ & f dowRe(ROL)", (13)
2

2

1,
—ﬁ dowRe(RORL= + RO=LY),  (14)

where we defined R® = (G+ G+ F + F)(]?; and £ = (G +
G — F — F) and applied the Langreth theorem [33]. The
combination of Green’s functions R*) are composed of bare
Green’s functions of the right lead, whereas, as has been stated
in the previous section, the combination £ is made up of full
Green’s functions of the left lead, i.e., it contains information
about the coupling.

In the following, we adopt the convention that if not
explicitly indicated by a superscript, the Green’s function
is the retarded component. For a semi-infinite lead, we can
derive a self-consistency equation, as shown in Appendix C,
see Eq. (C8), which reduces to

-1
A A(0)— 1 -1
GV = [(G(O) D11 — RO (_1 ) )} R
Adding up all matrix elements of Gﬁ?i according to the defi-

nition of R and solving the resulting quadratic equation for
RO yields

1
RO = —(wr —ipr), (16)
IRl
where we have introduced the dimensionless energy scale
wr = (0* + 413 — €})/(4wltr|) as well as the dimension-

4t,%—e,% 9
4|

less density of states pr = Re,/1 — wi + 78(w)
(4g/eg — 1.

At w = 0, the density of states pgr has a pole manifesting
the Majorana edge mode present in the topological phase
for |er| < 2tg. However, in the current Eq. (14), we need
to consider the combination w Re(RPL< 4+ R®=<L*), with
* denoting the usual complex conjugation. Using that even
though R is divergent, ®R® and w L are perfectly well
defined for all values of w, we can approximate A in Egs. (19)
as

N(w=0)~ 423 LORO, (17)
and therefore find
o(=2ifr]ImR@)( — 412L©)
422RO LO -

=0. (18)

|a)R(0)<£* |w—>0 ~

By the same logic, the technically more involved term
wL=R yields the same vanishing result. For the energy

current, the precise properties of the leads at zero energy are
therefore irrelevant since these modes do not carry any energy.
Therefore, we can safely ignore the § function in Eq. (16) and

use pr = Re,/1 — wj.
The solution to the left-side semi-infinite lead can be

obtained in a similar fashion using Eq. (C9) and is given
by £O = %‘(wL —ipL) with wp, = (0? + 412 — €2)/(dolt])

=7
and pp =Re,/1 — wf. In the latter expression, we have al-

ready neglected the possible Majorana quasiparticle pole.
Since the uncoupled leads are kept at a fixed tempera-
ture, one can simply extract the lesser Green’s functions
of a bare lead via RO< = ifg(ROR — R®A4) and £LO=< =
ifL(LOR — £O4) " where the superscripts R and A denote
the retarded and advanced Green’s functions and fir(w) =
[1+ exp (w/TLr )]~! are the Fermi distribution functions cor-
responding to the respective temperatures of each lead.

In the equation for the energy current Eq. (14), we also
need the full Green’s function of the coupled left lead. Using
Eq. (C6) for i = 0 together with the results for £© and R®
yields

20— 42 LY
==
N = o — & = 20(ZLO + 2RO + 422 LORO),
(19)
Since the system is not in thermal equilibrium, finding the
lesser Green’s function for the full left lead proves to be more

difficult than for the bare system. However, in the steady state,
we can calculate it via

Gyo = G§,02<G6‘,01 (20

with the lesser self-energy given by

ﬁ<=t§7€“’)<(_} _})+z§c<")<<} i) @1

Using the fact that taking the real part in Eq. (14) restricts us
to a regime where of p < 1, i.e., pir = 1 — W}y, a tedious
but straightforward calculation allows us to write the final
expression for the energy current as

B — 1 [ do thtRprl;[fR(w) - fL(w)]z. 22)
wJ (Lo — firwr)” + (ILoL + IRER)

We note that the densities pr,r depend on the frequency w
and in this way also restrict the range of integration. The
result Eq. (22) has the structure of a heat current derived by
the Landauer—Biittiker formalism with the effective density of
states pefr = (LR pLAR)/[(fLoL, — tRR)? + (tLpL + tr PR ).
In general, the temperature dependence is governed by the
existence or absence of an energy gap. In the former case,
one finds exponentially suppressed energy currents, while the
latter case will be discussed in detail in the following.

