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Spin-accumulation induced magnetic texture in a metal-insulator bilayer
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We consider the influence of a spin accumulation in a normal metal on the magnetic statics and dynamics in
an adjacent magnetic insulator. In particular, we focus on arbitrary angles between the spin accumulation and
the easy axis of the magnetic insulator. Based on Landau-Lifshitz-Gilbert phenomenology supplemented with
magnetoelectronic circuit theory, we find that the magnetic texture twists into a stable configuration that turns out
to be described by a virtual, or image, domain wall configuration, i.e., a domain wall outside the ferromagnet.
We show that even when the spin accumulation is perpendicular to the anisotropy axis, the magnetic texture
develops a component parallel to the spin accumulation for sufficiently large spin bias. The emergence of this
parallel component gives rise to threshold behavior in the spin Hall magnetoresistance and nonlocal magnon
transport. This threshold can be used to design novel spintronic and magnonic devices that can be operated
without external magnetic fields.
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I. INTRODUCTION

The use of propagating spin waves, or magnons, to transmit
and process information has the potential advantage of lower
energy consumption over electronic currents. Especially, in-
sulating ferromagnets (IFMs), such as yttrium-iron garnet
(YIG), are able to accommodate a spin current efficiently
as the damping of the magnetic dynamics is relatively low
[1]. This has raised an increased interest in the possibilities
of magnonic devices and how these could replace current
electronic devices [2,3]. Specifically, the behavior of magnons
in magnetic domain wall textures can have promising applica-
tions [4,5].

A typical experiment achieves transfer of angular mo-
mentum into an IFM through a spin current from a normal-
metal (NM) lead, usually platinum, by generating a spin
accumulation at the interface by the spin Hall effect [1,6–8].
The angle of this spin accumulation with respect to the mag-
netization at the interface determines the efficiency of spin
current injection. In this paper we consider the effect of a
sufficiently large spin bias, which locally affects the magnetic
texture and thereby the transfer of angular momentum. We
propose an analytical solution for the magnetization texture
of the IFM for a general orientation of the spin accumulation.
Results for nonlocal magnon transport [9] and the spin Hall
magnetoresistance [10,11] are derived. We find threshold
behavior in both local and nonlocal setups for a critical
magnitude of the spin accumulation. This threshold behavior
may be employed as a useful functionality in novel spintronic
and magnonic devices that, as a result, do not require a
cumbersome external magnetic field to access their different
states. While threshold behavior is commonly associated with

*d.m.f.hartmann@uu.nl

spin superfluidity [12,13], our results show a threshold that is
related to a change in the stable magnetic texture, and not to a
spin superfluid state.

II. EQUATIONS OF MOTION

A one-dimensional semi-infinite IFM nanowire with an
interface with a nonmagnetic metal at x = 0 is studied. At the
interface a spin accumulation μ is generated, e.g., by means of
the spin Hall effect, which results in a boundary condition on
the spin current in the ferromagnet. A possible configuration
of the system is illustrated in Fig. 1(a). Our aim is to determine
the magnetic texture of the ferromagnet and its stability as
a function of μ. We define n = M/Ms as the unit vector in
the direction of the magnetization, where Ms is the saturation
magnetization. The energy of our system is given by

E =
∫

V
dV

1

2

(
A|∂xn|2 − Kn2

z

)
, (1)

with V the volume of the IFM, A the spin stiffness, K > 0 the
easy-axis anisotropy and nz = ẑ · n. We consider an easy z-
axis anisotropy, but the results apply to other easy-axis direc-
tions similarly. The Landau-Lifschitz-Gilbert (LLG) equation
supplemented with spin-transfer torques and spin-pumping
terms that follows from magnetoelectronic circuit theory reads
[14,15]

(1 + αGn×)ṅ = −γ n × Heff

− δ(x)
g↑↓

4πs

[
n ×

(
n × μ

h̄
+ ṅ

)]
. (2)