Now let us specialize the general result Eq. (22) to the case
of two gapless Majorana fermion systems. This is done by
setting €; R = 2f,r. Additionally taking the low-temperature
limit # /T gk — 00, the energy current Eq. (22) can be
evaluated using a standard Sommerfeld expansion with the
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FIG. 3. Steady-state energy current for the coupling of two criti-
cal Ising chains with parameters #, g as a function of the temperature
in the left or right subsystem. The prefactor in Eq. (23) is obtained
from a quadratic fit, the obtained values are collected in Table I.

result

b4 IL/IR
b= T MR

6 (1+1/tr)?
Thus, the energy current at low temperatures becomes maxi-
mal in the translationally invariant case f;, = fr. In this case,
it also equals the result from conformal field theory Eq. (1)
(recall Jg = —Ey) since the central charge of this is given by
c=1/2.

The result Eq. (23) can be compared to DMRG simulations
of the energy current. The energy currents obtained in the
steady state are shown in Fig. 3 (as discussed in Sec. IV,
the finite-time error can be estimated by interchanging the
temperatures 71, <> Tr and comparing the results). We extract
the prefactors from a quadratic fit (see Table I); they are in
excellent agreement with the analytic prediction Eq. (23).

— 7). (23)

B. Coupling two fermionic chains

A second case worth investigating is the limit of vanishing
pairing terms everywhere, i.e., A, = 0 with a = L/R. Here,
our system reduces to a simple tight-binding chain of spinless
fermions. In this regime, all off-diagonal terms in the Nambu
structure Eq. (9) of all Green’s functions vanish. In principle,
it is also possible to reduce the (2 x 2) matrix structure that
still describes uncoupled particles and holes into a scalar
structure that only encompasses particles. However, for the
sake of later compatibility, it is useful to keep the Nambu
structure intact. Following the same logic as in the previous

TABLE I. Comparison of the analytic and numerical results for
the prefactor of the quadratic temperature dependence of the energy
current Eq. (23).

/R Analytic value Fitted value

1 0.131 0.133
0.116 0.116

4 0.084 0.080

case, we first rewrite the current in terms of local Green’s
functions according to

. 12 A0 A V<
f= ot / dowRe(G)Goo + GOGoo) ™. (24)

In this case, the current does not depend on the combination
of Green’s functions on the left and right sides, R and £, but
it can be solved in the particle and hole channel separately.
Using the self-consistency condition Eq. (C8) for the bare
Green’s function of the right lead, we find

1 .
Gy = —(of —ipg), (25)
’ |7R]
~ 1 .
G = — (o —ipg), (26)
' 7R ]
where we define a)lf = (w £ er)/R2Itr|]) and pff =

(a)R )2. The bare Green’s functions of the left

lead G(()(?()) and Gf)o()) again have the same structure and one
only needs to replace the coupling strengths g and eg of the
right lead with their respective counterparts in the left chain.
The lesser bare Green’s functions can again be found by
considering G(l( ;< =fr (a))(G(O)R — G(O)A) and corresponding
procedures for the hole Green’s function and their respective
versions of the left lead. Now Eq. (C6) applied to the A; =0
case yields

1
Go.o = 27
"0 (lof — Iwmlog) +i(nloy + liklog)
_ 1
Goo = , (28)

(ItLlop — IrRlwg) +i(lLlof + ItRloeg)
and when evaluating lesser the Green’s functions, we find

filile + frltlog

Gio = —2i 7 , (29)
_ 1 . 1 o
Gio = _ZifL| L|/0LA‘1/‘_fR| RIOR 7 (30)

NE = (Iilof — IRlop)* + (et + lwlog)?. (1)

Having computed all necessary ingredients, we are now able
to compute the energy current

= —/da)a) fr(®) = fi(®)] Z p“lw?}, (32)
|tL|pR|fR|,0L
N+ ’

where we used that w; (@) = —o]  (—w). Note that Eq. (33)
is valid for arbitrary paramters #;,r and e g as long as Ay, =
Agr = 0.