The left-hand side describes the damped time evolution of
n, where αG is the dimensionless phenomenological Gilbert
damping constant. The first term on the right-hand side is
the torque due to effective magnetic field MsHeff = −δE/δn,
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FIG. 1. (a) The magnetic texture n(x) (blue arrows) of the semi-
infinite IFM nanowire (green region) with an easy-axis anisotropy
in the z direction. In the NM (orange region) an electric current
generates a spin accumulation μ with polar angle θμ at the interface
(red arrow) that deforms the magnetic texture. (b) The opaque arrows
in the NM region are virtual and illustrate that the magnetic texture
is that of two oppositely oriented domains with the center of the
virtual domain wall, xDW, outside the IFM. Such a virtual domain
wall solution is found analytically for any magnitude and orientation
of the spin accumulation.

where γ > 0 is the gyromagnetic ratio. The second is the
interfacial spin transfer torque and spin pumping respectively,
where g↑↓ is the interface spin flip scattering per surface area,
i.e., the spin-mixing conductance, and s the spin density.

The characteristic length scale of the ferromagnet is the
exchange length λ = √

A/K and the ferromagnetic resonance
frequency ωF = γ K/Ms sets the timescale. Finally, we define
α(x) = αG + λδ(x)α′, with α′ = g↑↓

4πλs . We integrate the LLG
equation around an infinitesimal interval around the interface
to obtain the boundary condition on the spin current density:

js|x=0 = h̄s

2

γ A

Ms
n × ∂xn

∣∣∣∣
x=0

= −λα′ h̄s

2
n ×

(
n × μ

h̄ωF
+ ṅ

)∣∣∣∣
x=0

. (3)

Furthermore, we have the boundary condition n → ẑ
as x → ∞.

III. VIRTUAL DOMAIN WALL SOLUTION

It turns out that the stationary magnetization profile that
obeys Eq. (2) and the boundary condition Eq. (3) is similar
to a domain wall (DW) texture, but with the DW position
outside of the ferromagnet: the DW is a stationary solution to
the bulk part of the LLG equation, and the freedom of the DW
position allows us to satisfy the boundary conditions. We refer
to this situation as a virtual DW. Such a DW solution is written
in spherical coordinates as n0 = x̂ sin θ cos ϕ + ŷ sin θ sin ϕ +
ẑ cos θ , with ϕ a constant azimuthal angle throughout the
nanowire and θ the polar angle given by

θ = 2 arctan(e(xDW−x)/λ). (4)

Here xDW is the position of the DW. The reader is referred to
the Supplemental Material [16] for useful properties and their
derivations of the profile of θ given in Eq. (4).

Next, we study the boundary condition Eq. (3) of the spin
current. For convenience we switch to a local spherical basis
whose radial unit vector is given by n0.

r̂ = x̂ sin θ cos ϕ + ŷ sin θ sin ϕ + ẑ cos θ = nDW ; (5)

θ̂ = x̂ cos θ cos ϕ + ŷ cos θ sin ϕ − ẑ sin θ ; (6)

ϕ̂ = −x̂ sin ϕ + ŷ cos ϕ. (7)

It follows that λ∂xn0 = − sin θ θ̂. Hence,

2js|x=0

sλα′ = − h̄ωF sin θ0

α′ ϕ̂ = (μ · θ̂)θ̂ + (μ · ϕ̂)ϕ̂|x=0. (8)

where θ0 = θ (0). This gives us two equations:

μ · θ̂|x=0 = 0, and μ · ϕ̂|x=0 = − h̄ωF sin θ0

α′ , (9)

The virtual DW position xDW and its azimuthal angle φ

are determined by solving these equations for the boundary
condition Eq. (3). We write

μ · θ̂ = μR cos(ϕ − ϕμ) cos θ − μz sin θ ; (10)