Now specializing to the gapless regime |e r| < 2¢ g and
taking the low-temperature limit, we obtain

g (0)pf (0) (T3 — T2)
(eL — €r)?/4 + (tLpf (0) + trpg (0))?
where pi’m(O) = \/ 1 — [eLr/(2tLr)]%. The dependence on

t./tr for €, = eg = 0 was confirmed by DMRG calculations
(not shown).

2
-2 / doo [ fu(@) — fi(@)] (33)

E=2 (34)
3
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We note that Eq. (34) becomes maximal in the translational
invariant case, f;, = fg, €. = €g, with the result £, = 1”—2(TR2 —
TLZ). This finding is independent of the value of the on-site
potential €, and thus the effective velocity at low energies,
and it is exactly twice the energy current obtained in the case
of coupled Majorana chains Eq. (23). The additional factor of
2 between Egs. (23) and (34) can be traced to the different
central charge of the two systems, where here we have ¢ =
1 instead of the previous ¢ = 1/2. In particular, in the low-
temperature regime, the result Eq. (34) is again in agreement
with the field-theoretical result Eq. (1).

C. Coupling a fermion chain to a Majorana chain

The final setup we consider in this paper is a system that
couples a chain with Ay = 0 on the left side to a chain with
AR = tr on the right side. For simplicity, we assume € = 0,
implying that the left chain is critical with the velocity of the
low-energy modes given by v = 2t . For eg = 2tg, we thus
consider a situation in which a critical theory with central
charge ¢, = 1 is coupled to one with central charge cg = 1/2.
Thus obviously translational invariance is broken and the
result Eq. (1) is not applicable.

The energy current between two systems possessing dif-
ferent central charges has been considered in two previous
works. First, Bernard et al. [34] directly considered the cou-
pling of two different conformal field theories. Their con-
struction imposes a specific boundary condition on the stress
tensor at the boundary between the conformal field theories,
which unfortunately cannot simply be related to a condition
on the coupling Hamiltonian Hc appearing in our microscopic
setup. A more recent work by Mazza et al. [35] used the
generalized hydrodynamic approach to study the energy trans-
port in the critical Z3 parafermionic chain (equivalent to the
three-state quantum Potts chain). A peculiarity of this model
allowed the study of a setup coupling two critical systems with
central charges ¢, = 1 and cg = 4/5 with the former being
held at negative temperature. Based on formal analogies and
numerical simulations, they conjectured the energy current
to behave as Jg = J2° + 5 (cLT}? + crT) with JE° being a
nonuniversal contribution and the relative sign originating
from the presence of a negative temperature.

Coming back to our setup, we can follow the derivation of
the energy current of the coupled Majorana chains up to the
point where the explicit results for the left Green’s functions
need to be plugged in. The result for the bare Green’s function
for the left lead is again obtained the same way as Egs. (25)
and (26) and reads

GO = cg;?gti'(% g = £O), (35)
L

where wp, = w/(2|f.]) and pL = Re,/1 — a)ﬁ since we have
assumed €, = 0. While the bare Green’s function of the left
chain does not possess anomalous terms, the full Green’s
function acquires off-diagonal terms by virtue of the cou-
pling to the right lead where anomalous terms exist. Solving
Eq. (C6) and from it constructing £, we find

2

L= 2LOF — 22RO

(36)

0.003- XX-Ising ]
= oF §
=

L
-
+ O tg/t=0.5, T=T, Tg/t,=1/6
ty/t,=1.0, T=T,, Tx/t,=1/6
te/t,=2.0, T=T|, Tg/t,=1/6
.0.003 R Lo 'R i
oty =1.0, T=Tg, T /t,=1/6
—— quadratic fit
| L |
0 0.1 0.2