μ · ϕ̂ = −μR sin(ϕ − ϕμ), (11)

where we express μ in rescaled cylindrical coordi-
nates: μz = μ · ẑ/h̄ωF; μR =

√
(μ · x̂)2 + (μ · ŷ)2/h̄ωF; ϕμ =

arctan (μ · ŷ)/(μ · x̂), and define θ0 = θ (0) and μ = |μ|/h̄ωF.
From Eq. (11), we obtain an expression for the azimuthal
angle ϕ of the virtual DW in terms of ϕμ and the polar angle
θ0 of the virtual DW at the interface:

ϕ − ϕμ =
{

arcsin
( sin θ0

α′μR

)
, for μz � 0;

π − arcsin
( sin θ0

α′μR

)
, otherwise.

(12)

Note that ϕ is only properly defined when μR �= 0. Indeed,
if μR = 0 the boundary conditions fix sin θ = 0, i.e., the
magnetization is homogeneous along the z direction and an
azimuthal angle is ill defined. By inserting Eq. (12) into
Eq. (10), we rewrite Eq. (9) and take the square to ob-
tain (α′2μ2

R − u)(1 − u) = α′2μ2
z u, with u = sin2 θ0. This is

solved for 0 � u � 1 to obtain the expression for xDW:

xDW = −arcsech

⎛
⎝
√

1 + α′2μ2 − √
(1 − α′2μ2)2 + 4α′2μ2

z

2

⎞
⎠,

(13)

where μ = |μ|/h̄ωF.
Note that although the semi-infinite ferromagnet lies on

the x � 0 axis, a virtual DW texture, i.e., xDW � 0, is the
only physical solution, as this will minimize the energy of
the system. This is seen directly from Eq. (1) as the gradient in
the first term is maximal around the virtual DW position. The
role of xDW is merely to configure the virtual DW profile in
such a way that the boundary conditions are met. The behavior
of the magnetic texture as a function of μ is plotted in Fig.
2. The figure demonstrates the effect of the spin bias on the
magnetic texture in terms of the virtual DW position and the
component of the spin accumulation that is parallel to the
magnetization at the interface.
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FIG. 2. The component of the spin accumulation parallel to the magnetization at the interface [(a), (b)] and the virtual DW position
xDW [(c), (d)] as a function of the value of the total spin accumulation μ [(a), (c)] and its polar angle with respect to the z axis [(b), (d)].
These plots indicate the effect of the spin accumulation on the magnetic texture: As the spin accumulation increases, the virtual DW position
approaches the interface, which will only be reached when θμ = π/2, i.e., when μ is perpendicular to the anisotropy axis. For |μ| � h̄ωF/α

′,
μ is also perpendicular the magnetization at the interface. But in the regime |μ| > h̄ωF/α

′ there will be a finite parallel component of the spin
accumulation.

A remarkable feature is that for increasing |μ| the virtual
DW position approaches the interface. Precisely when θμ =
π/2, the virtual DW position will reach the interface when
|μ| = h̄ωF/α

′. When |μ| increases further, the virtual DW
position remains at the interface, but the azimuthal angle of
the virtual DW now starts changing to pull the magnetization
more parallel to the spin accumulation, resulting in the thresh-
old behavior in the parallel component μ|| = μ · n0|x=0 of the
spin accumulation.

IV. SPIN HALL MAGNETORESISTANCE

When applying an electric current through a NM|IFM
system, the electrical resistance depends on the orientation
of the magnetization of the IFM with respect to the current
direction. The electric current je will generate a spin current
js
x through the interface by the spin Hall effect. The magnitude

of this current depends on the relative orientation of the
magnetization of the IFM to the spin accumulation μ at the
interface [10,11]: The spin current is maximized (minimized)
when the spin accumulation and magnetization at the interface
are perpendicular (parallel) as then the most (no) angular
momentum is transferred. As a result the resistivity in the NM
is maximal (minimal) due to the inverse spin Hall effect.