T/t

FIG. 4. Steady-state energy current for the coupling of an XX
chain to a critical Ising chain as a function of the temperature in the
left or right subsystem. The prefactor in Eq. (39) is obtained from a
quadratic fit, the obtained values are collected in Table 1.

and from this result, using Eq. (20), we obtain

tLpLfL + 2tRerfR

LS =— 1|t5£(0)* — 2t1§72(0)|‘ 37
Thus, the energy current in this setup is given by
. 2 dowtt —
B — w oL pLER[R(®) — fL(w)] (38)

7 ) (oL — 2mror)? + (tLpL + 2R or)?

We note that this result is still applicable for arbitrary eg, but
that we have already set e, = 0 yielding the simplification
oL = ,of =Rey1 — (w/ (21.))?. Furthermore, the integration
range is restricted by the densities pr,r and the §-function
o = 0 can be neglected with the same reasoning as before.
For obvious reasons, this setup does not allow for looking
at the special case of translation invariance. However, taking
the right chain to be critical, i.e., eg = 2tg, allows us to study
the case of coupling two critical systems with different central
charges. In the low-temperature limit, Eq. (38) simplifies
according to
: T IL/tR 2 2
EL =3 NS (T — 7). (39)
This becomes maximal for f = 2tz with the value EL =
2 (T — T;?), thus representing the maximal energy current in
this setup. This is also confirmed by the numerical data shown
in Fig. 4 as well as the extracted prefactors in Table II. We find
excellent agreement between the two approaches.

TABLE II. Comparison of the analytic and numerical results for
the prefactor of the quadratic temperature dependence of the energy
current Eq. (39).

/R Analytic value Fitted value
0.5 0.084 0.081
1 0.116 0.114
2 0.131 0.131

205146-6



ENERGY TRANSPORT BETWEEN CRITICAL ...

PHYSICAL REVIEW B 101, 205146 (2020)

To conclude, we have found the maximal energy current
for the free fermion chain coupled to the Majorana chain to be
given by

b4 cm

h= TR -R) =T -R). @0
with ¢ = 1/2 being the central charge of the Majorana system.
This can be interpreted such that the transport is limited by the
system with the least transport capability, i.e., fewer degrees
of freedom. Our result, Eq. (40), is consistent with the result
obtained by Bernard ef al. [34] where a U(1) conformal field
theory with ¢ = 1 was coupled to a Majorana field theory
(Z, parafermion theory). On the other hand, in contrast to
the conjecture put forward by Mazza et al. [35], our result
depends only on one of the central charges.

VI. CONCLUSION AND OUTLOOK

In this paper, we studied energy transport in one-
dimensional critical systems which are characterized by dif-
fering central charges. The model we studied was a p-wave
superconductor which allowed us to realize two different con-
formal field theories in its low-energy limit: a theory of free
fermions corresponding to central charge ¢ = 1 and free Ma-
jorana fermions corresponding to ¢ = 1/2. In translationally
invariant systems, we verified, using an exact nonequilibrium
Green’s function calculation as well as DMRG simulations,
that the low-energy limit of the energy current is indeed given
by Eq. (1).

Going beyond this, we considered systems consisting of
two different semi-infinite chains realizing a ¢ =1 and ¢ =
1/2 conformal field theory. Since translation invariance is
broken in this setup, the result Eq. (1) is not applicable.
Nevertheless, our result Eq. (40) for the maximal energy
current has the same functional form with the central charge
of the Majorana system limiting the energy current. One can
interpret our result in the sense that the subsystem possessing
the smaller central charge and thus the fewer degrees of
freedom limits the energy transport, in the same way that
the number of open transport channels limits charge currents
in the Landauer-Biittiker formalism. In such a picture, the
limited number of degrees of freedom in the Majorana system
thus serves as a bottleneck for the transport through the
junction. With this interpretation in mind, we conjecture that
the maximal energy current between two critical systems
possessing central charges c¢; and cg should have the form

Jp = ;T_z min(cy, cp) (T2 — ). (41)
In the future, it would be interesting to verify that this bottle-
neck effect also shows up in interacting systems like the XXZ
Heisenberg chain and systems corresponding to conformal
field theories with central charge ¢ # 1. An example for the
latter setup would be provided by coupling a critical three-
state Potts chain to Majorana fermions.
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APPENDIX A: ENERGY CURRENTS IN THE SPIN CHAIN
REPRESENTATION

The numerical calculation of the energy current is done
in the formulation of the system Eq. (2) in terms of spin
chains, which is obtained by performing the Jordan—Wigner
transformation:

of = [ (1 = 2¢fci)(c] + ¢, (AD)
k<j
o}’f = —il_[(l — Zc}:ck)(c; -cj), (A2)
k<j
o; = 2cj:cj -1 (A3)

For example, for the most interesting case of coupling a
fermion chain to a critical Majorana chain, we obtain with
AL =¢, =0, ARZGR/zleaIldIZA =IR:

159 -
Hy = -5 (07071 + oj’.a;_H), (A4)
j<—1
Hrp = Z(U}‘Uﬁ_l + ojz) + const, (AS)
>l
Hc = —trojjo; . (A6)

Thus, the energy current to be evaluated numerically is given
by

Ey = i([Hc, H.]) = —1ir{o” o507). (A7)
Similarly, for the coupling of two critical Majorana/Ising
chains, we obtain

EL = —21.1g(0] 07). (A8)

APPENDIX B: THE GENERATING FUNCTIONAL

In this Appendix, we will show how to to rewrite the
expectation values in Eq. (6) in terms of nonequilibrium
Green’s functions. The nonequilibrium setting of our system
requires the use of the Schwinger—Keldysh technique. For
brevity of notation, we consider a more generic Hamiltonian
that encompasses the class of systems Eq. (2) as special cases,

Nr

H= 'y

i,j==NL

*

A AY .
|:c;rT,-,jcj + cj%cj + cj%cl}, (B1)

where the factors of 1/2 account for double counting that this
formulation occurs for the off-diagonal terms only. To apply
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standard field theory techniques, it is useful to rewrite this
Hamiltonian in a Nambu basis as

1 Ng c: Ng
H=2 3 ( ci>Hi,j<c%>+ Y T (B2
i.j==N. ! j==M

T . A
The last term constitutes a global energy shift that has no
impact on the physics of our problem, thus we may neglect
it. Also note that the prefactor 1/2 is not included in the
definition of H,; ;.

The path integral of this system is formulated on the
closed Schwinger—Keldysh contour. To derive expressions for
the Green’s functions, we introduce generating functionals
according to

ZIE E] = / Dé De 516561, (B4)

where S[Z, ¢, €, £] is the action to be specified in Eq. (B5)
below. Furthermore, we introduce the fields ¢; ,, where o =
=+ specifies the branch of the Schwinger—Keldysh contour
on which the field is defined. Here « = + (o = —) implies
the forward (backward) branch. Introducing the short-hand
notation C¥(¢) = (c¢f (1), Ej?‘(t))T and E = (§/ (1), —Ei‘"(t))T
as well as adopting the Einstein summation convention, the
action reads

iS[C,C, 2, 8] = %/dt d[’(:‘lf"(t)[f}—l]z}ﬁcf

1 1 [ =a a,pB INneB et
+§/dtdt [E (AT (1, 1)CF (1)

+CHOA (1 )E (.1, (B5)
where the inverse Green’s function is given by
(G*l)j{’f = [i8,8; j1 — H; j16(t — 1)) TP (B6)
and

AL @1y = 8 T P18 — 1), (B7)

Z

Here, 7, (third Pauli matrix) acts on the contour indices while
the unity operator acts in Nambu space.

It is important to note that the inverse Green’s function
Eq. (B6) appears diagonal in contour subspace «, . However,
this is an artifact of the continuum time notation [20] with the
inverse possessing an off-diagonal element fixed by imposing
appropriate boundary conditions.