Considering Fig. 2(a), we expect a threshold effect in this
spin Hall magnetoresistance of the normal metal when the
angle θ j between the electrical current trough the NM and
the anisotropy axis vanishes. The applied electric field thus
has a threshold value Ec, such that |μ| > h̄ωF/α

′, where the
spin accumulation deforms the magnetic texture such that the
transfer of angular momentum is reduced.

Following Ref. [11] we solve the coupled charge and spin
current drift-diffusion equations as a function of the angle
θ j between the electrical current and the anisotropy axis by
inserting the boundary conditions for the spin current from
Eq. (3), assuming that μ obeys a diffusion equation [16]. In

the large thickness (along the x direction) limit for the NM
and parallel current θ j = 0, the critical electric field for which
the magnetic texture develops a component parallel to the spin
accumulation, i.e., |μ| = h̄ωF/α

′, is given by

Ec = λsγ K

θSHMs

(
2π h̄

lsg↑↓e
+ e

σ

)
, (14)

with θSH the spin Hall angle of the NM, ls the spin diffusion
length, e > 0 the elementary charge and σ the electrical
conductivity. To estimate this effect we consider a Pt|YIG
interface where the critical electric field has a value of ap-
proximately 21 V/μm [1,16–19].

In Fig. 3 we plot the normalized difference in resistance
in the NM as a function of the applied electric field for a
Pt|YIG interface. One clearly sees the threshold behavior of
the resistance due to the change in magnetic texture as a
function of the spin accumulation.

V. MAGNON TRANSPORT

As we have seen, there is no transfer of spin when the spin
accumulation and magnetization are parallel. Despite this, the
IFM can accommodate the transfer of angular momentum by
means of fluctuations (either thermal or quantum) in the form
of spin waves, i.e., magnons. The magnons are injected and
detected through spin-flip scattering at the interface with NM
leads. The efficiency of the transfer of angular momentum
is optimal when the spin accumulation is parallel to the
magnetization at the interface. As a consequence, threshold
behavior is expected in the nonlocal magnon transport signal.

A typical experiment that quantifies the magnon transport
attaches a lead at some position x = d 	 λ and measures the
electric current generated by the inverse spin Hall effect [2].
To consider magnons, we add a perturbation to our stationary
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FIG. 3. Relative decrease in resistivity as a function of the
normalized electric field E/Ec for different angles θ j between the
electric field and the anisotropy axis, where Ec is the electric field
that generates a spin accumulation |μ| = h̄ωF/α

′ at the interface.
For E � Ec and θ j = 0 the conductivity is not affected by the
change in magnetization of the IFM as the magnetization remains
perpendicular to μ. For E > Ec the magnetization at the interface
aligns more with μ and the spin Hall magnetoresistance decreases.

solution:

n = n0 + δn, with δn = θ̂δnθ + ϕ̂δnϕ, (15)

where we make the ansatz |δnθ (x, t )| 
 1 and |δnϕ (x, t )| 
 1
are homogeneous along the y and z direction as we assume
translation symmetry along the interface. The magnon field is
defined as ψ = δnθ + iδnϕ , and thermal fluctuations are mod-
eled by adding a stochastic field h to the LLG Eq. (2) [9,20].
Fourier transforming ψ and h, we obtain a Schrödinger-like
equation from the linearized LLG equation:

(1 + iα)ωψω

=
(

− γ A

Ms
∂2

x + ωF cos 2θ + iδ(x)λα′ μ||
h̄

)
ψω − γ hω, (16)

where h = hθ + ihϕ . The second term on the right-hand side
plays the role of a local potential with a minimum at the virtual
DW position. The stochastic fields at the interfaces and in
the bulk are combined into h = dhlδ(x) + hb + dhrδ(x − d ),
where each stochastic field obeys the fluctuation dissipation
theorem [9]:

〈h�
ω(x)hω′ (x′)〉 = 4π

αG h̄ωd

γ MsV

δ(x − x′)δ(ω − ω′)
tanh (h̄ω/2kBT )

; (17)

〈
hl�

ω hl
ω′

〉 = g↑↓h̄

M2
s V d

(h̄ω − μ||)δ(ω − ω′)

tanh
( h̄ω−μ||

2kBT

) ; (18)

〈
hr�

ω hr
ω′

〉 = g↑↓h̄

M2
s V d

h̄ωδ(ω − ω′)
tanh (h̄ω/2kBT )

, (19)

and the temperature T is assumed constant and equal in the
bulk and at the leads as we are only interested in the nonlocal
transport due to the spin bias. In this way, magnon dissipation
at the boundaries and in the bulk is considered.

FIG. 4. Threshold behavior in the spin current as a function
of the bias. For |μ| > h̄ωF/α

′ there is a finite spin current when
the spin accumulation is perpendicular to the anisotropy axis. This
threshold behavior is caused by the deformation of the magnetic
texture, generating a parallel component of the magnetization as is
seen in Fig. 2(a).

The observable we are interested in is the average spin
current injected into the right lead at x = d . We have

〈 js〉 = Ms

2γ
Im〈ψ�(λα′ψ̇ + dγ hr )〉

∣∣∣∣
x=d

, (20)

where we defined 〈 js〉 = 〈js〉 · n0|x=d . We use Green’s func-
tions to express ψ in terms of the stochastic field and find an
analytical solution using two types of solutions for the bulk
part of Eq. (16) [4,9,16]:

ψω,± = [∓iλk(ω) + cos θ ]e±ikx; (21)

with k(ω) = λ−1√(1 + iαG)ω/ωF − 1. Remarkably, these
magnon modes are stable regardless of the orientation and
magnitude of the spin accumulation.

The result for the spin current at the right interface is
written in the familiar Landauer-Büttiker form:

〈 js〉 =
∫

dω

2π
T (ω)

[
NB

(
h̄ω − μ||

kBT

)
− NB

(
h̄ω

kBT

)]
, (22)

where T (ω) = α′2 h̄dω(ω − μ||/h̄)|Gω(0, d )|2/V ω2
F is the

transmission coefficient, NB(ε) = (eε − 1)−1 is the Bose dis-
tribution function and Gω(x, x′) is the retarded magnon
Green’s function that solves Eq. (16). Note that this spin
current vanishes when μ|| = 0.

In Fig. 4 the spin current injected into the right lead x = d
is plotted as a function of the spin accumulation at the left lead
x = 0, where the polar angle θμ between the spin accumula-
tion and the anisotropy axis is π/2. Our results show that for
large bias, the spin accumulation affects the magnetic texture
significantly. In particular, for |μ| > h̄ωF/α

′ there is a nonzero
current even though the spin accumulation is perpendicular to
the anisotropy axis. Such threshold behavior is also seen in
experiments [12].

VI. CONCLUSION

We have shown that a spin accumulation at the interface
of a NM with an IFM affects the magnetic texture and
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thereby moderates the transfer of angular momentum across
the interface. The magnetic texture is found analytically and
is interpreted as a virtual DW, where the DW position always
lies outside or at the boundary of the ferromagnet.

Note that we do not fix the magnetization of the IFM at the
interface as was done by Sitte et al. [21] where a conducting
ferromagnet is considered. There the authors demonstrate that
by fixing the magnetization at the interface there is a critical
current above which DWs are injected into the nanowire.
Similarly, DWs are injected into our IFM system for suffi-
ciently large spin accumulation and when the magnetization
is fixed [16], which would physically correspond to a very
large interface anisotropy.

Furthermore, we have shown that this interaction between
the spin accumulation and the magnetization at the interface
results in threshold behavior in spin Hall magnetoresistance
and nonlocal magnon transport: When the spin accumulation
exceeds the critical value h̄ωF/α

′ the spin Hall magnetoresis-
tance drops suddenly when the electric current is parallel to
the anisotropy axis. Moreover, above the critical value a finite
nonlocal magnon current can be measured even when the spin
accumulation is oriented perpendicular to the anisotropy axis.
These results provide a novel route to control both local and
nonlocal spin transport signals via the electric current, without
the need for an external magnetic field. We provide a possible
geometry for an experimental setup in the Supplemental Ma-
terial [16].

We have assumed that the system size is large relative to the
exchange length λ. For a smaller system, the exchange energy
of the magnet cannot compensate the spin transfer torque,
which leads to spin-torque oscillator instabilities [22] that
prevent the formation of the virtual DW texture. Furthermore,
we assume that the contact size of the biased lead is small
compared to the distance between the leads to ensure that

the magnons do not form a Bose-Einstein condensate when
μ|| > h̄ωF/α

′ [23].
The electric field required to arrive at the threshold for a

Pt|YIG bilayer is still two orders of magnitude higher than
electric fields that have recently been applied in this kind of
system [24], but the expression for the critical electric field
(14) holds for any material, hence the threshold is more ac-
cessible for materials with a lower spin density, for example.

Remarkably, it is often argued that threshold behavior in
nonlocal magnon transport indicates a metastable spin super-
fluid state [12,13,25]. However, we have demonstrated that
even a stable magnetic texture may also lead to threshold
behavior in the nonlocal magnon transport. We expect that an
external magnetic field or a nonzero Dzyaloshinskii-Moriya
interaction (DMI) might smoothen the threshold behavior as
this will affect the azimuthal angle of the virtual DW.

In future research our theory can be applied to interpret
experimental results on such threshold behavior. Moreover,
the model can be extended to antiferromagnets. Furthermore,
the model can be enriched by considering the effects of a weak
magnetic field or DMI.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Julius Krebbekx
and Geert Hoogeboom. R.D. thanks the support of the D-
ITP consortium, a program of the Dutch Organization for
Scientific Research (NWO) that is funded by the Dutch Min-
istry of Education, Culture and Science (OCW). This project
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant Agreement No. 725509).
This work is part of the research programme of the Foundation
for Fundamental Research on Matter (FOM), which is part of
the Netherlands Organization for Scientific Research (NWO).

[1] N. Thiery, A. Draveny, V. V. Naletov, L. Vila, J. P. Attane,
C. Beigne, G. deLoubens, M. Viret, N. Beaulieu, J. Ben
Youssef, V. E. Demidov, S. O. Demokritov, A. N. Slavin, V. S.
Tiberkevich, A. Anane, P. Bortolotti, V. Cros, and O. Klein,
Phys. Rev. B 97, 060409(R) (2018).

[2] L. Cornelissen, J. Liu, R. Duine, J. B. Youssef, and B. Van
Wees, Nature Phys. 11, 1022 (2015).

[3] H. Wu, C. H. Wan, X. Zhang, Z. H. Yuan, Q. T. Zhang, J. Y. Qin,
H. X. Wei, X. F. Han, and S. Zhang, Phys. Rev. B 93, 060403(R)
(2016).

[4] F. Garcia-Sanchez, P. Borys, R. Soucaille, J.-P. Adam, R. L.
Stamps, and J.-V. Kim, Phys. Rev. Lett. 114, 247206 (2015).

[5] K. Wagner, A. Kákay, K. Schultheiss, A. Henschke, T.
Sebastian, and H. Schultheiss, Nat. Nanotechnol. 11, 432
(2016).

[6] J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
[7] L. J. Cornelissen and B. J. van Wees, Phys. Rev. B 93,

020403(R) (2016).
[8] S. Y. Huang, X. Fan, D. Qu, Y. P. Chen, W. G. Wang, J. Wu,

T. Y. Chen, J. Q. Xiao, and C. L. Chien, Phys. Rev. Lett. 109,
107204 (2012).

[9] J. Zheng, S. Bender, J. Armaitis, R. E. Troncoso, and R. A.
Duine, Phys. Rev. B 96, 174422 (2017).