Following a standard procedure, we integrate out the
fermion fields (note that Z; = 1 in the nonequilibrium frame-
work because of the closed time contour), leading to

Z =%, (B8)
1 ! Ao A, f INmB
Seff = —3 dtdt' B (t)Gi’j (t,t ).:‘j (). (B9)

In this expression, we introduced the Green’s function G,
which is not just the inverse of Eq. (B6) in the sense that it
is not diagonal in contour space. In Nambu space, the Green’s
function has the form Eq. (9). The expectation values needed

for the energy current can now be obtained from Eq. (B8) by
means of appropriate differentiations, i.e.,

82z

F0e ) = e
(¢;"(t)e; @) = 8E7 (188 (1))

§=£=0

_i —+ ’ Ft— gl
_E(Gj’i (IJ)_G,‘,]‘ (l’t))

= %(G;,.(z,z’) + IG5, )T, (B10)
82z
(e (e () =
/ SEF (188, (1|, _,_,
i < ’ < AN E
= 5(G5 1) + (G711, (BID

82z

T+ T\
e U = = se 1)

£=£=0

- %(Fjj.(t,t/)—i- [Fa.)]"). (B12)

(c ()e () = —%
P 955 e
= SEL@CO+IFEO, B13)
where we used the relation G< = G~ = —[G*~]" between

lesser and larger Green’s functions. An important feature of
these equations is the relative sign between the definitions of
the diagonal and off-diagonal terms caused by the anticom-
mutation relations of fermionic fields.

APPENDIX C: DECOMPOSITION OF GREEN’S
FUNCTIONS

In real space, the retarded Green’s function of the full
system (and its inverse) can be expressed as a matrix whose
indices correspond to lattice sites. In this basis, the inverse of
the Green’s function has only entries on the diagonal and the
first off-diagonals on both sides,

0
A(0)—1 .
o1 (G )i,i Tliitl 0 , (CD
0 +(ti,i+1) (G(O)il)iﬂ,iﬂ E
0

where the elements of Eq. (C1) each are a matrix in Nambu
space of the form

A0) -1y, _ (l)+€[ 0
(¢ >,,,—( 0 w_ei), (€2)

~ t A;
ti,i+1 = <_A1 _ti)s (C3)

and the values of #;, A;, and ¢; have to be taken at their
values corresponding to their respective positions in the chain.
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Evaluating the equation
Y GGl =4 (C4)
k

for the choice j =i+ 1 allows us to rewrite a transition
Green’s function in terms of localized Green’s functions as

Gi,i+1 = Gi,ii\i,iJrlGl(:?_)],Hl- (CS)
If we combine the relations for j =i+ 1 and j =i — 1 with
the result for j = i, we further find

- (fi—1,i)TG§E)L,v_1fi—1,i]7l~ (C6)

Each localized Green’s function can thus be expressed by lo-
calized bare Green’s functions. Note that this is only possible
due to a lack of long-ranged interactions. It is also important to
realize that in this context G;i)ly ;11 describes the endpoint of a

semi-infinite chain that terminates before site i either coming
from the left or the right side of the chain.

To solve the endpoints of a bare chain, we consider the
endpoints of a matrix of the form Eq. (C1), multiply with
its inverse, and solve for either of the appropriate Green’s
functions. For a chain that starts at site i = 1 and goes on to
the right side, we find

A A0 — A A A~ —1
GP) = [(GO 1 — 726D (C7)

where CA}(ZO% again describes a semi-infinite chain that now
starts at site i = 2. Since a semi-infinite chain that is shortened
by one site is still essentially a semi-infinite chain, we may
shift Ggg = G(IO; and find the self-consistency equation for
semi-infinite chains to the right,

. . . AO) A _1
Gﬁ‘?{=[(G(°) 1)1,1—l1,2G(1(?;(f1,2)T] , (C8)

and, applying the same procedure to a left-side semi-infinite
chain,

A N _ ~ A —1
Gy =[GV 00 — (=10 Glot-10] . (C9)
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