[10] Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. B.
Goennenwein, E. Saitoh, and G. E. W. Bauer, Phys. Rev. B 87,
144411 (2013).

[11] M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459
(1971).

[12] W. Yuan, Q. Zhu, T. Su, Y. Yao, W. Xing, Y. Chen, Y.
Ma, X. Lin, J. Shi, R. Shindou et al., Sci. Adv. 4, eaat1098
(2018).

[13] S. Takei and Y. Tserkovnyak, Phys. Rev. Lett. 112, 227201
(2014).

[14] T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).
[15] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. B

66, 224403 (2002).
[16] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.101.214440 for useful properties of the do-
main wall texture, detailed derivations of the spin Hall mag-
netoresistance and nonlocal magnon transport, a geometry for
a magnon transport experiment setup, and a table of the used
parameter values and an elaboration on DW injection for an
IFM. Herein, Refs. [1,9,17–19,21] are used.

[17] S. Klingler, A. V. Chumak, T. Mewes, B. Khodadadi, C. Mewes,
C. Dubs, O. Surzhenko, B. Hillebrands, and A. Conca, J. Phys.
D: Appl. Phys. 48, 015001 (2014).

214440-5

https://doi.org/10.1103/PhysRevB.97.060409
https://doi.org/10.1038/nphys3465
https://doi.org/10.1103/PhysRevB.93.060403
https://doi.org/10.1103/PhysRevLett.114.247206
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1103/PhysRevLett.83.1834
https://doi.org/10.1103/PhysRevB.93.020403
https://doi.org/10.1103/PhysRevLett.109.107204
https://doi.org/10.1103/PhysRevB.96.174422
https://doi.org/10.1103/PhysRevB.87.144411
https://doi.org/10.1016/0375-9601(71)90196-4
https://doi.org/10.1126/sciadv.aat1098
https://doi.org/10.1103/PhysRevLett.112.227201
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1103/PhysRevB.66.224403
http://link.aps.org/supplemental/10.1103/PhysRevB.101.214440
https://doi.org/10.1088/0022-3727/48/1/015001


HARTMANN, RÜCKRIEGEL, AND DUINE PHYSICAL REVIEW B 101, 214440 (2020)

[18] D. D. Stancil and A. Prabhakar, Spin Waves (Springer, Berlin,
2009), Vol. 5.

[19] L. J. Cornelissen, K. J. H. Peters, G. E. W. Bauer, R. A. Duine,
and B. J. van Wees, Phys. Rev. B 94, 014412 (2016).

[20] W. F. Brown, Phys. Rev. 130, 1677 (1963).
[21] M. Sitte, K. Everschor-Sitte, T. Valet, D. R. Rodrigues,

J. Sinova, and A. Abanov, Phys. Rev. B 94, 064422
(2016).

[22] A. Slavin and V. Tiberkevich, IEEE Trans. Magn. 45, 1875
(2009).

[23] S. A. Bender, R. A. Duine, and Y. Tserkovnyak, Phys. Rev. Lett.
108, 246601 (2012).

[24] T. Wimmer, M. Althammer, L. Liensberger, N. Vlietstra, S.
Geprags, M. Weiler, R. Gross, and H. Huebl, Phys. Rev. Lett.
123, 257201 (2019).

[25] E. Sonin, Phys. Rev. B 95, 144432 (2017).

214440-6

https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1103/PhysRev.130.1677
https://doi.org/10.1103/PhysRevB.94.064422
https://doi.org/10.1109/TMAG.2008.2009935
https://doi.org/10.1103/PhysRevLett.108.246601
https://doi.org/10.1103/PhysRevLett.123.257201
https://doi.org/10.1103/PhysRevB.95.144432

